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I) ENS MP xens

1) Algèbre

Exercice 1 [ENS L 2025 # 1] Soit n ∈ N∗. Un chemin auto-évitant de longueur n de Z2 est une suite injective de points a0, . . . , an de
Z2 telle que a0 = (0, 0) et, pour tout i, ∥ai+1ai∥ = 1 pour la norme euclidienne canonique de R2. On note An le nombre de chemins
auto-évitants de longueur n.

1. Montrer que, pour tous m,n ∈ N∗, Am+n ⩽ AmAn.

1. Montrer qu’il existe ε > 0 tel que, pour n assez grand, (2 + ε)n ⩽ An ⩽ (3 − ε)n.

1. Montrer que
(

n
√
An
)

converge.
Exercice 2 [ENS SR 2025 # 2] Un sous-ensemble non vide S de Z est dit direct si, pour x, y, s, t ∈ S, la condition x + y = s + t
implique que {x, y} = {s, t}.

1. Les ensembles {1, 3, 6} et {1, 3, 6, 10, 15} sont-ils directs ?

1. Trouvez un ensemble infini direct.

1. Montrer qu’il existe B > 0 telle que pour tout n ∈ N∗, pour tout ensemble direct S inclus dans [[0, n]], on ait |S| ≤ Bn1/2,

1. Montrer qu’il existe A > 0 telle que pour tout n ∈ N∗ il existe un ensemble direct S inclus dans [[0, n]] tel que An1/3 ≤ |S|.
Indication : On pourra rajouter des éléments un à un à un ensemble de [[0, n]].

1. Existe-t-il un ensemble S direct inclus dans N tel que S + S = N?

1. Existe-t-il un ensemble S direct inclus dans Z tel que N soit inclus dans S+S?

1. Existe-t-il un ensemble S direct inclus dans Z tel que S + S = Z?
Exercice 3 [ENS L 2025 # 3] Soit (un) définie par u0 = 4, u1 = u2 = 0, u3 = 3 et ∀n ∈ N, un+4 = un + un+1. Montrer que, pour
tout nombre premier p, p divise up.
Exercice 4 [ENS SR 2025 # 4] On considère la suite (Fn)n≥0 définie par F0 = 0, F1 = 1 et Fn+2 = Fn+1 + Fn pour tout n ≥ 0.

1. Exprimer Fn en fonction de n.

1. Montrer que Fp+q = FpFq+1 + Fp−1Fq pour tout (p, q) ∈ N∗ × N.

1. Calculer Fm ∧ Fn pour tous m,n ≥ 0.
Exercice 5 [ENS L 2025 # 5] On note dn le nombre de diviseurs de n ∈ N∗. Montrer que dn = O(nε) pour tout ε > 0.
Exercice 6 [ENS PLSR 2025 # 6] 1. Montrer qu’il existe une infinité de nombres premiers p tels que p ≡ 3 [4].

1. Soient p un nombre premier et n ≥ 2. Soit k = (np)p−1
np−1 .

1. Montrer que k ≡ 1[p].

1. Soit d ∈ N∗. Montrer que si d divise k alors d ≡ 1[p].

1. Soit p un nombre premier. Montrer qu’il existe une infinité de nombres premiers congrus à 1 modulo p.
Exercice 7 [ENS SR 2025 # 7] 1. Quels sont les éléments inversibles de Z/nZ?

1. Soit n ≥ 3. On considère sa décomposition en facteurs premiers : n = pα1
1 . . . pαr

r où les pi sont premiers distincts et supérieurs
à 3, les αi dans N∗.
On admet que, pour tout i, (Z/pαi

i Z)× est cyclique.
Montrer que la proportion d’éléments d’ordre pair dans (Z/nZ)× est supérieure ou égale à 1 − 1

2r .

1. Déterminer le nombre de solutions de x2 = 1 dans Z/nZ.

1. Caractériser les éléments x ∈ (Z/nZ)× d’ordre r = 2ℓ pair tel que xℓ ̸= −1.
Exercice 8 [ENS PLSR 2025 # 8] Soient p un nombre premier impair, α ∈ N∗, q = pα et f : (Z/qZ)2 → Z/qZ une fonction. Une
partie D de Z/qZ est dite f -génératrice si : ∀y ∈ Z/qZ, ∃n ≥ 2,∃d1, . . . , dn ∈ D, y = f(. . . f(f(d1, d2), d3), . . . dn).

1. On considère le cas où f : (x, y) 7→ x− y. Déterminer les parties f -génératrices de cardinal minimal et calculer leur nombre.
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1. E Dans la suite de l’exercice, on considère le cas où f : (x, y) 7→ xy.

1. Montrer qu’il n’existe pas de partie f -génératrice de cardinal 1.

1. On admet que le groupe (Z/qZ)× est cyclique. Montrer qu’il existe une partie f -génératrice de cardinal 2.

1. Caractériser les parties f -génératrices de cardinal 2.
Exercice 9 [ENS L 2025 # 9] Dénombrer les morphismes de (Z/4Z,+) dans le groupe des automorphismes de (Z/13Z,+).
Exercice 10 [ENS P 2025 # 10] Soit A un anneau tel que tout élément de a ∈ A est nilpotent ou idempotent, c’est-à-dire tel que
a2 = a.

1. Montrer que tout élément de A est idempotent.

1. Montrer que A est commutatif.

1. On suppose que A est fini. Montrer qu’il existe n ∈ N∗ tel que A soit isomorphe à (Z/2Z)n.
Exercice 11 [ENS PLSR 2025 # 11] On note Z[i

√
2] =

{
a+ ib

√
2; (a, b) ∈ Z2}.

1. Rappeler la démonstration du fait que les idéaux de Z sont principaux.

1. Montrer que Z[i
√

2] est un sous-anneau de C dont les idéaux sont principaux.

1. Déterminer les inversibles de Z[i
√

2].

1. Trouver les (x, y) ∈ Z2 tels que x2 + 2 = y3.
Exercice 12 [ENS PLSR 2025 # 12] Soit (A,+) un groupe abélien. On dit qu’il est sans torsion lorsque n · x ̸= 0 pour tout n ∈ N∗ et
tout $x ∈ A \ \0\$. Un ordre de groupe sur (A,+) est une relation d’ordre totale ≤ sur l’ensemble A telle que ∀(x, y, z) ∈ A3, x ≤
y ⇒ x+ z ≤ y + z.

1. Montrer que si (A,+) possède un ordre de groupe alors il est sans torsion.

1. Montrer que (Zn,+) possède un ordre de groupe pour tout n ∈ N∗.

1. Soit n ∈ N∗. Montrer que tout sous-groupe de Zn est isomorphe à Zm pour un m ∈ [0, n].
Exercice 13 [ENS PLSR 2025 # 13] Soit r ∈ N∗, r ≥ 2.

1. Montrer que, pour tout n ∈ N, il existe une unique suite presque nulle (ak,r(n))k≥0 telle que n =
∑∞
k=0 ak,r(n)rk avec,

∀k ∈ N, ak,r(n) ∈ [[0, r − 1]].

1. Montrer que (ak,r(n))n≥1 est périodique et trouver sa période.

1. Montrer que (ak,r(nn))n≥1 est périodique à partir d’un certain rang.
Exercice 14 [ENS PLSR 2025 # 14] On pose S = {(x, y, z) ∈ N∗3 : x ≤ y ≤ z, x2 + y2 + z2 = 3xyz}.

1. Déterminer les éléments de S vérifiant x = y ou y = z.

1. Montrer qu’une infinité d’éléments de S vérifient x = 1.

1. On pose f : (x, y, z) 7→ (y, z, 3yz − x) et g : (x, y, z) 7→ (x, z, 3xz − y).
Montrer S est l’ensemble des images de (1, 1, 1) par toutes les composées de f et g.

Exercice 15 [ENS PLSR 2025 # 15] 1. Soit A un anneau commutatif. Rappeler la définition d’un idéal de A.

1. Un idéal I de A dit maximal si A est le seul idéal J de A tel que I ⊊ J ⊂ A.
Montrer qu’un idéal maximal de A ne contient pas d’élément inversible.

1. On pose U = F({0, 1},R). Donner les idéaux maximaux de U .

1. On pose V = C0([0, 1],R). Donner les idéaux maximaux de V .
Exercice 16 [ENS PLSR 2025 # 16] Soit A un anneau commutatif.
Pour n ∈ N∗, on note Σn(A) = {c2

1 + · · · + c2
n, (c1, . . . , cn) ∈ An}.

1. Montrer que Σ2(A) est stable par multiplication.

1. Est-ce que Σ3(A) est stable par multiplication quel que soit l’anneau A envisagé?

1. On suppose que A est un corps de caractéristique différente de 2 et que n est une puissance de 2. Soient c1, . . . , cn dans A et
s =

∑n
k=1 c

2
k . Montrer qu’il existe une matrice M ∈ Mn(A) dont la première ligne est (c1 · · · cn) et qui vérifie MMT =

MTM = sIn.

1. En déduire que Σ2n(A) est stable par multiplication.
Exercice 17 [ENS SR 2025 # 17] Soit (A,+,×) un anneau intègre (donc commutatif). On suppose que A est euclidien, c’est-à-dire
qu’il existe une fonction t : A \ {0} → N vérifiant les deux conditions suivantes :

• ∀(a, b) ∈ A× (A \ {0}), ∃(q, r) ∈ A2, a = bq + r et (r = 0 ou t(r) < t(b)).
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• ∀(a, b) ∈ A \ (A \ {0})2, t(ab) ≥ t(a).

1. Montrer que Z et R[X] sont euclidiens, tout comme n’importe quel corps K.

1. Montrer que tout idéal de A est principal.

1. On suppose que t(1A) = 0. Montrer que les éléments inversibles de A sont les u ∈ A \ {0} tels que t(u)=0.

1. E On suppose dans toute la suite de l’exercice que dans l’hypothèse (i) il y a en plus unicité du couple (q,r) solution.

1. Montrer que t(a+ b) ≤ max(t(a), t(b)) quels que soient a ∈ A \ {0} et b ∈ A \ {0} tels que a+ b ̸= 0.

1. Montrer que A× ∪ {0} est un sous-corps de A.

1. Montrer que A est un corps ou est isomorphe à K[X] pour un corps K.
Exercice 18 [ENS PLSR 2025 # 18] Soit p un nombre premier. On note Zp l’ensemble des suites (xn)n≥1 telles que, pour tout n ∈ N∗,
xn appartienne à l’anneau Z/pnZ et que xn soit l’image de xn+1 par l’unique morphisme d’anneaux de Z/pn+1Z dans Z/pnZ.

1. Montrer que l’addition et la multiplication coordonnée par coordonnée font de Zp un anneau contenant un sous-anneau iso-
morphe à Z.

1. Montrer que Zp est intègre.

1. Déterminer les inversibles de Zp.

1. Soit P ∈ Z[X]. On suppose qu’il existe x ∈ Z tel que p divise P (x) et que p ne divise pas P ′(x). Montrer que P admet une
racine y dans Zp telle que y1 = x̄ dans Z/pZ.

Exercice 19 [ENS P 2025 # 19] On considère P = Xn − a1X
n−1 + a2X

n−2 + · · · + (−1)nan ∈ R[X], scindé sur R et de racines
réelles x1, . . . , xn. Montrer que, pour tout 1 ≤ k ≤ n,

∣∣xk − a1
n

∣∣ ⩽ n−1
n

√
a2

1 − 2n
n−1a2.

Exercice 20 [ENS 2025 # 20] Soient f, g ∈ Q[X] tels que f(Q) = g(Q). Montrer que deg f = deg g.
Exercice 21 [ENS 2025 # 21] Soient n,m ∈ N∗ avec m < n. Soit Pn,m l’ensemble des polynômes complexes de degré n dont 0 est
racine d’ordre m et dont les autres racines sont de module ≥ 1. Déterminer inf{|z| ; z ∈ C∗, ∃P ∈ Pn,m, P ′(z) = 0}.
Exercice 22 [ENS SR 2025 # 22] Soit I = {P ∈ C[X] : ∀n ∈ Z, P (n) ∈ Z}. On pose H0 = 1 et, pour n ∈ N∗, Hn =
X(X−1)···(X−n+1)

n! . Pour P ∈ C[X], on pose ∆(P ) = P (X + 1) − P (X) et Dn(P ) = ∆n(P )(0).

1. Montrer que (Hn)n≥0 est une base de C[X].

1. Montrer que, pour tout n,Hn ∈ I .

1. sV2 Montrer que, pour tout n ∈ N∗, ∆(Hn) = Hn−1.

1. sV2 Montrer que I ⊂ Q[X].

1. Montrer que I = {
∑n
i=0 aiHi ; n ∈ N, (a0, . . . , an) ∈ Zn}.

1. Soient P1, P2 ∈ I tels que, pour tout n ∈ Z, P1(n) soit premier avec P2(n). Montrer qu’il existe U1, U2 ∈ I tels que U1P1 +
U2P2 = 1.

Exercice 23 [ENS PLSR 2025 # 23] Soit H =
(

2 1
1 1

)
. On note CH = {M ∈ GL2(Z), MH = HM}.

1. Montrer que CH est un sous-groupe infini de GL2(Z).

1. Montrer que CH = Z[H] ∩ GL2(Z), où Z[H] = {xI + yH, (x, y) ∈ Z2}.

1. Montrer que CH est isomorphe à (Z/2Z) × Z et en donner un système de générateurs.
Exercice 24 [ENS L 2025 # 24] Soient A et B dans Mn(R) telles que AB = BA. Soit k ∈ N∗. Déterminer le signe de det(Ak +Bk).
Exercice 25 [ENS SR 2025 # 25] Soient f ∈ C∞(R,R+∗) et x0, . . . , xn−1 des réels > 0. On souhaite montrer que :

det
(
dj

dxj
(f(x)xi)

)
0⩽i,j<n

= f(x)
∑

0⩽i<n
(xi−i)

f ′(x)
n(n−1)

2
∏

0⩽i<j<n
(xj − xi).

1.

1. Soit (pj)0≤j<n une famille de polynômes de R[X] telle que, pour tout j, pj est de degré j et de coefficient dominant dj .
Montrer que det(pj(xi))0≤i,j<n = d0 × · · · × dn−1

∏
(xj − xi).

1. Montrer que, pour tout x ∈ R et tout j ∈ N, il existe pj ∈ R[X] de degré j et de coefficient dominant f ′(x)j tel que :
∀z ∈ R, d

j

dxj (f(x)z) = f(x)z−jpj(z).

1. Démontrer le résultat annoncé. Que dire dans des cas particuliers ?
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1. Soit f : x 7→
∑+∞
n=0 anx

n la somme d’une série entière de rayon de convergence non nul.
Pour tous i, j ∈ N∗, on note ci,j le coefficient en xj de f i. Calculer det((ci,j)1≤i,j≤n).

Exercice 26 [ENS L 2025 # 26] SoitA ∈ GL3(R). Montrer queA est semblable àA−1 si et seulement s’il existeB,C ∈ M3(R) telles
que A = BC,B2 = C2 = I3.
Exercice 27 [ENS P 2025 # 27] Soit n ≥ 2. On note Rn l’ensemble des matrices M de GLn(C) telles que MM appartient à C∗In.
On définit une relation d’équivalence ∼ sur Mn(C) en posant A ∼ B s’il existe M ∈ GLn(C) et λ ∈ C∗ tels que A = λMBM−1.
Justifier que ∼ induit une relation d’équivalence sur Rn. Déterminer les classes d’équivalence sur Rn.
Exercice 28 [ENS P 2025 # 28] On note Gn l’ensemble des sous-espaces vectoriels de Rn. Soit Φ : Gn → Rn R une application telle
que ∀V,W ∈ Gn, Φ(V ∩W ) + Φ(V +W ) ⩽ Φ(V ) + Φ(W )
et Φ({0}) ≥ 0. Montrer qu’il existe un unique V0 ∈ Gn de dimension maximale tel que infV ∈Gn\{(0)}

Φ(V )
dimV = Φ(V̂0)

dimV0
.

Exercice 29 [ENS PLSR 2025 # 29] Soient G un groupe admettant une partie génératrice finie et H un groupe fini.
1. Montrer que l’ensemble E des morphismes de groupes de G vers H est fini.

b) Soit ψ un endomorphisme surjectif du groupe G. Montrer que Ker(ψ) ⊂
⋂

Ker(φ).
1. On pose G = {M ∈ M2(Z), det(M) = 1}.

1. Montrer que G est un groupe multiplicatif.

1. Montrer que G est engendré par S =
(

1 1
0 1

)
, T =

(
1 0
1 1

)
et U =

(
0 1

−1 0

)
.

1. Montrer que tout endomorphisme surjectif du groupe G est bijectif.
Exercice 30 [ENS PLSR 2025 # 30] Soit A ∈ M2(Z) telle que det(A) = 1 et tr(A) = γ > 2. Pour k ∈ Z et U ∈ M2,1(Z), on pose

(k, U) =
(
Ak U
0 1

)
.

1. Montrer que l’ensemble GA = {(k, U); k ∈ Z, U ∈ M2,1(Z)} est un groupe pour la loi de multiplication matricielle. Est-il
abélien?

1. Montrer l’existence d’un morphisme injectif de groupes de GA dans le groupe

S =


et 0 x

0 e−t y
0 0 1

 , (t, x, y) ∈ R3

 .

1. Soit DA le sous-groupe de GA engendré par les éléments ghg−1h−1 où (g, h) ∈ G2
A. Montrer que DA = {(0, (I2 −A)U), U ∈

M2,1(Z)}.

Exercice 31 [ENS L 2025 # 31] 1. Soient r ∈ N∗ et (F1, . . . , Fr) ∈ C(X)r . On pose Mr = (F (i−1)
j )1≤i,j≤r ∈ Mr(C(X)).

Montrer que la famille (F1, . . . , Fr) est liée si et seulement si la matrice Mr

n’est pas inversible.
1. Soient n ∈ N∗ et A = (Ai,j)1≤i,j≤n ∈ Mn(C(X)).

Pour p ∈ N, on note A(p) = (A(p)
i,j ) la matrice des dérivées pèmes des coefficients de A.

Montrer que les matrices A(p) pour p ∈ N commutent deux à deux si et seulement s’il existe r ∈ N∗, (F1, . . . , Fr) ∈ (C(X))r et des
matrices C1, . . . , Cr ∈ Mn(C) commutant deux à deux telles que A = F1C1 + · · · + FrCr .

Exercice 32 [ENS SR 2025 # 32] Soit S =

(0) 1
. . .

1 (0)

 ∈ Mn(R).

1. Justifier la diagonalisabilité de S et donner ses valeurs propres.

1. Donner une base orthonormale de vecteurs propres de S.

1. Caractériser les sous-espaces de Rn stables par S.

1. Soient ω = exp(2iπ/n) et A =
(
ωjk
√
n

)
1≤j,k≤n

∈ Mn(C). Calculer les puissances de A. En déduire que A est diagonalisable.

1. On suppose n impair. Déterminer les valeurs propres de A et leurs multiplicités.
Exercice 33 [ENS SR 2025 # 33] 1. Soit M ∈ Mn(C) admettant n valeurs propres distinctes. Montrer que si N ∈ Mn(C) est

suffisamment proche de M , alors N admet n valeurs propres distinctes.

1. SoientA =
(

0 1
0 0

)
etB ∈ M2(C). À quelle condition la matriceA+ εB admet-elle deux valeurs propres distinctes pour tout

ε > 0 assez petit ?

1. Même question en demandant que A+ εB soit diagonalisable pour tout ε > 0 assez petit.
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Exercice 34 [ENS L 2025 # 34] Soient K un corps et A ∈ M2(K). On suppose que χA est irréductible et qu’il existe B ∈ GL2(K)
telle que B−1AB commute avec A, mais que B ne commute pas avec A. Montrer que B2 est scalaire.
Exercice 35 [ENS L 2025 # 35] Soient A, B dans Mn(C) telles que rg(AB −BA) = 1. Montrer que A et B sont cotrigonalisables.
Exercice 36 [ENS PLSR 2025 # 36] Soient A,B ∈ M2(R) telles que rg(A) = rg(B) = 1 et ImA = ImB.

1. Montrer qu’il existe P,Q ∈ GL2(R) telles que A = P

(
1 0
0 0

)
Q et B = P

(
α β
0 0

)
Q.

1. Pour P,Q ∈ GL2(R), on pose ΨP,Q : M 7→ PMQ. On pose τ : M 7→ MT . Soit Ψ ∈ L(M2(R)) qui conserve le rang. Montrer
qu’il existe P,Q ∈ GL2(R) telles que Ψ = ΨP,Q ou Ψ = ΨP,Q ◦ τ .

Exercice 37 [ENS PLSR 2025 # 37] Soient n, k ∈ N∗, M =
(
A C
0 B

)
avec A ∈ Mn(C), B ∈ Mk(C), C ∈ C Mn,k(C). Montrer

que M est diagonalisable si et seulement si A et B sont diagonalisables et il existe X ∈ Mn,k(C) telle que C = AX −XB.
Exercice 38 [ENS PLSR 2025 # 38] Soit K un sous-corps de C. On dit qu’une matriceM = (mi,j)1⩽i,j⩽n de Mn(K) est de Bourdaud
si χM =

∏
(X −mi,i).

1. Montrer qu’une matrice de Mn(K) est semblable sur K à une matrice de Bourdaud si et seulement si elle est trigonalisable sur
K .

1. Montrer qu’une matrice de Sn(R) est de Bourdaud si et seulement si elle est diagonale.

1. Est-il vrai que toute matrice de Bourdaud de Mn(C) est diagonalisable?

1. On dit que A est normale si ATA = AAT . Déterminer les matrices réelles normales et de Bourdaud.

Exercice 39 [ENS SR 2025 # 39] Soient n, k ∈ N∗, M =
(
A C
0 B

)
avec A ∈ Mn(R), B ∈ Mk(R), C ∈ Mn,k(R). On pose

eM =
(
M1 φA,B(C)
M2 M2

)
.

1. Déterminer M1,M2,M3.

1. Montrer que φA,B est linéaire.

1. Montrer que, si A et B sont diagonalisables, alors φA,B l’est aussi, et préciser son spectre.

1. Soit f : R2 → R telle que f(x, y) = exey

xy si x ̸= y, et f(x, x) = ex. Montrer que fest de classe C∞.

1. On suppose que φA,B est diagonalisable et que toutes ses valeurs propres sont distinctes. Montrer que A et B sont diagonali-
sables.

Exercice 40 [ENS SR 2025 # 40] Si A,B ∈ Mn(C), on pose [A, B] = AB BA. Soit A = {M ∈ M2(C), tr(M) = 0}.
1. Montrer que A est un sous-espace vectoriel de M2(C) stable par [,].

1. Calculer les [A,B] pour les A,B ∈ {X,Y,H} où X =
(

0 1
0 0

)
, Y =

(
0 0
1 0

)
et

H =
(

1 0
0 −1

)
.

1. Soit ρ : A → Mn(C) linéaire telle que, pour tous A,B ∈ A, ρ([A,B]) = [ρ(A), ρ(B)]. Montrer que ρ(H) admet une valeur
propre α.

Montrer que ρ(X)(Eα(ρ(H))) ⊂ Ker(ρ(H) − (α+ 2)In).
Montrer que ρ(Y ) (Eα(ρ(H))) ⊂ Ker (ρ(H)(α2)In).

1. On suppose que, si V est un sous-espace de Cn stable par tous les ρ(A), pour A ∈ A,
alors V = Cn ou V = {0}. Déterminer les ρ possibles.
Exercice 41 [ENS U 2025 # 41] Soient k un corps de caractéristique nulle, E un k-espace vectoriel de dimension finie et u ∈ L(E).
On écrit πu =

∏
i P

ni
i , le polynôme minimal de u, où les Pi sont irréductibles

distincts et les ni dans N∗. On pose f = P1 × · · · × Pr . On définit une suite en posant u0 = u

et, pour n ∈ N, un+1 = unf(un)f ′(un)−1.
1. Montrer que (un) est bien définie.

1. Montrer que (un) est stationnaire de valeur ultime d ∈ L(E) où d est un polynôme en u, u-d est nilpotent et d est annulé par f .
Exercice 42 [ENS L 2025 # 42] Déterminer le cardinal minimal p d’un sous-groupe G de GL2(C) tel que Vect(G) = M2(C). Si G1
et G2 conviennent et sont de cardinal p, sont-ils conjugués?
Exercice 43 [ENS L 2025 # 43] On dit que la propriété MT (n,K) est vraie si, pour tout couple (A, B) de matrices de Mn(K) telles
que, pour tout λ ∈ K, A+ λB soit diagonalisable, A et B commutent.

1. Montrer que, si A et B sont dans Mn(K), diagonalisables et commutent, alors, pour tout λ ∈ K, A+ λB est diagonalisable.
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1. On suppose que n ≥ 2. La propriété MT (n,R) est-elle vraie?

1. Montrer que MT (2,C) est vraie.

1. On suppose que n ≥ 2. La propriété MT (n,F2) est-elle vraie?

1. Soit p ≥ 3 un nombre premier. La propriété MT (2,Fp) est-elle vraie?

Exercice 44 [ENS L 2025 # 44] Quelle est l’image de l’application f : M ∈ M2(C) 7→
∑+∞
n=0

(−1)n

(2n+1)!M
2n+1 ?

Exercice 45 [ENS SR 2025 # 45] 1. Soient A,B ∈ Mn(C) telles que AB = BA. Justifier que eA+B = eAeB .

1. Soient A ∈ Mn(C) et P ∈ GLn(C). Montrer que ePAP−1 = PeAP−1.

1. Pour A ∈ Mn(C) convenable, on pose logA =
∑+∞
k=1

(−1)k−1

k (AIn)k . Pour quelles

matrices logA est-il défini ? Montrer les égalités exp(logA) = A et log(expA) = A. Pour chaque égalité, déterminer les matrices A
qui la satisfont.

1. Montrer que, si A,B ∈ Mn(C),
(
e

A
k e

B
k

)k
−→
k→+∞

eA+B .

Exercice 46 [ENS PLSR 2025 # 46] Soient (an)n≥0 ∈ CN et f : z 7→
∑+∞
n=0 anz

n de rayon de convergence égal à +∞.
1. Pour M ∈ Mn(C), justifier la définition de f∗(M) =

∑+∞
k=0 akM

k .

1. Montrer que f∗ est continue.

c ) On suppose que f est surjective. Montrer que f induit une surjection de l’ensemble des matrices diagonalisables sur lui-même.
1. On suppose que, pour tout λ ∈ C, il existe z ∈ C tel que f(z) = λ et f ′(z) ̸= 0. Montrer que f∗ est une surjection de Mn(C)

sur lui-même.
Exercice 47 [ENS L 2025 # 47] Soit d ∈ N∗. On munit Rd de sa structure euclidienne canonique. Déterminer les n ∈ N∗ pour
lesquels il existe un ensemble Fn ⊂ Rd de cardinal n tel que, pour toute partie G de Fn, il existe ω ∈ Rd \ {0} et b ∈ R tels que
G = {x ∈ Fn, ⟨ω, x⟩ + b > 0}.

Exercice 48 [ENS P 2025 # 48] Pour ω ∈ R, on pose R(ω) =
(

0 −ω
ω 0

)
. Soit φ : R → On(R) un morphisme de groupes continu.

Montrer qu’il existe ω1, . . . , ωr ∈ R et P ∈ On(R) tel que, pour tout t ∈ R,

φ(t) = P


etR(ω1) 0 · · · 0

0
. . . . . .

...
...

. . . etR(ωr) 0
0 · · · 0 Ir−2r

 .

Exercice 49 [ENS L 2025 # 49] Soient u et v deux endomorphismes autoadjoints positifs d’un espace euclidien. Montrer que v ◦u est
diagonalisable.
Exercice 50 [ENS P 2025 # 50] Déterminer l’ensemble des symétries linéaires sur Sn(R) qui fixent un hyperplan et stabilisent
l’ensemble S++

n (R).
Exercice 51 [ENS P 2025 # 51] Soit H = (Hi,j)1≤i,j≤n ∈ S++

n (R). On suppose que, pour tous i ̸= j,Hi,j ≤ 0. Si (i, j) ∈ [[1, n]]2, on
dit que i et j sont connectés s’il existem ∈ N∗, k1, . . . , km ∈ [[1, n]] tels que k1 = i, km = j et, pour tout ℓ ∈ [[1,m− 1]],Hkℓ,kℓ+1 ̸= 0.
Montrer que i et j sont connectés si et seulement si H−1

i,j > 0, où H−1
i,j est le coefficient d’indice (i,j) de H−1.

Exercice 52 [ENS PLSR 2025 # 52] On considère n ∈ N∗ et (A,B) ∈ A2n(R)2. On pose C = AB et on s’intéresse aux valeurs propres
réelles de C .

1. Donner un exemple de n, A et B tels que χC n’admette aucune racine réelle.

1. On suppose A inversible. On note φ : (C2n)2 → C définie par φ(X,Y ) = XTA−1Y . Montrer que les sous-espaces caractéris-
tiques Fλ(C) de C sont deux à deux φ -orthogonaux, i.e. pour tous λ et µ distinctes dans SpC , ∀(X,Y ) ∈ Fλ(C) × Fµ(C),
φ(X,Y ) = 0.

1. Que peut-on en déduire?
Exercice 53 [ENS PLSR 2025 # 53] On munit R3 de sa structure canonique d’espace euclidien orienté, et on note B sa base canonique.

1. Montrer que, pour tout u ∈ R3, il existe un unique endomorphisme zu de R3 tel que ∀(x, y) ∈ (R3)2, detB(u, x, y) = ⟨zu(x), y⟩,
et montrer qu’alors zu = −zu.

1. Soient u ∈ R3 unitaire et θ ∈ R. On munit le plan {u}⊥ de l’orientation dont les bases directes sont les bases (x,y) de {u}⊥

telles que (x,y,u) soit une base directe de R3. On note ru,θ la rotation de R3 fixant u et induisant sur {u}⊥ la rotation d’angle de
mesure θ. On note enfin pu la projection orthogonale sur Ru. Exprimer tr(ru,θ) en fonction de θ, et montrer que ru,θ = (cos θ).
id +(1 − cos θ). pu + (sin θ). zu.
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1. Soient u,v des vecteurs unitaires de R3. On pose τ = arccos (⟨u, v⟩). Soit (φ,ψ) ∈ R2. Justifier que ru,φ ◦ rv,ψ est une ro-
tation, et montrer qu’elle s’écrit rw,θ pour un vecteur unitaire w et un réel θ vérifiant | cos(θ/2)| = | cos(φ/2) cos(ψ/2) −
cos(τ) sin(φ/2) sin(ψ/2)|.

Exercice 54 [ENS PLSR 2025 # 54] 1. Soient A,B ∈ Mn(R), diagonalisables et telles que AB = BA. Montrer qu’il existe P ∈
GLn(R) telle que PAP−1 et PBP−1 soient diagonales.

1. Montrer que l’application Φ : (S,O) ∈ S++
n (R)×On(R) 7→ SO ∈ GLn(R) est bien définie et bijective, et que Φ−1 est continue.

1. Soit M ∈ GLn(R). Montrer qu’il existe une unique suite de matrices (Mk)k∈N telle que M0 = M et ∀k ∈ N, Mk+1 =
Mk

2 (In + (MT
k Mk)−1), et étudier sa convergence.

Exercice 55 [ENS PLSR 2025 # 55] On pose V = {1, 2, . . . , n} et F = P2(V ) l’ensemble des paires de V . Soient E ⊂ F et
ni = |{j ∈ V, {i, j} ∈ E}| pour i ∈ V . On définit la matrice L = (ℓi,j) ∈ Mn(R) par ℓi,j = ni si i=j,-1 si {i, j} ∈ E et 0 sinon. On
note λ1 ⩽ · · · ⩽ λn les valeurs propres (avec multiplicité) de L.

1. Montrer que λ1 = 0.

1. Montrer que λ2 = minX∈{(1,...,1)}⊥\{0}
XTLX
XTX

.

1. Pour S ⊂ V , on note ∂S = {{i, j}, {i, j} ∈ E avec i ∈ S et j /∈ S}.

Montrer que λ2
2 ⩽ min S⊂V

0<|S|⩽n
2

|∂S|
|S| .

Exercice 56 [ENS P 2025 # 56] Pour A,B ∈ Sn(R) on note A ≥ B lorsque A − B ∈ S+
n (R). Si A ∈ S++

n (R), on écrit A =
P Diag(λ1, . . . , λn)P−1 avec P ∈ On(R) et les λi > 0, et on pose, pour r ∈ R, Ar = P Diag(λr1, . . . , λrn)P−1 ; cette définition ne
dépend pas de l’écriture de A sous la forme précédente.

1. Montrer que M 7→ M−1 est décroissante sur S++
n (R).

1. Est-ce que M 7→ M2 est croissante sur S++
n (R)?

1. Montrer que M 7→ Mr est convexe sur S++
n (R) lorsque r ∈ [−1, 0]. Ceci signifie que, pour tous A,B ∈ S++

n (R) et tout
t ∈ [0, 1[, (tA+ (1 − t)B)r ⩽ tAr + (1 − t)Br .

Exercice 57 [ENS PLSR 2025 # 57] On dit d’une norme N sur Md(R) qu’elle est invariante orthogonalement lorsque ∀M ∈
Md(R), ∀(P,Q) ∈ Od(R)2, N (M) = N (PMQ).

1. Donner un exemple d’une telle norme.

1. Soit A ∈ Md(R), montrer qu’il existe (P,Q) ∈ Od(R)2 tel que A = PDQ où D = Diag(σ1, . . . , σr, 0, . . . , 0) avec ∀i ∈
[1, r], σi > 0.

1. On se donne une norme N invariante orthogonalement sur Md(R).

On note T (A) = sup{∥AX∥, ∥X∥ = 1} où ∥∥ désigne la norme euclidienne canonique. Montrer qu’il existe α > 0 tel que ∀A ∈
Md(R), rg(A) = 1 ⇒ T (A) = αN (A).
Exercice 58 [ENS SR 2025 # 58] On munit Rn de sa structure euclidienne canonique et Mn(R) de la norme d’opérateur qui lui est
subordonnée.

1. Soit A ∈ Sn(R).

• Que dire des valeurs propres et des espaces propres de A?

On note λ1, . . . , λr les valeurs propres distinctes de A.
• Soient x ∈ Rn \ {0}, α ∈ R et y = Axαx. Montrer que min1⩽i⩽r |λiα| ⩽ ∥y∥

∥x∥ .

1. Soient A ∈ Mn(R) diagonalisable, P ∈ GLn(R) telle que P−1AP soit diagonale, λ1, . . . , λr les valeurs propres distinctes de
A. Soient enfin B ∈ Mn(R) et α une valeur propre de A + B. Montrer que min1≤i≤r |λiα| ≤ ||P ||op||P−1||op||B||op.

Exercice 59 [ENS nil 2025 # 59] Soient S ∈ S++
n (R) et A ∈ An(R). Montrer que SA est diagonalisable sur C.

Exercice 60 [ENS P 2025 # 60] Soit n ∈ N∗. On appelle forme quadratique sur Rn toute application q : Rn → R telle qu’il existe
(ai,j)1⩽i,j⩽n ∈ Mn(R) telle que q(x) =

∑
1⩽i,j⩽n ai,jxixj pour tout x =

∑
1⩽i,j⩽n ai,jxixj (x1, . . . , xn) ∈ Rn. Soit G un sous-

groupe fini deGLn(R) tels que {0} et Rn sont les seuls sous-espaces de Rn stables par tous les éléments deG. Montrer que les formes
quadratiques invariantes par G constituent une droite vectorielle.
Exercice 61 [ENS SR 2025 # 61] Soit n ≥ 2. On munit Rn de sa structure euclidienne canonique. Soit H ∈ Sn(R). On pose ∇H :
(x, y) ∈ (Rn)2 7→ xTHy et QH : x ∈ Rn 7→ xTHx.

1. Soit H ∈ Sn(R). Exprimer la norme d’opérateur de H à l’aide de QH .

1. Soient m,n ∈ N∗. On munit Rn et Rm de leur structure euclidienne canonique. Si A ∈ Mm,n(R), comment déterminer la
norme d’opérateur de A pour ces normes?

1. Soient J , K deux ensembles finis non vides, (aj,k)(j,k)∈J×K ∈ (R+)J×K . On suppose qu’il existe C1 et C2 tels que : ∀j ∈
J,
∑
k∈K aj,k ⩽ C1 et ∀k ∈ K,

∑
j∈J aj,k ⩽ C2. On
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ordonne J et K et on note A la matrice des aj,k . Montrer que ||A||op ⩽
√
C1C2.

1. Pour n ∈ N∗, J = K = [1, n], on pose, pour 1 ⩽ j, k ⩽ n, anj,k = 1
(j−k)2 si j ̸= k, et anj,k = 0 sinon. On note enfin

An =
(
anj,k

)
1⩽j,k⩽n

∈ Mn(R). Déterminer la limite de (∥An∥op)n≥1.

Exercice 62 [ENS PLSR 2025 # 62] L’espace Rn est muni de sa norme euclidienne canonique et Mn(R) de la norme subordonnée
notée ∥∥op. Si M ∈ GLn(R), on définit le conditionnement de M comme le réel cond (M) = ||M ||op||M−1||op.

1. Calculer cond(M) dans le cas où M est symétrique définie positive.

1. Montrer que, pour toute matrice M ∈ GLn(R), cond(M) ≥ 1 et cond(MT ) = cond(M).

1. Que dire des matrices M ∈ GLn(R) telles que cond(M) = 1?

1. Pour A et B dans S++
n , montrer que Cond(A+B) ≤ max(Cond(A), Cond(B)).

Exercice 63 [ENS SR 2025 # 63] On note E l’ensemble des matrices de S+
n (R) de rang 1.

1. Soit A ∈ Mn(R). Montrer que A ∈ E si et seulement s’il existe U ∈ Mn,1(R) tel que
A = UUT . Soit a ∈ C0(R+, E).

1. Montrer l’équivalence entre les deux assertions suivantes :
(α) il existe u : R+ → Mn,1(R) continue telle que ∀t ∈ R+, a(t) = u(t)u(t)T ; (β) il existe z : R+ → Mn,1(R) continue telle que
∀t ∈ R+, z(t)Ta(t)z(t) > 0.

1. Soient 0 ≤ b ≤ c. On suppose qu’il existe (i, j) ∈ [1, n]2 avec i ̸= j tel que, pour tout t ∈ [b, c], ai,i(t) > 0 et aj,j(t) > 0.
Montrer qu’il existe z : [b, c] → Mn,1(R) continue telle que ∀t ∈ [b, c], z(t)Ta(t)z(t) > 0 et, en outre, z(b) = ei, z(c) = ±ei
(les ek sont les

vecteurs de la base canonique).
1. En considérant l’ensemble des d ≥ 0 tels qu’existe z : [0, d] → Mn,1(R) continue vérifiant ∀t ∈ [0, d], z(t)Ta(t)z(t) > 0 et
z(d) = ±ei, montrer que a vérifie la propriété (α).

Exercice 64 [ENS SR 2025 # 64] Soient n ≥ 2, a : [0, 1] → S+
n (R) continue et A =

∫ 1
0 a(t)dt.

1. Montrer que A appartient à S+
n (R).

1. Donner une condition nécessaire et suffisante pour que A=0. Exprimer Ker(A).

1. Montrer que M =
(

1
1+i+j

)
1⩽i,j⩽n

est dans S++
n (R).

1. On suppose a à valeurs dans l’ensemble des matrices de projecteurs orthogonaux. Donner une condition pour que A soit une
matrice de projecteur orthogonal.

1. Soit Γ : x ∈ R+∗ 7→
∫ +∞

0 e−ttx−1dt. Soient 0 < α < β.

Montrer que
(

Γ(2α) Γ(α+ β)
Γ(α+ β) Γ(2β)

)
est dans S++

2 (R).

1. En déduire que ln(Γ) est convexe
Exercice 65 [ENS P 2025 # 65] Soit (On)n≥0 une suite d’ouverts non majorés de R+∗. Montrer qu’il existe x ∈ R+∗ tels que, pour
tout n ∈ N, l’ensemble On ∩ xN soit infini.
Exercice 66 [ENS L 2025 # 66] Soit E un ensemble non vide. Soit d : E2 → R vérifiant, pour tous x, y, z ∈ E :

• d(x, y) = d(y, x),

• d(x, y) = 0 ⇔ x = y,

• d(x, y) ⩽ max(d(x, z), d(z, y)).

Ainsi d est une distance sur E. Pour x ∈ E et r ∈ R+, on note B(x, r) = {y ∈ E, d(x, y) ≤ r} la boule fermée de centre x et de
rayon r. On suppose que, pour tout x ∈ E et tous r, r’ vérifiant 0 < r < r’, on a B(x, r) ⊊ B(x, r′). Enfin, on suppose qu’il existe une
suite d’éléments de E dense dans (E,d). Montrer qu’il existe une suite (zn)n≥0 d’éléments de E et une suite (rn)n≥0 d’éléments de
R+∗ telles que : ∀n ∈ N, B(zn+1, rn+1) ⊂ B(zn, rn) et

⋂
n∈N B(zn, rn) = ∅.

Exercice 67 [ENS PLSR 2025 # 67] On note E l’ensemble des fonctions lipschitziennes 1-périodiques de R dans R.
1. Pour α ∈]0, 1] et f ∈ E, on pose

||f ||α = sup
x∈R

|f(x)| + sup
x̸=y

|f(x) − f(y)|
|x− y|α

.

Démontrer que ∥∥α est une norme sur E.

1. On note F = E ∩ C1(R,R). Démontrer que F est un fermé de E pour la norme ∥ · ∥1.
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Exercice 68 [ENS P 2025 # 68] SoientE l’espace des suites réelles (xn)n≥0 nulles à partir d’un certain rang, et T ∈ L(E). On suppose
T continu pour la norme ∥ ∥1 et pour la norme ∥ ∥∞. Montrer que T est continu pour la norme ∥ ∥2.
Exercice 69 [ENS SR 2025 # 69] Soit E = C0([0, 1],R).

1. La forme linéaire φ : f 7→ f(0) est-elle continue pour ∥ · ∥∞ ? pour ∥ · ∥1 ? Dans chaque cas calculer l’adhérence de Kerφ.

1. Soit φ : f 7→
∫ 1

0 f(x) cos(2πx)dx. Montrer que φ est continue pour ∥ · ∥1 et calculer sa norme subordonnée.
Exercice 70 [ENS L 2025 # 70] Soit E = C0([0, 1],R).

Si a = (an)n≥0 ∈ [0, 1]N, on pose, pour f, g ∈ E, ⟨f, g⟩a =
+∞∑
n=0

f(an) g(an)
2n .

1. Donner une condition nécessaire et suffisante pour que ⟨ , ⟩a soit un produit scalaire sur E. On note alors ∥ ∥a la norme
associée.

1. Si a, b ∈ [0, 1]N vérifient les hypothèses de a), donner une condition nécessaire et suffisante pour que ∥∥a et ∥∥b soient équiva-
lentes.

Exercice 71 [ENS nil 2025 # 71] Soient n ≥ 2 et f ∈ C0(Rn,R) telle que, pour tout x ∈ R, f−1({x}) est compact.
1. Montrer que f admet un extremum global.

Exercice 72 [ENS P 2025 # 72] Soient (E, ⟨, ⟩) un espace préhilbertien de dimension infinie et K une partie bornée de E dont la
frontière est compacte. Montrer que K est d’intérieur vide dans E.
Peut-on généraliser le résultat à n’importe quel espace vectoriel normé de dimension infinie?
Exercice 73 [ENS P 2025 # 73] Pour x,y réels et ε > 0, on dit que x ≈ε y s’il existe k ∈ Z tel que |x-y-k|<
ε. Soient λ1, λ2 deux réels non nuls. Montrer que λ1

λ2
/∈ Q si et seulement si, pour tout (a1, a2) ∈ [0, 1]2 et tout ε > 0, il existe x ∈ R

tel que xλ1 ≈ε a1 et xλ2 ≈ε a2.
Exercice 74 [ENS P 2025 # 74] Soient E un espace vectoriel normé de dimension finie n ≥ 2 et C une partie non vide, convexe et
bornée de E. Montrer que la frontière de C est connexe par arcs.
Exercice 75 [ENS PLSR 2025 # 75] Soient E un espace vectoriel normé et f : E → E une application telle que f(0) = 0 et ∀x, y ∈
E, ||f(x)f(y)|| = ||xy||.
On pose, pour x, y ∈ E, ||f(x) - f(y)|| = ||x - y||.

∥∥∥ f(x)+f(y)
2 − f

(
x+y

2
)∥∥∥.

1. Montrer que ∀x, y ∈ E, df(x, y) ≤ 1
2 ∥xy∥.

1. Montrer que f est linéaire si et seulement si df est identiquement nulle.

1. Trouver une fonction vérifiant les propriétés de la fonction f , non linéaire et non surjective.

1. On suppose que f est surjective. Montrer que f est linéaire.
Exercice 76 [ENS P 2025 # 76] On munit E = C0([0, 1],R) des normes ∥∥2 et ∥∥∞. Soit (nk)k≥0 une suite strictement croissante
d’entiers naturels. Soit F = Vect(x 7→ xnk , k ≥ 0). À quelle condition F est-il dense dansE pour la norme ∥∥2 ? pour la norme ∥∥∞ ?
Exercice 77 [ENS L 2025 # 77] Soit f ∈ C0(R,R). On note D = {ℓ2−k + 2−k[0, 1]; (k, ℓ) ∈ Z2}. Pour tout intervalle I de D, on note
log(I) la longueur de I et on pose MI(f) = 1

log(I)
∫
I
f . On pose ||f || = sup

{
1

log(I)
∫

Γ |fMI(f)| ; I ∈ D
}

.

1. On suppose ||f|| finie. Soit m ∈ N∗, (I, J) ∈ D2 avec I ⊂ J tels que log(J) = 2m log(I). Démontrer que |MI(f)MI(f)| ≤
2m||f ||

2m log(I). Démontrer que |MI(f)MJ(f)| ≤ 2m||f ||.
1. On suppose que ||f|| = 1 et M[0,1](f) = 0.

On note Fk = {I ∈ D : I ⊂ [0, 1],MI(f) > 5k et I maximal pour cette propriété}. On pose Ωk =
⋃
I∈Fk

I et et log(Ωk) =∑
I∈Fk

log(FI).
Montrer que, pour k ≥ 1, log(Ωk) ⩽ 1

3 log(Ωk−1).
Exercice 78 [ENS PLSR 2025 # 78] On munit les espaces ℓ1

Z(R) et ℓ2
Z(R) de leurs normes usuelles ∥ · ∥1 et ∥ · ∥2. On pose H ={

u ∈ RZ ;
∑
n∈Z u

2
n(1 + n2) < +∞

}
.

1. Définir un produit scalaire sur H . Écrire l’inégalité de Cauchy-Schwarz.

1. Quelles inclusions a-t-on entre ℓ1
Z(R), ℓ2

Z(R) et H? Montrer que ces inclusions sont continues (i.e. les injections canoniques sont
continues).

1. Soit u ∈ RZ. Montrer que u ∈ H si et seulement si l’application µu : H → H définie par ∀v ∈ H, µu(v) = u∗v avec (u∗v)n =∑n
i=1 uivi est bien définie et continue.

Exercice 79 [ENS P 2025 # 79] On note ℓ1 l’ensemble des suites sommables de RN. On munit ℓ1 de la norme définie, pour u = (un)n≥0,
par ||u||1 =

∑+∞
n=0 |un|. Soient (uk)k∈N une suite d’éléments de ℓ1 et u ∈ ℓ1. Montrer l’équivalence entre :

• la suite (uk)k∈N converge vers u pour la norme ∥∥1,
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• pour toute suite (φn)n∈N bornée,
∑+∞
n=0 φnu

k
n −→
k→+∞

∑+∞
n=0 φnun.

Exercice 80 [ENS L 2025 # 80] On note S = {z ∈ C, |z| = 1} et Γ = {γ ∈ C0([0, 1], S) ; γ(0) = γ(1) = 1}.
1. Soit γ ∈ Γ, montrer qu’il existe θ : [0, 1] → R continue telle que ∀t, γ(t) = ei2πθ(t).

1. On prend γ0, γ1 ∈ Γ. On note F la propriété : « il existe h ∈ C([0, 1]2, S) tel que ∀x ∈ [0, 1], h(x, ·) ∈ Γ, h(0, ·) = γ0 et
h(1, ·) = γ1 ». On pose γ0 = 1 et γ1 : t 7→ e2iπt. Montrer que γ0 et γ1 ne vérifient pas F .

1. On note D le disque fermé unité de C. Existe-t-il f ∈ C0(D,S) telle que f |S = id?
Exercice 81 [ENS PLSR 2025 # 81] 1. Soit f ∈ C2(R,R) telle qu’il existe x∗ ∈ R vérifiant f(x∗) = 0 et f ′(x∗) ̸= 0.
On définit par récurrence une suite (xk) avec x0 ∈ R et xk+1 = xk

f(xk)
f ′(xk) . Montrer qu’il existe ε > 0 tel que, pour x0 ∈ [x∗ε, x∗ + ε],

la suite (xk) est bien définie et converge vers x∗.
1. Avec f : x 7→ ex1, quelles sont les valeurs de x0 ∈ R pour lesquelles la suite (xk)

précédente est stationnaire? c) On revient au cas général et on suppose f” > 0 et f’ ne s’annule pas sur R. Pour quelles valeurs de
x0 ∈ R la suite (xk) est-elle stationnaire?
Exercice 82 [ENS L 2025 # 82] Soit f ∈ C0([a, b], [a, b]). On suppose dans les questions a) et b) que f n’a pas de point de période 2,
c’est-à-dire que ∀x ∈ [a, b], f(x) ̸= x ⇒ (f ◦ f)(x) ̸= x.

1. Soit c ∈ [a, b] tel que f(c) > c. Montrer que pour tout k ∈ N∗, fk(c) > c.

1. Soit x0 ∈ [a, b], on pose pour tout n, xn+1 = f(xn). Démontrer que la suite (xn)

converge.
1. Démontrer que la suite (xn) converge pour tout choix de x0 si et seulement si f n’a pas de point de période 2.

Exercice 83 [ENS PLSR 2025 # 83] 1. Déterminer la nature des séries
∑ sinn

n ,
∑ sin2 n

n ,
∑ | sinn|

n .

1. Soit x ∈ R \ Q et Q ∈ N∗. Montrer qu’il existe p ∈ Z et q ∈ [1, Q] tels que |qxp| ⩽ 1
Q .

En déduire qu’il existe une infinité de couples (p,q) de Z × N∗ tels que
∣∣∣xpq ∣∣∣ ⩽ 1

q2 .

1. On admet que π est irrationnel. Déterminer la nature de la série
∑ 1

n sin(n) .

Exercice 84 [ENS P 2025 # 84] Soit (an) une suite de réels décroissante de limite nulle. Pour P ⊂ N, on note A(P ) =
∑
n∈P an. On

suppose A(N) = A∞ ∈ R. Montrer que

{A(P ), P ∈ P(N)} = [0, A∞] si et seulement si ∀n ∈ N, an ⩽
+∞∑

k=n+1
ak.

Exercice 85 [ENS L 2025 # 85] 1. Pour quels réels s la somme
∑
n,m∈N∗

|n−m|s

nm(n2−m2)2 est-elle finie?

b) Pour n = (n1, n2) ∈ Z2, on note |n| =
√
n2

1 + n2
2.

Pour quels réels s la somme
∑

(n,m)∈(Z2\{0})2
|n−m|s

|n||m|(1+(|n|−|m|)2) est-elle finie?
Exercice 86 [ENS PLSR 2025 # 86] On note S l’ensemble des suites croissantes à termes dans N \ {0, 1}.

1. Pour a ∈ S, montrer que φ(a) =
∑+∞
k=0

(∏n
k=0

1
ak

)
appartient à ]0,1].

1. Montrer que φ définit une bijection de S sur ]0,1].

1. Donner une condition nécessaire et suffisante sur a ∈ S pour que φ(a) ∈ Q.
Exercice 87 [ENS L 2025 # 87] Soit f : N → R+∗ décroissante de limite nulle. Soit φ : N → N croissante. On suppose que, pour tout
α ∈ R+∗, il existe une unique suite (ni)i∈N telle que α =

∑+∞
i=0 f(ni) et, pour tout i ∈ N, ni+1 ≥ φ(ni). Montrer que φ(0) = 0 et,

pour tout n ∈ N∗, f(n− 1) =
∑+∞
i=0 f

(
φi(n)

)
, où φi désigne l’itérée i-ème de φ pour la composition des applications.

Exercice 88 [ENS P 2025 # 88] Soit f : R → R. Montrer l’équivalence entre les conditions suivantes :
• f(x) = O(x) ;

•
∑
r ̸=els f(an) converge absolument pour toute série

∑
r ̸=els an absolument convergente à termes

•
∑
f(an) converge pour toute série

∑
an absolument convergente à termes réels.

Exercice 89 [ENS P 2025 # 89] Soit f : R → R telle que
∑
f(an) converge pour toute série convergente

∑
an à termes réels. Montrer

qu’il existe un réel λ tel que f(x) = λx pour x voisin de 0.
Exercice 90 [ENS SR 2025 # 90] 1. Soient a, b ∈ R avec a < b et f : [a, b] → [a, b].

1. Si f est continue, montrer que f possède un point fixe.

1. Si f est croissante, montrer que f possède un point fixe.

11



1. Soit f : R → R monotone. Montrer que l’ensemble dis(f) des points de discontinuité de f est au plus dénombrable.

1. Construire f : R → R monotone dont l’ensemble des points de discontinuité est Q.

Exercice 91 [ENS P 2025 # 91] Trouver les f : [0, 1] → R continues telles que ∀x ∈ [0, 1], f(x) =
∑+∞
n=0

f(xn)
2n .

Exercice 92 [ENS PLSR 2025 # 92] Soit f une fonction de R dans R ∪ {+∞} non identiquement égale à +∞. Pour y ∈ R, on pose
f∗(y) = sup{xy − f(x);x ∈ R}.

1. Montrer que {x ∈ R, f∗(x) < +∞} est un intervalle (éventuellement vide) sur lequel f∗ est convexe.

1. Montrer que, si f est dérivable et convexe sur R, alors f = f .

1. On suppose que f est de classe C2 sur R, que f”> 0 sur R et que f(x)
|x| −→

|x|→+∞
+∞. Montrer que f∗ est dérivable sur R et que :

∀(x, y) ∈ R2, y = f ′(x) ⇔ x = (f∗)′(y).

Exercice 93 [ENS SR 2025 # 93] Pour f : [0, 1] → R, on pose Bn(f)(x) =
∑n
k=0 f

(
k
n

)(
n
k

)
xk(1 − x)n−k .

1. Calculer Bn(u1) et Bn(u2) où un : x 7→ xn.

b) Montrer que, pour tout x ∈ [0, 1],
∑n
k=0

∣∣x kn ∣∣ (nk)xk(1 − x)n−k ≤
√

x(1−x)
n .

1. En déduire que si f est M -lipschitzienne, alors |Bn(f)(x)f(x)| ≤ M
2

√
n

pour tout x.
Exercice 94 [ENS L 2025 # 94] Trouver toutes les fonctions f : R → R telles que :

• f est croissante, à valeurs dans [0, 1], f est continue à droite,

• f(x) −−−−−→
x→−∞

0, f(x) −−−−−→
x→+∞

1, ∀k ∈ N∗, ∃bk ∈ R, ∀x ∈ R, f(x)k = f(x+ bk).

Exercice 95 [ENS PLSR 2025 # 95] 1. Soient a, b ∈ R avec |b| < π.
Montrer qu’il existe z ∈ C tel que z + ez = a+ ib.

1. Montrer que l’application z 7→ zez est surjective de C sur C.
Exercice 96 [ENS P 2025 # 96] Soient σ > 0 et f : R → R une fonction continue telle que : ∀x, y ∈ R, |f(x) + f(y) − f(x+ y)| ≤ σ.
Montrer que f est la somme d’une fonction linéaire ℓ : R → R et d’une fonction bornée par σ.
Exercice 97 [ENS L 2025 # 97] Une partie E de [0, 1] est dite négligeable si, pour tout ε > 0, il existe une suite (In)n≥0 d’intervalles
de [0,1] dont la réunion contient X et dont la somme des longueurs est majorée par ε. Soit f une fonction dérivable de [0,1] dans
R. On suppose qu’il existe une partie négligeable E de [0,1] telle que, pour tout x ∈ [0, 1] \ E, on ait f ′(x) ≥ 0. Montrer que f est
croissante.
Exercice 98 [ENS P 2025 # 98] Soient n ∈ N∗, (Pk)k∈[[1,n]] et (Qk)k∈[[1,n]] deux familles de polynômes réels, f la fonction de P dens
P telle que, pour tout x ∈ P, f(x) =

∑n
n=1 Pn(x)eQk(x). Montrer que si

fonction de R dans R telle que, pour tout x ∈ R, f(x) =
∑
k=1 Pk(x) eQk(x). Montrer que, si f n’est pas identiquement nulle, alors f

ne possède qu’un nombre fini de zéros.
Exercice 99 [ENS P 2025 # 99] Soit n un entier impair supérieur ou égal à 3. Déterminer les fonctions continues f de [0,1] dans R
telles que, pour tout k ∈ [1, n− 1],

∫ 1
0 (f(x1/k))n−k dx = k

n .
Exercice 100 [ENS P 2025 # 100] Soit (ak)k≥1 une suite décroissante de réels positifs telle que, pour tout k ∈ N∗, kak ≤ (k+1)ak+1.
Montrer que

∫ π
0 max1≤k≤n

(
ak

| sin(kx)|
x

)
dx =

∑n
k=1

ak

k +O(1).

Exercice 101 [ENS PLSR 2025 # 101] Soit f : R → R de classe C1. On pose, pour n ∈ N∗, Sn = 1
n

∑n−1
i=0 f

(
k
n

)
.

1. Quelle est la limite de (Sn)n∈N∗ ? Déterminer la vitesse de convergence.

b. On suppose désormais f 1-périodique et de classe C2. Montrer qu’il existe C ∈ R tel que : ∀n ≥ 1,
∣∣∣Sn −

∫ 1
0 f(t) dt

∣∣∣ ≤ C
n2 .

c. On suppose désormais f 1-périodique et de classe C3. Montrer qu’il existe C ∈ R tel que : ∀n ≥ 1,
∣∣∣Sn −

∫ 1
0 f(t) dt

∣∣∣ ≤ C
n3 .

d. Que dire si f est 1-périodique et de classe C∞ ?
Exercice 102 [ENS P 2025 # 102] Soient (a, b) ∈ R2 tel que a < b, f une fonction continue de [a, b] × [−1, 1] dans R. Pour λ ∈ R, soit
I(λ) =

∫ b
a
f(t, sin(λt)) dt. Montrer que I(λ) admet une limite que l’on déterminera lorsque λ tend vers +∞.

Exercice 103 [ENS SR 2025 # 103] Soient N ∈ N∗ et (x1, . . . , xN ) ∈ CN . Pour y ∈ R, on note e(y) = e2iπy .
Soit f : t ∈ R 7→

∑N
n=1 xne(nt). Soient R ∈ N∗ et (t1, . . . , tR) ∈ RR.

1.

1. Montrer que
∑R
r=1 |f(tr)|2 ≤ NR

∑N
k=1 |xk|2.

1. Étudier le cas d’égalité dans l’inégalité précédente.
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1. Pour t ∈ R, on pose ∆(t) = infn∈Z |n− t|. On suppose les ti distincts. Soit δ > 0 tel que
δ ≤ min1≤i̸=j≤R ∆(ti − tj). Montrer que

∑R
r=1 |f(tr)|2 ≤ (2Nπ + δ−1)

∑N
r=1 |xk|2.Ind. On pourra montrer que, pour une

fonction g de classe C1 sur R, pour a ∈ R et h > 0,

|g(a)| ≤ 1
2h

∫ a+h

a−h
|g(t)|dt+ 1

2

∫ a+h

a−h
|g′(t)|dt

.
Exercice 104 [ENS PLSR 2025 # 104] On note E l’ensemble des fonctions 1-périodiques et de classe C∞ de R dans
C. Soit f ∈ E. Pour n ∈ Z, on pose cn(f) =

∫ 1
0 e

−2inπtf(t)dt.
1. Montrer que (cn(f))n∈Z est sommable.

1. On suppose que f(0)=0. Montrer qu’il existe g ∈ E telle que ∀t ∈ R, f(t) = g(t) (e2iπt − 1).

Exercice 105 [ENS P 2025 # 105] Soient a,b> 0 et m ∈ Z. Calculer Im(a, b) =
∫ +∞
a

e−ax− b
xxm− 1

2 dx.

Exercice 106 [ENS L 2025 # 106] Soit n ≥ 2. Déterminer l’ensemble des matrices A ∈ Mn(C) telles que l’intégrale
∫ +∞

−∞ et
2Adt

converge.
Exercice 107 [ENS PLSR 2025 # 107] Soit f : R → R lipschitzienne. On suppose qu’il existe R > 0 tel que, pour tout x ∈ R \ [−R,R],
f(x) = 0.

1. Montrer que ε 7→
∫ −ε

−ε
f(x)
x dx+

∫ +∞
−ε

f(x)
x dx admet une limite en 0+.

On note vp
(∫ +∞

−∞
f(x)
x dx

)
cette limite.

1. On note Tf : x 7→
∫ x

−∞ f(y) ln |yx|dy +
∫ +∞
x

f(y) ln |yx|dy. Justifier que Tf est bien définie sur R.

1. On suppose f de classe C1. Montrer que Tf est dérivable sur R et que :

∀x ∈ R, (Tf )′(x) = vp
(∫ +∞

−y

f(y + x)
y

dy

)
.
Exercice 108 [ENS SR 2025 # 108] 1. Pour (p, k) ∈ N2, montrer la convergence de Ip,k =

∫ 1
0
∫ 1

0
ykxp

1xy dx dy et l’exprimer sous
forme de la somme d’une série numérique.

1. On note dn = ppcm(1, . . . , n) pour n ∈ N∗. Montrer que Ip,k ∈ 1
d2

p
Z si p > k, et Ip,p ∈ ζ(2) + 1

d2 Z.

1. On pose Pn = 1
n!D

n(Xn(1X)n). Montrer que Pn est à coefficients entiers.

1. Montrer que In =
∫ 1

0
∫ 1

0
(1−y)nPn(x)

1−xy dxdy converge, et en donner une expression simplifiée.- e) Montrer que In ∈ 1
d2 (Z +

ζ(2)Z).
Exercice 109 [ENS L 2025 # 109] Déterminer les segments S de R non réduits à un point tels que l’ensemble des fonctions polyno-
miales à coefficients dans Z de S dans R soit dense dans (C0(S,R), ∥∥∞).
Exercice 110 [ENS L 2025 # 110] On note E l’ensemble des fonctions croissantes de R dans R ayant pour limites respectives 0 et 1
en −∞ et +∞. Soient F,G,H ∈ E, avec G et H continues.
On suppose qu’il existe quatre suites réelles a,b,c,d telles que (x 7→ F (anx+ bn))n et (x 7→ F (cnx+ dn))n convergent simplement
sur R, respectivement vers G et H . Montrer qu’il existe deux réels λ > 0 et µ tels que ∀x ∈ R, H(x) = G(λx+ µ).
Exercice 111 [ENS L 2025 # 111] Soit (fn)n∈N une suite de fonctions de [0,1] dans ]0,1], convergeant simplement vers une fonction
f .

1. Pour n ≥ 2, on pose tn = 1
lnn

∑n
i=1

fi

i . Montrer que la suite (tn) converge simplement
vers f .

1. On suppose que f0 est à valeurs strictement positives et que, pour tout n ≥ 1, la fonction
fn est dérivable, croissante et que f ′

n ≥ nfn

σn
, où σn =

∑n−1
i=0 fi. On suppose également que supσn(1/2) < +∞. Montrer que, pour

tout x ∈ [0, 1/2[, il existe Cx > 0 tel que, pour tout n ≥ 1 n assez grand, fn(x) ≤ e−Cxn.
1. On enlève l’hypothèse sur σn(1/2). Montrer qu’il existe x0 ∈ [0, 1] tel que :

(i) ∀x < x0, ∃Cx > 0, ∃n0 ∈ N∗, ∀n ≥ n0, fn(x) ≤ e−Cxn; (ii) ∀x > x0, f(x) ≥ x− x0.
Exercice 112 [ENS P 2025 # 112] Soit f : x 7→

∑+∞
n=1

1
n sin

(
x

4n

)
.

1. Montrer que limx→+∞(inf{f(t), t ≥ x}) = 0.

1. Montrer que 0 < limx→+∞

(
sup

{
|f(t)|

ln(ln t) , t ≥ x
})

< +∞.
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Exercice 113 [ENS L 2025 # 113] Soit (λn) une suite de réels > 0 telle que ∀n ∈ N, 2λn ≤ λn+1 ≤ 3λn. Montrer que :

∀α > 0, ∃(c1, c2) ∈ (R+∗)2, ∀t ∈ [1/2, 1[, c1

(1 − t)α ≤
+∞∑
n=1

λαnt
λn ≤ c2

(1 − t)α
.
Exercice 114 [ENS SR 2025 # 114] On pose : ∀x > 0, η(x) =

∑+∞
n=0

(−1)n−1

nx .
1. Montrer que η est de classe C∞ sur ]1,+∞[. Étudier sa limite en +∞.

1. Montrer que η est de classe C∞ sur ]0,+∞[.

1. Calculer η(1).

1. Montrer que : ∀z ∈ C, |ez1| ≤ e|z|1.

1. Montrer que η(z) est bien définie pour tout z ∈ C vérifiant Re z > 0.
Exercice 115 [ENS P 2025 # 115] 1. Montrer que, pour tout n ∈ N, il existe un unique Ln ∈ R[X] tel que Ln(1) = 1 et (1 −

X2)L′′
n − 2XL′

n + n(n+ 1)Ln = 0.

1. Montrer que ∀x ∈ [−1, 1], ∀z ∈] − 1, 1[, 1√
1−2xz+z2 =

∑+∞
n=1 Ln(x)zn.

Exercice 116 [ENS PLSR 2025 # 116] Soient f, g ∈ C0([0, 1],R) telles que f(1)=g(1)=1 et, pour tout x ∈ [0, 1[, |f(x)| < 1. On suppose
qu’il existe C> 0 et M ∈ N∗ tels que 1 − f(1 − x) ∼

x→0+
Cx1/M . Pour n ∈ N, on pose un =

∫ 1
0 g(x)f(x)ndx.

1. Déterminer un équivalent de un.

1. Montrer l’existence de C’ tel que : ∀n ∈ N∗,
∣∣∣un+1
un

1
∣∣∣ ≤ C′

n .

Exercice 117 [ENS SR 2025 # 117] Soit f : x 7→
∫ +∞

0 cos
(
t3

3 + tx
)
dt.

1. Montrer la définition de f sur R+

1. Soit x ≥ 0. Montrer que Re
[∫ +∞

0 exp
(
i
(

(t+iε)3

3 + (t+ iε)x
))

dt
]

−−−−→
ε→0+

f(x).

Exercice 118 [ENS SR 2025 # 118] On note E l’ensemble des fonctions continues et de carré intégrable de R+∗ dans C .

1. On convient que
√

+∞ = +∞

. Pour f continue de R+∗ dans C, montrer que√∫ +∞

0
|f |2 = sup

{∫ +∞

0
|fg| ; g ∈ E tel que

∫ +∞

0
|g|2 = 1

}
.

1. Soit f ∈ E. Montrer que Φ : x ∈ R+∗ 7→
∫ +∞

0
f(t)
t+xdt appartient à E.

Exercice 119 [ENS P 2025 # 119] Soient K ∈ C0([0, 1]2,R) telle que ||K||∞ < 1 et f ∈ C0([0, 1],R). Étudier l’exis- tence et l’unicité
de g ∈ C0([0, 1],R) telle que ∀x ∈ [0, 1], g(x)

∫ 1
R K(x, t)g(t) dt = f(x).

Exercice 120 [ENS L 2025 # 120] Soient α, θ ∈]0, 1[. Pour f : [1,+∞[→ [0, 1] continue, on pose ∥f∥α = sups→∞ sα|f(s)| et
Fα = {f ∈ C0([1,+∞[, [0, 1]), ∥f∥α < +∞}.

1. Pour f ∈ Fα, on pose T (f) : s ≥ 1 7→ 1 −
(
1 − 1

s

)θ + θ(s− 1)θ
∫ +∞

−∞ (s+ t− 1)−θ−1f(t)dt.
Montrer que T est une application lipschitzienne de Fα dans Fα (pour ∥ · ∥α).- b) On admet que, pour tout α ∈]0, 1 − θ[, T possède
un unique point fixe fα ∈ Fα. Montrer que fα ne dépend pas de α ; on le note f0. Montrer que

∫ +∞
t

t−θf0(t)dt = +∞.
Exercice 121 [ENS PLSR 2025 # 121] 1. Expliciter le terme général d’une suite (an)n≥0 vérifiant la relation de ré-
currence nan+1 = (n+ 1)an pour tout n.

1. Résoudre x(x-1)y” + 3xy’ + y = 0 sur ]-1,1[.
Exercice 122 [ENS PLSR 2025 # 122] Résoudre x2y′′ + xy′ + (x21/4)y = 0 sur ]0, 1[.
Exercice 123 [ENS P 2025 # 123] Soient (a, b) ∈ R2 avec a < b, ψ ∈ C2([a, b],R+∗) croissante. Soit y ∈ C2([a, b],R) non nulle et
vérifiant y′′ +ψ(x)y = 0. Montrer que les points où |y| admet un extremum local forment une suite finie (a1, . . . , an) (éventuellement
vide) et que la suite des valeurs (|y(a1)|, . . . , |y(an)|) est décroissante.
Exercice 124 [ENS PLSR 2025 # 124] Soit f ∈ C2(R,C).

1. On suppose que f ′′ + f ′ + f −−→
+∞

0. Montrer que f −−→
+∞

0.

1. Soit P = a0 + a1X + a2X
2 ∈ C[X] unitaire de degré 1 ou 2 et à racines simples dans C.
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On pose ∂P f =
∑∞
k=0 akf

(k). Donner une condition nécessaire et suffisante surP pour que, quelle que soit f ∈ C2(R,C), ∂P f −−→
+∞

0
implique f −−→

+∞
0.

1. Soit a, b, c ∈ R. Trouver une condition nécessaire et suffisante pour que

∀(x, y, z) ∈ C1(R,C)3,


x′ + ax+ by + cz

+∞−−→ 0
y′ + bx+ cy + az

+∞−−→ 0
z′ + cx+ ay + bz

+∞−−→ 0
=⇒


x

+∞−−→ 0
y

+∞−−→ 0
z

+∞−−→ 0

Exercice 125 [ENS SR 2025 # 125] Soient I un intervalle de R et A : I → M2(R) continue. On regarde l’équation (1) : X ′(t) =
A(t)X(t).

1. Décrire l’ensemble des solutions de (1).

1. On suppose qu’il existe P ∈ GL2(R) et D : I → M2(R) à valeurs dans l’ensemble des matrices diagonales telles que, pour
tout t ∈ R, A(t) = P−1D(t)P .

Trouver une condition sur D pour que les solutions de (1) aient une limite quand t → +∞.
Exercice 126 [ENS P 2025 # 126] Soit n ≥ 2. Soit A : R+ → Mn(R) continue. On considère les solutions de l’équation différentielle
() : x′(t) = A(t)x(t).

1. On suppose qu’il existe P ∈ GLn(R) et D : R+ → Mn(R) continue et à valeurs dans l’ensemble des matrices diagonales à
coefficients dans ]−∞,−1] telles que, pour tout t,A(t) = PD(t)P−1. Les solutions de () ont-elles toutes pour limite 0 en +∞?

1. On suppose qu’il existe P : R+ → GLn(R) continue et D ∈ Mn(R) diagonale à coefficients dans ] − ∞,−1] telles que, pour
tout t, A(t) = P (t)DP−1(t). Les solutions de () ont-elles toutes pour limite 0 en +∞?

Exercice 127 [ENS PLSR 2025 # 127] On fixe un intervalle non trivial I .- a) Soient a et b deux fonctions continues de I dans R. Soit
f une solution non nulle sur I de y” + ay’ + by = 0. Montrer que les zéros de f sont isolés : pour tout zéro t0 de f il existe un δ > 0
tel que f n’ait pas de zéro dans |t0δ, t0 + δ| \ {t0}.

1. Soient p1, p2 deux fonctions continues de I dans R telles que ∀t ∈ I , p1(t) ≥ p2(t). Soient f, g ∈ C2(I,R) \ {0} telles que
f ′′ + p1f = 0 et g′′ + p2g = 0. Soient t1 < t2 deux zéros de f entre lesquels f n’admet aucun autre zéro. Montrer qu’il existe
un zéro de g dans [t1, t2], ainsi que dans [t1, t2].

1. Soient p,q deux fonctions continues de [0,1] dans R telles que ∀t ∈ [0, 1], q(t) > 0. Pour λ ∈ R, on note fλ la solution sur [0,1]
de l’équation différentielle y′′ + (p(t) + λq(t))y = 0 avec la condition initiale fλ(0) = 0 et f ′

λ(0) = 1. On note Nλ le nombre
de zéros de fλ. Montrer que λ 7→ Nλ est croissante et déterminer ses limites en −∞ et +∞.

1. On admet que (x, λ) ∈ [0, 1] × R 7→ fλ(x) est continue. Montrer que l’ensemble

{λ ∈ R, fλ(1) = 0} est l’ensemble des termes d’une suite réelle strictement croissante.
1. Montrer que (λ, x) 7→ fλ(x) est continue sur R × [0, 1].

Exercice 128 [ENS PLSR 2025 # 128] Soit µ ∈ R+. On considère (Eµ) : y′′µ(1 − y2)y′ + y = 0.
1. Résoudre (E0).

1. Soientx0 etx1 deux fonctions bornées et de classe C∞ de R+ dans R, etω1 ∈ R. On suppose qu’il existe des fonctionsω : R+ → R
et ε : R × R → R deux fois dérivables par rapport à la seconde variable telles que :

• ω(µ) = 1 + ω1µ+ o(µ);

• il existe C : R+ → R+ croissante telle que ∀k ∈ {0, 1, 2}, ∀(τ, µ) ∈ R+ × R, |(∂2)kε(τ, µ)| ≤ C(τ)µ2;

• pour x : (τ, µ) ∈ R+ × R 7→ x0(τ) + µx1(τ) + ε(τ, µ), la fonction t 7→ x(ω(µ)t, µ) est solution de (Eµ) sur R+ pour µ voisin
de 0.

Calculer alors ω1 et donner une expression explicite de x0 et x1 en fonction de quelques constantes inconnues.
Exercice 129 [ENS L 2025 # 129] Soit A une application continue de R dans Mn(C) et X une application de classe C1 de R dans
Mn(C) telles que, pour tout t ∈ R, X’(t) = A(t)X(t) X(t)A(t). Montrer que, pour tout t ∈ R, X(t) est semblable à X(0).
Exercice 130 [ENS SR 2025 # 130] Soit f : R2 → R telle que f(x, y) = exey

xy si x ̸= y et f(x, x) = ex. Montrer que f est de classe
C∞.
Exercice 131 [ENS P 2025 # 131] Soient d ∈ N∗ et f : Rd → R de classe C2. Soit L ≥ ℓ > 0 des réels. On suppose qu’en tout point
de Rd la hessienne de f a son spectre inclus dans [ℓ, L]. Soit τ ∈]0, 2/L[ ainsi qu’une suite u à termes dans Rd vérifiant la relation de
récurrence ∀n ∈ N, un+1 = un − τ∇f(un). Montrer que u converge.
Exercice 132 [ENS PLSR 2025 # 132] Soient d ∈ N∗ et f : Rd → R de classe C1. On suppose que f tend vers +∞ en ∞, que ∇f
est lipschitzienne et que les points critiques de f sont isolés dans Rd. Montrer qu’il existe un réel τ > 0 tel que, quel que soit le choix
de a ∈ Rd, la suite définie par x0 = a et ∀n ∈ N, xn+1 = xn − τ∇f(xn) soit convergente. On commencera par le cas où d = 1 et
f : x 7→ x2

2 .
Exercice 133 [ENS L 2025 # 133] Soit G un sous-groupe fermé de GLn(R).
On pose L = {A ∈ Mn(R); ∀t ∈ R, etA ∈ G}.
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1. Montrer que L est un sous-espace vectoriel de Mn(R). Ind. Considérer
(
etA/ketB/k

)k .

1. Montrer que ∀(A,B) ∈ L2, ABBA ∈ L.

1. Que peut-on dire de L pour G = SLn(R)?
Exercice 134 [ENS PLSR 2025 # 134] Soit n ≥ 2 un entier. Une application f de classe C2 définie sur un ouvert O de Rn, à valeurs
dans Rn vérifie la propriété P si, pour tout x ∈ O, dfx est composée d’une homothétie et d’une isométrie vectorielle.

1. On suppose que n=2 et que f vérifie P . On note f = (f1, f2). Montrer que f1 et f2 sont harmoniques, c’est-à-dire que ∆f1 = 0
et ∆f2 = 0.

1. Montrer que le résultat de la question a) est faux si n ≥ 3. On pourra considérer l’application f : x ∈ Rn \ {0} 7→ x
∥x∥2 .

Exercice 135 [ENS P 2025 # 135] Soit f : R2 → R de classe C2. On dit que f est harmonique si ∂2f
∂x2 + ∂2f

∂y2 = 0. On dit que f
est homogène de degré λ ≥ 0 si, pour tous x, y ∈ R et tout t ∈ R+, f(tx, ty) = tλf(x, y). Soit λ ≥ 0. Déterminer les fonctions
harmoniques et homogènes de degré λ.

2) Géométrie

Exercice 136 [ENS L 2025 # 136] Montrer qu’il n’existe aucun triangle rectangle dont les longueurs des côtés sont dans N∗ et dont
l’aire est un carré parfait non nul.
Exercice 137 [ENS P 2025 # 137] Soient a, b, c, d dans R+∗. Quelle est l’aire maximale d’un quadrilatère dont les côtés successifs ont
pour longueurs a, b, c, d ?
Exercice 138 [ENS PLSR 2025 # 138] 1. Quelle est l’aire maximale possible pour un rectangle de périmètre 1?

1. On considère un entier n ≥ 3 et une liste strictement croissante (θ1, . . . , θn) à termes dans [0, 2π]. Déterminer la valeur
maximale possible pour le périmètre du polygone de sommets eiθ1 , . . . , eiθn (dans cet ordre).

1. Soit z1, . . . , zn des nombres complexes. On convient que z0 = zn. On définit l’aire algé-

brique du polygone z1 · · · zn comme 1
2
∑n−1
k=0(Re(zk) Im(zk+1)−Im(zk) Re(zk+1)). On fixe un réel p> 0. Parmi les listes (z1, . . . , zn) ∈

Cn telles que le périmètre de z1 · · · zn soit égal à p, déterminer celles qui maximisent l’aire algébrique du polygone associé.

3) Probabilités

Exercice 139 [ENS PLSR 2025 # 139] 1. Calculer la variance d’une variable de Poisson.

1. Soient a ∈ N∗ et p un nombre premier. Calculer E(Xp modulo p) où X ∼ P(a).
Exercice 140 [ENS SR 2025 # 140] Soient p ∈ [0, 1] et (Xn)n≥0 une suite i.i.d. de variables aléatoires suivant la loi Bernoulli de

paramètre p. On pose S0 = 1 et, pour n ≥ 0, Sn+1 = 3Sn + 1 si Xn = 1
Sn

2 si Xn = 0
1. Étudier les cas p = 0 et p = 1. On supposera que 0 < p < 1 dans toute la suite de l’exercice.

1. Donner une formule de récurrence vérifiée par la suite (E(Sn))n≥0, et étudier son comportement quand n → +∞.

1. Montrer que P((Sn)n≥0 est bornée) = 0.
Exercice 141 [ENS SR 2025 # 141] Soit (Xn)n≥1 une suite de variables aléatoires i.i.d. telles que E(X4

1 ) < +∞. On pose Tn =
1
n

∑n
i=1 Xi pour tout n ≥ 1. Montrer que la suite (Tn)n≥0 converge presque sûrement vers E(X1).

Exercice 142 [ENS L 2025 # 142] Soit (Xn)n≥1 (resp. (Yn)n≥1) une suite de variables aléatoires i.i.d à valeurs dans N. On note
T = inf{n ≥ 2 ; Xn /∈ {X1, . . . , Xn−1}} et S = inf{n ≥ 2 ; Yn /∈ {Y1, . . . , Yn−1}}. On suppose que T ∼ S. Que peut-on dire du
lien entre les suites (Xn) et (Yn)?
Exercice 143 [ENS P 2025 # 143] Soit P l’ensemble des nombres premiers et β > 1. Soit (Yp)p∈P une suite de variables aléatoires
indépendantes à valeurs dans N vérifiant P(Yp = k) = (1 − p−β)p−kβ pour k ∈ N et p ∈ P . On pose Z =

∑
n∈P Yp ln p et

X = expZ .
1. Donner la loi de X .

1. En déduire que
∑+∞
i=1

µ(n)
nβ = 1

ζ(β) où µ est la fonction de Möbius, définie par µ(n) = 0 si n est divisible par un carré > 1, et
µ(n) = (−1)m, où m est le nombre de ses facteurs premiers, sinon.

Exercice 144 [ENS L 2025 # 144] Montrer qu’il existe C > 0 tel que pour tout n ≥ 1 et tout (ai,j)1≤i,j≤n ∈ {±1}n2 , il existe
(xi)1≤i≤n et (yi)1≤i≤n dans {±1}n tels que

∑
1≤i≤n ai,jxiyj ≥ Cn3/2.

Exercice 145 [ENS MP 2025 # 145] Soient θ ∈]0, 1[ et X une variable aléatoire à valeurs dans R+ telle que P(X > 0) > 0. Montrer
que P(X ≥ θE(X)) ≥ (1−θ)2E(X)2

E(X2) .
Exercice 146 [ENS P 2025 # 146] Soit n ∈ N avec n ≥ 2. Soit En = {e1, . . . , en} un ensemble de cardinal n. Soient σ1, . . . , σn des
variables aléatoires indépendantes suivant la loi uniforme sur Sn. Si i, j ∈ [1, n], on pose eiej = eσi(j). Montrer que la probabilité
que (E, ) soit un groupe, sachant que admet un neutre, tend vers 0 quand n tend vers l’infini.
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Exercice 147 [ENS L 2025 # 147] Soient d ∈ N∗ et (e1, . . . , ed) la base canonique de Zd. Soit (Xn)n≥0 une suite de variables aléatoires
indépendantes telles que P(Xn = ei) = P(Xn = −ei) = 1

2d pour 1 ≤ i ≤ d. On pose Sn =
∑n
i=1 Xk et S0 = 0.

Soit T = inf{n > 0, Sn = 0} et pd = P(T < +∞). On admet que pd < 1 pour d ≥ 3. Montrer que pd → 0 lorsque d → +∞.
Exercice 148 [ENS P 2025 # 148] Soient p ∈]0, 1/2[ et (Xn)n≥1 une suite i.i.d. de variables aléatoires telle que P(Xn = 1) =
1−P(Xn = −1) = p. Pour n ∈ N∗, on note Sn = X1 + · · ·+Xn. Montrer 1’existence de c, C1, C2 > 0 tels que ∀u ≥ 0, C1e

−cu ≤
P
(
supn≥1 Sn ≥ u

)
≤ C2e

−cu.
Exercice 149 [ENS PLSR 2025 # 149] 1. Soit X une variable aléatoire réelle et s > 0 tel que E(esX) soit finie. Démontrer que

∀a > 0, P(X ≥ a) ≤ e−saE(esX).

1. Soit (Xi)i≥1 une suite de variable aléatoires i.i.d. à valeurs dans [0, 1].

On pose Sn =
∑n
i=1 Xi. Démontrer que ∀t > 0, P(|Sn − E(Sn)| ≥ t) ≤ 2e−t2/(2n).

Exercice 150 [ENS PLSR 2025 # 150] Soit (E,P(E)) un espace probabilisable avec E dénombrable.
1. Rappeler la définition d’une probabilité sur cet espace.

1. PourA etB probabilités sur cet espace, on pose d(A,B) = max
S⊂E

A(S)B(S). Montrer que d(A,B) = 1
2
∑
x |A({x})−B({x})|.

1. SoientX et Y deux variables aléatoires discrètes à valeurs dansE de lois respectivesA etB. Montrer queP (X ̸= Y ) ≥ d(A,B).

1. Les deux lois A et B étant fixées, montrer qu’on peut construire X et Y de façon à assurer l’égalité dans l’inégalité précédente.
Exercice 151 [ENS PLSR 2025 # 151] Soient X et Y deux variables aléatoires définies sur un même espace probabilisé (Ω,A,P) et à
valeurs dans [0, n]. On pose pk = P(X = k) et qk = P(Y = k) pour tout k ∈ [[0, n]], et d(p, q) = maxS⊂[[0,n]] P(X ∈ S)−P(Y ∈ S).

1. Montrer que d(p, q) ≥ 0. Que dire si d(p,q) = 0?

1. Soit φ : R → R une fonction convexe. Comparer E(φ(X)) et φ(E(X)).

1. On suppose de plus qu’il existe au moins deux éléments k de [0,n] tels que pk > 0. On suppose de plus queφ strictement convexe,
c’est-à-dire telle que ∀(x, y) ∈ R2, ∀t ∈ ]0, 1[ x ̸= y ⇒ φ((1 − t)x + ty) ≤ (1 − t)φ(x) + tφ(y). Montrer que E(φ(X)) >
φ(E(X)).

1. On suppose que : ∀k ∈ [[0, n]], pk > 0 et qk > 0. On pose H(p, q) =
∑n
k=0 pk ln

(
pk

qk

)
.

Montrer que H(p, q) ≥ 0. Que dire si H(p,q) = 0?
Exercice 152 [ENS L 2025 # 152] On considère r0 = 0 et (ri)i∈N∗ ∈ [0, 1]N∗ . Pour (i, j) ∈ N∗ ×N, on pose pi,j = ri si j = i+1, 1−ri
si j = i− 1 et 0 sinon.On admet l’existence d’une famille de variables aléatoires (Xi

k)(i,k)∈N∗×N telles que

• Xi0
0 = i0 p.s. pour tout i0 ∈ N∗,

• P
(⋂n

i=1(Xik
k = ik−1)

)
=
∏n
i=1 pik−1,ik pour tout (i0, . . . , ik) ∈ N∗k+1.

On pose, pour i, j ∈ N∗, τ ij = inf{k ∈ [[0,+∞]], Xi
k = j} ∈ N ∪ {+∞}.

Soit b ∈ N. Calculer, pour i ∈ [0, b], p̂i = P(τ i0 < τ ib) en fonction des γk =
∏k
i=1

1−ri

ri
.

Exercice 153 [ENS PLSR 2025 # 153] Soient (Xk)k∈N∗ une suite de variables de Rademacher indépendantes et X0 = k ∈ Z
(constante). On pose, pour tout n ∈ N, Sn = X0 + · · · +Xn.

1. Déterminer l’espérance et la variance de Sn.

1. Soient m ∈ N∗ et k1, . . . , km ∈ Z. Que dire de la loi de (Sn)n≥m conditionnée par (S1 = k1, . . . , Sm = km)?

1. Soient k,N ∈ N∗ avec N ≥ k. On considère que la marche aléatoire s’arrête dès que Sn = 0 ou Sn = N . On admet que l’arrêt
est presque sûr. Déterminer la probabilité pk que la marche s’arrête sur 0 en partant de k.

1. Déterminer le temps moyen d’arrêt (en 0 ou N cette fois) en partant de k.
Exercice 154 [ENS P 2025 # 154] On considère n variables aléatoires de Rademacher indépendantes (εi)1≤i≤n. Montrer que, pour
tout réel p > 0, il existe (cp, Cp) ∈ (R+∗)2 indépendant de n ∈ N∗ tel que,
pour tout

(z1, . . . zn) ∈ Cn

, cp
(∑n

i=1 |zi|2
) 1

2 ≤
(
E |
∑n
i=1 εizi|

p) 1
p ≤ Cp

(∑n
i=1 |zi|2

) 1
2 .

Exercice 155 [ENS L 2025 # 155] Soit (Xn)n≥0 une suite de variables aléatoires indépendantes à valeurs dans Z telles que ∀n ∈
N, ∀k ∈ N, P(Xn = k) = P(Xn = −k) = ce−|k| où c est à déterminer. Déterminer la loi du rayon de convergence de la série
entière aléatoire

∑
Xnz

n.
Exercice 156 [ENS P 2025 # 156] Soit (pn)n≥1 une suite d’éléments de [0,1]. Pour n ∈ N∗, on note Gn le graphe aléatoire Gn,pn

d’Erdös-Renyi, c’est-à-dire un graphe aléatoire de sommets [1,n] et une famille (X{i,j}){i,j}∈P2([1,n]) de variables de Bernoulli i.i.d.
de paramètre pn, avec X{i,j} = 1 si et seulement s’il existe une arête reliant i et j. On note In le nombre de sommets isolés deGn.

1. Soit ε ∈]0, 1[. On suppose que, pour tout n ∈ N∗, pn ≥ (1 + ε) ln(n)
n . Montrer que P(In ≥ 1) −−−−−→

n→+∞
0.
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1. Soit ε ∈]0, 1[. On suppose que, pour tout n ∈ N∗, pn ≤ (1 − ε) ln(n)
n . Montrer que P(In ≥ 1) −→

n→+∞
1.

Exercice 157 [ENS L 2025 # 157] Montrer qu’il existe un réel c> 0 vérifiant la condition suivante : quel que soit n ∈ N∗, quelle que
soit S partie non vide de Un, il existe un entier naturel p ≤ cn

|S| ainsi
qu’une p-liste (z1, . . . , zp) d’éléments de Un telle que |

⋃p
k=1 zkS| ≥ n

2 ·
Exercice 158 [ENS PLSR 2025 # 158] Soit p ∈ [0, 1/2]. On fixe une suite (Xn)n≥1 de variables aléatoires i.i.d. à valeurs dans {−1, 0, 1}
et telles que P (X1 = 1) = P (X1 = −1) = p et P (X1 = 0) = p

valeurs dans
{−1, 0, 1}

et telles que P(X1 = 1) = P(X1 = −1) = p et P(X1 = 1) = 1 − 2p. Pour b ∈ Z, a ∈ ZN∗ et n ∈ N∗, on pose P (b, a, n) =
P (
∑n
k=1 akXk = b).

1. On suppose a = 2k−1. Calculer P(0, a, n) pour tout n ∈ N.

1. On suppose p = 1/4 et a = (1)k∈N. Calculer P(0, a, n) pour tout n ∈ N .

1. Déterminer les valeurs de p pour lesquelles b 7→ P (b, a, n) est maximale en 0 pour tout a ∈ ZN∗ .
Exercice 159 [ENS PLSR 2025 # 159] Soit n ≥ 3. Une alpiniste dispose de n lieux possibles pour planter sa tente, lieux numérotés de
1 à n. Elle peut visiter chacun de ces lieux successivement, à partir du numéro 1, et doit décider si elle y plante sa tente. Lorsqu’elle
visite le lieu k, elle peut savoir si elle préfère ce lieu à tous les lieux précédemment visités, mais ne sait pas si elle le préfère aux lieux
non encore visités. Une fois un lieu visité, si l’alpiniste a refusé d’y installer sa tente elle ne pourra plus revenir sur ce lieu. L’alpiniste
a pour objectif de maximiser la probabilité d’avoir choisi celui des n lieux qui a sa préférence parmi les n lieux.

1. Déterminer une stratégie optimale pour l’alpiniste lorsque n=3.

1. On fixe un k ∈ [0, n− 1]. L’alpiniste suit la stratégie décrite ci-après : elle visite automatiquement les k+1 premiers lieux ; étant
donné ℓ ∈ [k + 1, n − 1], si l’alpiniste visite le ℓ-ième lieu alors elle l’écarte si et seulement s’il n’a pas sa préférence parmi
tous les lieux déjà visités. Déterminer la probabilité pn,k pour que l’alpiniste s’installe sur le lieu ayant sa préférence parmi les
n lieux.

1. On fixe un kn maximisant pn,k lorsque k parcourt [0, n − 1]. Étudier le comportement asymptotique de kn quand n tend vers
+∞.

Exercice 160 [ENS L 2025 # 160] Soit (Xn)n≥1 une suite i.i.d. de variables aléatoires réelles discrètes. Pour t ∈ R et n ∈ N∗, on consi-
dère la variable aléatoire fn(t) = 1

n |{k ∈ [1, n], Xk ≤ t}|. Montrer qu’il existe une fonction f : R → R telle que P (supt∈R |fn(t) − f(t)| > ε) −→
n→+∞

0 pour tout réel ε > 0.
Exercice 161 [ENS L 2025 # 161] Pour deux variables aléatoires réelles bornéesX et Y , sur des espaces probabilisés a priori distincts,
on note X ≤c Y pour signifier que E(f(X)) ≤ E(f(Y )) pour toute fonction convexe f : R → R. On se donne, sur un espace
probabilisé, deux suites (M,X1, X2, . . . ) et (N,Y1, Y2, . . . ) de variables aléatoires indépendantes bornées vérifiant les conditions
suivantes :

• les Xn, où n ∈ N∗, sont identiquement distribuées et positives ;

• les Yn, où n ∈ N∗, sont identiquement distribuées et positives ;

• M et N sont à valeurs dans N :

• M ≼c N et X1 ≼c Y1.

On pose S =
∑M
k=1 Xk et T =

∑N
k=1 Yk . Montrer que S ≼c T .

Exercice 162 [ENS L 2025 # 162] Soient E une partie bornée et au plus dénombrable de R+, et L et L′ deux lois de probabilité sur
E. Déterminer, en fonction de ces lois, la plus petite constante KL,L′ telle que, pour tout couple (X,Y) de variables aléatoires réelles à
valeurs dans E telles que X ∼ L et Y ∼ L′, on ait l’inégalité E(XY ) ≤ KL,L′ .
Exercice 163 [ENS SR 2025 # 163] On munit Rn de sa structure euclidienne canonique. SoitX = (X1, . . . , Xn)T un vecteur aléatoire
tel que E

(
∥X∥2) < +∞. On note C(X) = (Cov(Xi, Xj))1≤i,j≤n la matrice de covariance.

1. Que dire de C(X) si les Xi sont indépendantes?

1. Soient v ∈ Rn et Y = ⟨v,X⟩. Exprimer V(Y ) en fonction de C(X).

1. On suppose les Xi centrées. Soient A ∈ Mn(R) et Z = AX. Exprimer E(∥Z∥2) en fonction de C(X).

1. Caractériser les A ∈ Mn(R) pour lesquelles il existe un vecteur aléatoire X tel que A = C(X).

1. Soit H un hyperplan de Rn.

Montrer que P (X ∈ H) = 1 si et seulement si H⊥ ⊂ Ker(C(X)).
Exercice 164 [ENS SR 2025 # 164] Soit α > 0. On considère l’équation différentielle () : (y′ = −x, x′ = α2y) avec (x, y) : R → R2.

1. Si (x0, y0) ∈ R2 est fixé, justifier l’existence et l’unicité d’une solution de () vérifiant x(0) = x0 et y(0) = y0. Pour cette solution,
on pose I(t) = y2(t) et J(t) = α2x2(t).
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1. Montrer que les applications T 7→ 1
T

∫ T
0 I(t)dt et T 7→ 1

T

∫ T
0 J(t)dt admettent une

limite finie en +∞.
1. Soit N ∈ N∗. On considère deux variables aléatoires x0, y0 indépendantes à valeurs dans 1

NZ telles que, pour tout k ∈ Z,
P
(
x0 = k

N

)
= P

(
y0 = k

N

)
= γN exp

(
−(k/N)2).

1. Justifier l’existence de γN ∈ R+ pour lequel ces conditions définissent la loi des deux variables aléatoires.

1. On fixe t et on considère, pour N ∈ N∗, la variable aléatoire fN (t) = I(t) + J(t) (les fonctions I et J sont associées aux
variables aléatoires x0 et y0). Montrer que E

(
e−fN (t)) possède une limite quand N → +∞.

II) ENS PSI autre

1) Algèbre

Exercice 165 [ENS PSI 2025 # 165] 1. Soit A = (ai,j)1≤i,j≤n ∈ Mn(R) telle que ∀i, j ∈ [1, n], ai,i = 2, ai,j = −1 si |i − j| =
1, ai,j = 0 si |i− j| ≥ 2.

1. Montrer que, pour tout x ∈ Rn, Ax ≥ 0 ⇒ x ≥ 0 où ≥ 0 signifie que toutes les coordonnées sont positives ou nulles.

1. En déduire que A est inversible.

1. Soit A ∈ Mn(R) telle que ∀i ∈ [[1, n]], |ai,i| >
∑
i̸=i |ai,j |.

1. Montrer que A est inversible.

1. Soit E et F les matrices de taille n définies par ei,j = ai,j si j ≥ i, ei,j = 0 si j < i et fi,j = −ai,j si j < i, fi,j = 0 si j ≥ i.
Montrer que, si (u, v) ∈ (Rn)2 vérifie Ev = Fu, alors ||v||∞ ≤ ||u||∞.

1. Montrer qu’il existe k ∈]0, 1[ tel que ∀u, v ∈ Rn, Ev = Fu ⇒ ||v||∞ ≤ k||u||∞.

1. Soient b ∈ Rn, x0 ∈ Rn et (xk) la suite définie par ∀k ∈ N, Exk+1 = Fxk + b. Montrer que la suite (xk) est bien définie et que
la suite (xk) converge. Déterminer sa limite.

Exercice 166 [ENS PSI 2025 # 166] Soit f :
(
a b
c d

)
∈ M2(R) 7→

(
c a
d b

)
. Spectre de f ? Diagonalisabilité sur R? sur C?

Exercice 167 [ENS PSI 2025 # 167] 1. Soit λ ∈ C. La suite (λk)k∈N peut-elle être dense dans C?

1. Soit A =
(

2 3
0 1/2

)
.

1. Pour X ∈ C2, la suite
(
AkX

)
k∈N

peut-elle être dense dans C2 ?

1. Soient A ∈ Mm(C), X ∈ Cm. La suite (AkX)k∈N peut-elle être dense dans Cm ?

1. Soit A ∈ Mm(R) qui n’admet pas de valeur propre réelle.

1. Montrer qu’il existe P ∈ GLm(R), a > 0, θ ∈ R tels que :

A = P


a cos θ −a sin θ ∗ · · · ∗
a sin θ a cos θ ∗ · · · ∗

0 0 ∗ · · · ∗
...

...
...

...
0 0 ∗ · · · ∗

P−1

.

1. Soient A ∈ Mm(R), X ∈ Rm. La suite (AkX)k∈N peut-elle être dense dans Rm ?
Exercice 168 [ENS PSI 2025 # 168] On dit que P = (pi,j) ∈ Mn(R) est une matrice de permutation s’il existe une permutation σ de
l’ensemble [[1, n]] telle que ∀(i, j) ∈ [[1, n]]2, pi,j = δi,σ(j). On dit que H ∈ Mn(R) est une H-matrice si tous ses coefficients valent
±1 et si ses colonnes forment une famille orthogonale pour le produit scalaire canonique.

1. Soit P une matrice de permutation. Montrer que P est orthogonale et que PT est une matrice de permutation.

1. Soit M ∈ Mn({−1, 1}).Montrer que M est une H-matrice si et seulement si MTM = nIn.
c. Soient D ∈ Mn({−1, 1}) une matrice diagonale, M une H-matrice de taille n, et P une matrice de permutation de taille n.
Montrer que DM, MT , MD et PM sont des H-matrices. On suppose dans les dernières questions qu’il existe une H-matrice de
taille n ≥ 3.
d. Montrer qu’il existe une H-matrice S = (si,j) ∈ Mn(R) n’ayant que des 1 en première ligne.

1. Montrer que ∀i, j ∈ [[2, n]] avec i ̸= j, on a
∑n
k=1(si,k + 1)(sj,k + 1) = n.

1. En déduire que n est un multiple de 4. On écrit n=4k avec k ∈ N∗.
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g) Montrer qu’il existe une H-matrice de taille n dont les trois premières lignes sont présentées en quatre blocs de taille k de la forme
suivante :
Exercice 169 [ENS PSI 2025 # 169] Le produit scalaire canonique de Rn est noté ⟨x, y⟩ = xT y. Soit A ∈ Mn(R).

1. Montrer qu’il existe un unique (A+, A−) ∈ Sn(R) ×An(R) tel que A = A+ +A−.

1. Montrer que pour tout x ∈ Rn, ⟨Ax, x⟩ = ⟨A+x, x⟩.

On note λ1, . . . , λℓ les valeurs propres de A+ et E1, . . . , Eℓ les sous-espaces propres associés. On suppose de plus que A et A+

commutent.

1. Montrer que ∀x ∈ Ei, Ax ∈ Ei et A−x ∈ Ei.

1. Soient µ ∈ Sp(A) et Fµ le sous-espace propre associé. Montrer qu’il existe j tel que µ = λj et Fµ ⊂ Ej .

1. Soit i ∈ [1, ℓ]. On suppose dim(Ei) = 1. Montrer que λi ∈ Sp(A) et Ei ⊂ Ker(A−).

1. Montrer que si A est diagonalisable alors A est symétrique.
Exercice 170 [ENS PSI 2025 # 170] Soit A ∈ Mn(R). Soit u : M ∈ Mn(R) 7→ AMAT .

1. On suppose A diagonalisable.

1. Montrer que u est diagonalisable.

b. Montrer que tr(u) = [tr(A)]2. c. Montrer que Sn(R) est stable par u. On note uS l’endomorphisme induit par u sur

Sn(R)

. Montrer que tr(uS) = 1
2 (tr(A2) + [tr(A)]2).

1. On suppose désormais que Ãm = In pour un entier m ≥ 1.

1. Montrer que A est diagonalisable sur C.

b. Montrer qu’il existe des entiers r,s tels que r + 2s ≤ n et des entiers k1 ≤ · · · ≤ ks tels que tr(A) = r + 2
∑s
s=1 cos

( 2kiπ
m

)
. c.

Montrer que {Ak, k ∈ N} est fini. d. On pose N = Card({Ak, k ∈ N}). Montrer que tr(u) = 1
N

∑N
i=1 tr(Ak).

Exercice 171 [# 171] 1. Soit f : R → R une fonction k-lipschitzienne, avec k ≥ 0.

1. Montrer que f est continue.

b. On suppose k < 1. Montrer que f admet un unique point fixe. c. Donner un exemple de fonction 1-lipschitzienne de R dans R qui
n’a pas de point fixe.

1. On considère E = Rd muni d’une norme N . Soit f : Rd → Rd une fonction 1lipschitzienne. Soit Ω l’ensemble des vecteurs x
de E tels que la suite (fn(x))n∈N est bornée. Montrer que Ω = ∅ ou Ω = E.

1. On suppose E = C et f(z) = az + b. Donner une condition nécessaire et suffisante pour que f soit 1-lipschitzienne. En supposant
cette condition réalisée, donner une condition nécessaire et suffisante pour que Ω = E.

Exercice 172 [ENS PSI 2025 # 172] Soit (E, ∥ ∥) un R -espace vectoriel normé de dimension 2 muni d’une base (e1, e2) vérifiant la
propriété () : ∀(λ1, λ2) ∈ R2, ||λ1e1 + λ2e2|| = |||λ1||e1 + ||λ2||e2||.

1. Rappeler la définition d’un espace euclidien.

1. Donner un exemple d’espace vectoriel normé et d’une base où la propriété () est vérifiée.

1. Donner un exemple d’espace vectoriel normé et d’une base où la propriété () n’est pas vérifiée.

1. On veut montrer le résultat () : pour tout (α1, α2, β1, β2) ∈ R4, si |α1| ≤ |β1| et |α2| ≤ |β2| alors ||α1e1 + α2e2|| ≤ ||β1e1 +
β2e2||. On fixe λ ∈ R et on définit la fonction f(µ) = ∥µe1 + λe2∥.

• Montrer que f
(
µ+µ′

2

)
≤ 1

2f(µ) + 1
2f(µ′) pour tout (µ, µ′) ∈ R2.

• En déduire que f est convexe.

• Montrer que f est une fonction croissante sur R+. iv) En déduire la validité de l’implication ().
Exercice 173 [ENS PSI 2025 # 173] Nature, suivant α ∈ R, de la série

∑
(−1)n nα

n2α+(−1)n .

Exercice 174 [ENS PSI 2025 # 174] Pour n ∈ N∗, on pose Hn =
∑n
i=1

1
k et Sn =

∑n
i=1
∑n
j=1

pq
p+q .

1. Montrer que (Hn ln(n+ 1)) converge. On note sa limite γ.

1. Déterminer un équivalent de Sn.

1. Donner un développement asymptotique à deux termes de Sn.
Exercice 175 [ENS PSI 2025 # 175] Soit E = C∞(R,R). Si f ∈ E, on note D(f) l’application x ∈ R 7→ f(x+ 1)f(x).
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1. Montrer que D induit un endomorphisme de Rn[X] (on identifie un polynôme et la fonction polynomiale associée). Quel est
son noyau? son image?

1. Soient f ∈ E, n ∈ N∗ et x > 0.

Montrer qu’il existe c ∈]x, x+ n[ tel que Dn(f)(x) = f (n)(c).
1. Soit λ ∈ R. On suppose : ∀n ∈ N∗, nλ ∈ N. Montrer que λ ∈ N.

Exercice 176 [ENS PSI 2025 # 176] Soit G l’ensemble des fonctions de R dans R de la forme

x 7→ a0 +
+∞∑
k=1

(ak cos(2kπx) + bk sin(2kπx))

avec (an) et (bn) sommables. Soit F l’ensemble des f ∈ C0(R,R) 1-périodiques.

1. Si f ∈ G, montrer que les ak et bk sont uniquement déterminés par f .

Si a ∈ R est fixé, on pose, pour f ∈ F , T (f) : x 7→ f(x+ a)f(x).
1. Si a ∈ Z, que vaut T? c) Si a ∈ Q, décrire Ker(T).

1. Si a =
√

2, décrire Ker(T).

1. Oue vaut Im(T |G) pour a =
√

2?
Exercice 177 [ENS PSI 2025 # 177] Soit f : I → R convexe, où I est un intervalle de R de longueur non nulle.

1. Soit t ∈ I . Pour tout x ∈ I \ {t}, on pose ∆t(x) = f(x)f(t)
xt .

1. Montrer que ∆t est croissante sur I \ {t}.

1. Justifier l’existence de f ′(t+) = limx→t+ ∆t(x). iii) On pose at : x 7→ f(t) + f ′(t+)(x− t). Montrer que f(x) = supt∈I at(x).

1. On dit que f est log-convexe lorsque f > 0 sur I et ln ◦f convexe

1. Montrer que si f est log-convexe, alors elle est convexe.

1. Soit f ∈ C2(R,R+∗). Montrer que f est log-convexe si et seulement si, pour tout α ∈ R, x 7→ eαxf(x) est convexe. iii) Montrer
que la somme de deux fonctions log-convexes est log-convexe.

1. On pose Γ : x 7→
∫ +∞

1 tx−1e−tdt.

1. Justifier que Γ est définie, de classe C2, et strictement positive sur R+∗.

1. Montrer que Γ est log-convexe.

1. Soient n ∈ N∗ et x ∈ R+∗. Montrer : Γ(x+ n) = Γ(x)
∏n−1
k=0(x+ k) et Γ(n+ 1) = n!.

1. Montrer que ln(n) ≤ 1
x ln

(
Γ(n+1+x)

Γ(n+1)

)
≤ ln(n+ 1).

Exercice 178 [ENS PSI 2025 # 178] 1. Soit une fonction f ∈ C0(R+,R) décroissante, positive, et intégrable sur R+. Montrer que
f(x) = o(1/x) quand x → +∞.

1. Montrer qu’il existe une fonction g : R+ → R continue, positive et intégrable qui n’est pas négligeable devant 1/x en +∞.
Exercice 179 [ENS PSI 2025 # 179] Soit f : R+ → R continue, strictement décroissante et intégrable sur R+. On pose, pour n ∈ N∗,
fn : x ∈ R+ 7→ f(xn).

1. Montrer que ∀x ∈ R+, f(x) > 0 et que limx→∞ f = 0.

1. Soit a ∈ [0, 1[. Montrer que (fn) converge uniformément sur [0,a]. Cette suite est-elle uniformément convergente sur [0, 1] ?

1. Soit b ∈]1,+∞[. Mêmes questions pour les intervalles [b,+∞[ et ]1,+∞[.

1. Soit a ∈ R+. La suite de terme général un =
∫ +∞

−∞ fn(t)dt est-elle convergente?

Exercice 180 [ENS PSI 2025 # 180] Soient (a, b) ∈ R2 avec a < b et I = [a,b]. Soit f : I → I continue. La notation fn désigne
f ◦ f ◦ · · · ◦ f (n fois).
On suppose qu’il existe ω ∈ I tel que ∀x ∈ I , fn(x) → ω quand n → +∞.

1. Montrer que, pour tout k ∈ N∗, ω est l’unique point fixe de fk .

1. Montrer que f(I) ̸= I .

1. Montrer que ∩n≥1f
n(I) = {ω}.

1. Montrer que la suite (fn) converge uniformément vers la fonction constante égale à ω.
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Exercice 181 [ENS PSI 2025 # 181] Pour n ≥ 1, on note bn le nombre de partitions d’un ensemble de cardinal n.
On pose

b0 = 1
et B : x 7→

∑+∞
n=0

bn

n! x
n.

réflexive (∀x ∈ E, x ∼ x),

1. Montrer que bn est le nombre de relations d’équivalence sur un ensemble de cardinal n. Cette notion étant hors-programme,
nous en donnons la définition. Une relation ~ sur l’en-

semble E est dite d’équivalence lorsque c’est une relation : symétrique (∀(x, y) ∈ E2, x ∼ y ⇒ y ∼ x), - transitive (∀(x, y, z) ∈
E3, x ∼ y et y ∼ z ⇒ x ∼ z).

1. Calculer b0, b1, b2.

1. Montrer que, pour tout n ∈ N, bn+1 =
∑n
k=1

(
n
k

)
bk .

1. Montrer que B est dérivable sur un intervalle ouvert non vide, en déduire une équation différentielle vérifiée par B puis la
résoudre.

1. Montrer que, pour tout n ∈ N, bn = 1
e

∑+∞
k=0

kn

k! .

Exercice 182 [ENS PSI 2025 # 182] 1. Calculer
∫ 1

0 − ln(1−t)
t dt. On donne

∑+∞
n=0

1
n2 = π2

6 .

1. Soient x ∈ [0, 1] et a, b ∈ R avec 0 < a < b. Montrer que l’équation yayb = xaxb d’inconnue y admet deux solutions, sauf pour
une valeur x0 de x que l’on déterminera.

1. Soit f : [0, 1] → R définie par f(x0) = x0 et, pour x ̸= x0, f(x) est l’unique solution différente de x de l’équation ya − yb =
xa − xb. Montrer que f est décroissante et continue.

1. Soit x ∈]0, 1[. Montrer que l’équation xb−a = 1−ta
1−tb admet une unique solution t ∈

]0,1[. On la note g(x).
1. Calculer I =

∫ 1
0 − ln(f(x))

x dx. On utilisera le changement de variable t = g(x).
Exercice 183 [ENS PSI 2025 # 183] Soient A ∈ Mn(R) symétrique définie positive, B ∈ Mm,n(R), v ∈ Rn. Soit J : x ∈ Rn 7→
1
2 ⟨Ax, x⟩⟨v, x⟩.

1. Calculer le gradient de J et montrer que ∀x, h ∈ Rn, J(x+ h) − J(x) = ⟨∇J(x), h⟩ + 1
2 ⟨Ah, h⟩.

1. Montrer que les propositions suivantes sont équivalentes :

• il existe x ∈ Ker(B) tel que ∀z ∈ Ker(B), J(z) ≥ J(x) ;

• il existe x ∈ Ker(B) tel que ∇J(x) ∈ Ker(B)⊥ ;

• le système (S) :
{
Ax+BT y = v

Bx = 0

1. Montrer que si Ker(B) = {0} alors (S) admet au moins une solution.

1. Montrer que (S) admet au plus une solution si et seulement si Ker(BT ) = {0}.

1. Montrer qu’il existe α > 0, β ≥ 0 tels que ∀x ∈ Rn, J(x) ≥ α||x||2β||x||.

1. En déduire que (S) admet au moins une solution.
Exercice 184 [ENS PSI 2025 # 184] Soit (E, ⟨, ⟩) un espace préhilbertien.

1.

1. Montrer que la fonction x 7→ ||x|| est de classe C1 sur E \ {0}. Calculer sa différentielle.

1. Soient H un sous-espace vectoriel de E et a ∈ E.

Soit x ∈ H tel que ||x− a|| = infy∈H ||y − a||. Montrer que x− a ∈ H⊥.

1.

1. Soient a, b ∈ E et φ : x ∈ E 7→ ||xa|| + ||xb||. Calculer la différentielle de φ là où elle existe, et déterminer les points où celle-ci
s’annule.

1. ) Déterminer les extrema de φ sur E.

1. Soit ρ : (x, y) ∈ R2 7→
√

(1 − x)2 + y2 +
√
x2 + (1 − y)2. Déterminer les extrema de ρ.

1. Soient A, B et C trois points du plan formant un triangle aigu. Soit Ψ : M 7→ AM +BM + CM .

1. Montrer que Ψ admet un minimum en un point O tel que, pour tout couple (M,N) ∈ {A,B,C}2 de points distincts, l’angle
non orienté (−−→

OM,
−−→
ON) vaut 2π

3 .

1. Que se passe-t-il si A, B et C forment un triangle équilatéral ?

1. Que peut-on conclure dans le cas général ?
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2) Probabilités

Exercice 185 [ENS PSI 2025 # 185] 1. Soient N boules rouges et M boules noires dans une urne. Combien y a-t-il de suites de
tirages successifs sans remise d’une boule jusqu’à vider l’urne?

On considère désormais une urne contenant n> 2 boules rouges et 2N-n> 2 boules noires. On effectue des tirages successifs sans
remises de deux boules à la fois jusqu’à vider l’urne. On note X le nombre de tirages ayant donné deux boules rouges.

1. On suppose n > N . Déterminer P (X ≥ 1).

1. Majorer X .

On suppose n pair et on note A l’événement « les n
2 premiers tirages sont constitués de deux boules rouges » et B l’événement « les

n
2 − 1 premiers tirages sont constitués de deux boules rouges et les deux tirages suivants d’une boule rouge et d’une boule noire ».
Sont-ils équiprobables?

1. Soit un entier k < N . Déterminer P(X = k).

1. Déterminer E(X).

1. On suppose que n = ⌊λN⌋ avec λ < 1. Montrer que E(X) ∼ λ2

4 N .

Exercice 186 [ENS PSI 2025 # 186] 1. Soit E = C0([0, 1],R). Pour p ∈ N∗ et f ∈ E, on note ||f ||p =
(∫ 1

0 |f |p
)1/p

.

• Montrer que ∥∥2 et ∥∥4 sont des normes sur E.

• Montrer que ∥ · ∥4 ≥ ∥ · ∥2.

• Soit (fn)n∈N∗ la suite de fonctions définies par ∀x ∈ [0, 1/2n], fn(x) = 0,
∀x ∈ [1/n, 1], fn(x) = x−1/4 et fn est affine sur [1/2n, 1/n]. Comparer ||fn||2 et ||fn||4. Qu’en déduit-on?

1. Soit (Xn)n≥1 une suite i.i.d. de variables aléatoires suivant la loi uniforme sur {−1, 1}.
Pour

a = (an)n≥1 ∈ RN∗
, n ≥ 1

et p ≥ 2, on note Nn,p(a) =
(
E
(
|
∑n
k=1 akXk|p

))1/p.

• Calculer Nn,2(a).

• Calculer N4
n,4(a) en fonction de Nn,2(a).

Exercice 187 [ENS PSI 2025 # 187] Soit Sn l’ensemble des permutations de [1, n], que l’on munit de la probabilité uniforme.

1. Pour k, ℓ ∈ [1, n] avec k ̸= ℓ, on note τk,ℓ ∈ Sn la transposition définie par τk,ℓ(k) = ℓ, τk,ℓ(ℓ) = k et ∀j ∈ [1, n] \
{k, ℓ}, τk,ℓ(j) = j.

• Pour σ ∈ Sn, expliciter σ ◦ τk,ℓ ◦ σ−1.

• Déterminer tous les σ ∈ Sn tels que ∀α ∈ Sn, σ ◦ α = α ◦ σ.

1. Pour σ ∈ Sn, on note Zσ = {α ∈ Sn, σ ◦ α = α ◦ σ}.

• Montrer que Zσ est stable par composition et passage à l’inverse.

• Pour σ ̸= id, montrer que 2|Zσ| ≤ |Sn|.

1. On tire indépendamment et avec remise deux éléments σ et τ de Sn.

• Montrer que ∀n ≥ 3, pn = P(σ ◦ τ = τ ◦ σ) ≤ 7
12 .

• Déterminer p3.

1. Pour σ ∈ Sn, on note Cσ = {α ◦ σ ◦ α−1, α ∈ Sn}.

• Montrer que ∀σ ∈ Sn, |Cσ| = n!
|Zσ| .

• Montrer que ∀σ, τ ∈ Sn, Cσ = Cτ ou Cσ ∩ Cτ = ∅.
Exercice 188 [ENS PSI 2025 # 188] Soit n ≥ 2. On se place dans N2 et on considère le rectangle [0, n]×[0, 2]. On appelle recouvrement
de [0, n] × [0, 2] tout ensemble fini formé de rectangles translatés de [0, 1] × [0, 2] (rectangles verticaux) et de [0, 2] × [0, 1] (rectangles
horizontaux) qui recouvrent [0, n] × [0, 2] sans que leurs intérieurs ne se chevauchent.
On note un le nombre de recouvrements de [0, n] × [0, 2]. On munit l’ensemble des recouvrements de [0, n] × [0, 2] de la probabilité
uniforme.

1. Calculer u1, u2, u3. Montrer que, pour tout n ∈ N∗, un+2 = un+1 + un. En déduire une expression de un.

1. On note P1,n la probabilité qu’il y ait un rectangle vertical tout à gauche.
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Calculer P1,n et montrer que (P1,n) admet une limite L.
c. On note Vn le nombre de rectangles verticaux. Calculer E(Vn).Ind. On pourra écrire Vn =

∑n
i=1 Ui,n où Ui,n est l’indicatrice de

l’événement : « il y a un
rectangle vertical en position i ».
d. Montrer que E(Vn)

n −−−−−→
n→+∞

L.

Ind. Découper la somme entre [1,
√
n], [

√
n, n−

√
n] et [n−

√
n, n].

1. On note Vi,j,n l’événement : « il y a un rectangle vertical en i et en j ». Calculer E(Vi,j,n).

1. Calculer V (Vn), puis en donner un équivalent quand n → +∞.
Exercice 189 [ENS PSI 2025 # 189] Soient m,n ∈ N∗. Soit Am,n = {a1, . . . , am, b1, . . . , bn} où les ai, bj sont des éléments distincts.
Soit Hm,n l’ensemble des bijections f de Am,n sur [[1,m+ n]] telles que, pour tout (i, j) ∈ [[1,m]], i < j implique f(ai) < f(aj) et,
pour tout (i, j) ∈ [[1, n]]2, i < j implique f(bi) < f(bj).

1. Calculer le cardinal de Hm,n.

Soit fm,n suivant la loi uniforme sur Hm,n.
1. Calculer P(fm,n(am) = i).

1. Pour c, k ∈ N∗, montrer que P(fcn,n(acn) = (c+ 1)n− k) admet une limite quand n tend vers +∞.

1. Calculer P (f2m,n(am) = i).

1. Soit t ≥ 0. donner un équivalent de P(f2n,2n(an) = 2n+ ⌊t
√
n⌋). Ind. Commencer avec t = 0 et utiliser l’équivalent de Stirling

lorsque t → +∞.
Exercice 190 [ENS PSI 2025 # 190] Soit I un intervalle de R.

1. Soit (λ1, . . . , λn) ∈ [0, 1]n tel que λ1 + · · · + λn = 1. Soit f : I → R convexe.

• Montrer que, pour tout (x1, . . . , xn) ∈ In, on a f (
∑n
i=1 λixi) ≤

∑n
i=1 λif(xi).

• On suppose f de classe C2 sur I avec f” > 0. Montrer que, si les λi sont dans ]0,1[ et les xi sont distincts, l’inégalité du i) est
stricte.

1. Soient Ω un ensemble fini, P1 et P2 des probabilités sur Ω. On pose

TV (P1,P2) = sup
A∈P(Ω)

|P1(A) − P2(A)| et N1(P1,P2) =
∑
ω∈Ω

|P1({ω}) − P2({ω})|

.

• Montrer que TV (P1,P2) = 1
2N1(P1,P2)

• Montrer que TV (P1,P2) =
∑
ω∈Ω max(P1({ω}),P2({ω}))1

• Montrer que

1 − TV 2(P1,P2) ≥

(∑
ω∈Ω

√
P1({ω})P2({ω})

)2

.

1. On garde les hypothèse de la question b) et on suppose que, pour tout ω ∈ Ω, la condition P2({ω}) = 0 implique P1({ω}) = 0.
On pose D(P1,P2) =

∑
ω∈Ω P1({ω}) ln

(
P1({ω})
P2({ω})

)
avec la convention 0 ln 0 = 0.

• Montrer que D(P1,P2) ≥ 0

• Montrer que
(∑

ω∈Ω
√

P1({ω})P2({ω})
)2

≥ e−D(P1,P2).

• Conclure.
Exercice 191 [ENS PSI 2025 # 191] Soient n ≥ 2 et p ∈ {1, . . . , n}. Soit A ∈ Mn,p(R) telle que ATA est inversible. On pose
P = A(ATA)−1AT .
On considère des variables aléatoires i.i.d. (zk)1≤k≤n d’espérance nulle et ayant un moment d’ordre 4. On pose σ =

√
V(z1) et

Z = (z1 . . . zn)T .
On considère une matrice colonneX0 ∈ Mp,1(R). On pose Y = AX0+Z etX = (ATA)−1ATY . On pose enfin T = ||A(X−X0)||2,
où || || est la norme euclidienne usuelle sur Mp,1(R).

1. Montrer que rg(A) = p.

1. Montrer que P est un projecteur orthogonal de rang p. Déterminer son image et son noyau.

1. Montrer que T = ZTPZ .

1. On note Pi,j les coefficients de P . On pose T1 =
∑n
i=1 Pi,iz

2
i et T2 = 2

∑
1≤i<j≤n Pi,jzizj .
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Exprimer E(T1), E(T2) et E(T1T2) en fonction de σ et p.

1. Déterminer E(T 2
1 ) et E(T 2

2 ).

1. En déduire l’espérance et la variance de T .
Exercice 192 [ENS PSI 2025 # 192] Soit Y une variable aléatoire. On dit que Y est k-divisible (k ∈ N∗) s’il existe un vecteur aléatoire
(X1, . . . , Xk) où les Xi sont i.i.d. tel que Y ∼ (X1 + · · · +Xn). On dit que Y est infiniment divisible si elle est k-divisible pour tout
k ∈ N∗.

1. Soient X et Y deux variables aléatoires indépendante suivant les lois de Poisson de paramètres respectifs λ et ν. Donner la loi
de X+Y. En déduire que si Y ∼ P(λ) alors Y est infiniment divisible.

1. Soit Y une variable aléatoire. On suppose qu’il existe A> 0 tel que P(Y ∈ [−A,A]) = 1 et que Y est k-divisible pour un certain
k ∈ N∗. On a donc Y ∼ (X1 + · · · +Xk) où les Xi sont i.i.d.

• Montrer que, pour tout i, P (Xi ∈ [−A/k,A/k]) = 1.

• Montrer que, pour tout i ∈ [1, k], V(Xi) ≤
(
A
k

)2. En déduire une majoration de V(Y ).

• Que peut-on dire si la variable aléatoire Y vérifie P(Y ∈ [−A,A]) = 1 et qu’elle est infiniment divisible ?

1. Soient p ∈]0, 1[ et Y une variable aléatoire suivant B(λ). Si k ≥ 2, montrer que Y n’est pas k divisible.

1. Soient p ∈]0, 1[, n ∈ N∗ et Y une variable aléatoire suivant B(n, p). Pour quelles valeurs de k ∈ N∗ la variable aléatoire Y
est-elle k-divisible ?

Exercice 193 [ENS PSI 2025 # 193] On dit que le spectre d’une matrice est simple lorsque toutes les valeurs propres de la matrice

sont simples. Soit n ∈ N. Posons M =
(
A b
bT c

)
∈ Mn+1(R), avec A ∈ Mn(R), b ∈ Rn considéré comme un vecteur colonne et

c ∈ R.L’objectif des deux premières questions est d’établir une démonstration de la proposition suivante : si le spectre de M n’est pas
simple, alors b est orthogonal à un des vecteurs propres Soit λ une valeur propre non simple de M .

1. Montrer que l’on dispose de v ∈ Rn, un vecteur propre de M , associé à la valeur propre λ, tel que vn+1 = 0.

1. Montrer que λ est aussi valeur propre de A et conclure.

Notons

N =


2 0 0 X1
0 1 X5 X2
0 X5 −1 X3
X1 X2 X3 X4

 ∈ M4(R)

où les Xi sont des variables aléatoires indé-

1. On note B l’événement : « le spectre de N est simple ». Montrer que P (B) ≥ 3p32p4.
Exercice 194 [ENS PSI 2025 # 194] Soit (Xn)n≥1 une suite i.i.d. de variables aléatoires suivant la loi uniforme sur {−1, 1}.
Pour

n ∈ N∗

, soient Sn =
∑n
k=1 Xk et Yn =

∑n
k=1

Xk

kα où α > 3/4.

1.

• Pour (i, j, k, ℓ) ∈ [1, n]4, calculer E(XiXjXkXℓ).

• En déduire E(S4
n).

• Soit (xk)k≥1 une suite de réels > 0 et Bn,p =
⋃
k∈[[n,n+p]] (|Sk| ≥ xk).

Montrer que

P(Bn,p) ≤ 3
∑

k∈[n,n+p]

k2

x4
k

.

1.

• Exprimer Yn en fonction des Sk .

• Montrer que (Yn) converge presque sûrement.
Exercice 195 [ENS PSI 2025 # 195] 1. Soit f ∈ C1(R+∗,R) convexe.

• Soit t0 ∈ R+∗. Montrer qu’il existe g affine telle que ∀t ∈ R+∗ : f(t) ≥ g(t) et f(t0) = g(t0).

• Soit Z une variable aléatoire réelle telle que Z et f(Z) sont d’espérance finie. Montrer que f(E(Z)) ≤ E(f(Z)).

1. PourX variable aléatoire réelle et t ∈ R, on pose si possible ΨX(t) = ln(E(etX)). Calculer ΨX lorsqueX suit la loi de Poisson
de paramètre λ.
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1. Pour X variable aléatoire discrète réelle et θ ∈ R, on pose ΦX(θ) = supt∈R+(tθΨX(t)).

• Montrer que ΦX est positive et convexe sur son ensemble de définition.

• Montrer que ΦX est définie en µ = E(X) et que ΦX(µ) = 0.

• Montrer que ΦX est décroissante pour θ < µ et croissante pour θ > µ.

1. On suppose que X ∼ P(λ).

• Calculer ΦX .

• Donner un majorant de P (X ≥ 2λ).

III) ENS PC autre

Exercice 196 [ENS PC 2025 # 196] Pour n ∈ N∗, calculer le module de
∑n−1
k=0 exp

(
2iπk2

n

)
.

Exercice 197 [ENS PC 2025 # 197] Soit A = (ai,j)1≤i,j≤n ∈ Mn(R). Montrer : tr(A2) ≤
∑

1≤i,j≤n a
2
i,j . Cas d’égalité ?

Exercice 198 [ENS PC 2025 # 198] Soient

D =


α1 0 · · · 0

0
. . . . . .

...
...

. . . . . . 0
0 · · · 0 α



et F =


0 · · · 0 1
0 · · · 0 0
...

...
...

0 · · · 0 0

 ∈ Mn(R).

Pour k ∈ N, calculer (D + F )k

Exercice 199 [ENS PC 2025 # 199] Soit φ ∈ L(Mn(R),R) telle que : ∀(A,B) ∈ Mn(R)2, φ(AB) = φ(BA). Montrer qu’il existe
β ∈ R tel que φ = β tr.
Exercice 200 [ENS PC 2025 # 200] Soit (A1, . . . , An) ∈ Mn(R)n. Existe-t-il nécessairement (ε1, . . . , εn) ∈ {−1, 1}n tel que :
tr
(

(
∑n
i=1 εiAi)

2
)

≥
∑n
i=1 tr

(
A2
i

)
?

Exercice 201 [ENS PC 2025 # 201] Soit R : K[X] → K[X] définie par R(0) = 0 et, pour tout polynôme P ∈ K[X] de degré n,R(P ) =
XnP

( 1
Y

)
.

1. L’application R est-elle linéaire? bijective?

1. Trouver tous les polynômes P tels que R(P’) = R(P)’.
Exercice 202 [ENS PC 2025 # 202] Soient M et N ∈ M2(C) telle que M2 = N2 = 0 et MN + NM = I2. Montrer qu’il existe
P ∈ GL2(C) telle que M = PE1,2P

−1 et N = PE2,1P
−1.

Exercice 203 [ENS PC 2025 # 203] Soit (A1, . . . , Am) ∈ GLn(R)m tel que, ∀(i, j) ∈ [1,m]2, AiAj ∈ {A1, . . . , Am}. Montrer que
| det(Aj)| = 1 pour tout j ∈ [1,m].
Exercice 204 [ENS PC 2025 # 204] Soit N ∈ Mn(R) nilpotente. On pose fN : t 7→

∑+∞
k=0 t

kNk .

1. Montrer que fN est bien définie sur R.

1. Montrer que si fN s’annule alors N = 0.
Exercice 205 [ENS PC 2025 # 205] Soient A,B ∈ S2(R) et C ∈ M2(R). On note, pour X,Y ∈ M2(R), [X, Y] = XY - YX. Montrer
que [[A,B]2, C] = 0.
Exercice 206 [ENS PC 2025 # 206] Soit A ∈ Mn(R). On note E = {AM,M ∈ Mn(R)}. Déterminer la dimension de E.

Exercice 207 [ENS PC 2025 # 207] 1. Soient A, B, C des espaces vectoriels. On note A f1−→ B
f2−→ C lorsque f1 ∈ L(A,B), f2 ∈

L(B,C) et Im(f1) = Ker(f2). Que peut-on dire si A = {0}? si C = {0}?b) Soient A, B, C , D, E, F des espaces vectoriels.
On suppose que

où h1 et h3 sont des isomorphismes et où h2 ◦ f1 = g1 ◦ h1 et h3 ◦ f2 = g2 ◦ h2. Montrer que h2 est un isomorphisme.
Exercice 208 [ENS PC 2025 # 208] Soit n ∈ N∗. Montrer qu’il existe k ∈ N∗ et P1, . . . , Pk des éléments de R[X] qui ne sont pas des
monômes tels que ∀A ∈ GLn(R), ∃i ∈ [1, k], Pi(A) ∈ GLn(R).
Exercice 209 [ENS PC 2025 # 209] SoientA etB ∈ Mn(R), avec rgA = p et rgB = q. Déterminer les valeurs possibles de rg(AB).
Exercice 210 [ENS PC 2025 # 210] Soit (A,B) ∈ Mn(R)2 sans valeur propre complexe commune. Montrer que Φ : M 7→ AM−MB
est un automorphisme de Mn(R).
Exercice 211 [ENS PC 2025 # 211] On munit Rn de sa structure euclidienne canonique. Soient A ∈ Mn,p(R) avec n > p > rg(A)
et b ∈ Rn. Déterminer les x ∈ Rp tels que ||Axb|| = miny∈Rp ||Ayb||.
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Exercice 212 [ENS PC 2025 # 212] Soient E un espace euclidien et p, q ∈ L(E) deux projecteurs orthogonaux qui commutent.
Montrer que p ◦ q est un projecteur orthogonal.

Exercice 213 [ENS PC 2025 # 213] Soient A ∈ Sn(R), a ∈ R et x ∈ Rn. On pose M =
(
A x
xT a

)
.

On note λ1 ≤ · · · ≤ λn les valeurs propres de A et µ1 ≤ · · · ≤ µn ≤ µn+1 les valeurs propres de M . Montrer que µ1 ≤ λ1 ≤ · · · ≤
µn ≤ λn ≤ µn+1.
Exercice 214 [ENS PC 2025 # 214] Soit n ∈ N∗. Lorsque (A,B) ∈ Sn(R)2, on noteA ≤ B siB−A ∈ S+

n (R). On pose Φ : A 7→ ATA
définie sur Mn(R). Montrer que Φ est convexe, c’est-à-dire : ∀(A,B) ∈ Mn(R)2, ∀λ ∈ [0, 1], Φ ((1 − λ)A+ λB) ≤ (1 −λ)Φ(A) +
λΦ(B).

1) Analyse

Exercice 215 [ENS PC 2025 # 215] Caractériser les matricesM ∈ M2(R) pour lesquelles il existeX ∈ R2 tel que limn→+∞ ∥MnX∥ =
+∞.
Exercice 216 [ENS PC 2025 # 216] Soit d ∈ N∗. Pour toutes matrices A et B dans Md(R) on définit [A,B] = AB BA. Soient A et B
dans Md(R). Soit (Fn)n∈N la suite de matrices définie par F0 = B et, pour tout p ∈ N, Fp+1 = [A,Fp].

1. Montrer que, pour tout n ≥ 0, il existe des réels c0,n, c1,n, . . . , cn,n tels que

Fn =
n∑
i=0

ci,nA
n−iBAi

.b) Soit A ∈ Sd(R). Donner une condition nécessaire et suffisante portant sur A pour que la suite (Fn) tende vers la matrice nulle, et
ce quelle que soit la matrice B à partir de laquelle la suite (Fn) a été construite.
Exercice 217 [ENS PC 2025 # 217] Soit γ ∈]0, 1]. Soit (xn)n≥1 ∈ (R+)N telle que ∀n ∈ N, xn+1 ≤ xn + x1−γ

n . Montrer qu’il existe
d> 0 tel que, pour tout n ∈ N, xn ≤ dn1/γ .
Exercice 218 [ENS PC 2025 # 218] Soient (xn) et (yn) deux suites réelles.

1. On pose : ∀n ∈ N, yn = xn+1 − xn. Si yn → 0, la suite (xn) converge-t-elle nécessairement?

1. On pose : ∀n ∈ N, yn = xn+1 − 1
2xn. Montrer que, si yn → 0, alors xn → 0.

Exercice 219 [ENS PC 2025 # 219] Soient α ∈ R et (xn,N )(n,N)∈N2 une suite double réelle.
On suppose que, pour toutN ∈ N, limn→+∞ xn,N = α. Montrer qu’il existe (Nn)n∈N ∈ NN croissante telle que limn→+∞ xn,Nn

= α.
Exercice 220 [ENS PC 2025 # 220] Soit (un) ∈ (R+∗)N telle que

∑
un diverge.

1. Montrer que
∑ un

(u1+···+un)2 converge.

1. Montrer que
∑ un

u1+···+un
diverge.

c. Soit (xn) ∈ (R+∗)N. On suppose, que pour toute (yn) ∈ (R+∗)N, la convergence de
∑
y2
n implique celle de

∑
xnyn. Montrer

que
∑
x2
n converge.

Exercice 221 [ENS PC 2025 # 221] Soient a > 0 et f ∈ C0([0,+∞[ ,R) telle que ∀x ∈ R, |f(x) − 1| < 1
1+x2 .

Montrer qu’il existe g ∈ C0([0,+∞[ R) telle que ∀x ∈ R, f(x) = g(x)g(x+ a).
Exercice 222 [ENS PC 2025 # 222] 1. Déterminer les fonctions f : R+∗ → R continues telles que, pour tous x, y ∈ R+∗, f(xy) =

f(x) + f(y).

1. Déterminer les fonctions f : R+∗ → R continues telles que, pour tous x, y ∈ R+∗, f(xy) = f(x) f(y).
Exercice 223 [ENS PC 2025 # 223] Soit f ∈ C2(R,R+) telle que f” est bornée sur R. Montrer qu’il existe C ∈ R tel que, pour tout
x ∈ R, (f ′(x))2 ≤ Cf(x).

Exercice 224 [ENS PC 2025 # 224] Soit f ∈ C2(R,R). On suppose que f , f’ et f” sont bornées sur R. Montrer que limε→0 supx∈R

∣∣∣ f(x+ε)−f(x)
ε − f ′(x)

∣∣∣ =
0.
Exercice 225 [ENS PC 2025 # 225] Soit f ∈ C0(R,R) qui tend vers 0 en −∞ et en +∞ et telle que la famille de fonctions (f, x 7→
f(x+ 1), x 7→ f(x+ 2)) est liée. Que dire de f ?
Exercice 226 [ENS PC 2025 # 227] Soient

a, b ∈ R

avec a < b et f ∈ C1(R,R+) intégrable.
On suppose the

a, b ∈ R

avec a < b ∈ f ∈ C (R,Rn) integrable.
On suppose que :

∀x ∈ [a, b], f ′(x) ≥ 1

. Peut-on avoir
∫

R f = (b−a)2

2 ?
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Exercice 227 [ENS PC 2025 # 228] Trouver toutes les

f ∈ C0([0, 1],R+∗)

telles que
∫ 1

0 f =
∫ 1

0
1
f = 1.

Exercice 228 [ENS PC 2025 # 229] Soient
a < b

deux réels.
1. Soit φ ∈ C2([a, b]),R) telle que |φ′| ≥ 1 et φ′′ > 0.

1. Soit

φ ∈ C2([a, b]),R

) telle que |φ′| ≥ 1 et φ′′ > 0. Montrer que, pour tout λ > 0,
∣∣∣∫ ba cos(λφ(x)) dx

∣∣∣ ≤ 4
λ .

b. Montrer que, pour tout
φ ∈ C2([a, b],R)

et pour tout α > 0, si |φ′| ≥ α et φ′′ > 0 alors ∣∣∣∣∣
∫ b

a

cos(λφ(x)) dx

∣∣∣∣∣ ≤ 4
αλ

. c. Soit φ ∈ C2([a, b],R) telle que φ′′ ≥ 1.
Montrer que, pour tout

λ > 0

,
∣∣∣∫ ba cos(λφ(x))dx

∣∣∣ ≤ 8√
λ

.
d. Soit

φ ∈ Ck([a, b],R)

, où k ∈ N∗, telle que φ(k) ≥ 1.

Trouver C > 0 et α > 0 tels que ∀λ > 0,

∣∣∣∣∣
∫ b

a

cos(λφ(x))dx

∣∣∣∣∣ ≤ C

λα

.
Exercice 229 [ENS PC 2025 # 230] Soit E un sous-espace vectoriel de dimension 4 de C0(R,R). On note L∞(R,R) l’espace des
fonctions bornées et L2(R,R) l’espace des fonctions de carré intégrable.
l’espace des fonctions bornées et

L2(R,R)

l’espace des fonctions de carré intégrable.
1. On suppose qu’il existe un sous espace vectoriel G de E constitué de fonctions bornées

sur
R+

tel que E = Vect(x 7→ ex) + Vect(x 7→ e−x) +G et que la seule fonction dans G qui soit de carré intégrable sur R+ est la fonction
nulle. Montrer que E ∩ L2(R,R) = {0}.

1. On suppose que E vérifie les hypothèses de la question a) et qu’on dispose de deux sousespaces F1 et F2 de E tels que dim
F1 = dimF2 = 2, que toutes les fonctions de F1 sont bornées sur R−, et que la seule fonction de F2 bornée sur R− est la
fonction nulle. Montrer que dim(E ∩ L∞(R,R)) = 1.

Exercice 230 [ENS PC 2025 # 231] On définit (fn)n∈N par :

∀x ∈ R, f0(x) = e−x et ∀n ∈ N,∀x ∈ R, fn+1(x) =
∫ +∞

−1

fn(t+ 1)
1 + t2

et dt

.

1. Montrer que (fn)n∈N est bien définie.

1. Montrer que
∑
fn converge sur un intervalle [x0,+∞[, où x0 est judicieusement choisi.

Exercice 231 [ENS PC 2025 # 232] 1. Soient f une fonction développable en série entière sur R et J une partie finie
On suppose que f (i)(0) = 0 si i /∈ J et f (i)(1) = 0 si i ∈ J . Que dire de f ?

1. La propriété est-elle encore vérifiée si J est une partie infinie de N?
Exercice 232 [ENS PC 2025 # 233] Pour a > 0, on pose f(a) =

∫ +∞
0

dx√
1+x2

√
1+a2x2
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1. Justifier la définition de f(a).

1. Montrer que f(a) = O
( ln a
a

)
.

Exercice 233 [ENS PC 2025 # 234] Montrer que ∀t ∈ R,
∫ +∞

−∞ cos(tx) exp(−x2)dx =
√
π exp

(
− 1

4x
2).

Exercice 234 [ENS PC 2025 # 235] Pour n ∈ N, donner un équivalent de An(t) =
∫ 1

0 sin2(xt)xn−2 dx lorsque t → +∞.
Exercice 235 [ENS PC 2025 # 236] Soit h ∈ C0([0, 1],R) telle que h(0) = h(1) = 0 et f : x ∈ R 7→ h(x)1[0,1](x). Soit g : y ∈ R 7→∫ 1
a

|x− y|f(x)dx.
1. Montrer que g est deux fois dérivable et que ∀x ∈ R, g′′(x) = 2f(x).

1. Déterminer une condition nécessaire et suffisante pour que q soit bornée.
Exercice 236 [ENS PC 2025 # 237] Soit h ∈ C1(R,R) telle que ∀x ∈ R, |h(x)| ≤ 1

1+|x| et |h′(x)| ≤ 1
1+|x|2 . Montrer la convergence

de
∫ +∞

−∞
∫ +∞

−∞ φ(x, y) dx dy où φ(x, y) = h(x)−h(y)
x−y si x ̸= y, et

Exercice 237 [ENS PC 2025 # 238] Soit, pour
x ∈ R

, f(x) =
∫ +∞

0 e−y cos(xy) dy.

1. Calculer explicitement f .

1. Montrer que, pour tout k ∈ N, la dérivée k-ième de f est bornée par k !.

1. En quels points x y a-t-il égalité entre k ! et |f (k)(x)|?
Exercice 238 [ENS PC 2025 # 239] 1. Donner les solutions de l’équation différentielle : x′′x = cos(2t).

1. Soient c> 0 et f : R → R une fonction continue telle que f(t)=0 pour tout t vérifiant |t| ≥ c.

Montrer qu’il existe une unique solution de l’équation différentielle x” x = f(t) vérifiant limt→±∞ x(t) = 0.
φ(x, y) = h′(x) sinon.

2) Géométrie

Exercice 239 [ENS PC 2025 # 240] Soit f : x ∈ R 7→ ax2 + bx+ c, avec (a, b, c) ∈ R3 et a > 0. On pose E = {(x, y) ∈ R2, y ≥ f(x)}
et C = {(x, f(x)) : x ∈ R}. Soient v un vecteur non nul du plan, X ∈ E et ∆ = {X + λv : λ ∈ R}. Montrer que ∆ ∩ C est non vide.
Exercice 240 [ENS PC 2025 # 241] 1. Soit ABC un « vrai » triangle tel que ABC soit aigu (et non droit).Montrer que : AC2 <

AB2 +BC2.

1. Soient e1, e2 et e3 des vecteurs non nuls orthogonaux de R3. On pose : d1 = {te1; t > 0}, d2 = {te2; t > 0}, d3 = {te3; t > 0}.
Montrer que tout triangle A1A2A3, où Ai ∈ di, est aigu, c’est-à-dire que ses trois angles sont aigus.

3) Probabilités

Exercice 241 [ENS PC 2025 # 242] Deux joueurs de tennis sont de même niveau. Ils disputent un match. Quelle est la probabilité que
le match se termine par un tie-break?
Exercice 242 [ENS PC 2025 # 243] On lance n fois une pièce avec une probabilité p d’obtenir face. On poseAn : « on n’obtient jamais
deux faces de suite ». Donner un équivalent de P(An).
Exercice 243 [ENS PC 2025 # 244] On considère une urne contenant initialement n+1 boules : n blanches et une rouge. On tire une
par une des boules dans l’urne. Si on tire la boule rouge, on s’arrête, sinon on a une chance sur deux de remette la boule et continuer,
une chance sur deux de s’arrêter. On pose Xn le nombre de boules tirées lorsque l’on s’arrête. Donner E(Xn).
Exercice 244 [ENS PC 2025 # 245] Soit N une variable aléatoire suivant la loi de Poisson de paramètre λ > 0. On lance N fois une
pièce équilibrée. Quelle est la probabilité qu’on obtienne un nombre pair de face?
Exercice 245 [ENS PC 2025 # 246] Soit Sn l’ensemble des permutations de [1, n] muni de la probabilité uniforme.

1. Donner la loi de la variable aléatoire K qui donne la taille du cycle contenant 1.

1. Déterminer l’espérance et la variance du nombre N de cycles.
Exercice 246 [ENS PC 2025 # 247] Soit σ une permutation aléatoire de [1, 2n] suivant la loi uniforme.
On pose

Y =
n−1∑
i=0

|σ(2i) − σ(2i+ 1)|

. Calculer E(Y ).
Exercice 247 [ENS PC 2025 # 248] Soient Y, Z deux variables aléatoires à valeurs dans [0, n]. Montrer que si, pour tous P,Q ∈ R[X]
de degré n,E(P (Y )|Q(Z)) = E(P (Y ))|E(Q(Z)), alors Y et Z sont indépendantes.
Exercice 248 [ENS PC 2025 # 249] Soit d ∈ N∗. SoientA0, . . . , Ad des variables aléatoires indépendantes. On suppose que, pour tout
k ∈ N∗,Ak suit la loi géométrique de paramètre 1/(k+1). On noteP =

∑a
k=0 AkX

k et R la variable aléatoire la loi telle que, conditionnellement à un tirage donné de (A0, . . . , An), toute racine z de P de multiplicité mz soit atteinte avec probabilité mz/d.
Calculer E(R).
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Exercice 249 [ENS PC 2025 # 250] Soit a > 0. Soit f une fonction de classe C2 sur R telle que f ′′ ≥ 2a. Soit X une variable aléatoire
à valeurs réelles et admettant une variance. Montrer que E(f(X))f(E(X)) ≥ aV(X).
Exercice 250 [ENS PC 2025 # 251] Un mobile se déplace sur l’axe des réels. Soit ε > 0. Son mouvement est décrit par une fonction
x dérivable sur tous les intervalles [n, n+1] et y vérifiant x′(t) = εx(t), admettant en chaque n ∈ N∗ une limite finie à gauche x(n−)
et une limite finie à droite x(n+), et telle que x(0) = 0.
Soit T ∈ N. À chaque instant t = n ∈ [0, T ], on lance une pièce équilibrée. Si on fait Pile x(n+) = x(n−) + n, si on fait Face
x(n+) = x(n−) − n, avec la convention x(0−) = 0. Montrer qu’il existe ε > 0 assez grand tel que, pour tout T ∈ N, x reste de signe
constant sur [0, T].
Exercice 251 [ENS PC 2025 # 252] Soient n ∈ N∗ et X ∼ U([[1, n]]2). On note X = (X1, X2). On pose Y0 = 0 et, pour k ∈
[0, n− 1], Yk+1(ω) = Yk(ω) + 2 si X1(ω) ≤ k et X2(ω) ≥ YX1(ω), et Yk+1(ω) = 0 Yk(ω) + 1 sinon.

1. Justifier que Yk est bien définie pour 0 ≤ k ≤ n.

1. Déterminer la limite de
(

E(Yn)
n

)
.

Exercice 252 [ENS PC 2025 # 253] Soient n et d dans N∗. On note [−n, n]d l’ensemble des vecteurs de Rd dont les composantes sont
des entiers compris entre -n et n. Soit X une variable aléatoire suivant la loi uniforme sur [−n, n]d.

1. Déterminer E(∥X∥1) et en trouver un équivalent lorsque n → +∞.

1. Déterminer E(∥X∥∞) et en trouver un équivalent lorsque n → +∞.
Exercice 253 [ENS PC 2025 # 254] Soient d ∈ N∗ et (X1, . . . , Xn) une suite de variables aléatoires i.i.d. à valeurs dans [1,d].
On note pk = P(X1 = k). Soit Nk la variable aléatoire égale au nombre de fois que la valeur k est obtenue. Donner la matrice
(Cov(Ni, Nj))1≤i,j≤n et préciser son rang.
Exercice 254 [ENS PC 2025 # 255] 1. Soit X une variable aléatoire suivant la loi uniforme sur {−1, 1}.
Montrer que, pour tout γ ∈ R, E

(
eγX

)
≤ eγ

2/2.
Soit (Xn)n≥1 une suite i.i.d. de variables aléatoires suivant la loi uniforme sur {−1, 1}. Soient (cn)n≥1 ∈ RN∗ . Pour N ∈ N∗, on pose
YN = c1X1 + · · · + cNXN .

1. Montrer que, pour tout t > 0, E(etYN ) ≤ et
2(c2

1+···+c2
N )/2.

c) Soit λ > 0. Montrer que P(|YN | > λ) ≤ 2e
− λ2

2(c2
1+···+c2

N
) .

d) Montrer que N10 P(|X1 + · · · +XN | > N3/4) −→
N→+∞

0.

IV) X MP xens

1) Algèbre

Exercice 255 [X MP 2025 # 256] Pour quels entiers n ∈ N∗ le nombre réel cos
( 2π
n

)
est-il rationnel ?

Exercice 256 [X MP 2025 # 257] On étudie l’équation x2 + y2 = N(1 + xy) d’inconnue (x, y) ∈ Z2, où N ∈ N.
1. Traiter les cas x = y, N = 0, N = 1.- b) On suppose N ≥ 2 et on se donne (x,y) solution avec x ̸= y. Montrer qu’on peut se

ramener à x > y ≥ 0. Montrer qu’il existe z ∈ Z tel que (y, z) soit solution et tel que y > z.
En déduire que N est un carré parfait.

1. On considère maintenant l’équation x2 + y2 = −N(1 + xy) dans Z2. En adaptant la méthode précédente, trouver tous les
couples solutions.

Exercice 257 [X MP 2025 # 258] Soient a ∈ N avec a ≥ 2 et P = X2 + X + a. On suppose que, pour tout n ∈ [0, a − 1], P(n) est
premier. Soit k ∈ [1, a− 2].

1. Montrer que si k+1 est un carré alors P(a+k) n’est pas premier.

1. Montrer que si P(a+k) n’est pas premier alors k+1 est un carré.
Exercice 258 [X MP 2025 # 259] 1. Soit f : R → R de classe C1 et 1-périodique. On suppose qu’il existe a ∈ R \ Q et y ∈ R tels

que : ∀x ∈ R,∀n ∈ N,
∑n
k=0 f(x+ ka) ≤

∑n
k=0 f(y + ka). Montrer que f est constante.

1. Soient p un nombre premier et n ∈ N∗. Déterminer la valuation p-adique de n !.

1. Soient m, k ∈ N∗. Montrer que
∏m

j=1 (2jk
jk )∏m

j=1 (2j
j ) ∈ N.

Exercice 259 [X MP 2025 # 260] Soit n ∈ N∗. Pour une partie I de [1, n], on appelle composante de I tout sous-ensemble maximal
de I formé d’entiers consécutifs. On note c(I) le nombre de composantes de I .

1. Une permutation σ ∈ Sn est dite i-adaptée lorsque, pour tout i ∈ I , les entiers σ(i) et σ(i+ 1) sont consécutifs. Dénombrer les
permutations I-adaptées en fonction de |I| et c(I).

1. Soient c ∈ N∗ et p ∈ [1, n]. Dénombrer les parties I de [1, n] telles que |I| = p et c(I) = c.
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Exercice 260 [X MP 2025 # 261] Soient (an)n≥0 et (bn)n≥0 deux suites d’entiers relatifs. On dit que les deux séries entières∑+∞
n=0

an

n! z
n et

∑+∞
n=0

bn

n! z
n sont congrues modulo m si an ≡ bn mod m pour tout n ≥ 0. On note alors

∑+∞
n=0

an

n! z
n ≡

∑+∞
n=0

bn

n! z
n

mod m.
1. Soit p un nombre premier. Montrer que (ez − 1)p−1 ≡

∑+∞
n=0 − zn(p−1)

(n(p−1))! mod p.

1. Soit m > 4 un entier non premier.

Montrer que m divise (m-1) !, et que (ez − 1)m−1 ≡ 0 mod m.
Exercice 261 [X MP 2025 # 262] Soit G un groupe. Un sous-groupe H de G est dit maximal lorsque H ̸= G et aucun sous-groupe
de G n’est compris strictement entre H et G. Soit n ≥ 2.

1. Montrer que {σ ∈ Sn, ε(σ) = 1} est un sous-groupe maximal de Sn.

1. Soit k ∈ [1, n]. Montrer que {σ ∈ Sn, σ(k) = k} est un sous-groupe maximal de Sn.

1. On suppose que G est fini, et on se donne un sous-groupe H de G tel que |G|
|H| soit un nombre premier. Montrer que H est

maximal.
Exercice 262 [X MP 2025 # 263] Soit φ un morphisme de groupes de ZN dans Z nul sur l’ensemble Z(N) des suites presque nulles.
Montrer que φ est nul.
Exercice 263 [X MP 2025 # 264] On pose

α = 12 + 5i
13

.

1. Montrer que α n’est pas une racine de l’unité.

1. Le nombre α est-il racine d’un polynôme unitaire à coefficients dans Q? dans Z?

1. Soit α ∈ C tel que α soit racine d’un polynôme unitaire à coefficients entiers dont toutes les racines complexes sont de module
1. Montrer que α est racine de l’unité.

Exercice 264 [X MP 2025 # 265] 1. Soient P,Q ∈ C[X] premiers entre eux, z ∈ C une racine de A = P 2 +Q2. Est-ce que z est
racine de B = P ′2 +Q′2 ? Que dire si z est racine multiple de A?

1. Montrer que, si P ∈ R[X], P s’écrit U2 + V 2 avec U et V dans R[X] si et seulement si

∀x ∈ R, P (x) ≥ 0.
1. Montrer que tout P ∈ C[X] s’écrit U2 + V 2 avec U et V dans C[X] si et seulement s c) Montrer que tout P ∈ C[X] s’écrit
U2 + V 2 avec U et V dans C[X].

1. Est-ce que tout polynôme P ∈ C[X] peut s’écrire U3 + V 3 avec U et V dans C[X]? Ind. Montrera que le plus petit facteur
premier p de P(a+k) est supérieur ou égal à a, puis que P(a+k-p)=p.

Exercice 265 [X MP 2025 # 266] On admet le résultat suivant. Soient c ∈ C, U un voisinage de c dans C, f : U → C développable
en série entière au voisinage de c et telle que f(z) = O((z − c)k). Alors il existe r > 0 et z1, . . . , z2k ∈ U distincts tels que :
∀i ∈ [1, 2k], f(zi) ∈ R et |c− zi| = r.

1. Soient A,B ∈ R[X] \ {0}. On suppose que les polynômes non nuls de Vect(A,B) sont scindés dans R[X]. Montrer qu’entre
deux racines de A (au sens large) se trouve au moins une racine de B.

1. Démontrer le résultat admis.
Exercice 266 [X MP 2025 # 267] Soient F ∈ R(X), A = {x ∈ Q, F (x) ∈ Q} et A′ = {x ∈ Z, F (x) ∈ Z}.

1. On suppose A infini. Montrer que F ∈ Q(X).

1. On suppose A′ infini. Que peut-on dire de F ?
Exercice 267 [X MP 2025 # 268] Soit f =

∑n
k=0 ckX

k un polynôme de degré n à coefficients entiers et dont toutes les racines
complexes appartiennent à Q∗. On pose H = max(|c0|, . . . , |cn|).

1. Montrer que pour le complexe i on a |f(i)|2 ≤ H2
(
n2

2 + n+ 1
)

.

1. Montrer que |f(i)| < 2n.

1. En déduire que si n ≥ 10 alors n ≤ 5 log2(H).
Exercice 268 [X MP 2025 # 269] Soient A,B ∈ Mn(R) de rang 1 telles que Tr(A) = Tr(B). Montrer que A et B sont semblables.
Exercice 269 [X MP 2025 # 270] Soient A et B appartenant à Mn(R), on note k = dim Ker(AB). Quelles sont les valeurs possibles
pour la dimension de Ker(BA)?
Exercice 270 [X MP 2025 # 271] Soient n ∈ N∗ et Cn = {−1, 1}n. On pose H = {f ∈ L(Rn), f(Cn) = Cn}. Montrer que H est
un groupe pour la loi de composition et déterminer son cardinal.
Exercice 271 [X MP 2025 # 272] Soient X,Y ∈ M2(K) où K est un sous-corps de C. Montrer que la matrice A = XY + Y X −
tr(X)Y − tr(Y )X + (tr(X) tr(Y ) − tr(XY ))I2 est nulle.
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Exercice 272 [X MP 2025 # 273] Soient n ∈ N∗, P et Q dans C[X] tels que P soit scindé à racines simples, degP = n et degQ ≤ n.
On admet qu’il existe une matrice B = (bi,j)0≤i,j≤n−1 telle que, pour tout (x, y) ∈ C2 avec x ̸= y, on ait

P (x)Q(y) − P (y)Q(x)
x− y

=
∑

0≤i,j≤n−1
bi,jx

iyj

.
Montrer que dim Ker B = |{z ∈ C, P (z) = Q(z) = 0}|.
Exercice 273 [X MP 2025 # 274] Soit E un K-espace vectoriel de dimension n ≥ 2. Soit u et v dans L(E), c = u ◦ v − v ◦ u, on
suppose rg c = 1.

1. Montrer qu’il existe une base de E dans laquelle la matrice de c est égale à En−1,n.

1. Montrer que pour tout k ∈ N, uk(Im c) ⊂ Ker c.

1. Montrer que χu n’est pas irréductible dans K[X].

1. Soit u ∈ L(E), F un sous-espace vectoriel de E non trivial tel que u(F ) ⊂ F . Montrer que χu n’est pas irréductible dans K[X].
Étudier la réciproque.

Exercice 274 [X MP 2025 # 275] On fixe un entier n ≥ 1 et, pour k ∈ [1, n], on note Rk l’ensemble des matrices de rang k de Mn(R).
1. Montrer que R1 = {XY T , (X,Y ) ∈ (Rn \ {0})2}.

1. Montrer que R2 est l’ensemble des matrices de la forme X1Y
T

1 + X2Y
T

2 avec (X1, X2) et (Y1, Y2) couples libres de vecteurs
de Rn.

1. Soit M ∈ R1. Décrire l’ensemble des couples (X,Y ) ∈ (Rn)2 tels que M = XY T .

1. Soit φ ∈ L(Mn(R)) conservant le rang.

Soient X1, X2, Y0 dans Rn \ {0} et P1, P2, Q1, Q2 dans Rn tels que φ(X1Y
T

0 ) = P1Q
T
1 et φ(X2Y

T
0 ) = P2Q

T
2 , avec (P1, P2) libre.

Montrer qu’il existe A ∈ GLn(R) et Q0 ∈ Rn \ {0} tels que ∀X ∈ Rn, φ
(
XY T0

)
= AXQT0 .

Exercice 275 [X MP 2025 # 276] Soit n ∈ N avec n ≥ 2. Pour k ∈ [0, n], on pose N(k) = {N = (ni,j)1≤i,j≤n ∈ Mn(C) : ∀i, j ∈
[1, n], i > j − k =⇒ Ni,j = 0} et T (k) = {In +N ;N ∈ N(k)}.

1. Montrer que, pour tout k ∈ [0, n], T (k) est un sous groupe de GLn(C).

1. Construire pour, k ∈ [[0, n− 1]], un morphisme de groupes φk : T (k) → G(k) où G(k) est un groupe abélien bien choisi tel
que Ker(φ(k)) = T (k + 1).

1. Pour un groupe G, on note D(G) le sous-groupe engendré par {ghg−1h−1; g, h ∈ G}. Montrer que T (0) est résoluble i.e. qu’il
existe q ∈ N tel que Dq(T (0)) = {In}.

Exercice 276 [X MP 2025 # 277] 1. Soit D ∈ Mn(C) une matrice diagonale à coefficients diagonaux distincts. Montrer que l’en-
semble des X ∈ Mn(C) telles que X2 = D est fini non vide, déterminer son cardinal.

1. Soit N ∈ Mn(C) nilpotente. Montrer qu’il existe X ∈ Mn(C) telle que X2 = In +N .
Exercice 277 [X MP 2025 # 278] Pour A ∈ Mn(C) on pose R(A) = {M ∈ Mn(C),M2 = A}.

1. Déterminer le cardinal maximal d’une famille de matrices de R(In) non semblables deux à deux à deux.

1. On suppose A diagonalisable avec n valeurs propres distinctes. Déterminer le cardinal de R(A).

1. Est-il vrai que, si A est diagonalisable, toutes les matrices de R(A) le sont?

1. Toute matrice A de Mn(C) admet-elle une racine carrée?

1. On pose Un = {In +N,N nilpotente}. Montrer que toute matrice A de Un admet une unique racine carrée dans Un.
Exercice 278 [X MP 2025 # 279] Pour n ∈ N∗, on pose IA = sup{r ∈ N; ∃A1, . . . , Ar ∈ Mn(C), ∀i, A2

i = In et ∀i ̸= j, AiAj =
−AjAi}.

1. Si n est impair, montrer que IA(n) = 1.

1. Soient s, t ∈ N. Montrer que IA(2s(2t+ 1)) = 2s+ 1.
Exercice 279 [X MP 2025 # 280] 1. Soit A ∈ Mn(R) une matrice diagonalisable. Donner une condition nécessaire et suffisante

sur A pour qu’il existe x ∈ Rn tel que (x,Ax, . . . , An−1x) soit une base de Rn.

1. Soient

b1, b2, b3 ∈ R

et M =

b1 0 0
1 b2 0
0 1 b3

.
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• À quelle condition la matrice M est-elle diagonalisable?

• À quelle condition existe-t-il x ∈ R3 tel que (x,Mx,M2x) soit une base de R3 ?

• On suppose que b1b2b3 = 1. Montrer qu’il existe un unique (a1, a2) ∈ R2 tel que M soit semblable à la matrice

M ′ =

a1 a2 1
1 0 0
0 1 0

 .

Exercice 280 [X MP 2025 # 281] $ $ Soient V un C -espace vectoriel de dimension finie et G un sous-groupe de GL(V ).
1. On suppose que G = GL(V). Que vaut Vect(G)? La réciproque est-elle vraie?

On suppose maintenant que, pour tout g ∈ G, g id est nilpotent.
1. Quels sont les éléments diagonalisables de G?

1. On suppose que G est fini et que V ect(G) = L(V ). Quelle est la dimension de V?

1. Si G n’est plus fini mais que V ect(G) = L(V ), quelle est la dimension de V?
Exercice 281 [X MP 2025 # 282] 1. Soit

∑
anz

n une série entière de rayon de convergenceR > 0. SoitM ∈ Md(C) une matrice
complexe dont les valeurs propres sont de module strictement inférieur à R. Montrer que

∑
anM

n converge.

1. Existe-t-il une série entière
∑
anz

n de rayon de convergence R> 0 telle que, pour toute matriceM à spectre inclus dansD(0, R)
et admettant une valeur propre de module R, la série

∑
anM

n diverge?

1. Existe-t-il une série entière
∑
anz

n de rayon de convergence R> 0 telle que, pour toute matriceM à spectre inclus dansD(0, R)
admettant une valeur propre de moduleR, la série

∑
anM

n converge?d) Soit f : z 7→
∑+∞
n=0 anz

n la somme d’une série entière
de rayon de convergence R > 0.

On pose

f (k) : z 7→
+∞∑
n=k

n(n− 1) . . . (n− k + 1)anzn.

Soit M ∈ Md(C) de polynôme caractéristique χM =
∏r
i=1(X − λi)αi où les λi sont distincts

et de module < R et les αi dans N∗.

• Montrer l’existence de P ∈ C[X] tel que

∀i ∈ [1, r],∀k ∈ [0, αi1], f (k)(λi) = P (k)(λi).
• On suppose que M est diagonalisable. Montrer que f(M) = P(M).

• Est-ce toujours le cas si on ne suppose plus M diagonalisable?
Exercice 282 [X MP 2025 # 283] SoientE = C0([−1, 1],C), g une surjection continue croissante de [-1,1] sur luimême. On considère
F un sous-espace vectoriel de E de dimension finie stable par f 7→ f ◦ g. On note φ l’endomorphisme de F défini par φ : f 7→ f ◦ g.

1. Montrer que 1 est la seule valeur propre de φ.

1. En déduire que φ = idF .

1. Que peut-on dire des valeurs propres possibles de φ si q n’est plus supposée surjective?
Exercice 283 [X MP 2025 # 284] Soit p un nombre premier, A et B appartenant à Mn(Z). Démontrer que tr((A+B)p) ≡ tr(Ap) +
tr(Bp) (mod p).
Exercice 284 [X MP 2025 # 285] Soient n ∈ N∗ et H un sous-espace vectoriel de Mn(C) stable par produit matriciel. On note
D = {δ ∈ L(H) : ∀(A,B) ∈ H2, δ(AB) = δ(A)B +Aδ(B)}.

1. Soit C ∈ H . Montrer que δ : A 7→ CAAC est dans D, et exprimer simplement eδ .

1. Soit δ ∈ D. Montrer que ∀A,B ∈ H , eδ(AB) = eδ(A)eδ(B).

1. Retrouver le résultat de la question précédente en considérant l’application f : t ∈ R 7→ e−tδ (etδ(A)etδ(B)
)

et en calculant f’.

1. Soit δ ∈ D. Pour λ ∈ C, on note Hλ le sous-espace caractéristique de δ associé à λ (éventuellement {0}). Soient λ, µ ∈ C,
A ∈ Hλ et B ∈ Hµ. Montrer que AB ∈ Hλ+µ.

Exercice 285 [X MP 2025 # 286] 1. Soient k,m, n ∈ N∗. On munit Rm de sa structure euclidienne canonique. Soit (v1, . . . , vn)
une famille de vecteurs unitaires de Rm tels que ⟨vi, vj⟩ ≤ −1/k pour tous i,jdistincts. Montrer que n ≤ k + 1.

1. Montrer qu’il existe une famille (v1, . . . , vk+1) de vecteurs unitaires de Rk tels que ⟨vi, vj⟩ = −1/k pour tous i, j distincts.
Exercice 286 [X MP 2025 # 287] Soit E un R -espace vectoriel de dimension finie.

1. Soit f ∈ L(E). Montrer que Tr(f id) = 0 et rg(f id) = 1 si et seulement s’il existe a ∈ E et ℓ ∈ E∗ tel que ℓ(a) = 0 et f = id+ ℓa.
On dit alors que f est une transvection.
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Soit φ : E × E → R une forme bilinéaire telle que : ∀x ∈ E \ {0}, ∃y ∈ E,φ(x, y) ̸= 0 et ∀(x, y) ∈ E2, φ(y, x) = −φ(x, y).
Soit G = {u ∈ GL(E) : ∀x, y ∈ E,φ(u(x), u(y)) = φ(x, y)}.

1. Montrer que G est un sous-groupe de GL(E).- c) Montrer que G contient les applications de la forme id +λφ(a, ·) a avec λ ∈ R
et a ∈ E.

1. Montrer que G est engendré par les transvections de la forme indiquée en c).
Exercice 287 [X MP 2025 # 288] Soient n ∈ N et O ∈ On(R). Calculer αO = | det(ψO)| où ψO : A ∈ Sn(R) 7→ OTAO.
Exercice 288 [X MP 2025 # 289] Pour M ∈ GLn(R) tel que −1 /∈ Sp(M), on pose T (M) = (InM)(In + M)−1. On note An(R)
l’ensemble des matrices antisymétriques et Bn(R) l’ensemble des matrices M ∈ On(R) telles que −1 /∈ Sp(M).

1. Montrer que T est bien définie sur An(R) et Bn(R).

1. Si A ∈ An(R), montrer que T (A) ∈ Bn(R).

1. Si B ∈ Bn(R), montrer que T (B) ∈ An(R).

1. Calculer T ◦ T (A) si A ∈ An(R).

1. Soient x ∈ R et A =
(

0 x
−x 0

)
. Calculer T(A).

1. Déduire des questions précédentes que toute matrice de A2n(R) est orthosemblable à une matrice diagonale par blocs avec des

blocs diagonaux de la forme
(

0 x
−x 0

)
.

Exercice 289 [X MP 2025 # 290] On munit Rn de sa structure euclidienne canonique.
1. Soit M ∈ S++

n (R). Montrer que l’application (x, y) ∈ (Rn)2 7→ ⟨M−1x, y⟩ définit un
produit scalaire sur Rn.

1. Soient M ∈ S++
n (R) et N ∈ An(R). Montrer que MN est diagonalisable dans Mn(C) à spectre inclus dans iR.

1. Soit A ∈ Mn(R) diagonalisable dans Mn(C) à spectre inclus dans iR. Existe-t-il M ∈

S++
n (R) et N ∈ An(R) telles que A = MN?

Exercice 290 [X MP 2025 # 291] Soit n ∈ N∗. On pose J =
(

0 −In
In 0

)
.

1. Soit M ∈ M2n(R) telle que M2 = −I2n. Montrer l’équivalence : MTJ ∈ S2n(R) ⇔ MTJM = J .

1. On note C = {M ∈ M2n(R),M2 = −I2n et MTJ ∈ S++
2n (R)}. Montrer que, pour tout M ∈ C , M + J ∈ GL2n(R).

1. PourM ∈ C , on note SM = (M+J)−1(M−J). Montrer que SM ∈ S2n(R). Montrer que ∀X ∈ R2n\{0}, ||SMX||2 < ||X||2.

1. Montrer que, pour pour tout M ∈ C , SMJ + JSM = 0.
Exercice 291 [X MP 2025 # 292] Les espaces Rp sont munis de leurs normes euclidiennes canoniques. Soient d et D des entiers
≥ 1. Étant donné p0, . . . , pn ∈ Rd, on dit que (p0, . . . , pn) se plonge isométriquement dans QD s’il existe q0, . . . , qn ∈ QD vérifiant
∥pi − pj∥ = ∥qi − qj∥ pour tous i, j ∈ [0, n].

1. On suppose que (p0, . . . , pn) se plonge isométriquement dans QD . Soit p une combinaison linéaire à coefficients rationnels de
p0, . . . , pn. Montrer que (p, p0, . . . , pn) se plonge isométriquement dans QD .

1. Soient p0, . . . , pn ∈ Rd tels que ||pipj ||2 ∈ Q pour tous i, j ∈ [0, n]. Montrer que (p0, . . . , pn) se plonge isométriquement dans
Q4d. On admettra que tout entier naturel est somme de quatre carrés d’entiers.

Exercice 292 [X MP 2025 # 293] 1. SoitA ∈ Sn(R). Montrer queA est définie positive si et seulement si, pour tout k ∈ [1, n], det((ai,j)1≤i,j≤k) >
0.

1. On pose Ak = (t|i−j|)1≤i,j≤k où t ∈ R+∗. Calculer detAk .

1. On pose A =
(

1
1+|i−j|

)
1≤i,j≤n

. Démontrer que A est symétrique définie positive.

Exercice 293 [X MP 2025 # 294] On munit Rn de sa structure euclidienne canonique.
1. Soient A ∈ Mn(R) et F un sous-espace vectoriel de Rn. Soit (fi)1≤i≤k une base or-

thonormée de F . On pose : τF (A) =
∑k
i=1⟨fi, Afi⟩. Montrer que τF (A) ne dépend pas de la

base orthonormée choisie.
Dans la suite de l’exercice, on suppose A ∈ Sn(R) et on note λ1 ≥ · · · ≥ λn les valeurs propres de A, comptées avec multiplicité.

1. Déterminer le meilleur encadrement possible de τF (A) en fonction de F et de Sp(A).

1. On pose, pour t ∈ R, A(t) = A + tE1,1. Pour t ∈ R, on note λ1(t) ≥ · · · ≥ λn(t) les valeurs propres de A(t). Montrer que :
∀t ≥ 0, λn(t) ≥ λn et λ1 ≥ λ2(t).

1. Déterminer un équivalent simple de λ1(t) quand t tend vers +∞.

34



2) Analyse

Exercice 294 [X MP 2025 # 295] 1. Soient N1 et N2 deux normes sur un R -espace vectoriel E. Montrer que si N1 et N2 ont la
même sphère unité alors N1 = N2.

1. On poseE = C0([0, 1],R). Soit (f, g) ∈ E2. Donner une condition nécessaire et suffisante pour que (x, y) ∈ R2 7→ ∥xf+yg∥∞
soit une norme sur R2.

1. Soit (E, ⟨, ⟩) un espace euclidien, dont on note ∥∥ la norme. Soit p une autre norme sur E. On note S et Sp les sphères unité
respectives pour ∥∥ et p. Montrer que d : x ∈ S 7→ sup |⟨x, y⟩| est à valeurs dans R+∗, que k = sup ∥y∥ est un réel strictement
positif, et enfin y ∈ Sp que d est k-lipschitzienne pour la norme ∥ · ∥.

1. On note B = {f ∈ E, p(f) ≤ 1} et, pour x ∈ S,Dx = {z ∈ E; |⟨x, z⟩| ≤ d(x)}. Montrer que B =
⋂
x∈S Dx.

Exercice 295 [X MP 2025 # 296] Soit E un R -espace vectoriel de dimension finie. Montrer que tout convexe non borné contient au
moins une demi-droite. On pourra commencer par le cas d’un convexe fermé.
Exercice 296 [X MP 2025 # 297] Pour k ∈ N∗, soit Rk la borne inférieure de l’ensemble Ek des r ∈ R+∗ tels qu’il existe une boule
fermée de R2 euclidien de rayon r contenant au moins k points de Z2.

1. Calculer Rk pour k = 2, 3, 4.

1. Si k ∈ N∗, montrer que Rk est le minimum de Ek .

1. Montrer que, pour k ∈ N∗, 4R2
k est entier.

1. Donner un équivalent de Rk lorsque k tend vers +∞.
Exercice 297 [X MP 2025 # 298] Soit E l’espace des fonctions continues de [0,1] dans R. On munit E de la norme ∥∥∞. Déterminer
les formes linéaires continues φ sur E telles que, pour tout (f, g) ∈ E2 tel que φ(fg) = 0, on ait φ(f) = 0 ou φ(g) = 0.
Exercice 298 [X MP 2025 # 299] Soit ρ : [0, 1] 7→ Mn(C) continue telle que, pour tout t, ρ(t)2 = ρ(t).

1. Montrer que t 7→ rg ρ(t) est constante.

1. Montrer l’existence de u ∈ C0([0, 1],GLn(C)) telle que ∀t, ρ(t) = u(t)ρ(0)u−1(t).

1. On suppose de plus que ρ(1) = ρ(0). Montrer que l’on peut choisir u de sorte que l’on ait aussi u(0) = u(1).
Exercice 299 [X MP 2025 # 300] Soit n ≥ 2. On note Bn l’ensemble des matrices bistochastiques de Mn(R) c’est-à-dire les M =
(mi,j)1≤i,j≤n ∈ Mn(R) telles que : ∀i ∈ [[1, n]],

∑n
i=1 mi,j = 1, ∀j ∈ [[1, n]],

∑n
i=1 mi,j = 1 et ∀(i, j) ∈ [[1, n]]2mi,j ≥ 0. Si

σ ∈ Sn, on note Pσ = (δi,σ(j))1≤i,j≤n la matrice de permutation associée à σ ; la matrice Pσ est dans Bn.

1. Montrer que Bn est une partie convexe de Mn(R). Un élément M de Bn est dit extrémal lorsqu’il ne peut pas s’écrire M=(1-
t)A+tB avec

A, B éléments distincts dans Bn et t ∈]0, 1[.
1. Montrer que les Pσ sont des points extrémaux de Bn.

1. On fixe un élément M de Bn.
Pour une partie I ⊂ [[1, n]], on note F(I) = {i ∈ [[1, n]] : ∃j ∈ I,mi,j > 0}.

1. Montrer que |I| ≤ |F(I)|.

1. Montrer qu’il existe une injection f : [1, n] → [1, n] telle que, pour tout i ∈ [1, n], mi,f(i) > 0.

1. En déduire l’ensemble des points extrémaux de Bn.

1. Montrer que Bn est l’enveloppe convexe des Pσ pour σ ∈ Sn.
Exercice 300 [X MP 2025 # 301] On munit E = C0([−1, 1],R) de la norme ∥ · ∥∞.

1. Soit n ∈ N. Montrer qu’il existe un unique Tn ∈ R[X] de degré n tel que ∀θ ∈ R, Tn(cos θ) = cos(nθ).
Soit (an)n≥0 ∈ (R+)N telle que

∑
an converge.

1. Soit f : x 7→
∑+∞
n=0 anT3n(x).

• Montrer que f est bien définie et continue sur [-1, 1].

• Montrer que d(f,R3n [X]) = infP∈R3n [X] ∥fP∥∞ =
∑+∞
k=n+1 ak .

Ind. On pourra considérer les points xk = cos(π(1 + k3−n−1)) pour k ∈ [0, 3n+1].
Exercice 301 [X MP 2025 # 302] Soient K une fonction continue de [0, 1]2 dans R, E l’espace des fonctions continues de [0,1] dans
R.- a) Si f ∈ E, soit TK(f) la fonction de [0,1] dans R telle que ∀x ∈ [0, 1], TK(f)(x) =

∫∞
−∞ K(x, y)f(y)dy. Montrer que TK est un

endomorphisme continu de l’espace normé (E, ∥ · ∥∞).
1. On suppose queK est à valeurs dans R+∗, que λ ∈ R+∗ et que l’espace propreEλ(TK) contient une fonction non identiquement

nulle à valeurs dans R+. Montrer que Eλ(TK) est de dimension 1.
Exercice 302 [X MP 2025 # 303] Soit (un)n≥0 une suite réelle telle que un+1 − un

2 → 0. Montrer que un → 0.
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Exercice 303 [XMP 2025 # 304] Soient a < b réels et (un)n∈N une suite réelle telle que, pour tout t ∈ [a, b], il existe une suite (kn)n∈N

d’entiers tels que tun − kn −→ 0 quand n → +∞. Montrer que la suite (un) converge vers 0.
Exercice 304 [X MP 2025 # 305] Soient α ∈ R+∗ et β = 1/α. Soit (zn)n≥0 la suite définie par z0 = 1 et, pour tout n ∈ N, zn+1 =
αn+1
α(n+1)zn.

1. Donner un équivalent de zn et sa valeur exacte lorsque β ∈ N∗.

1. Soit (xn)n≥0 une suite réelle.

• On pose, pour n ∈ N, µn = 1
n+1

∑n
k=0 xk et yn = αxn + (1 − α)µn. On suppose que yn → x ∈ R. Montrer que xn → x.

Exercice 305 [X MP 2025 # 306] Pour n ∈ N, on pose un = |{(p, q) ∈ N2, p2 + q2 = n}|.
1. Déterminer la limite de la suite de terme général 1

n

∑
uk .

1. Étudier la nature de la suite (un).

1. Montrer que (un) n’est pas bornée.
Exercice 306 [X MP 2025 # 307] Soit (an)n∈N une suite réelle vérifiant, pour tout n ∈ N, an+1 = an(1 − an).

1. On suppose que a0 = 1/2. Montrer que 1
an
n ∼ lnn quand n → +∞.

1. On suppose a0 > 1. Déterminer la limite de (an) puis un équivalent de an.

1. Donner un développement asymptotique à deux termes de an.
Exercice 307 [X MP 2025 # 308] 1. Pour n ≥ 3, justifier l’existence de xn, yn ∈ R avec 0 < xn < yn solutions de x−n ln x = 0.

1. Donner un développement asymptotique à deux termes de xn et yn.
Exercice 308 [X MP 2025 # 309] Construire une suite strictement croissante (pn)n≥2 d’entiers avec p2 = 2 telle qu’il
existe C> 0 vérifiant, pour tout n ≥ 2,

∑pn+1−1
k=n

1
ln k ≥ C , et telle que la série de terme général 2−(pn+1−pn) diverge.

Exercice 309 [X MP 2025 # 310] On pose α = 4
∑499999
k=0

(−1)k

2k+1 . Montrer qu’exactement une des 16 premières décimales de α diffère
de la décimale de π correspondante.
Exercice 310 [X MP 2025 # 311] Soient p> 0 et q> 0 tels que 1

p + 1
q = 1 et n ∈ N∗. Montrer que, pour tout

(a1, . . . , an, b1, . . . , bn) ∈ (R+)2n,

n∑
i=1

aibi ≤

(
n∑
i=1

api

) 1
p
(

n∑
i=1

bqi

) 1
q

.
Exercice 311 [X MP 2025 # 312] Soit f : R+∗ → R+∗ de classe C∞ telle que f(x) → 0 quand x → 0+ et quand x → +∞. On
suppose que, pour tout n ∈ N∗, il existe un unique xn ∈ R+∗ tel que f (n)(xn) = 0.

1. Montrer que la suite (xn)n≥1 est croissante.

1. Soit n ∈ N∗. Montrer que xnf (n)(x) −→
x→0+

0.

1. On pose g(x) = f(x)
x pour tout x > 0. Montrer que, pour tout n ≥ 0, il existe an,0, . . . , an,n ∈ Z tels que g(n)(x) =∑n

k=0 an,k
f(n−k)(x)
xk+1 pour tout x> 0.

1. Montrer que, pour tout n ≥ 0, (−1)ng(n)(x) > 0 pour tout x > 0.
Exercice 312 [X MP 2025 # 313] Soit f ∈ C2(R,R). On suppose que : f2 ≤ 1 et (f ′)2 + (f ′′)2 ≤ 1. Le but est de montrer par
l’absurde que g = f2 + (f ′)2 ≤ 1. On suppose donc qu’il existe t ∈ R tel que : f(t)2 + f ′(t)2 > 1.
On pose : E = {x ∈ R; ∀y ∈ [min(t, x),max(t, x)], f(y)2 + f ′(y)2 > 1}.

1. Montrer que E est un intervalle ouvert.

1. Montrer que f’ ne s’annule pas sur E.

1. Conclure.
Exercice 313 [X MP 2025 # 314] Si (φk)1≤k≤4 est une famille de fonctions de ]-1,1[ dans R, on dit que (φk)1≤k≤4 vérifie (C) si
φ1 < φ2 < φ3 < φ4 sur ]0, 1[ et φ2 < φ4 < φ1 < φ3 sur ]-1, 0[.

1. Montrer qu’il n’existe pas de famille (φk)1≤k≤4 de fonctions polynomiales vérifiant (C). Ind. On pourra étudier la valuation de
φi − φj pour i ̸= j.

1. Existe-t-il une famille (φk)1≤k≤4 de fonctions de classe C∞ vérifiant (C)?
Exercice 314 [X MP 2025 # 315] Soit s : R → R telle que (∗) : ∀x ∈ R, s(x+ 1) = s(x) + 1

1+x2 et s(x) −−−−−→
x→−∞

0.

1. Montrer que, pour tout x ∈ R, s(x) ≥ 0.

1. A-t-on existence et unicité de s vérifiant () ? Déterminer les s solutions.
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1. Que se passe-t-il si on remplace la condition s(x) −−−−−→
x→−∞

0 par la condition s(x) −−−−−→
x→+∞

0?

Exercice 315 [X MP 2025 # 316] 1. Soit f ∈ C0(R,R). Montrer que f est affine si et seulement si, pour tout réelx, on a f(x+h)+f(x−h)−2f(x)
h2 −→

h→0+

0.b) Montrer que le résultat de la question précédente peut tomber en défaut sans hypothèse de continuité.
Exercice 316 [X MP 2025 # 317] Soit F : R → R+∗. On suppose qu’il existe α, η > 0 tels que :

∀(x, y) ∈ R2, αF (x)F (y) ≤ F (x+ y) ≤ ηF (x)F (y)

.

1. On suppose que F est de classe C1 et que F ′

F est bornée. Montrer qu’il existe γ ∈ R et H : R → R+∗ bornée tel que :
∀x ∈ R, F (x) = eγxH(x).

1. On revient au cas général. Montrer qu’il existe une unique fonction G : R → R+∗ telle que F
G soit bornée et ∀(x, y) ∈

R2, G(x+ y) = G(x)G(y).
Exercice 317 [X MP 2025 # 318] Soient M,m ∈ R avec 0 < m < M , f ∈ C0(R, [m,M ]), q ∈ R \ {−1, 0, 1}. Soit () l’équation
fonctionnelle ∀t ∈ R, g(t) = 1 + g(qt)

f(t) .
1. On suppose m > 2 ou M < 1/2. Montrer qu’il existe une unique solution bornée de ().

1. Montrer que les solutions bornées de () ne s’annulent pas.
Exercice 318 [X MP 2025 # 319] Soit E = R[X]. Soit φ ∈ L(E).

1. Montrer qu’il existe une unique suite (Gn)n≥0 ∈ EN telle que :

∀P ∈ E,φ(P ) =
+∞∑
n=0

GnP
(n)

.

1. Expliciter (Gn) pour φ vérifiant : ∀P ∈ E, ∀x ∈ R, φ(P )(x) =
∫ x

0 P (t)dt.

1. On suppose que, pour tout P ∈ E et a ∈ R, si P admet un minimum local en a alors φ(P )(a) = 0. Montrer qu’il existe Q ∈ E
tel que, pour tout P ∈ E, φ(P ) = QP ′.

1. On suppose que, pour toutP ∈ E et a ∈ R, siP admet un minimum local en a alorsφ(P )(a) ≥ 0. Montrer qu’il existeQ,R ∈ E
tels que, pour tout P ∈ E, φ(P ) = QP ′+

RP” avec R positif sur R.
1. Donner une preuve directe de l’égalité trouvée en b).

Exercice 319 [X MP 2025 # 320] Soient f : R → R et g : R → R. On suppose qu’il existe quatre réels strictement positifs α, β,A,B
tels que ∀(x, y) ∈ R2, |f(x)f(y)| ≤ A|xy|α et |g(x)g(y)| ≤ B|xy|β et α + β > 1. On pose ζ : s ∈]1,+∞[ 7→

∑+∞
n=1

1
ns ·

On fixe deux réels a < b.
1. Pour une subdivision σ = (x0, . . . , xn) de [a,b], on pose J(σ) =

∑n−1
k=0 f(xk)(g(xk+1) − g(xk))

g(xk)). Montrer que |J(σ)f(a)(g(b)g(a))| ≤ ABζ(α+ β)(2(b− a))α+β .
1. Montrer qu’il existe un réel Ia,b(f, g) tel que, pour tout ε > 0, il existe δ > 0 tel que, pour toute subdivision σ = (x0, . . . , xn)

de [a,b], maxk |xk+1xk| < δ ⇒ |J(σ)Ia,b(f, g)| < ε.
Exercice 320 [XMP 2025 # 321] On note S l’ensemble des nombres complexes de module 1. Soit γ : [0, 1] → S une fonction continue.
Montrer qu’il existe une fonction continue θ : [0, 1] → R telle que γ(t) = e2iπθ(t) pour tout t ∈ [0, 1].
Exercice 321 [X MP 2025 # 322] Soit f : [0, 1] → R continue. On pose h : t ∈ [0, 1] 7→ infs∈[0,t] f(s) et g=f-2h.

1. Montrer que g est continue, positive et que g(0) = 0.

1. Montrer que si f est affine par morceaux alors q l’est aussi.

1. On suppose que f atteint son minimum en 1. On pose q : t ∈ [0, 1] 7→ infs∈[t,1] g(s). Montrer que f = g - 2q.

Exercice 322 [XMP 2025 # 323] Soit P l’ensemble des nombres premiers. On pose Ψ(x) =
∑
p∈P,α∈N∗

pα≤x
ln p et T (x) =

∑
1≤n≤x Ψ

(
x
n

)
.

1. Montrer que T (x) =
∑

1≤n≤n ln(n) = x ln(x)x+O(ln x) quand x → +∞.

1. Montrer que T (x)2T
(
x
2
)

=
∑∞
n=0(−1)n−1Ψ

(
x
n

)
= x ln 2 +O(ln x).

Exercice 323 [X MP 2025 # 324] Soit f une bijection de classe C1 de R+ sur R+, de réciproque notée g.

1. Montrer que, pour x ≥ 0,
∫ x
a
f(t)dt+

∫ f(x)
a

g(t)dt = xf(x).

1. Déduire que ∀x, y ∈ R+, xy ≤
∫ x

0 f(t)dt+
∫ y

0 g(t)dt.
Exercice 324 [X MP 2025 # 325] Soit f : [0, 1] → R continue et strictement positive sur ]0,1[.
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1. Calculer limp→+∞

(∫ 1
0 f(x)pdx

)1/p
.

1. Calculer limx→0+

(∫ 1
0 f(x)pdx

)1/p
.

Exercice 325 [X MP 2025 # 326] Soit f la fonction 1-périodique de R dans R telle que ∀x ∈ [0, 1[, f(x) = x− 1
2 . Pour i et j dans N∗,

calculer
∫ 1

0 f(ix)f(jx)dx.

Exercice 326 [X MP 2025 # 327] Pour a, b > 0, on définit Ja,b = 2
∫ π

2
0

dθ√
(a cos θ)2+(b sin θ)2

.

1. Montrer que Ja,b =
∫ +∞

−∞
dx√

(x2+a2)(x2+b2)
.

1. Montrer que Ja,b = J a+b
2

√
ab

Exercice 327 [X MP 2025 # 328] Déterminer les réels α et β tels que
∫ +∞

0 | sin t|αtβdt < +∞.329. [nil] a) Pour f ∈ C0(R,R), on
note If =

{
p > 0,

∫
R |f |p < +∞

}
. Montrer que If

Exercice 328 [X MP 2025 # 329] 1. Pour

f ∈ C0(R,R)

, on note If = {p > 0,
∫

R |f |p < +∞}. Montrer que est un intervalle et exhiber f telle que If =]a, b[, ]0, b[ ou ]b,+∞[ pour 0 < a < b.

1. Déterminer limp→+∞

(∫ 1
a

|f |p
)1/p

.

Exercice 329 [X MP 2025 # 330] Soit f : R → R intégrable sur R. On pose g : x ∈ R∗ 7→ f
(
x− 1

x

)
. Montrer que g est intégrable sur

R+∗ et sur R−∗. Exprimer
∫ 0

−∞ g +
∫ +∞

0 g en fonction de
∫ +∞

−∞ f .

Exercice 330 [X MP 2025 # 331] On rappelle que
∫

Rn e
−x2/2dx =

√
2π.

Pour n ∈ N, on pose pn : x ∈ R 7→ (−1)nex2/2 dn(e−x2/2)
dxn .

1. Montrer que pn est polynomiale, préciser son degré et son coefficient dominant, et dé-

montrer que pn est paire ou impaire.

1. Calculer
∫

R pm(x)pn(x)e−x2/2dx pour (m,n) ∈ N2.

1. Soit n ∈ N∗. Calculer l’intégrale multiple

I =
∫

R
· · ·
∫

R

 ∏
1≤i≤n

(xj − xi)2

 exp
(

−1
2

n∑
i=1

x2
k

)
dx1 · · · dxn

.
Ind. On pourra s’intéresser au déterminant de la matrice (pi−1(xj))1≤i,j≤n.
Exercice 331 [X MP 2025 # 332] Soit (fn)n∈N une suite de fonctions de carré intégrable sur R telle que

∫
R fifj =

δi,j pour tous i, j ∈ N. Pour N ∈ N∗ et x, y ∈ R, on pose KN (x, y) =
∑N
i=1 fk(x)fk(y). Pour p ∈ N et x1, . . . , xp ∈ R, on pose

φp(x1, . . . , xp) = det((KN (xi, xj))1≤i,j≤p).
Calculer

∫
Rn · · ·

∫
Rn φp(x1, . . . , xp)dx1 . . . dxp.

Exercice 332 [X MP 2025 # 333] 1. Soit a ∈ R+∗. Calculer les intégrales
∫ 1

0
ln(1+ta)

t dt et
∫ 1

0
ln(1−t)

t dt.

1. Soit (an)n ∈ (N∗)N telle que I ∈ Pf (N) 7→
∑
n∈I an soit injective, Pf (N) désignant l’ensemble des parties finies de N. Montrer

que
∑+∞
n=0

1
an

≤ 2.
c. Soit (an)n ∈ (N∗)N telle qu’il n’existe pas d’entier n ni de partie finie I de N \ {n} telle que an =

∑
k∈I ak . Montrer que∑+∞

k=1
1
an

≤ 50.
Exercice 333 [X MP 2025 # 334] Soient (an)n∈N et (bn)n∈N deux suites réelles.
On pose fn : x ∈ R 7→ an cos(nx) + bn sin(nx). Montrer que si (fn)n∈N converge simplement sur R alors (an)n∈N et (bn)n∈N

convergent vers 0.
Exercice 334 [X MP 2025 # 335] Pour

n ∈ N

, soit fn : x ∈ R \ Z 7→ π cot(πx) −
∑n
k=−∞

1
x+k .

1. Montrer que (fn)n≥0 converge simplement sur R \ Z vers une fonction f , et que l’on peut prolonger f par continuité à R.

1. Montrer que la fonction prolongée par continuité est de classe C1 sur R et vérifie :
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∀x ∈ R, 4f ′(x) = f ′
(x

2

)
+ f ′

(
x+ 1

2

)
.

1. En déduire que f est identiquement nulle sur R.

1. On pose g : x 7→ x
ex−1 . Justifier que g est développable en série entière au voisinage de 0 et que le développement en série

entière de x 7→ g(x) − 1 + x
2 ne contient que des termes

pairs. On note

g(x) = 1 − x

2 +
+∞∑
n=1

anx
2n

.

1. Pour n ∈ N∗, donner une expression de ζ(2n) en fonction de an. Ind. On pourra considérer g(ix) pour x ∈ R.
Exercice 335 [X MP 2025 # 336] Soit f ∈ C0([0, 1],R).
Si

t ≥ 0

, on pose gt : x ∈ [0, 1] 7→ inf{f(y) + t|y − x|, y ∈ [0, 1]}.

1. Si t ≥ 0, montrer que gt est une fonction continue.

1. Soit x ∈ [0, 1]. Montrer que la suite (gn(x))n≥0 est croissante et qu’elle converge vers

f(x).
1. Montrer que (gn)n≥0 converge uniformément vers f sur [0,1].

Exercice 336 [X MP 2025 # 337] 1. Soit n ∈ N. Montrer qu’il existe un unique Tn ∈ Z[X] tel que : ∀x ∈ R, Tn(2 cos(x)) =
2 cos(nx).

1. Pour x, y ∈ [−2, 2[ avec x ̸= y, on pose S(x, y) =
∑+∞
n=0

1
nTn(x)Tn(y).

• Montrer que Sn(x, y) est bien défini.

• Montrer que, pour x, y ∈ [−2, 2[ avec x ̸= y, on a S(x, y) = −2 ln |xy|.
Exercice 337 [X MP 2025 # 338] Soit α ∈ R.

1. À quelle condition sur α la fonction f : x 7→
∑+∞
n=1

nα

n+x est-elle définie sur R+ ?

1. Lorsque f est définie sur R+, déterminer sa limite, puis un équivalent, en +∞.

1. On fixe un polynôme P ∈ R[X] de degré d > 0, sans racine dans [1,+∞[. Donner une condition nécessaire et suffisante sur
(α, d) pour que g : x 7→

∑+∞
i=1

nα

P (n+x) soit définie

sur R+. Dans ce cas, donner un équivalent de g en +∞.
Exercice 338 [X MP 2025 # 339] 1. On fixe un entier d ≥ 0. Soit (ck)k≤d une famille de nombres complexes indexée par Z≤d =

{k ∈ Z, k ≤ d}. On suppose qu’il existe un réel R > 0 telle que (ckzk)k soit sommable pour tout z ∈ C tel que |z| > R ; pour un
tel z, on pose g(z) =

∑
k ckz

k . On suppose enfin que c1, . . . , cd sont tous rationnels et que g(a) ∈ Z pour une infinité d’entiers
a. Montrer que c0 ∈ Q et ck = 0 pour tout k < 0.

1. Soit s ∈ N∗ et P ∈ C[X]. On suppose que, pour tout entier n assez grand, P(n) est la puissance s-ième d’un entier. Soient
τ1, . . . , τs dans Z. Montrer qu’il existe une fonction gvérifiant les hypothèses de la question précédente (pour un certain d) et
telle que, pour tout complexe z de module assez grand,

∏
P (z + τk) = g(z)s. En déduire qu’il existe un polynôme Q ∈ C[X]

tel que P = Qs et ∀k ∈ Z, Q(k) ∈ Z.
Exercice 339 [X MP 2025 # 340] Soient θ > 1 et P ∈ Z[X] unitaire de degré n ∈ N∗ dont θ est racine de multiplicité 1 et dont les
autres racines complexes sont de module < 1 et dont 1/θ n’est pas racine. Soit Q = XnP (1/X).

1. Montrer que f : z 7→ P (z)
Q(z) est développable en série entière au voisinage de 0 de rayon

1/θ. On note f(z) =
∑+∞
n=0 bnz

n ce développement.
1. Montrer que g : z 7→ f(z)(1 − θz) est développable en série entière de rayon > 1. On note g(z) =

∑+∞
n=0 cnz

n. Montrer que les
cn sont dans Z et que 1

2π
∫ 2π

0
∣∣g(eit)

∣∣2 dt =
∑+∞
n=0 |cn|2.

1. Démontrer que 1 + θ2 = b2
0 +

∑+∞
n=0(bnθbn−1)2.

1. On suppose que P(0) > 0. Montrer que (bn)n∈N est croissante.
Exercice 340 [X MP 2025 # 341] 1. On pose u0 = 1 et un+1 =

∑n
k=0 ukun−k pour tout n ∈ N. Calculer un.

1. Pour n ∈ N, on pose In =
∫ 2

−2 x
2n√

4 − x2dx. Prouver l’existence d’une constante
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c> 0 telle que ∀n ∈ N, un = c In et la déterminer.
Exercice 341 [X MP 2025 # 342] Soitm ∈ N∗. On pose u0 = 4m, u1 = 4m− 1 et, pour k ∈ [1,m], uk = −1 + 2m−k

2m uk+1 + k
2muk−1

et vk = m
∫ 1

0
(1+x)2m−k

x

(
(1 + x)k − (1 − x)k

)
dx.

1. Montrer que, pour tout k ∈ [1,m], vk = uk .

1. Donner un équivalent de Wm = m
∫ 1

0
(1+x)m

x ((1 + x)m(1 − x)m)dx.

Exercice 342 [X MP 2025 # 343] Déterminer un équivalent de
∫ +∞

0 (te−t)xdt quand x tend vers +∞.
Exercice 343 [X MP 2025 # 344] Soit E l’ensemble des fonctions y de classe C2 de R+ dans R telles que, pour tout t ∈ R+, y′′(t) +
ety(t) = 0. Soit y ∈ E \ {0}.

1. Montrer que les zéros de y sont isolés.

1. Montrer que les zéros de y peuvent être rangés en une suite strictement croissante (tn)n≥0 tendant vers +∞.

1. Donner un équivalent de tn.
Exercice 344 [X MP 2025 # 345] Soit E un espace vectoriel euclidien de dimension n ≥ 1.

1. Soient p un projecteur de E et a ∈ L(E) tels que ap + pa = a. Montrer que tr a = 0.

1. On note P(E) l’ensemble des projecteurs orthogonaux de E. Pour p ∈ P(E), décrire l’espace tangent à P(E) en p. Quelle est
sa dimension?

3) Géométrie

Exercice 345 [X MP 2025 # 346] Soit (u, v) une base de R2. Donner une condition nécessaire et suffisante sur (u, v) pour qu’il existe
un polygone régulier à n côtés dont les sommets sont tous dans Qu+ Qv.

4) Probabilités

Exercice 346 [X MP 2025 # 347] Un tiroir contient 2n chaussettes, constituant n paires. On tire successivement et aléatoirement les
chaussettes du tiroir les unes après les autres jusqu’à avoir tiré une paire. Quelle est l’espérance du nombre total de chaussettes tirées?

Indication : Pour simplifier le résultat, on pourra utiliser un raisonnement probabiliste pour établir que
2n∑
k=n

(
k

n

)
2−k = 1.

Exercice 347 [X MP 2025 # 348] On organise un tournoi avec une infinité (Jn)n∈N de joueurs. Les modalités sont les suivantes :
J0 et J1 s’affrontent, le gagnant affronte J2 et ainsi de suite : le gagnant de chaque partie affronte le joueur suivant lors de la partie
suivante. On considère tous les matchs comme indépendants et on note pn = P(Jn remporte son premier match). Le tournoi s’arrête
lorsqu’un joueur remporte deux matchs successifs. On note T la variable aléatoire donnant le nombre de matchs joués jusqu’à l’arrêt
du tournoi. Pour les deux premières questions, on fixe

α ∈]0, 1[

et on suppose que : ∀n ≥ 2, pn = 1 − 1
nα .

1. Montrer que T est presque sûrement finie.

1. Montrer que T est d’espérance finie.

1. Dans cette question, on fixeN ≥ 2 et la condition de victoire devient : un joueur remporte le tournoi quand il a gagnéN matchs
consécutifs. Ainsi le cas précédent correspond au cas N=2. On suppose que, pour tout n ∈ N∗, pn = p ∈]0, 1[.

On note an = P(T ≥ n) avec, pour k ≤ N , ak = 1. Déterminer une relation de récurrence entre les an.
Exercice 348 [X MP 2025 # 349] Soit n ∈ N∗. Pour σ ∈ Sn, on note |σ| le nombre de cycles dans la décomposition de σ en cycles à
supports disjoints (y compris les cycles de longueur 1).a) Pour k ∈ [1, n], on pose Ck = |{σ ∈ Sn, |σ| = k}|.

1. Pour k ∈ [1, n], on pose Ck = |{σ ∈ Sn, |σ| = k}|

Calculer fn où fn : x 7→
∑n
k=1 Ckx

k .
1. Soit σn une variable de loi uniforme sur Sn. Donner un équivalent de l’espérance de |σn|.

1. Montrer que |σn|
ln(n) tend vers 1 en probabilités quand n → +∞.

Exercice 349 [X MP 2025 # 350] 1. Soient λ > 0 et X une variable aléatoire suivant la loi de Poisson P(λ). Calculer E(X(X −
1) · · · (X − p+ 1)) pour tout p ∈ N∗, et calculer E(1/(X + 1)) et E(1/(X + 2)).

1. Soient A un ensemble fini de cardinal n et p ∈ N∗. Une p-partition de A est une partition de X formée de p sous-ensembles
(non vides) deX . SoitB un ensemble fini de cardinalm. Dénombrer, pour une p-partition de F de A, les applications deA dans
B dont F est l’ensemble des fibres non vides (à savoir des ensembles non vides de la forme f−1{b} où b ∈ B).

1. En utilisant les deux questions précédentes, exprimer le nombre de partitions de A comme
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Exercice 350 [X MP 2025 # 351] Soient p ∈]0, 1[ et t> 0. Soient (Xn)n∈N une suite de variables aléatoires i.i.d. vérifiant P(Xn =
1) = p et P(Xn = −1) = 1 − p et N ∼ P(t) indépendante des Xn. On pose :

Sn =
n∑
i=0

Xi

.

1. Pour n ∈ Z, calculer P(SN = n).

1. Montrer que :

la somme d’une série numérique.

∀(x, y) ∈ (R+∗)2,
∑
n∈Z

yn
∑
i∈N
n≥0

xn+2i

n!(n+ i)! = exy+1/y

.
Exercice 351 [X MP 2025 # 352] Soient p ∈ [0, 1[,m ≥ 2 et ξ = e2iπ/m].

1. Montrer que :

∀a, b ∈ C,
∑

k∈[[0,n]]

(
n

k

)
akbn−k = 1

m

m−1∑
j=0

(b+ ξja)n

.

1. Soit (Xi)i∈N∗ une suite de variables aléatoires i.i.d. suivant la loi de Bernoulli de paramètre p. On pose :An = (m | X1+· · ·+Xn)
et un = P(An). Montrer que la suite (un) est convergente et déterminer sa limite.

1. Montrer que : ∀n ∈ N∗,
∣∣un 1

m

∣∣ ≤ e−8pqn/m2 où q = 1 p.
Exercice 352 [X MP 2025 # 353] Soit X une variable aléatoire discrète positive ayant un moment d’ordre 2 et telle que E(X2) > 0.
Montrer que, pour t > 0, P(XE(X) ≤ −t) ≤ exp

(
− t2

E(X2)

)
.

Exercice 353 [X MP 2025 # 354] Soit (Xn)n≥1 une suite de variables aléatoires i.i.d. à valeurs dans N∗. On suppose
de plus que E(X2

1 ) < +∞, et on pose Sn =
∑n
i=1 Xi et Tn =

∑n
i=1

1
Si

pour n ≥ 1.

1. Montrer que, pour tout ω, (Tn(ω))n≥1 a une limite dans [0,+∞].

1. Montrer qu’il existe une constante C > 0 et une suite strictement croissante (nk)k≥1 d’entiers ≥ 1 vérifiant nk+1 ≥ 2nk et
P(Snk

≥ 2nkE(X1)) ≤ C
2k pour tout k ≥ 1.

1. En déduire que (Tn)n≥1 tend presque sûrement vers +∞.

1. Montrer que V(Tn) ≤
∑n
i=1 E

(
1
S2

i

)
pour tout n ≥ 1.

Exercice 354 [X MP 2025 # 355] On pose (X)0 = 1 et, pour n ∈ N∗, (X)n = X(X − 1) · · · (X − n+ 1).
1. Montrer que ((X)n)n≥0 est une base de R[X].

1. Pour k ∈ N, on décompose Xk =
∑+∞
n=0 ak,n(X)n. Déterminer ak,0 et ak,n pour n ≥ k.

1. En considérant une variable aléatoireZ suivant la loi de Poisson de paramètre 1, montrer que ∀k ∈ N,
∑+∞
i=0 ak,n = 1

e

∑+∞
i=0

ik

i! .

1. Pour 0 ≤ n ≤ k, on note bk,n le nombre de façons de ranger k objets indifférenciés dans n tiroirs non numérotés, aucun des
tiroirs n’étant vide. Montrer que bk,n = ak,n.

1. Soit k ∈ N. Déterminer le nombre de façons de partitionner un ensemble à k éléments.
Exercice 355 [X MP 2025 # 356] On cherche à prouver l’existence d’un réel C > 0 tel que, pour toutes variables aléatoires réelles X
et Y indépendantes et de même loi, on ait l’inégalité P(|X − Y | ≤ 2) ≤ C P(|X − Y | ≤ 1).

1. On suppose X et Y à valeurs dans Z. Montrer l’existence de C ′ > 0 indépendant de X tel que P(|XY | ≤ 2) ≤ C ′P(X = Y ).

1. Montrer le résultat souhaité.

1. Montrer que C ′ ≥ 3.
Exercice 356 [X MP 2025 # 357] 1. Soient n ∈ N∗ et p ∈]0, 1[. Existe-t-il deux variables aléatoires indépendantes Y1 et Y2 de

même loi telles que Y1 + Y2 ∼ B(n, p)?

1. On dit qu’une variable aléatoire Z est infiniment divisible si, pour tout k ∈ N∗, il existe des variables aléatoires i.i.d. Y1, . . . , Yk
telles que Y1 + · · · + Yk ∼ Z , avec a priori (Y1, . . . , Yk) défini sur un espace probabilisé différent de celui de Z .

Donner un exemple d’une telle variable aléatoire.
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1. Que dire d’une variable aléatoire Z infiniment divisible de support inclus dans [0,1] ?

1. Soient (Xi)i∈N une suite de variables aléatoires i.i.d. et N ∼ P(λ) indépendante des Xi (avec λ > 0). Montrer que Z =
X1 + · · · +XN est une variable aléatoire infiniment divisible.

Exercice 357 [X MP 2025 # 358] Soient a ∈]0, 1[ et φa : x 7→ 1(1 − x)a.
1. Montrer qu’il existe une variable aléatoire Xa à valeurs dans N∗ telle que, pour tout x ∈ [0, 1], φa(x) = E(xXa).b) Soit

(An)n≥1 une suite d’événements de l’espace probabilisé (Ω,A,P) telle que, pour tout n ∈ N∗, P(An) = a
n . On pose Y =

inf{n ∈ N∗, 1An
= 1}. Montrer que Y ∼ Xa.

On considère l’équation fonctionnelle : ∀x ∈ [0, 1], φa(x) = xφ(φa(x)) d’inconnue φ :
[0, 1] → R.

1. Montrer que, pour a ∈ [1/2, 1] cette équation admet une unique solution continue, qui est
de plus la fonction génératrice d’une variable aléatoire à valeurs dans N .

1. Montrer que ce n’est pas le cas pour a = 1/3.
Exercice 358 [X MP 2025 # 359] Soit (Xn) une suite de variables aléatoires indépendantes telles que P(Xn = 0) = 1 − 1

n et
P(Xn = n) = 1

n . On pose, pour n ∈ N∗, Sn = X1 + · · · +Xn.

1. Soit λ ∈ R+. Déterminer la limite de
(

E
(
e−λSn

n

))
n≥1

.

1. Soit f ∈ C0(R+∗,R) dérivable sur ]1,+∞[ et telle que : ∀x > 1, f(x− 1) + xf ′(x) = 0 et ∀x ∈ [0, 1], f(x) = 1.

Montrer qu’il existe une unique fonction f qui respecte ces conditions, qu’elle est strictement positive sur R+ et tend vers 0 en +∞.
1. On définitφ(λ) =

∫ +∞
0 e−λtf(t)dt, avec f la fonction de la question précédente. Mon- trer qu’il existe k > 0 tel que, pour tout λ ∈

R+, limn→+∞ E
(
e−λSn

n

)
= e−kφ(λ).

Exercice 359 [X MP 2025 # 360] Soient X une variable aléatoire à support fini à valeurs dans Z2 et telle que −X ∼X, (Xk)k≥1 une
suite i.i.d. de variables aléatoires suivant la loi de X . Pour n ∈ N∗, on pose Sn = X1 + · · · +Xn.

1. Montrer que, si n ∈ N∗, E(∥Sn∥2) = nE(∥X∥2) et P(S2n = 0) =
∑
x∈Z2 P(Sn = x)2.

1. Montrer qu’il existe c ∈ R+∗ tel que ∀n ∈ N∗,P(S2n = 0) ≥ c
n .

1. Démontrer que P (∃n ≥ 1, Sn = 0) = 1.

V) X PSI autre

1) Algèbre

Exercice 360 [X PSI 2025 # 361] Soit P (X) = X1114X25X + 1. Montrer que P admet au moins une racine complexe de module
strictement inférieur à 1.
Exercice 361 [X PSI 2025 # 362] Soit f : P ∈ R[X] 7→ 1

2
(
P
(
X+1

2
)

+ P
(
X
2
))

. Soit a ∈ R. Déterminer la limite de (fn(P )(a)) quand
n tend vers +∞.
Exercice 362 [X PSI 2025 # 363] 1. Soient E un C -espace vectoriel de dimension finie, u, h ∈ L(E) tels que h est diagonalisable

et h ◦ u− u ◦ h = 2u. Montrer que u est nilpotent.

1. Soit E = C[X] et soient u, v, h les trois endomorphismes de E définis par∀P ∈ E, u(P ) = X2P ′ +XP, v(P ) = P ′ et h(P ) =
P + 2XP ′.

1. Montrer que h est diagonalisable et que h ◦ uu ◦ h = 2u. L’endomorphisme u est-il nilpotent ?

1. Soit F un sous-espace vectoriel de E à la fois u-stable et v-stable. Montrer que F = {0} ou F = E.

Exercice 363 [X PSI 2025 # 364] Soient A ∈ Mn(C) et B =
(

0 A
In 0

)
∈ M2n(C).

1. Montrer que ∀λ ∈ C, dim(Ker(BλI2n)) = dim(Ker(Aλ2In)).

1. À quelle condition sur A la matrice B est-elle diagonalisable?
Exercice 364 [X PSI 2025 # 365] SoitX ∈ Cn. Déterminer une condition nécessaire et suffisante pour que la matriceXXT ∈ Mn(C)
soit diagonalisable.
Exercice 365 [X PSI 2025 # 366] SoitA ∈ M3(R) telle que R3 = Ker((AI3)2)⊕Ker(A2I3). Soit x ∈ R3 \{0}. Trouver un équivalent
de ||Anx||.

Exercice 366 [X PSI 2025 # 367] On définit deux matrices M =
(

1 1
0 1

)
et Nε =

(
1 1
0 1 + ε

)
avec ε > 0.

1. Étudier la diagonalisabilité de M et Nε, détailler leurs sous-espaces propres et donner une base de chacun d’eux.

1. Pour n ∈ N, on pose Xn = MnE, Y = Nn
ε E, où E =

(1
ε

)
. Expliciter Xn et Yn et étudier asymptotiquement les vecteurs Xn

∥Xn∥
et Yn

∥Yn∥ .

Exercice 367 [X PSI 2025 # 368] Soit A ∈ Mn(R) \ {0} telle que AT = −A. Soient µ ∈ C∗ une valeur propre de A et X ∈ Cn un
vecteur propre associé. On écrit X = U + iV avec U, V ∈ Rn. Montrer que U et V sont orthogonaux.
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2) Analyse

Exercice 368 [X PSI 2025 # 369] SoientE et F deux espace vectoriels normés (de dimension quelconque) et ψ : E → F une fonction
telle que ∀x, y ∈ E, ψ(x) +ψ(y) = ψ(x+ y) et ψ est bornée sur la boule ouverte unité de E. Montrer que ψ est linéaire et continue.
Exercice 369 [X PSI 2025 # 370] Soit (E, || ||) un espace vectoriel normé avec E ̸= {0}.

1. Soit φ un endomorphisme continu de E. Montrer que : supx̸=0
∥φ(x)∥

∥x∥ < +∞

1. Soient u,v deux endomorphismes continus de E tels que uv-vu= id. Montrer que E = {0}.
Exercice 370 [X PSI 2025 # 371] Soient E un R -espace vectoriel normé de dimension finie, u ∈ L(E) et K ⊂ E un convexe non
vide. Pour n ∈ N∗, on note Sn = 1

n

∑n−1
k=0 u

k .- a) Montrer que : ∀n ∈ N∗, Sn(K) ⊂ K .
1. Montrer que : ∀n ∈ N∗, (S1 ◦ · · · ◦ Sn)(K) ⊂

⋂n
Sk(K).

1. On suppose que K est compact et que, pour tout x ∈ E, ||u(x)|| ≤ ||x||. Montrer que : ∀x ∈
⋂
Sn(K), u(x) = x.

Exercice 371 [X PSI 2025 # 372] Soit (ak)k∈N une suite de réels positifs. Pour tout n ∈ N, posons An =
∑n
k=1 ak . Montrer

l’équivalence entre les trois propriétés suivantes :
• An−1 = o(an),

• an−1 = o(an),

• An−1 = o(An)
Exercice 372 [X PSI 2025 # 373] Soit u une suite réelle strictement positive, croissante et tendant vers +∞. Montrer que la série∑ un−un−1

u diverge.
Exercice 373 [X PSI 2025 # 374] Soit (dn) une suite de réels positifs telle que la série de terme général dn diverge. Nature de

∑ dn

1+dn
,∑ dn

1+ndn
,
∑ dn

1+d2
n

et
∑ dn

1+n2dn
?

Exercice 374 [X PSI 2025 # 375] Trouver f ∈ C∞(R,R) telle que, successivement,
• f est nulle sur R− et ne s’annule pas sur ]0,+∞[ ;

• f est nulle sur R− et [1,+∞[ et ne s’annule pas sur ]0, 1[ ;

• f est nulle sur R−, égale à 1 sur [1,+∞[ et ne s’annule pas sur ]0, 1[.
Exercice 375 [X PSI 2025 # 376] Soit f ∈ C0(R,R). Soit (xk)k∈N telle que ∀k ∈ N, xk+1 = f(xk). On suppose que

( 1
n

∑n
k=1 xk

)
est bornée. Montrer que f admet un point fixe.
Exercice 376 [X PSI 2025 # 377] Soit a > 0. Pour n ∈ N, on pose : I(a, n) =

∫ π
2

0 (a+ cos(x))ndx.
1. Trouver la limite de (I(a, n))n≥0.

b) Soit b ∈]0, π/2[. Montrer que
√
n

(1+a)n

∫ π
2
b

(a+ cos(x))ndx −→
n→+∞

0.

1. Calculer la limite de
( √

n
(1+a)n · 1√

a+1

∫ b
0 (a+ cos(x))ndx

)
.

1. En déduire un équivalent de I(a,n) quand n → +∞

Exercice 377 [X PSI 2025 # 378] Soit f ∈ C∞(R,R) telle que f(t) → 0 quand t → +∞. Soit () l’équation différentielle y’ + y = f(t).
1. Montrer que toute solution y de () tend vers 0 lorsque t → +∞.

1. On suppose de plus que f(t) ∼ 1
t→+∞

1
tα avec α > 0. Soit y une solution non nulle de (). Déterminer un équivalent de y(t)

quand t → +∞.
Exercice 378 [X PSI 2025 # 379] Pour f ∈ C1(R+,R+∗), on considère le problème de Cauchy f ′ = −f2 et f(0) = 1.

1. Résoudre l’équation différentielle.
Soit h ∈]0, 1/2[. On définit la suite (yn) par y0 = 1 et yn+1yn = −hy2

n.

1. Montrer que yn → 0.

1. Montrer que 1
yn

= 1 + nh+ o(n).
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3) Probabilités

Exercice 379 [X PSI 2025 # 380] Soient n ≥ 2 et X une variable aléatoire à valeurs dans [0, n].
1. Soit Y une autre variable aléatoire à valeurs dans [0,n]. Montrer que si ∀k ∈ [0, n],

E(Xk) = E(Y k) alors X ∼ Y .

1. Montrer qu’il existe des variables aléatoiresX ,Y à valeurs dans [0, n] ne suivant pas la même loi et telles que ∀k ∈ [2, n],E(Xk) =
E(Y k).

Exercice 380 [X PSI 2025 # 381] Soient ε,X etY trois variables aléatoires indépendantes. On suppose que ε ∼ B(1/2) et que X et Y suivent G(p) pour un réel p ∈

]0, 1[. On note M =
(

(2ε− 1)X Y
Y (2ε− 1)X

)
.

1. Déterminer P(M ∈ GL2(R)).

1. Déterminer P (M ∈ S++
2 (R)).

Exercice 381 [X PSI 2025 # 382] Soit n ≥ 2. Soit X l’ensemble des variables aléatoires définies sur (Ω,A,P) et à valeurs dans [1, n].
Déterminer les X ∈ X , indépendantes de toutes les Y ∈ X .
Exercice 382 [X PSI 2025 # 383] On effectue n ≤ N tirages sans remise dans un sac de N jetons numérotés de 1 à N . On note Xi la
variable aléatoire donnant le numéro du jeton du i-ème tirage et on pose Zn = max1≤i≤nXi. Calculer E(Zn).
Exercice 383 [X PSI 2025 # 384] On pose (Xk) une suite i.i.d. de variables aléatoires suivant la loi de Bernoulli de para- mètre
p ∈ [0, 1]. Pour n ∈ N, on pose Yn =

∑n
k=1

Xk

k+n
1. Calculer l’espérance de Yn

1. Déterminer la limite de (E(Yn))

1. Trouver α ∈ R tel que, pour tout ε > 0, on ait limn→∞ P(|Ynα| > ε) = 0.

VI) X PC autre

1) Algèbre

Exercice 384 [X PC 2025 # 385] Soit (P,Q) ∈ R[X]2 tel que P P’ = Q. Montrer que, si Q ≥ 0, alors P ≥ 0.
Exercice 385 [X PC 2025 # 386] Soit E l’ensemble des polynômes à coefficients dans {−1, 0, 1} et A l’ensemble des racines des
polynômes de E. Montrer que A∩]2,+∞[= ∅.
Exercice 386 [X PC 2025 # 387] Soient

P =
n∑
k=0

akX
k ∈ C[X]

et r ∈ [0, 1].
Montrer que

1
2π

∫ 2π

0

∣∣P (reiθ)
∣∣2 dθ =

n∑
k=0

|ak|2r2k ≤ sup
θ∈[0,2π]

|P (eiθ)|2

.
Exercice 387 [X PC 2025 # 388] Soient P ∈ Z[X] unitaire de degré d et λ1, . . . , λd ses racines. On suppose que, pour
tout

k ∈ [1, d]

, |λk| ≤ 1. On pose, pour tout n ∈ N∗, f(n) =
∑d
k=1 λ

n
k .

1. Montrer que, pour tout n ∈ N∗, f(n) est entier.

1. Montrer qu’il existe p ∈ N∗ tel que, pour tout n ∈ N∗, f(n+p) = f(n).
Exercice 388 [X PC 2025 # 389] Soient A et B dans M2(Z). On suppose que, pour tout k ∈ {0, 1, 2, 3, 4}, A + kB est inversible et
que son inverse est à coefficients dans Z. Montrer que A + 5B est inversible et que son inverse est à coefficients dans Z.
Exercice 389 [X PC 2025 # 390] On considère la matrice A = (1i=j+1 mod n)1≤i,j≤n ∈ Mn(R). Donner une condition nécessaire et
suffisante sur p ∈ N∗ pour que B =

∑p−1
k=0 A

k soit inversible.
Exercice 390 [X PC 2025 # 391] On considère une ferme avec 2n+1 vaches. Le fermier s’aperçoit que quelle que soit la vache que
l’on retire du troupeau, il peut séparer les vaches restantes en deux groupes de n vaches, de telle sorte que les sommes des poids des
vaches de chacun des groupes sont égales. Montrer que toutes les vaches ont le même poids.
Exercice 391 [X PC 2025 # 392] Soit A = (ai,j)1≤i,j≤n ∈ Mn(R), avec ai,j = 1

min(i,j) . Calculer detA.
Exercice 392 [X PC 2025 # 393] Soit A ∈ Mn(R) telle que : ∀H ∈ Mn(R), det(A+H) = det(A) + det(H). Que dire de A?
Exercice 393 [X PC 2025 # 394] Soit p ∈ N∗.

1. Soient α1, . . . , αp des réels distincts. Soient c1, . . . , cp des réels non tous nuls. On pose
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φ : x 7→
p∑
cie

αix

. Montrer que φ s’annule au plus p− 1 fois.

1. Soient α1, . . . , αp, β1, . . . , βp des réels tels que α1 < · · · < αp et β1 < · · · < βp. Montrer que le déterminant de la matrice(
eαiβj

)
1≤i,j≤p est strictement positif.

Exercice 394 [X PC 2025 # 395] Soient A et B ∈ Mn(C) telles que AB2B2A = B. Montrer que B est nilpotente d’ordre impair.
Exercice 395 [X PC 2025 # 396] 1. Donner un exemple de matrice A ∈ Sn(C) non diagonalisable.b) Soit M ∈ Mn(C) et Q :

x = (x1 . . . xn)T ∈ Cn 7→
∑

1≤i,j≤nmi,jxixj ∈ C. Montrer
qu’il existe une unique matrice S ∈ Sn(C) telle que ∀x ∈ Cn, Q(x) = xTSx.
c. Montrer qu’il existe un ensemble fini I , une famille (ℓi)i∈I ∈ (L(Cn,C))I de formes linéaires indépendantes et une famille (αi)i∈I ∈
CI telles que
linéaires indépendantes et une famille

(αi)i∈I ∈ CI

telles que ∀x ∈ Cn,
∑

1≤i,j≤n ai,jxixj =
∑
i∈I αiℓi(x)2.

Ind. Commencer par traiter l’exemple Q(x) = x2
1 + 3x1x2 + 6x2

2 + 4x2
3.

Exercice 396 [X PC 2025 # 397] SoientE un K -espace vectoriel de dimension finie et u ∈ L(E). Déterminer une condition nécessaire
et suffisante pour qu’il existe v ∈ L(E) tel que u ◦ v = 0 et u+ v ∈ GL(E).
Exercice 397 [X PC 2025 # 398] Soit M ∈ Mn(C). Donner une condition nécessaire et suffisante sur M pour que l’application
f : A ∈ Mn(C) 7→ AM +MA ∈ Mn(C) soit bijective.
Exercice 398 [X PC 2025 # 399] Soit

M ∈ Mn(C)

. On pose exp(M) =
∑+∞
k=0

Mk

k! .

1. Justifier que cette définition est pertinente.

1. On suppose que M s’écrit M = In +A où A est nilpotente. Montrer qu’il existe P ∈ C[X] tel que M = exp(P (M)).
Exercice 399 [X PC 2025 # 400] On munit Rn de sa structure euclidienne canonique.
Pour

v ∈ Rn \ {0}

, on pose Hv = In − 2 vvT

∥v∥2 .

1. Donner une interprétation géométrique de Hv .

1. Montrer que, pour tout vecteur unitaire e ∈ v⊥, on a Hv−∥v∥e(v) = ∥v∥e.

1. SoitA ∈ GLn(R). Donner un algorithme permettant de trouverQ ∈ On(R) etR ∈ Mn(R) triangulaire supérieure à coefficients
diagonaux > 0 telles que A = QR.

Exercice 400 [X PC 2025 # 401] Soient E = [[1, n]] et A1, . . . , Am des parties distinctes de E telles qu’il existe c ∈ N∗ vérifiant :
∀(i, j) ∈ [[1, n]]2, i ̸= j,⇒ Card(Ai ∩Aj) = c. Montrer que m ≤ n. Ind. Considérer d’abord le cas où il existe i tel que card(Ai) = c.

Ensuite pour i ∈ [[1,m]], poser vi =

1Ai
(1)
...

1Ai
(n)

 ∈ Mn,1(R) et considérer G = (⟨vi, vj⟩)1≤i,j≤m.

Exercice 401 [X PC 2025 # 402] Soient n, p ≥ 2. On munit Rn de sa structure euclidienne canonique. SoientE un sousespace vectoriel
de Rn et b ∈ Rn.

1. Montrer que inf{||x− b||, x ∈ E} est atteint en un unique point de E.

1. SoitA ∈ Mn,p(R). Montrer que inf{∥Axb∥, x ∈ Rp} est atteint. Si x1 et x2 sont deux points en lesquels le minimum est atteint,
montrer que x2x1 ∈ KerA.

1. Résoudre l’équation ATAx = AT b d’inconnue x ∈ Rp.
Exercice 402 [X PC 2025 # 403] Soit

H ∈ Sn(R)

.a) Montrer qu’il existe des réels distincts λ1, . . . , λk et des matrices de projecteurs orthogo-
naux P1, . . . , Pk de Rn tels que :

∑k
i=1 Pi = In, PiPj = 0 si i ̸= j et H =

∑k
i=1 λiPi.

1. Soit R ∈ S+
n (R) tel que tr(R) = 1. On pose pi = tr(RPi) pour 1 ≤ i ≤ k.

Montrer que (p1, . . . , pk) est une loi de probabilité sur {1, 2, . . . , k}.
Exercice 403 [X PC 2025 # 404] Soient A,B ∈ S++

n (R). Montrer que det1/n(A+B) ≥ det1/n(A) + det1/n(B).

45



Exercice 404 [X PC 2025 # 405] Soient M1, . . . ,Mn ∈ Mp(R) telles que
∑n
i=1 M

T
i Mi = Ip.

Pour X ∈ Mp(R), on pose L(X) =
∑n
i=1 M

T
i XMi.

On écrit M ≥ N pour signifier M −N ∈ S+
n (R). Montrer que L(XTX) ≥ L(XT )L(X).

Exercice 405 [X PC 2025 # 406] Soient d ∈ N∗ ainsi que A ∈ S++
d (R). On définit la suite (An)n∈N par A0 = A et, pour n ∈

N, An+1 = An +A−2
n . Donner un équivalent de trAn lorsque n → +∞.

Exercice 406 [X PC 2025 # 407] 1. Soit (u1, . . . , uk) ∈ (Rn)k . Montrer que l’on peut renuméroter les ui pour qu’il existe α ∈
[1, k] tel que la famille (u1, . . . , uα) soit libre et uj ∈ Vect(u1, . . . , uα) = E

pour tout j ∈ [α+ 1, k].
1. Soit U = (u1| · · · |uα) ∈ Mn,α(R). Montrer que UTU est inversible.
c. Soient

β ≥ α+ 1

et B =

⟨uβ , u1⟩
...

⟨uβ , uα⟩

. Montrer que la solution de UTUX = B donne

les coordonnées de uβ dans la base (u1, . . . , uα) de E.
d. Soit (v1, . . . , vk) ∈ (Rn)k telle que : ∀(i, j) ∈ [[1, k]]2, ⟨ui, uj⟩ = ⟨vi, vj⟩. Montrer qu’il existe W ∈ On(R) telle que : ∀i ∈
[1, k],Wvi = ui.
Exercice 407 [X PC 2025 # 408] 1. Soit A ∈ Mn(R). Montrer que A ∈ S+

n (R) si et seulement s’il existe k ∈ N∗ et
B ∈ Mk,n(R) tels que A = BTB.
Soient n ≥ 2 et L un endomorphisme de Mn(R). Soit k ∈ N∗.

Pour A ∈ Mkn(R) que l’on écrit A =

A1,1 . . . A1,k
...

...
Ak,1 . . . Ak,k

 où chaque bloc est une matrice de Mn(R), on définit L̂k par L̂k(A) =

L(A1,1) . . . L(A1,k)
...

...
L(Ak,1) . . . L(Ak,k)

.

On dit que L est C .P. (complètement positif) lorsque, pour tout k ∈ N∗ et tout A ∈ S+
nk(R), L̂k(A) ∈ S+

nk(R).

1. Montrer que L : M ∈ Mn(R) 7→ MT ∈ Mn(R) n’est pas C .P.
c. Soit L ∈ L(Mn(R)) complètement positif. En regardant le cas k=2, montrer que, pour toutM ∈ Mn(R),L(MT ) = L(M)T .

Exercice 408 [X PC 2025 # 409] Soient S, T ∈ Sn(R) telles que, pour tout X ∈ Rn \ {0}, XT (S + T )X > 0.
Montrer qu’il existe une base (e1, . . . , en) de Rn telle que, pour tout i ∈ {1, . . . , n}, la famille (Sei, T ei) soit liée. Ind. Considérer
B : (X,Y ) 7→ XT (S + T )Y et M = (S + T )−1S.

2) Analyse

Exercice 409 [X PC 2025 # 410] Soit A = {M ∈ Mn(R); ∀(i, j) ∈ [1, n]2,mi,j ∈ [0, 1]2}.
On pose α = supM∈A(detM).

1. Montrer que α est un maximum.

b. Montrer que ce maximum est atteint en des matrices M à coefficients dans {−1, 1} telles que detM > 0.
Exercice 410 [X PC 2025 # 411] Pour

A ∈ Mn(R)

, on pose exp(A) =
∑+∞
k=0

Ak

k! .

1. Montrer que exp(A) est bien définie. Soit (A,B) ∈ Mn(R)2.

1. Montrer que, si A et B commutent, alors exp(A+B) = exp(A) exp(B).
c. Montrer que

lim
k→+∞

(
exp

(
A

2k

)
exp

(
B

k

)
exp

(
A

2k

))k
= exp(A+B)

.
Exercice 411 [X PC 2025 # 412] On munit

E =
{
f ∈ C0([0, 1],R),

∫ 1

0
f(t)dt = 0

}
de la norme ∥∥∞. Si f ∈ E, on pose A(f) : x ∈ [0, 1] 7→

∫ x
0 f(t)dt+

∫ 1
0 tf(t)dt.
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1. Trouver C > 0 tel que ∀f ∈ E, ||A(f)||∞ ≤ C||f ||∞.

b. Déterminer la constante C optimale.
Exercice 412 [X PC 2025 # 413] Soit A ⊂ R2. On pose

Conv(A) =
{

n∑
i=1

λixi ; n ∈ N∗, (x1, . . . , xn) ∈ An, (λ1, . . . , λn) ∈ (R+)n,
n∑
i=1

λi = 1
}

.
On suppose de plus que, pour tout (x, y) ∈ A2, il existe γ : [0, 1] → A continue telle que γ(0) = x et γ(1) = y. Montrer que
Conv(A) =

⋃
(a,b)∈A2 [a, b].

Exercice 413 [X PC 2025 # 414] Soit E un espace vectoriel normé. On dit que (un) ∈ EN vérifie la propriété C si : ∀ε > 0, ∃N ∈
N, ∀p ≥ N, ∀q ≥ N, ∥up − uq∥ ≤ ε. On dit que E vérifie la propriété B si toute suite de E vérifiant C est convergente. On admet
que R vérifie la propriété B. On
pose

ℓ1 =
{

(un) ∈ RN;
∑
n∈N

|un| < +∞

}
. On munit ℓ1 de la norme définie par ||u||1 = 0

+∞∑
n=0

|un|

. Montrer que (ℓ1, ||∥1) vérifie la propriété B.
Exercice 414 [X PC 2025 # 415] On munit ℓ1 = {u ∈ RN,

∑+∞
n=0 |un| < +∞} de la norme définie par ∥u∥1 =

∑+∞
n=0 |un| et

ℓ∞ = {u ∈ RN : ∃M ∈ R, ∀n ∈ N, |un| ≤ M}

de la norme définie par ||u||∞ = {u ∈ RN : ∃M ∈ R, ∀n ∈ N, |un| ≤ M}
supn∈N |un|. Enfin, pour (u, v) ∈ ℓ1 × ℓ∞, on pose φv(u) =

∑+∞
n=0 unvn.

1. Montrer que pour tout v ∈ ℓ∞, φv est bien définie sur ℓ1.

On note Dℓ1 l’ensemble des formes linéaires sur ℓ1 qui sont continues.

1. Montrer que pour tout v ∈ ℓ∞, φv ∈ Dℓ1 . On pose, pour v ∈ ℓ∞, ∥φv∥ = inf{C > 0 : ∀u ∈ ℓ1, |φv(u)| ≤ C∥u∥1}.
c. Montrer que ∥∥ est une norme.

1. Calculer ∥φv∥ pour v ∈ ℓ∞.
d. Calculer ∥φv∥ pour v ∈ ℓ∞. Les question précédentes montrent que l’application T de ℓ∞ dans Dℓ1 , qui à v associe φv est
une application linéaire et une isométrie

est une application linéaire et une isométrie.
1. Montrer que T est bijective.

Exercice 415 [X PC 2025 # 416] 1. Soit M ∈ M2(C). Montrer qu’il existe un unique (N,D) ∈ M2(C)2 tel que :

• M = D + N ,

• D est diagonalisable,

• N est nilpotente, iv) ND = DN.

1. Quels sont les points de continuité de M 7→ (D,N)?

Exercice 416 [X PC 2025 # 417] Pour tout n ≥ 1, on pose vn =
∑n2

n=1
1

n2+k2 . Déterminer la limite de (nvn).
Exercice 417 [X PC 2025 # 418] On définit (un) par u0, u1 ∈ R+∗ et ∀n ∈ N, un+2 = √

un+1 + √
un. Montrer que (un) converge.

Exercice 418 [X PC 2025 # 419] Soient (an) ∈ (R+∗)N et, pour n ∈ N, tn =
√
a0 +

√
a1 +

√
· · · + √

an.

1. Montrer que, si limn→+∞ supk≥n

{
ln(ln ak)

k

}
> ln 2, alors (tn) diverge.

1. Montrer que, si limn→+∞ supk>n
{

ln(ln ak)
k

}
< ln 2, alors (tn) converge.

Exercice 419 [X PC 2025 # 420] Soit f : R+∗ → R+∗ strictement croissante, continue et telle que f(t) → +∞ quand t → +∞.
Montrer que les séries de termes généraux 1

f(n) et f
−1(n)
n2 sont de même nature.

Exercice 420 [X PC 2025 # 421] Soit (un) ∈ (R+∗)N. Pour n ∈ N on pose Sn =
∑n
k=0 uk . Montrer que

∑
un converge si et

seulement si
∑ un

Sn
converge.
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Exercice 421 [X PC 2025 # 422] Soient (ci)i∈N ∈ {0, 1}N et f : x 7→
∑+∞
i=0 cix

i. Montrer que, si f
( 2

3
)

= 3
2 , alors f

( 1
2
)

est irrationnel.
Exercice 422 [X PC 2025 # 423] Soit

n ∈ N∗

. Montrer : ∀(x1, . . . , xn) ∈ Rn,
∑n
i=1
∑n
j=1

√
|xi − xj | ≤

∑n
i=1
∑n
j=1

√
|xi + xj |.

Exercice 423 [X PC 2025 # 424] Soit f : x ∈ R∗ 7→ e−1/x2 . Montrer que f admet un prolongement de classe C∞ sur R.
Exercice 424 [X PC 2025 # 425] Soit G : [0, 1] → R telle que G(0)=G(1)=0, G est continue en 1 et dérivable en 0, G′(0) ≥ 0 et, pour
tout x ∈ [0, 1], on a G(x) = maxy∈[0,x](G(y) +G(x− y)).
Montrer que G est nulle.

1. Montrer In → +∞.
Exercice 425 [X PC 2025 # 426] $$ Montrer que :

∑
p≤x

ln p
p ≥ ln x+O(1). Ind. Considérer ln(n!).

Exercice 426 [X PC 2025 # 427] Soient f : [0, 1] → R continue, g : [0, 1] → R continue à valeurs positives telle
∫ 1

0 g = 1 etφ : R → R
de classe C2 telle que φ′′ ≥ 0.
Montrer :

φ

(∫ 1

0
f(x)g(x)dx

)
≤
∫ 1

0
φ(f(x))g(x)dx

.
Exercice 427 [X PC 2025 # 428] Soient deux réels a < b et f, g ∈ C0 ([a, b],R+∗) avec f ̸= g.
On suppose ∫ b

a

f =
∫ b

a

g

. Pour n ∈ N, on pose In =
∫ b
a
fn+1

gn .

1. Montrer que (In)Ja

n∈N est strictement croissante.
Exercice 428 [X PC 2025 # 429] Soif f ∈ C2([0, 1],R+) telle que f(0) = 0 et f ′′ ≥ 0.
Montrer que

∫ 1
0 f(x)2dx ≤

∫ 1
0 x

2f ′(x)2dx.
Exercice 429 [X PC 2025 # 430] Soient K : [0, 1]2 → R+∗ et f, g : [0, 1] → R+∗ continues telles que : ∀x ∈ [0, 1], f(x) =∫ 1

0 K(x, z)g(z)dz et g(x) =
∫ 1

0 K(x, z)f(z)dz. Montrer que f=g.
Exercice 430 [X PC 2025 # 431] Soient L1 (resp. L2) l’ensemble des fonctions continues de R dans C intégrables (resp. de carré
intégrable). Soit f ∈ C1(R,C) telle que x 7→ x f(x) et x 7→ x f ′(x) sont dans L2.

1. Montrer que f ∈ L2 ∩ L1.

1. Montrer limx→±∞ f(x) = 0. Montrer que x 7→ xf2(x) est dans L2

Exercice 431 [X PC 2025 # 432] Soit E l’ensemble des f ∈ C2(R,R) telles que x 7→ (1 + x2)|f(x)|, x 7→ (1 + x2)|f ′(x)| et
x 7→ (1 + x2)|f ′′(x)| soient bornées sur R. Pour t ∈ R et f ∈ C1(R,R), on pose At(f) : x 7→ f ′(x) + txf(x) et A∗

t (f) : x 7→
−f ′(x) + txf(x).

1. Si f ∈ E, montrer que
∫

Tn A
∗
t (At(f))f ≥ 0.

Ind. Montrer, pour (f, g) ∈ E2, que
∫

R At(f)g =
∫

R fA
∗
t (g).

1. Soit f ∈ E telle que
∫

R f
2 = 1. Montrer que

(∫ +∞
−∞ x2f2(x)dx

)(∫ +∞
−∞ f ′2(x)dx

)
≥ 1

4

Exercice 432 [X PC 2025 # 433] Soit (fn)n∈N une suite de fonctions de classe C3 définies de R dans R.
On suppose que supn∈N

(
supx∈R

∣∣∣f (3)
n (x)

∣∣∣) = c ∈ R et limn→+∞ supx∈R |fn(x)| = 0. Montrer que limn→+∞ supx∈R |f ′
n(x)| =

0 et limn→+∞ supx∈R |f ′′
n (x)| = 0.

Exercice 433 [X PC 2025 # 434] On admet que
∑+∞
n=1

1
n4 = π4

90 . Soit g : x 7→ π2

3 +
∑+∞
n=1

4(−1)n

n2 cos(nx).
1. Montrer que g est définie sur R.

1. Calculer
∫∞

−∞ g(x)2dx.

1. Calculer
∫ π

0 (x2g(x))2dx.

1. Expliciter q et tracer son graphe.
Exercice 434 [X PC 2025 # 435] Soit f ∈ C∞(R,R). Soit (fn) la suite de fonctions définie par f0 = f et, pour tout n ∈ N et tout
x ∈ R, fn+1(x) =

∫ x
0 tfn(t)dt.

1. Montrer que l’application T qui à f associe
∑+∞
n=0 fn est un endomorphisme de C∞(R,R).

1. Exprimer T(f) à l’aide de f .

1. L’application T est-elle injective? surjective?
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Exercice 435 [X PC 2025 # 436] Soit f : t 7→ (1 − t)1−1/t. Cette fonction est-elle développable en série entière? Si oui déterminer le
rayon de convergence et le signe des coefficients de ce développement en série entière.
Exercice 436 [X PC 2025 # 437] Donner le développement en série entière de f(x) = 1

1−2x−x2 et son rayon de convergence. Montrer
que les coefficients sont entiers. Pouvait-on le prévoir ?
Exercice 437 [X PC 2025 # 438] On pose f : z 7→

∑+∞
n=0

zn

2n(n−1)/2 . Montrer que f n’est pas le quotient de deux polynômes.

Exercice 438 [X PC 2025 # 439] 1. Donner le développement en série entière de arctan et montrer :
∑+∞
k=0

(−1)k

2k+1 = π
4 .

1. Pour n ∈ N∗, on pose Sn = 4
∑n−1
i=1

(−1)k

2k+1 . Montrer :
∣∣∣πSn (−1)n

n

∣∣∣ ≤ 1
2n3 .

1. Montrer que, pour n = 5 × 105, π et Sn ont leurs 16 premières décimales communes, sauf pour la 6e.
Exercice 439 [X PC 2025 # 440] 1. Soit f ∈ C[X] non constant. Soit r > 0. On suppose que f n’ a pas de racine de module r. On

note Nr(f) le nombre de racines de f (comptées avec multiplicité) situées dans le disque de centre 0 et de rayon r. Montrer que
Nr(f) = 1

2π
∫ 2π

0
f ′(reiθ)
f(reiθ) re

iθdθ.

1. Soit r > 0. Soient f et g dans C[X] tels que, pour tout z de module r, [g(z)] < |f(z)|. Montrer que f et f+g ont le même nombre de
racines comptées avec multiplicité dans le disque de centre 0 et de rayon r.

1. Application : montrer que X85X3 +X + 2 possède 3 racines comptées avec multiplicité dans le disque unité.
Exercice 440 [X PC 2025 # 441] Soit A : C → SL2(C). On suppose que les coordonnées de A sont sommes de séries entières de
rayon +∞ et queA(R) ⊂ SO2(R). Montrer qu’il existe φ : C → C somme d’une série entière de rayon +∞ telle que ∀z ∈ C, A(z) =(

cos(φ(z)) − sin(φ(z))
sin(φ(z)) cos(φ(z))

)
.

Exercice 441 [X PC 2025 # 442] Soit γ : [a, b] → C une fonction continue. On suppose qu’il existe une subdivision a = a0 < a1 <
· · · < an = b telle que, pour tout k ∈ {0, . . . , n − 1} la restriction γk de γ au segment [ak, ak+1] est de classe C1. Soit f : C → C
continue. On définit

∫
γ
f(z)dz =

∑n−1
i=0

∫ aj+1
ai

f(γj(t))γ′
j(t)dt. Si γ(a) = γ(b) et f est développable en série entière sur C, montrer

que
∫

R f(z)dz = 0.

Exercice 442 [X PC 2025 # 443] 1. Montrer que, pour x > 0, e−x2 ∫ +∞
0 e−t2dt =

∫ +∞
0 xe−x2(1+s2)ds.

1. En déduire la valeur de
∫ +∞

0 e−t2dt.

1. Calculer
∫ +∞

0 cos(t2)dt.

Exercice 443 [X PC 2025 # 444] 1. Montrer que ∀t ∈ [0, 1[,
∫ 2π

0
eiθ

1−teiθ dθ = 0.b) En déduire que

∀z ∈ C,
1

2π

∫ 2π

0
ln |eiθ − z|dθ = max(0, ln |z|)

.
Ind. Considérer la fonction

f : t 7→
∫ 2π

0
ln
(
|z − teiθ|

)
dθ

.
Exercice 444 [X PC 2025 # 445] Pour x ∈ R, on note x+ = max(x, 0). Soit f̂ : ξ ∈ R 7→

∫ +∞
−∞

( sin x
x

)2
eiξxdx.

1. Montrer que f̂ est définie et continue sur R.

1. Pour N ∈ N et x ∈ R, montrer que

1
N + 1

N∑
k=0

k∑
j=−k

eijx =
N∑

j=−N

(
1 − |j|

N + 1

)
eijx = 1

N + 1

(
sin
(
N+1

2 x
)

sin
(
x
2
) )2

.
c. Pour N ∈ N et k ∈ Z, montrer que :

1
2π

∫ π

−π

1
2N + 2

(
sin((N + 1)x)

sin(x2 )

)2
e−ikxdx =

(
1 − |k|

2N + 2

)+

.
d. Montrer que, uniformément en k ∈ Z, la suite de terme général 1

2π
∫ π

−π
1

2N+2

(
sin((N+1)x)

sin( x
2 )

)2
e−ikxdx− 1

2π
∫ π

−π
1

2N+2

(
sin((N+1)x)

x
2

)2
e−ikxdx

tend vers
0

lorsque N → +∞. En déduire : ∀ξ ∈ R, f̂(ξ) = π
(

1 − |ξ|
2

)+
.

Exercice 445 [X PC 2025 # 446] Soit n ∈ N∗. Soit A ∈ Mn(R).
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1. Justifier l’existence de exp(A) =
∑+∞
k=0

Ak

k! Ind. Montrer l’existence d’une norme ∥ ∥

sur Mn(K) pour laquelle il existe c > 0 tel que ∀A,B ∈ Mn(R), ∥AB∥ ≤ c∥A∥∥B∥.
1. Soit M : R → Mn(R), t 7→ exp(tA). Montrer que M est de classe C1 sur R et calculer

M’(t) pour tout t ∈ R.
1. Soit p ∈ N∗. Soient u : R → Rp continue et B ∈ Mn,p(R). Trouver toutes les fonctions X : R → Rn dérivables telles que

∀t ∈ R, X ′(t) = AX(t) +Bu(t).

1. Existe-t-il P ∈ R[X] telle que exp(A) = P (A)?
Exercice 446 [X PC 2025 # 447] On munit Rn de sa structure euclidienne canonique. Soient A ∈ S++

n (R) et b ∈ Rn. On pose :
∀x ∈ Rn, J(x) = 1

2 ⟨Ax, x⟩⟨b, x⟩.
1. Montrer que J est strictement convexe : ∀x ̸= y ∈ Rn, ∀λ ∈ ]0, 1[ , J(λx+ (1 − λ)y) < λJ(x) + (1 − λ)J(y).

1. Montrer que lim∥x∥→+∞ J(x) = +∞.

1. Montrer que J atteint son minimum en l’unique point x0 vérifiant Ax0 = b.
Exercice 447 [X PC 2025 # 448] Soit n ≥ 2. On pose Σ =

{
(a1, . . . , an) ∈ Rn ;

∑n
i=1 ai = 0 et

∑n
i=1 a

2
i = 1

}
.Maximiser Sn =

a1a2 + a2a3 + · · · + an−1an + ana1 lorsque (a1, . . . , an) décrit Σ.

3) Probabilités

Exercice 448 [X PC 2025 # 449] Soit λ > 0. Pour n ∈ N∗, soit Xn une variable aléatoire suivant la loi binomiale B(n, λ/n). Soit Y
une variable aléatoire suivant la loi de Poisson de paramètre λ. Montrer que, pour tout k ∈ N, P(Xn = k) −−−−−→

n→+∞
P(X = k).

Exercice 449 [X PC 2025 # 450] Soit (an)n∈N∗ une suite croissante d’entiers naturels non nuls. On tire des dés équilibrés, le n-ième dé
admettant an faces numérotées de 1 à an. On effectue les tirages tant que la suite des résultats est croissante. On note p la probabilité
de faire une infinité de tirages. Donner une condition nécessaire et suffisante sur (an)n∈N∗ pour que p soit non nul.
Exercice 450 [X PC 2025 # 451] On définit pour

A ∈ Mn(R)

, eA =
∑+∞
k=0

Ak

k! .

1. Montrer que eA est bien défini.

Ind. On pourra montrer qu’il existe une norme ∥ · ∥ et une constante C > 0 telles que, pour toutA,B ∈ Mn(R), ||AB|| ≤ C||A||||B||.
On note

R = 1
2I2

, K =
(

0 1
1 0

)
et H =

(
1 0
0 −1

)
.

1. Calculer, pour s, t ∈ R, f(s, t) = Tr(Rei(sR+yH)).

Soit (X,Y) un couple de variables aléatoires à valeurs dans un sous-ensemble fini de R2. On note g(s, t) = E(ei(sX+tY )).
c. Montrer que

∀s1, . . . , sm, t1, . . . , tm ∈ R,
m∑
k=1

m∑
ℓ=1

g(sk − sℓ, tk − tℓ) ≥ 0

()

1. On prend s2 = s3 = t1 = t3 = 2π
3 et t2 = s1 = 0. Montrer que f ne vérifie pas ().

1. Soient H ∈ Sn(R), R ∈ S+
n (Ř) tel que TrR = 1. Montrer qu’il existe une variable aléatoire réelle X telle que ∀s ∈

R,Tr(ReisH) = E(eisX)
Exercice 451 [X PC 2025 # 452] Pour n ∈ N∗, soit Sn une variable aléatoire suivant la loi binomiale B(n, p).

1. Soient n ∈ N∗ et s ≥ 0. Calculer E(esSn).

1. Montrer que, pour tout réel a,

P
(
Sn
n

≥ a

)
≤ exp

(
−n sup

s>0
(as− ln (pes + (1 − p)))

)
.
c. Montrer qu’il existe une fonction H ∈ C0(R+∗,R+∗) ne dépendant pas de n telle que

∀ε > 0, P
(∣∣∣∣Snn − p

∣∣∣∣ ≥ ε

)
≤ exp(−nH(ε))

.
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Exercice 452 [X PC 2025 # 453] Une suite (Yn) de variables aléatoires à valeurs dans N est dite transiente si, pour toute partie
bornée A de N, on a

∑
n∈N P(Yn ∈ A) < +∞.Soient α > 0 et (Xn)n≥1 une suite de variables aléatoires indépendantes telle que,

pour tout i ∈ N∗ on ait Xi ∼ P
(
α
i

)
. On pose Yn = X1 + · · · +Xn. Montrer que (Yn) est transiente.

Exercice 453 [X PC 2025 # 454] Une suite (Sn) de variables aléatoires à valeurs dans N est dite transiente si, pour toute partie
bornée A de N, on a

∑
n∈N P(Sn ∈ A) < +∞. Soit (Xn)n≥1 une suite i.i.d. de variables

aléatoires telle que P(X1 = 1) = p et P(X1 = −1) = 1 − p, avec p ∈]0, 1[. On pose Sn = X1 + · · · + Xn. Montrer que (Sn) est
transiente si et seulement si p ̸= 1/2.
Exercice 454 [X PC 2025 # 455] Soit (Xk)k≥1 une suite de variables aléatoires i.i.d. telle que P(Xk = 1) = p et

P (Xk = −1) = 1 − p

. On pose Sn =
∑n
k=1 Xk , T = inf{n ∈ N∗, Sn = 1} et fn = P (T = n).

1. Montrer que f1 = p et que ∀n ≥ 2, fn = (1 − p)
∑n
k=0 fk−1fn−k .

1. On pose F : x 7→ E
(
xT 1T<+∞

)
. Montrer que F (x) = px+ (1 − p)F (x)2x.

Exercice 455 [X PC 2025 # 456] On considère un marcheur qui peut se situer sur n sites numérotés de 1 à n. À chaque étape, il a une
probabilité pi,j de sauter du site numéro i au site numéro j.
Pour k ∈ N, on note Xk la variable aléatoire donnant le site occupé par le marcheur à l’étape k et µk,i = P (le marcheur est en i à
l’étape k). L’application µk : i ∈ [[1, n]] 7→ µk,i est la loi de Xk .

1. Donner les lois de X1 et X2 et fonction de µ0 et des pi,j .

1. Pour f : [1, n] → R, donner E(f(X1)).

On pose, pour f ∈ R[1,n], l’application T (f) : [1, n] → R définie par : T (f)(i) = E(f(X1)) lorsque la suite (Xn) vérifie µ0 = 1{i}.
On dit que la marche aléatoire est déterministe si : ∀i ∈ [1, n], ∃ji ∈ [1, n], pi,ji

= 1.
1. Interpréter cette dernière définition.

1. Montrer que la marche est déterministe si et seulement si : ∀(f, g) ∈ (R[1,n])2, T(fg) = T(f)T(g).
Exercice 456 [X PC 2025 # 457] Soit n ≥ 2. On munit Rn de sa structure euclidienne canonique.
Soit X = (X1, . . . , Xn)T un vecteur aléatoire à valeurs dans Rn. On suppose que X est à valeurs dans {V1, . . . , Vm} avec, pour
k ∈ [1,m], P(X = Vk) = pk > 0.

1. On dit que X est centrée lorsque E(X) = 0. Montrer que, si X est centrée, alors rg(V1, . . . , Vm) < m.

1. On dit que X est centrée-réduite lorsque E(X) = 0 et que la matrice de covariance (Cov(Xi, Xj))1≤i,j≤n est égale à In.
Montrer que si X est centrée-réduite alors m ≥ n.

1. On suppose que m = n + 1. Montrer que X est centrée-réduite si et seulement si, pour tous i ̸= i ⟨Vi, Vj⟩ = −1 et pour tout i
n = 1

tous i ̸= j, ⟨Vi, Vj⟩ = −1 et, pour tout i, pi = 1
∥Vi∥2+1 .

VII) De Christophe xens

Exercice 457 [ENS 25, ULSR] Une randonneuse doit choisir un emplacement pour poser sa tente. Elle dispose de N emplacements
distincts numérotés, qu’elle parcourt à partir du premier. Elle ne peut pas revenir en arrière, et lorsqu’elle est au niveau d’un em-
placement, elle peut le comparer aux emplacements qu’elle a déjà vu. On suppose que tous les emplacements ont autant de chance
d’être le meilleur. L’objectif est de s’arrêter au niveau du meilleur emplacement. But de l’exercice : trouver une stratégie maximisant
les chances de réussite.

1. Traiter le cas N = 3.

1. (Question donnée après avoir fini Q1) On considère la stratégie suivante : la randonneuse parcourt les k premiers emplacements
sans s’arrêter, et à partir du k+ 1-ième, elle s’arrête dès qu’elle en trouve un meilleur que les précédents. Quel est le meilleur k
(asymptotiquement) ?

Exercice 458 [ENS 25, SR] Soit M =
(
A C
0 B

)
où A ∈ Mn(C), B ∈ Mk(C) et C ∈ Mn,k(C). On écrit

eM =
(

∗ ΦA,B(C)
∗

)
1. Rappeler la valeur de chacune des étoiles.

1. Montrer que ΦA,B est linéaire.

1. On suppose A,B diagonalisables. Montrer que ΦA,B est diagonalisable.
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Exercice 459 [ENS SR 25] Montrer le caractère C∞ sur R2 de la fonction définie par

∀x ̸= y, f(x, y) = ex − ey

x− y
et ∀x, f(x, x) = ex

Exercice 460 [X 2025] Soit α > 0. On définit

z0 = 1 et ∀n ∈ N, zn+1 = αn+ 1
α(n+ 1)zn

1. Montrer que
n∑
i=0

zi ∼ αnzn.

1. Soit (xn) ∈ RN. On note µn = 1
n+ 1

n∑
i=0

xi. On suppose que αxn + (1 − α)µn → x. Montrer que xn → x.

Exercice 461 [ENS 2025, MPI] Soit E un espace préhilbertien de dimension infinie. Soit K une partie de E non vide, bornée et dont
la frontière est compacte. Montrer que K est d’intérieur vide. Question supplémentaire : et si on remplace l’hypothèse "préhilbertien"
par "normé"?
Exercice 462 [ENS 2025, MPI] Dans S++

n (R), on définit la relation d’ordre strict >: A > B ⇐⇒ A − B ∈ S++
n (R). Montrer que

l’application A 7→ A−1 est décroissante sur S++
n (R).

Exercice 463 [X 2025] Soit d ∈ N∗. On note f : z 7→
∑

k≤d,k∈Z

ckz
k , et on suppose que f est définie sur le complémentaire d’un

disque centré en 0. On suppose également que c1, . . . , cd ∈ Q et qu’il existe une infinité de z ∈ Z tels que f(z) ∈ Z.
1. Montrer que c0 ∈ Q.

1. Montrer que ∀k < 0, ck = 0.

1. Autres questions non abordées.
Exercice 464 [X 2025] Quels sont les entiers n ∈ N∗ tels que cos

( 2π
n

)
∈ Q?

Exercice 465 [ENS SR 2025] Soit n ∈ N∗. On note E = {A ∈ S+
n (R), rg(A) = 1}.

1. Montrer que A ∈ E ⇐⇒ ∃U ∈ Rn \ {0}, A = UUT .

1. Soit a ∈ C0 (R+, E). Montrer que les deux propriétés suivantes sont équivalentes :

• ∃u ∈ C0 (R+,Rn \ {0}) , ∀x > 0, a(x) = u(x)u(x)T

• ∃z ∈ C0 (R+,Rn \ {0}) , ∀x > 0, z(x)Ta(x)z(x) > 0

1. On suppose vraies les propriéts de la question 2. Soient b < c dans R+ et i, j ∈ [1, n]. On suppose que ai,i(x) > 0 et aj,j(x) > 0
pour tout x ∈ [b, c]. Montrer que

∃z ∈ C0 ([b, c],Rn \ {0}) ,

 ∀x ∈ [b, c], z(x)Ta(x)z(x) > 0
z(b) = ei
z(c) = ±ej

Exercice 466 On note A =
{

(an) ∈ RN, ∀n ∈ N, nan+1 = (n+ 1)an
}

.
1. Etudier A.

1. Trouver les solutions sur ]−1,1[ de (H) : x(x− 1)y′′ + 3xy′ + y = 0
Exercice 467 [ENS 2025] Soient α ∈ N∗, ppremier impair. On dit qu’une partie D ⊂ Z/pαZ est f génératrice pour f : Z/pαZ×
Z/pαZ → Z/pαZ si

∀y ∈ Z/pαZ, ∃n ≥ 2, ∃d1, . . . , dn ∈ D, y : f (f (. . . f (d1, d2) , d3) . . . , dn)

1. Avec f : (x, y) 7→ x− y, dénombrer les parties D ⊂ Z/pαZ qui sont f -génératrices et de cardinal minimal.

1. Avec f : (x, y) 7→ xy, montrer qu’il n’existe aucune partie f -génératrice de cardinal 1.

1. Avec f : (x, y) 7→ xy, montrer qu’il existe au moins une partie f -génératrice de cardinal 2. On admettra que le groupe des
inversibles de Z/pαZ est cyclique.

Exercice 468 [ENS25, SR] Pour f, g ∈ E = C0([−1, 1],R), on note (f | g) =
∫ 1

−1 fg.

Pour tout entier naturel n, on pose Ln =
(
X2 − 1

)n et Pn = 1
n!2nL

(n)
n .

1. Rappeler pourquoi (.|.) est un produit scalaire.

1. Montrer que pour tout n, Pn est un polynôme de degré n. Montrer que les Pi sont deux à deux orthogonaux.
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1. Montrer que Pn est scindé simple à racines dans ] − 1, 1[.

1. Ecrire Pn sous la forme
∑n
k=0 αk(X − 1)n−k(X + 1). Montrer que (X − 1)nP

(
X+1
X−1

)
est un polynôme.

1. Etudier la rationnalité des racines de Pn
Exercice 469 [X 2025] Soit

∑
(anzn) une série entière de rayon R > 0 et de somme f . Soeint p ∈ N∗ et M ∈ Mp(C) telle que

∀λ ∈ Sp(M), |λ| < R.
1. Montrer que

∑
(anMn) converge.

1. Peut-on trouver une suite (an) telle que le résultat soit vrai pour toute matrice M ∈ Mp(C) telle que ∀λ ∈ Sp(M), |λ| ≤ R.
Exercice 470 [X 2025] On note Bn(R) l’ensemble des matrices M ∈ On(R) telles que det(M) = 1 et −1 /∈ Sp(M). On note

T : M 7→ (In −M) (In +M)−1

1. Montrer que T est bien définie sur An(R) et que T (An(R)) ⊂ Bn(R).

1. Montrer que T (Bn(R)) ⊂ An(R).

1. On prend n = 2. Soit M =
(

0 − tan(θ)
tan(θ) 0

)
avec |θ| < π

2 . Que dire de T (M) et T 2(M)?

Exercice 471 [ENS 2025] On dit qu’une matrice est de Bordaud si ses coefficients diagonaux sont exactement ses valeurs propres
comptées avec multiplicité.

1. Montrer que A est semblable à une matrice de Bordaud si et seulement si A est trigonalisable dans R.

1. Existe-t-il une matrice symétrique dans C, non diagonalisable, qui est de Bordaud?

1. Caractériser les matrices A qui sont normales, i.e. ATA = AAT , et de Bordaud.
Exercice 472 [ENS 2025] 1. Soit n ∈ N. SoientA,B diagonalisables qui commutent. Montrer queA etB sont codiagonalisables.

1. Soit Φ : S++
n (R) ×On(R) → GLn(R) telle que Φ(H,Q) = HQ. Montrer que Φ est une bijection.

1. Montrer que Φ−1 est continue.
Exercice 473 [X 2025] Trouver deux dés non biaisés tels que la probabilité de la somme soit la même que pour deux dés usuels. Les
valeurs des faces sont des entiers naturels, pas forcément distincts et les dés peuvent être différents.
Exercice 474 Ci-dessous, version alternative du même exercice Soient f, g : R → R deux fonctions telles que :

• Il existe α, β > 0 tels que α+ β > 1 ;

• Il existe A,B > 0 tels que : ∀x, y ∈ R, |f(x) − f(y)| ≤ A|x− y|α, |g(x) − g(y)| ≤ B|x− y|β .

Soit S = {x0, x1, . . . , xn} avec x0 < x1 < · · · < xn, a = x0, b = xn. On définit :

JS(f, g) :=
n−1∑
i=0

f (xi) (g (xi+1) − g (xi))

1. Montrer que : |JS(f, g) − f(a)(g(b) − g(a))| ≤ AB|2(b− a)|α+βζ(α+ β), où ζ désigne la fonction zêta de Riemann.

1. Montrer qu’il existe une unique valeur I ∈ R telle que :

∀ε > 0, ∃δ > 0, si max
0≤i<n

|xi+1 − xi| < δ ⇒ |JS(f, g) − I| < ε

Exercice 475 Soient f et g deux fonctions définies sur R vérifiant :

∀x, y ∈ [a, b], |f(x) − f(y)| ≤ A|x− y|α
|g(x) − g(y)| ≤ B|x− y|β

Soient a < b et S = (xk) une subdivision de [a, b] de cardinal n. On note :

JS(f, g) =
n−1∑
k=0

f (xk) (g (xk+1) − g (xk))

1. Montrer qu’il existe un indice i entre 1 et n− 1 tel que xi+1 − xi−1 <
2(b−a)
n−1 .

1. Soit un tel i, et S′ = S \ {xi}. Exprimer simplement puis majorer |JS(f, g) − JS′(f, g)|.

1. Montrer que |JS(f, g) − f(a)(g(b) − g(a))| ≤ AB(2(b− a))α+βζ(α+ β).
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1. Montrer qu’il existe un réel I tel que pour tout ε > 0, il existe δ > 0 tel que pour toute subdivision S de [a, b] de pas inférieur
à δ,

|JS(f, g) − I| < ε

Exercice 476 [X 2025] Soit φ : R[X] → R[X] une application linéaire.

1. Montrer qu’il existe une suite de polynômes (gn)n≥0 tels que pour tout P ∈ R[X], on ait : φ(P ) =
+∞∑
n=0

gn · P (n).

1. Déterminer les polynômes gn dans le cas particulier où φ(P )(X) =
∫ X

0
P (t) dt.

Exercice 477 [X 2025] On pose u0 = 1
2 et ∀n, un = un−1(1 − un−1).

1. Etudier la limite de (un).

1. Montrer que un ∼ 1
n .

1. Montrer que 1
un

− n ∼ ln(n).

VIII) Mines - MP

1) Algèbre

Exercice 478 [Mines MP 2025 # 458] Pour n ≥ 2, on pose f(n) =
∏
d∈[1,n−1]

d|n
d. Résoudre l’équation f(n) = n.

Exercice 479 [Mines MP 2025 # 459] Soit n ∈ N∗ dont on note {d1, . . . , dk} l’ensemble des diviseurs positifs. Montrer que :

√
n ⩽

1
k

k∑
i=1

di ⩽
n+ 1

2 .

Exercice 480 [Mines MP 2025 # 460] Soient p, q deux entiers naturels premiers entre eux tels que p < q. Montrer qu’il existe un
entier n ≥ 1 et une liste strictement croissante (a1, . . . , an) ∈ (N∗)n telle que

p

q
=

n∑
k=1

(−1)k−1

ak
et a1 ⩽

⌊
q

p

⌋
.

Exercice 481 [Mines MP 2025 # 461] 1. Soit p premier impair. Pour k ∈ [1, p−1] montrer qu’il existe un unique k−1 ∈ [[1, p− 1]].
tel que k · k−1 ≡ 1 [p]. Montrer que

∑p−1
k=1 k

−1 ≡ 0 [p].

1. Soit m un entier naturel impair. Montrer que
∑p−1
i=1 k

m ≡ 0 [p].

1. Ici, p ≥ 5. Montrer que pour k ∈ [1, p− 1], il existe un unique k∗ ∈ [1, p21] tel que

k · k∗ ≡ 1 [p2].

Montrer que
∑p−1
k=1 k

∗ ≡ 0 [p2].
Exercice 482 [Mines MP 2025 # 462] On note τ(n) (resp. σ(n) ) le nombre de diviseurs positifs de n (resp. la somme des diviseurs
positifs de n).

1. Montrer que si n ∧m = 1 alors σ(nm) = σ(n)σ(m).

1. Montrer que si σ(n) est premier alors τ(n) l’est aussi.
Exercice 483 [Mines MP 2025 # 463] Pour n ∈ N, on pose Mn = 2n1, u = 2 +

√
3, v = 2

√
3 et sn = u2n + v2n .

1. Montrer que, si Mn est premier, alors n l’est aussi.

1. Montrer que ∀n ∈ N, sn+1 = s2
n2. Qu’en déduire sur la suite (sn)? c) Pour q ∈ N∗, on pose B = (Z/qZ)2 et, pour

(x, y), (x′, y′) ∈ B, on pose (x,y) + 2(x’, y’) = (x + x’, y + y’) et (x, y) × (x′, y′) = (xx′ + 3yy′, xy′ + yx′).

• i) Montrer que (B,+,×) est un anneau commutatif.

• ii) On pose A = Z +
√

3Z et π : a+
√

3b ∈ A 7→ (a, b) ∈ B.

Montrer que π est bien défini et est un morphisme surjectif d’anneaux.

1. Soit n un nombre premier. Montrer que, si Mn divise sn−2, alors Mn est premier. Ind. On pourra raisonner par l’absurde en
considérant le plus petit diviseur premier q de Mn et l’ordre de (2, 1) dans B×.-

Exercice 484 [Mines MP 2025 # 464] Soient A un anneau commutatif intègre et a0, a1, . . . , an dans A. Montrer que, si an ̸= 0,
l’équation a0 + a1x+ · · · + anx

n = 0 admet au plus n solutions dans A.
Exercice 485 [Mines MP 2025 # 465] Soient m et n dans N∗. Déterminer les morphismes de groupes de Z/mZ dans Z/nZ.
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Exercice 486 [Mines MP 2025 # 466] Soient p un nombre premier, etG un groupe fini d’ordre 2p. Montrer queG possède un élément
d’ordre p.
Exercice 487 [Mines MP 2025 # 467] On note Sn le groupe des permutations de {1, . . . , n} et Mn le maximum des ordres des
éléments de Sn.

1. Montrer que n ≤ Mn ≤ n!.

1. Si n ≥ 4, montrer que Mn ⩽ max2⩽k⩽n−1(kMn−k).

1. Montrer que Mn = O(3n/3).
Exercice 488 [Mines MP 2025 # 468] Soit G un groupe fini dont tous les éléments sauf le neutre sont d’ordre 2.

1. Montrer que G est abélien.

1. Soient H un sous-groupe de G et y ∈ G \H . Montrer que H ∪ yH est un sous-groupe de G, et que l’union est disjointe.

1. En déduire que |G| est une puissance de 2.

1. Calculer le produit de tous les éléments de G.
Exercice 489 [Mines MP 2025 # 469] Soit G un groupe abélien fini dont l’ensemble des automorphismes est de cardinal 3.

1. Montrer que φ : x ∈ G 7→ x−1 est un automorphisme de G, puis que ∀x ∈ G, x2 = e.
b ) Montrer que G admet un sous-groupe V d’ordre 4 et déterminer les automorphismes de V .

1. Montrer qu’il existe r ∈ N tel que G soit isomorphe à V × (Z/2Z)r , et en déduire une absurdité.
Exercice 490 [Mines MP 2025 # 470] SoientG un groupe abélien fini et Ĝ l’ensemble des morphismes de groupes deG dans (C∗,×).

1. Montrer que Ĝ est un groupe fini.

1. Soit φ ∈ Ĝ non trivial. Montrer que
∑
g∈G φ(g) = 0.

1. Montrer que Ĝ est une partie libre de l’espace vectoriel F(G,C).

1. En déduire que |Ĝ| ≤ |G|.
Exercice 491 [Mines MP 2025 # 471] Soient K un corps, A, B deux parties finies de K. On note m = card(A) et n = card(B). On
pose C = {a+ b, (a, b) ∈ A×B}.

1. Pour K = R, montrer que Card(C) ≥ m+ n− 1.

1. Montrer le même résultat pour K = C. On pourra utiliser l’ordre lexicographique sur C. Pour K = Z/pZ, où p est premier, on
veut montrer que card(C) ≥ min(p,m+n− 1). On suppose par l’absurde que card(C) = m+n− q avec q ≥ 2 et m+n-q< p.

1. Montrer qu’il existe f : A → Z/pZ et g : B → Z/pZ telles que :

(i) ∀k ∈ {0, . . . ,m− 2},
∑
a∈A f(a)ak = 0, (ii)

∑
a∈A f(a)am−1 = 1,(iii)

∀k ∈ {0, . . . , n− 1} \ {n+ 1 − q},
∑
b∈B

g(b)bk = 0

, (iv)
∑
b∈B g(b)bn+1−q = 1.

1. Conclure en calculant de deux manières différentes la quantité :

Q =
∑

(a,b)∈A×B

f(a)g(b)
∏
c∈C

(a+ b− c).

Exercice 492 [Mines MP 2025 # 472] Soient A un anneau commutatif et I un idéal de A. On dit que I est un idéal premier si I est
distinct de A et si, pour tout (x, y) ∈ I2, la condition xy ∈ I implique x ∈ I ou y ∈ I .

1. Déterminer les idéaux premiers de Z .

1. Soit P ∈ K[X] irréductible. Montrer que PK[X] est un idéal premier de K[X].

1. Soient J et K deux idéaux et I un idéal premier. Montrer que : J ∩K = I implique J = I ou K = I .

1. Soit A un anneau commutatif non trivial dont tous les idéaux distincts de A sont premiers. Montrer que A est intègre puis que
A est un corps.

Exercice 493 [Mines MP 2025 # 473] Soit i un idéal d’un anneau commutatif a. On appelle radical de I l’ensemble
√
I = {x ∈ A :

∃n ∈ N, xn ∈ I}.
1. Montrer que

√
I est un idéal de A contenant I .

1. Déterminer les radicaux des idéaux de Z.
Exercice 494 [Mines MP 2025 # 474] Soit P ∈ R[X] non constant tel que, pour tout x ∈ R, P (x) ≥ 0.
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1. Montrer que P est de la forme

P = λ×
p∏
i=1

(X − αi)2ai ×
q∏
j=1

[
(X − λj)nj (X − λj)nj

]
,

avec λ ≥ 0, les αi dans R et les λi dans C \ R.
1. Montrer qu’il existe A,B ∈ R[X] tels que P = A2 +B2.

Exercice 495 [Mines MP 2025 # 475] Soit D désigne le disque unité ouvert de C. Soit P ∈ C[X] de degré n ∈ N∗. On suppose
que P possède une racine z0 ∈ C vérifiant |z0| < 1. Montrer qu’il existe Q ∈ Cn[X] tel que : ∀z ∈ U, |P (z)| = |Q(z)| et
∀z ∈ D, |P (z)| < |Q(z)|.
Exercice 496 [Mines MP 2025 # 476] Soit P ∈ Z[X] unitaire de degré n ≥ 1. On note λ1, . . . , λn ses racines complexes, distinctes
ou non. Montrer que, pour tout q ∈ N∗, le polynôme

∏n
k=1(Xλqk) est encore à coefficients entiers.

Exercice 497 [Mines MP 2025 # 477] Soit P ∈ Rn[X], unitaire de degré n ≥ 2, dont toutes les racines sont réelles et négatives.
Montrer que P’(0) P (1) ≥ nn+1

(n−1)n−1P (0).
Exercice 498 [Mines MP 2025 # 478] Montrer qu’il existe un polynôme à coefficients entiers dont sin π

180 est racine.
Exercice 499 [Mines MP 2025 # 479] Soit n ∈ N∗. On pose Pn =

∑n
k=0(−1)k

(2n+1
2k+1

)
Xn−k .

1. Montrer que sin((2n+ 1)θ) = (sin θ)2n+1Pn(cos2(θ)/ sin2(θ)) pour tout θ ∈ R \ πZ.

1. En déduire que
∑n
k=1

cos2(kπ/(2n+1))
sin2(kπ/(2n+1)) = n(2n−1)

3 .

1. Conclure que
∑+∞
k=1

1
k2 = π2

6 .
Exercice 500 [Mines MP 2025 # 480] On fixe un entier n ∈ N∗.
note

1. Montrer que l’équation (En) : tan(y) = 2n tan(y/2n) possède au moins n-1 solutions dans ]0, nπ[.

1. Expliciter deux polynômes A,B à coefficients réels tels que tan(2nt) = A(tan t)
B(tan t) pour

tout réel t tel que tan t et tan(2nt) soient définis. c) Mettre en évidence un polynôme P tel que les solutions de (En) soient les
solutions de P (1/ tan2(y/2n)) = 0. d) Dénombrer les solutions de (En) dans ]0, nπ[.
Exercice 501 [Mines MP 2025 # 481] 1. Montrer que, pourn ∈ N∗, il existePn ∈ Z[X] unitaire tel quePn

(
X + 1

X

)
=Xn+ 1

Xn .

1. Déterminer les r ∈ Q tels que cos(πr) ∈ Q.
Exercice 502 [Mines MP 2025 # 482] Pour une partie finie I = {x1, . . . , xn} (de cardinal n) d’un R -espace vectoriel E, on

Conv(I) =
{

n∑
k=0

λkxk ; (λ1, . . . , λn) ∈ (R+)n,
n∑
k=0

λk = 1
}
.

Pour P ∈ C[X], on note Z(P ) l’ensemble de ses racines complexes. Soit P ∈ C[X] non constant.
1. Écrire la décomposition en éléments simples de P ′

D .

1. Montrer que Conv(Z(P ′)) ⊂ Conv(Z(P )). c) Soit H un demi-plan fermé de C contenant au moins une racine de P’. Montrer
que H - contient au moins une racine de P . Démontrer ensuite que P (H) = C.

Exercice 503 [Mines MP 2025 # 483] Quelle est la dimension du Q -sous-espace vectoriel de R engendré par U5 ?
Exercice 504 [Mines MP 2025 # 484] SoitA ∈ Mn(Z). Pour tout x ∈ Zn, on pose Λ(x) = pgcd(x1, . . . , xn). Montrer l’équivalence
des énoncés suivants : i) Λ(Ax) = Λ(x) pour tout x ∈ Rn ; ii) det A = ±1.

Exercice 505 [Mines MP 2025 # 485] Soit A =


1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1

.- a) Calculer An pour n ∈ Z.

1. Trouver B ∈ M4(Q) telle que B2 = A.
Exercice 506 [Mines MP 2025 # 486] Soient A,B ∈ Mn(K) et P ∈ K[X] tel que P (0) ̸= 0. On suppose que AB = P(A). Montrer
que A est inversible puis que A et B commutent.
Exercice 507 [Mines MP 2025 # 487] 1. Soit φ une forme linéaire sur Mn(R). Montrer qu’il existe une unique A ∈ Mn(R)

vérifiant ∀M ∈ Mn(R), φ(M) = tr(AM).

1. Déterminer les formes linéaires φ de Mn(R) vérifiant ∀M,N ∈ Mn(R), φ(MN) = φ(NM).
Exercice 508 [Mines MP 2025 # 488] Soit M ∈ Mn(C) telle que rgM = 1.

1. Montrer qu’il existe a, b ∈ Cn tels que M = abT .
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1. Montrer que M2 = (trM)In. c) Calculer χM . À quelle condition nécessaire et suffisante la matrice M + In est-elle inversible ?
Dans ce cas, expliciter son inverse.

Exercice 509 [Mines MP 2025 # 489] Déterminer les matrices A ∈ Mn(R) telles que, pour toute matrice B ∈ Mn(R), AB = 0
implique BA = 0.

Exercice 510 [Mines MP 2025 # 490] Trouver les solutions dans M2(R) de X2 +X =
(

1 1
1 1

)
.

Exercice 511 [Mines MP 2025 # 491] Soient z ∈ C∗ et M = (zij)1≤i,j≤n ∈ Mn(C).
1. Déterminer une condition nécessaire et suffisante sur z pour que M soit inversible.

1. Calculer rg M en fonction de z.
Exercice 512 [Mines MP 2025 # 492] Soit (a1, . . . , an) ∈ Kn. On pose an+1 = a1. Soit M = (mi,j)1⩽i,j⩽n ∈ Mn(K) définie par :
mi,j = aij + aij+1.

1. Calculer detM .
b ) Étudier l’inversibilité de M .
Exercice 513 [Mines MP 2025 # 493] Soient E un K -espace vectoriel de dimension n, u ∈ L(E) nilpotent d’indice n-1.

1. Calculer dim (Ker uj ) pour 1 ≤ j ≤ n− 1.

1. Montrer qu’il existe une base dans laquelle la matrice de u est



0 1 0 · · · 0 0
...

. . . . . . . . .
...

...
...

. . . . . . 0
...

...
. . . 1

...

0 · · · · · · · · · 0
...

0 · · · · · · · · · · · · 0


.

Exercice 514 [Mines MP 2025 # 494] Dans Mn(C) avec n ≥ 2, soient N l’ensemble des matrices nilpotentes et H celui des matrices
de trace nulle.- a) Montrer que V ect(N ) ̸= N .

1. Montrer que Vect(N ) ⊂ H. A-t-on H = Vect(N )?
Exercice 515 [Mines MP 2025 # 495] Soient A et B dans GLn(R).
Montrer que l’ensemble des matrices de {tA+ (1 − t)B, t ∈ [0, 1]} n’appartenant pas à GLn(R) est fini de cardinal au plus n.
Exercice 516 [Mines MP 2025 # 496] 1. Que peut-on dire du déterminant d’une matrice deGLn(Z), le groupe des inversibles de

l’anneau Mn(Z)?

1. Soient B,C ∈ Mn(R). On suppose que, pour tout k ∈ [0, 2n], B + kC ∈ GLn(Z). Calculer | detB| et detC .
Exercice 517 [Mines MP 2025 # 497] Soient M ∈ Mn(R) et k ∈ N∗. On suppose que kMk+1 = (k + 1)Mk . Montrer que InM est
inversible et déterminer son inverse.
Exercice 518 [Mines MP 2025 # 498] 1. Définir la fonction indicatrice d’Euler puis exprimer φ(n) en fonction de la décomposi-

tion primaire de n ∈ N∗.

1. Montrer que, pour tout n ∈ N∗, n =
∑
n∈N φ(d).

1. En déduire le déterminant de la matrice (i ∧ j)0≤i,j≤n ∈ Mn+1(R).
Exercice 519 [Mines MP 2025 # 499] Montrer que : ∀t ≥ 0, ∀A ∈ Mn(R), det(A2 + tIn) ≥ 0.
Exercice 520 [Mines MP 2025 # 500] 1. Soient P0, . . . , Pn−1 des polynômes de C[X] avec Pk de degré k et z0, . . . , zn−1 des

nombres complexes. Calculer det(Pi−1(zj−1))1≤i,j≤n.

1. Soient x0, x1, . . . , xn ∈ Z. Montrer que
∏

0≤i<j≤n
xjxi

ji ∈ Z.

Exercice 521 [Mines MP 2025 # 501] Soient a1 < a2 < · · · < an et b1 < b2 < · · · < bn des réels et M = (eaibj )1≤i,j≤n.
1. Montrer que detM > 0 lorsque n = 2.

1. Calculer detM lorsque bk = k1 pour tout k.

1. Montrer que M est inversible puis que detM > 0.
Exercice 522 [Mines MP 2025 # 502] Soient A1, . . . , An ∈ Mn(R). On suppose que :

∑
i̸=j(AiAj +AjAi) = 0. Montrer que :

det
(

n∑
k=1

(Ak + In)2 − (n− 2)In

)
≥ 0.
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Exercice 523 [Mines MP 2025 # 503] 1. Soit A ∈ Mn(Z) dont tous les coefficients diagonaux sont impairs et les autres pairs.
Montrer que A est inversible.

1. Est-ce encore le cas si on suppose les coefficients diagonaux pairs et les autres impairs ?

1. On dispose de 2p+1 masses telles que, dès qu’on en enlève une, les 2p masses restantes peuvent être regroupées en deux en-
sembles de cardinal p de même masse. Montrer que les 2p+1 masses sont toutes égales.

Exercice 524 [Mines MP 2025 # 504] Soit E un K -espace vectoriel, où K est un sous-corps de C. Soient f, g ∈ L(E) tels que ()
f ◦ g − g ◦ f = id.

1. Vérifier que, pour tout P ∈ K[X], f ◦ P (g) − P (g) ◦ f = P ′(g) et montrer que (gn)n∈N est libre.

1. Pour E = R[X], donner un exemple qui vérifie ().
Exercice 525 [Mines MP 2025 # 505] Soient A ∈ GLn(C) et N ∈ Mn(C) nilpotente telles que AN = NA. Montrer qu’il existe
B ∈ Mn(C) telle que B2 = A+N .
Exercice 526 [Mines MP 2025 # 506] Soient A, B dans Mn(K) et k ∈ N∗. On suppose que Ak+1Bk = A et que A et B sont
équivalentes.

1. Montrer que dim KerA = dim KerA2.

1. Montrer que Kn = KerA⊕ ImA.

1. Montrer que Bk+1Ak = B.
Exercice 527 [Mines MP 2025 # 507] Soient K un sous-corps de C et A,B ∈ Mn(K) deux matrices semblables. Montrer que Com
A et Com B sont semblables.
Exercice 528 [Mines MP 2025 # 508] Soient n ≥ 2 et K = R ou C.

1. Calculer Com(Jr) où Jr =
(
Ir 0
0 0

)
avec 0 ⩽ r ⩽ n.

1. Montrer que Com(AB) = Com(A) Com(B) pour tout couple (A,B) ∈ Mn(K)2.

1. Exprimer rg(Com(A)) en fonction de rgA. d) Étudier l’injectivité de γ : A 7→ Com(A). Quelle est son image?
Exercice 529 [Mines MP 2025 # 509] Soit E un K-espace vectoriel de dimension n. Soient p1, . . . , pn ∈ L(E) \ {0}. On suppose
que : ∀(i, j) ∈ [1, n]2, pi ◦ pj = δi,jpi.

1. Montrer que : ∀i ∈ [1, n], rg pi = 1. b) Montrer que la somme Im p1 + · · · + Im pn est directe.
Exercice 530 [Mines MP 2025 # 510] Soit A ∈ Mn(R). a) Montrer que : rgA = rgA2 ⇐⇒ Rn = ImA⊕ KerA.

1. Montrer que rg A = rgA2 si et seulement si t(A+ tIn)−1 possède une limite finie quand ttend vers 0+.
Exercice 531 [Mines MP 2025 # 511] Si V est un sous-espace vectoriel de Mn(K), on note V o l’ensemble des M de Mn(K) telles
que ∀A ∈ V, tr(AM) = 0 ; l’ensemble V o est un sous-espace vectoriel de Mn(K).

1. Exprimer la dimension de V o en fonction de celle de V .

1. Déterminer V o si V est le sous-espace des matrices triangulaires supérieures de Mn(K).
Exercice 532 [Mines MP 2025 # 512] Soit V un sous-espace vectoriel de Mn(Q) tel que V \ {0} ⊂ GLn(Q).

1. Montrer que dimV ≤ n.

1. On note S la matrice de Mn(Q) définie par si,j =


1 si i = j + 1
2 si i = 1 et j = n

0 sinon.
. Soient λ0, . . . , λn−1 ∈ Z tels que λ0 soit impair.

Montrer que
∑n−1
k=1 λkS

k ∈ GLn(Q).

1. En déduire que dans la question a) l’égalité est possible.
Exercice 533 [Mines MP 2025 # 513] Soient E un C -espace vectoriel de dimension finie, A une sous-algèbre de L(E) telle que les
seuls sous-espaces stables par tous les éléments de A soient {0} et E.

1. Soit x ∈ E. Donner Γx = {f(x), f ∈ A}.

1. i) Soient u ∈ A tel que rg(u) = r ≥ 1 et f ∈ A. Montrer qu’il existe α ∈ C tel que rg(u ◦ f ◦ uαu) < r.

• ii) En déduire qu’il existe u ∈ A tel que rg(u) = 1.

1. Montrer que A = L(E).
Exercice 534 [Mines MP 2025 # 514] Soient E un K -espace vectoriel et u ∈ L(E) vérifiant Im u2 = Keru3. Montrer que :
Im u = Keru4.
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Exercice 535 [Mines MP 2025 # 515] Soit A ∈ Mn(C). On note S(A) sa classe de similitude. On suppose S(A) bornée. a) Montrer
que A est diagonale à l’aide des matrices de dilatation In + (λ− 1)Ei,i, où λ ∈ C et i ∈ {1, ..., n}. Montrer que toute matrice de S(A)
est diagonale.

1. À l’aide des matrices de transvection In + Ei,j où i ̸= j, montrer que A ∈ CIn.
Exercice 536 [Mines MP 2025 # 516] Soit K un sous-corps de C. a) Soient A,B ∈ Mn(K) telles que A, B et A + B sont nilpotentes.
Montrer : tr(AB) = 0.

1. Soit (A1, . . . , Ar) une famille libre de Mn(K).
Soit Φ : B ∈ Mn(K) 7→ ((tr(A1B), . . . , tr(ArB)) ∈ Kr . Montrer que Φ est surjective.

1. Soit G un sous-espace vectoriel de Mn(K) constitué de matrices nilpotentes.

• i) Exprimer la dimension de G◦ = {B ; ∀A ∈ G, tr(AB) = 0} en fonction de celle de G.

• ii) Montrer que dim G ⩽ n(n−1)
2 .

Exercice 537 [Mines MP 2025 # 517] Soit n ∈ N∗. Soit D l’ensemble des matrices M ∈ Mn(C) telles que mi,j = 0 pour tous
i, j ∈ [1, n] tels que i j est impair.

1. Montrer que D est une sous-algèbre de Mn(C).

1. Soit M ∈ GLn(C). Montrer que M ∈ D si et seulement si Com(M) ∈ D.

1. L’équivalence précédente reste-t-elle vraie si on ne suppose plus M inversible ?
Exercice 538 [Mines MP 2025 # 518] Déterminer les applications f de Rn dans Mn(R) telles que, pour tout X ∈ Rn et toute
P ∈ GLn(R), on ait f(PX) = Pf(X)P−1.
Exercice 539 [Mines MP 2025 # 519] Soient n ≥ 2 et f ∈ L(Mn(C)). On suppose que, pour toute matrice A ∈ GLn(C), la matrice
f(A) appartient à GLn(C).

1. Soit A ∈ Mn(C) \ GLn(C).

• i) Montrer que A est équivalente à une matrice nilpotente.

• ii) En déduire que f(A) /∈ GLn(C).

1. Montrer que f est un automorphisme de Mn(C).
Exercice 540 [Mines MP 2025 # 520] Soit Dn le sous-groupe de GLn(C) constitué des matrices diagonales inversibles. Déterminer
les P ∈ GLn(C) telles que ∀M ∈ Dn, PMP−1 ∈ Dn.
Exercice 541 [Mines MP 2025 # 521] Soit φ définie sur R[X] par φ(P ) = 1

2 (P (X) + P (−X)) + X
2 (P (X) − P (−X)).

1. Montrer que Kerφ = {(1X)P, P ∈ R[X] impair} et Imφ = {P ∈ R[X] pair}. b) Montrer que Imφ et Kerφ sont supplémentaires. Que dire de φ?
Exercice 542 [Mines MP 2025 # 522] Soit M ∈ Mn(C). Déterminer la comatrice de la comatrice de M .
Exercice 543 [Mines MP 2025 # 523] Rappeler la base canonique de Mn(R). Donner une base de Mn(R) formée de matrices
diagonalisables.
524 Soient n, d > 2 des entiers fixés. On note Lla matrice de M ( C ) dont tous les coeffi-
Exercice 544 [Mines MP 2025 # 524] Soient n, d ≥ 2 des entiers fixés. On note J la matrice de Mn(C) dont tous les coefficients
sont égaux à 1. Soit M ∈ Sn(R) vérifiant les conditions suivantes :

1. mi,i = 0 pour tout 1 ≤ i ≤ n ; ii) sur chaque ligne, M a exactement d coefficients égaux à 1 et n - d coefficients nuls ;
iii) pour tous 1 ⩽ i ̸= j ⩽ n : si mi,j = 0 alors il existe un unique k ∈ [1, n] tel que mi,k = mk,j = 1, − sinmi,j = 1 alors il n’existe
aucun k ∈ [[1, n]] tel que mi,k = mk,j = 1.

1. Déterminer le spectre de J .

1. Exprimer MJ, JM et M² en fonction de M , J et In .

1. Montrer que Ker(M − dIn) = Im J . Que peut-on en déduire concernant le couple (n,d) ?

1. Montrer que les autres valeurs propres de M sont racines d’un polynôme du second degré à préciser.
Exercice 545 [Mines MP 2025 # 525] Soit A ∈ Mn(R) vérifiant : ∀i ∈ [1, n],

∑n
i=1 ai,j = 1 et ∀(i, j) ∈ [1, n]2, ai,j ∈ [0, 1].

1. Montrer que 1 est valeur propre de A puis que si λ ∈ SpC(A), alors |λ| ≤ 1.

1. On suppose que ∀(i, j) ∈ [1, n]2, ai,j > 0.

Montrer que 1 est la seule valeur propre complexe de A de module 1. c) On revient au cas général et l’on suppose que λ est une valeur
propre complexe de A de module 1. Montrer que : λn! = 1.
Exercice 546 [Mines MP 2025 # 526] Soient A, B, C dans M2(C) telles que C = AB BA et C commute avec A et B.
Exercice 547 [Mines MP 2025 # 526] Soient A, B, C dans M2(C) telles que C = AB BA et C commute avec A et B. Montrer que C
= 0.
Exercice 548 [Mines MP 2025 # 527] Soient n ≥ 2 et f un endomorphisme de Cn de rang 2.
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1. Exprimer χf en fonction de Tr f et Tr f2.

1. Déterminer en fonction de tr f et tr f² si f est diagonalisable.
Exercice 549 [Mines MP 2025 # 528] Soient A ∈ Mn(R) et fA : M ∈ Mn(R) 7→ ATMA ∈ Mn(R).

1. Soient (X1, . . . , Xn) et (Y1, . . . , Yn) deux familles de Rn. Montrer que (X1, . . . , Xn) et (Y1, . . . , Yn) sont deux bases de Rn si
et seulement si (XiY

T
j )1⩽i,j⩽n est une base de Mn(R).

1. Montrer que A est inversible si et seulement si fA est bijective.- c) On suppose que A est diagonalisable. Montrer que fA est
diagonalisable.

1. Soient λ une valeur propre non nulle de AT et Y un vecteur propre associé. Montrer que :

1. Soient

λ une valeur propre non nulle de AT et Y un vecteur propre associé. Montrer que : F = {XY T , X ∈ Rn} est un sous-espace stable
par fA.
Exercice 550 [Mines MP 2025 # 529] Soit M ∈ Mn(C) telle que M2 +MT = In.

1. Montrer que M est inversible si et seulement si 1 /∈ sp(M).

1. Montrer que M est diagonalisable.

1. Déterminer les M dans Sn(R), puis dans Mn(R), telles que M2 +MT = In.
Exercice 551 [Mines MP 2025 # 530] Soient J ∈ Mn(C) la matrice dont tous les coefficients sont égaux à 1 et A ∈ Mn(C) telle
que A3 = J . Montrer que tr(A)3 = tr(J).
Exercice 552 [Mines MP 2025 # 531] Soit M ∈ Mn(C). Déterminer l’ensemble I = {P ∈ C[X], P (M) nilpotente}.
Exercice 553 [Mines MP 2025 # 532] Soient n ≥ 2,A,B ∈ R[X] avecB scindé à racines simples de degré n+1, et f l’application qui
à P associe le reste de la division euclidienne de AP par B. Montrer que f est un endomorphisme de Rn[X]. Quelles sont ses valeurs
propres? f est-il diagonalisable?
Exercice 554 [Mines MP 2025 # 533] Soit (A,B) ∈ Mn(C)2. Montrer qu’il y a équivalence entre :

1. A et B ont une valeur propre commune ;
ii) il existe C ∈ Mn(C) non nulle telle que AC = CB.
Exercice 555 [Mines MP 2025 # 534] Soit A ∈ Mn(C) tel que Tr(An) ̸= 0 et, pour tout k ∈ [1, n− 1], Tr(Ak) = 0. Montrer
Exercice 556 [Mines MP 2025 # 535] Soit E = C0([0, 1],R). Si f ∈ E, soit T (f) : x ∈ [0, 1] 7→

∫ 1
0 min(x, t)f(t)dt. Montrer que

T ∈ L(E). Déterminer les éléments propres de T .
Exercice 557 [Mines MP 2025 # 536] On identifie éléments de R[X] et fonctions polynomiales de R dans R.

1. Montrer que u : P 7→
[
x 7→

∫ +∞
0 P (x+ t)e−t dt

]
constitue un endomorphisme de E.

1. Montrer que u(P ) =
∑+∞
k=0 P

(k) pour tout P ∈ R[X].

1. Déterminer les éléments propres de u.

que A est diagonalisable.

1. Caractériser les endomorphismes de R[X] qui commutent avec u.
Exercice 558 [Mines MP 2025 # 537] On pose SL2(Z) = {M ∈ M2(Z), det(M) = 1}.

1. Vérifier que c’est un groupe. b) Quels sont les ordres finis possibles d’une matrice de SL2(Z)?

1. Existe-t-il une matrice de SL2(Z) d’ordre infini ?
Exercice 559 [Mines MP 2025 # 538] On identifie ici les polynômes à coefficients dans C avec leur fonction polynomiale associée.
Soit u qui à P ∈ C[X] associe u(P ) : z 7→ e−z∑+∞

n=0
P (n)
n! z

n.- a) Montrer que u est bien définie et que u(P ) ∈ C[X].
1. Montrer que u est un automorphisme de C[X]. Déterminer ses éléments propres.

Exercice 560 [Mines MP 2025 # 539] Soient E un C -espace vectoriel de dimension finie et u, v ∈ L(E). Montrer qu’il existe un
vecteur propre commun à u et v dans les cas suivants : u ◦ v = 0, u ◦ v = αu et u ◦ v = αu+ βv avec α, β ∈ C. Montrer que u et v
sont alors cotrigonalisables.
Exercice 561 [Mines MP 2025 # 540] Soient A,B ∈ Mn(C) telles que AB + BA = A. Montrer que si n est impair alors Aet B ont un
vecteur propre commun. Que dire si n est pair ?
Exercice 562 [Mines MP 2025 # 541] Soient A,B ∈ Mn(R). On suppose que AB est diagonalisable.

1. La matrice BA est-elle diagonalisable?

1. La matrice (BA)2 est-elle diagonalisable?
Exercice 563 [Mines MP 2025 # 542] Soit A ∈ Mn(R) une matrice diagonalisable. On pose :

• C(A) = {B ∈ Mn(R), AB = BA}
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• C′(A) = {B ∈ Mn(R); ∀C ∈ C(A), CB = BC}.

1. Montrer que C(A) est un sous-espace vectoriel de Mn(R) et en déterminer la dimension. À quelle condition a-t-on C(A) =
R[A]?

1. Montrer que C′(A) est un sous-espace vectoriel de Mn(R) et en déterminer la dimension. Montrer que C ′(A) = R[A].
Exercice 564 [Mines MP 2025 # 543] Soient E un C -espace vectoriel de dimension finie n ≥ 1 et u ∈ L(E).
On écrit

χu =
r∏

k=1
(X − λk)αk .

On écrit χu =
∏r
k=1(Xλk)αk . a) Montrer que E =

⊕r
k=1 Ker(uλk idE)αk .

1. On suppose u nilpotent d’indice n.

1. Montrer qu’il existe une base B de E telle que MatB(u) =



...
. . . . . .

...
...

. . . . . .
...

...
. . . . . . 0

...
. . . 1

.

ii) Montrer que les sous-espaces vectoriels de E stables par u sont en nombre fini.
1. On suppose que u est nilpotent et qu’il n’existe qu’un nombre fini de sous-espaces vectoriels de E stables par u. Montrer que u

est nilpotent d’indice n.
Exercice 565 [Mines MP 2025 # 544] Soit M = (mi,j)1⩽i,j⩽n ∈ Mn(R) telle que m1,i = mn,i = mi,n−i+1 = 1 pour 1 ⩽ i ⩽ n,
les autres coefficients étant nuls. Calculer χM2 . Est-ce que M2 est diagonalisable?
Exercice 566 [Mines MP 2025 # 545] Soit A ∈ Mn(R) telle que χA(X2) = χA(X)χA(X − 1). Montrer que n est pair.

Exercice 567 [Mines MP 2025 # 546] Soient A ∈ Mn(C) diagonalisable et B =
(
A 2A
0 3A

)
. Montrer que B est diagonalisable et

déterminer ses éléments propres.

Exercice 568 [Mines MP 2025 # 547] Soit A ∈ Mn(R), soit : B =
(
A A
0 In

)
1. Étudier la diagonalisabilité de B.

1. Étudier le rang de BI2n.
Exercice 569 [Mines MP 2025 # 548] Soit n ≥ 2. On pose : E1 = {B ∈ Mn(R); (In, B, . . . , Bn−1) libre} et E2 = {B ∈
Mn(R); ∃X ∈ Rn, (X,BX, . . . , Bn−1X) libre}.

1. Montrer que E2 ⊂ E1.

1. Soient A ∈ Mn(R) et X ∈ Rn. On pose IX = {Q ∈ R[X];Q(A)X = 0}. Montrer qu’il existe PA,X ∈ R[X] unitaire tel que
IX = PA,XR[X].

1. Montrer que : Rn =
⋃
X∈Rn KerPA,X(A).

1. Montrer qu’il existe U ⊂ Rn finie telle que Rn =
⋃
X∈U KerPA,X(A).

1. Soient p ∈ N∗ et φ1, . . . , φp des formes linéaires sur Rn telles que : Rn =
⋃p
i=1 Kerφi.

Montrer qu’il existe i ∈ [1, p] tel que φi = 0.
1. Montrer que E1 ⊂ E2.

Exercice 570 [Mines MP 2025 # 549] Soit H un sous-groupe fini de GLn(R) dont tous les éléments ont un spectre inclus dans
{−1, 1}.

1. Montrer que H est commutatif.

1. Déterminer les valeurs possibles du cardinal de H .
Exercice 571 [Mines MP 2025 # 550] Soient E un C -espace vectoriel de dimension finie, u ∈ L(E). Pour x ∈ E, on note :
Ix = {P ∈ C[X], P (u)(x) = 0} et Ex = {P (u)(x), P ∈ C[X]}. a) Montrer que Ix est un idéal non nul de C[X]. On note µx le
polynôme unitaire qui l’en- gendre. b) Soient x, y ∈ E tels que µx∧µy = 1. Montrer que µx+y = µxµy , puis que Ex+y = 0 Ex⊕Ey .
c) Soit πu le polynôme minimal de u. Montrer qu’il existe x ∈ E tel que µx = πu.
Exercice 572 [Mines MP 2025 # 551] Soit E un R -espace vectoriel de dimension n. Soit u ∈ L(E) tel que πu = X2 + aX + b. On
suppose πu non scindé sur R.

1. Soient x ∈ E \ {0}. Montrer que Px = Vect(x, u(x)) est un plan stable par u.

1. Soit F un sous-espace vectoriel de E stable par u et x ∈ E \ F . Montrer que Px ∩ F = {0}.
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1. Démontrer l’existence d’une base de E dans laquelle la matrice de u est diagonale par blocs, les blocs diagonaux étant tous
identiques, de taille 2 × 2, et de polynôme minimal πu.

Exercice 573 [Mines MP 2025 # 552] Soit A ∈ M3(C). On pose GA = {c ∈ C∗, cA est semblable à A}.
1. Montrer queGA est un sous-groupe de C∗.- b) Montrer queGA est infini si et seulement siA est nilpotente, et qu’alorsGA = C∗.

Exercice 574 [Mines MP 2025 # 553] 1. Déterminer les λ ∈ R pour lesquels il existe A,B ∈ GLn(C) telles que AB = λBA.

1. Déterminer, parmi les λ trouvés en a), ceux pour lesquels toutes les matrices A,B vérifiant cette condition sont diagonalisables.
Exercice 575 [Mines MP 2025 # 554] Soit E un K -espace vectoriel de dimension n ≥ 2. On s’intéresse aux endomorphismes u de
E dont les seuls sous-espaces stables sont {0} et E.

1. Déterminer ces endomorphismes dans le cas K = C puis dans le cas K = R.

1. Dans le cas général caractériser ces endomorphismes à l’aide de leur polynôme caractéristique.
Exercice 576 [Mines MP 2025 # 555] Soit f un endomorphisme d’un K -espace vectoriel E de dimension finie.

1. On suppose que f a un plan vectoriel stable F . Montrer qu’il existe un polynôme P ∈ K2[X] tel que F ⊂ KerP (f).

1. On suppose qu’il existe un polynôme P ∈ K2[X] tel que dim KerP (f) ≥ 2. Montrer que KerP (f) contient un plan vectoriel
stable par f .

Exercice 577 [Mines MP 2025 # 556] Soient K un sous-corps de C, E un K -espace vectoriel de dimension n et u ∈ L(E).
1. On suppose que u est nilpotent d’indice p.

• i) Montrer que p = n si et seulement si dim Ker u = 1.

• ii) Montrer que p=n si et seulement si u possède un nombre fini de sous-espaces stables.

1. On revient au cas général. Montrer que u possède un nombre fini de sous-espaces stables si et seulement si deg πu = n.
Exercice 578 [Mines MP 2025 # 557] Soit P ∈ R[X]. On suppose que la fonction polynomiale associée est injective sur R. Soient
A,B ∈ Mn(R) diagonalisables vérifiant P(A) = P(B). Montrer que A = B.
Exercice 579 [Mines MP 2025 # 558] 1. Montrer que deux matrices diagonalisables qui commutent sont simultanément diago-

nalisables.

1. Même question, avec un nombre quelconque de matrices.

1. Soit G un sous-groupe de GLn(C) tel que ∀A ∈ G,A2 = In. Montrer que G est fini et donner une majoration de son cardinal.

1. Soit n ̸= m. Montrer que GLn(C) et GLm(C) ne sont pas isomorphes.

1. On considère G comme dans la question c). Montrer que cardG est une puissance de 2.

1. Trouver tous les groupes multiplicatifs de Mn(C) qui ne sont pas des sous-groupes de GLn(C). On précise qu’un groupe
multiplicatif de Mn(C) est un sous-ensemble stable par produit matriciel et formant un groupe pour la loi induite par le produit
matriciel.

Exercice 580 [Mines MP 2025 # 559] Soient A ∈ Mm(C), B ∈ Mn(C) et ΦA,B l’endomorphisme de Mm,n(C) défini par ∀M ∈
Mm,n(C), ΦA,B(M) = AMMB.

1. Montrer que, si A et B n’ont pas de valeur propre commune, ΦA,B est un automorphisme de Mm,n(C).

1. Supposons que λ soit une valeur propre commune à A et B. Montrer que le noyau de ΦA,B contient une matrice de rang 1.
Exercice 581 [Mines MP 2025 # 560] Soit E = {A ∈ Mn(R), A3 = A}. Montrer que E est réunion d’un nombre fini de classes de
similitude de Mn(R) que l’on précisera.
Exercice 582 [Mines MP 2025 # 561] Soient u ∈ L(Cn) et α > 0. Montrer qu’il existe une base e telle que la matrice M de udans la
base e vérifie ∀(i, j) ∈ [1, n]2, i ̸= j =⇒ |mi,j | ≤ α.
Exercice 583 [Mines MP 2025 # 562] Soient n ≥ 2 et G un sous-groupe de GLn(C) tel qu’il existe N ∈ N∗ tel que AN = In pour
tout A ∈ G.

1. Montrer que tous les éléments de G sont diagonalisables.

1. Soit (Mi)1≤i≤m une base de Vect(G) constituée d’éléments de G. Soit f : A ∈ G 7→ (tr(AM1), . . . , tr(AMm)).

Soient A,B ∈ G telles que f(A) = f(B). On pose C = AB−1.

1. Montrer que ∀k ∈ N, tr(Ck) = n.

ii) En déduire que CIn est nilpotente.
1. Montrer que G est fini.

Exercice 584 [Mines MP 2025 # 563] Soient A et B dans Mn(C).
Montrer que χA = χB si et seulement si ∀k ∈ N∗, tr(Ak) = tr(Bk).
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Exercice 585 [Mines MP 2025 # 564] Soit A ∈ Mn(R) telle que 3A3 = A2 + A + I3. Montrer que la suite (Ak)k≥0 converge vers
une matrice que l’on précisera.
Exercice 586 [Mines MP 2025 # 565] Soit A ∈ GLn(R). Exprimer le polynôme minimal de A−1 en fonction du polynôme minimal
de A.
Exercice 587 [Mines MP 2025 # 566] $ $ Soit A ∈ Mn(C).

1. Montrer que, pour r ∈ R+∗ assez grand, (reitInA)−1 =
∑+∞
k=0

Ak

rk+1ei(k+1)t .

1. Montrer que, pour tout P ∈ C[X] et tout r > 0 assez grand, P (A) = 1
2π
∫ π

−π re
itP (reit)(reitIn −A)−1dt.

1. En déduire le théorème de Cayley-Hamilton.
Exercice 588 [Mines MP 2025 # 567] Soient U l’ensemble des matrices diagonalisables de Mn(R) et U++ l’ensemble des matrices
diagonalisables de Mn(R) à spectre inclus dans R+∗. Soit A ∈ C1(R, U++) telle que t 7→ A(t)2 est constante.

1. Montrer que A est constante.

1. Le résultat subsiste-t-il si A ∈ C1(R, U)?

1. Le résultat subsiste-t-il si A n’est pas de classe C1 ?

1. Le résultat subsiste-t-il si A est valeurs dans l’ensemble des matrices trigonalisables à spectre inclus dans R+∗ ?
Exercice 589 [Mines MP 2025 # 568] Soient (E, ⟨, ⟩) un espace euclidien,X une partie deE. Montrer queX est finie si et seulement
si {⟨x, y⟩, (x, y) ∈ X2} est fini.
Exercice 590 [Mines MP 2025 # 569] Soit (E, ⟨, ⟩) un espace euclidien non réduit à {0}. Soit u ∈ L(E) tel que tr(u) = 0.- a) Montrer
qu’il existe x ∈ E \ {0} tel que ⟨u(x), x⟩ = 0.

1. Montrer qu’il existe une base orthonormée de E dans laquelle la matrice de u est de diagonale nulle.
Exercice 591 [Mines MP 2025 # 570] Soit (E, ⟨, ⟩) un espace euclidien de dimension 3. Soient f, g ∈ SO(E).

1. On suppose qu’il existe x ∈ E \ {0} tel que f(x) = g(x) = x. Montrer que f et g commutent.
b ) On suppose que f et g commutent. Montrer que l’une des deux propositions suivantes est vraie : il existe x ∈ E \ {0} tel que f(x)
= g(x) = x, -f et g sont des symétries orthogonales par rapport à deux droites orthogonales entre elles.
Exercice 592 [Mines MP 2025 # 571] Soient (E, ⟨, ⟩) un espace euclidien et p ∈ L(E) un projecteur. Montrer l’équivalence entre : i)
p est un projecteur orthogonal, ii) ∀x ∈ E, ||p(x)|| ≤ ||x||, iii) p est symétrique.
Exercice 593 [Mines MP 2025 # 572] On munit Rn de sa structure euclidienne canonique. Soient A ∈ Mn,p(R) avec n ≥ p et
b ∈ Rn. On suppose que rg(A) = p.

1. Montrer que la fonction f : x ∈ Rp 7→ ∥Axb∥2 admet un minimum sur Rp atteint en un unique x0 ∈ Rp.

1. Montrer que x0 est l’unique solution de ATAx = AT b.
Exercice 594 [Mines MP 2025 # 573] Montrer l’existence et calculer minP∈Rn−1[X]

∑n
i=1(inP (i))2.

Exercice 595 [Mines MP 2025 # 574] On munit Mn(R) de sa structure euclidienne usuelle.
1. En utilisant l’inégalité de Cauchy-Schwarz, démontrer que ||AB|| ≤ ||A|| ||B|| quels que soient A et B dans Mn(R).

1. Soient A ∈ Mn(R) ainsi qu’une suite (Mp)p∈N à termes dans Mn(R) et telle que ∥InAM0∥ < 1 et ∀p ∈ N, Mp+1 =
2MpMpAMp. Montrer que A est inversible et que

(Mp)p∈N converge vers A−1.
1. Soit A ∈ Mn(R). Montrer que M ∈ Mn(R) 7→ ∥In −AM∥ admet un minimum, et le

1. Soit A ∈ Mn(R). Montrer que M ∈ Mn(R) 7→ ||InAM || admet un minimum, et le calculer en fonction de A.

Exercice 596 [Mines MP 2025 # 575] 1. Montrer que ⟨P,Q⟩ =
∫ 1

−1
P (t)Q(t)√

1−t2 dt définit un produit scalaire sur R[X].

1. i) Montrer qu’il existe une unique suite (Tn) de polynômes réels telle que ∀n ∈ N, ∀x ∈ R, Tn(cos(x)) = cos(nx).

ii) Déterminer degré et coefficient dominant de Tn pour n ∈ N.
1. On note Un[X] l’ensemble des polynômes unitaires de degré n ∈ N de R[X].

Calculer minP∈Un[X]
∫ 1

−1
P 2(t)√

1−t2 dt.

1. Que dire de la factorisation de Tn dans R[X]?

Exercice 597 [Mines MP 2025 # 576] Soit M ∈ On(R). Montrer que
∣∣∣∑1⩽i,j⩽nmi,j

∣∣∣ ⩽ n ⩽
∑

1⩽i,j⩽n |mi,j | ⩽ n3/2.

Exercice 598 [Mines MP 2025 # 577] Soit E un R -espace vectoriel de dimension n ∈ N∗.
On dispose de deux produits scalairesφ etψ surE, et on suppose qu’ils sont tels que O((E,ψ)) ⊂ O((E,φ)), où O désigne l’ensemble
des isométries vectorielles de l’espace euclidien considéré. Montrer que O((E,ψ)) = O((E,φ)).
Exercice 599 [Mines MP 2025 # 578] Soit E un espace euclidien. Montrer que deux produits scalaires sur E qui ont le même groupe
orthogonal sont proportionnels.
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Exercice 600 [Mines MP 2025 # 579] On munit Mn(R) de sa structure euclidienne canonique. Soit Vn = Vect SOn(R).

1. Expliciter V2.

1. On suppose désormais n ≥ 3. Montrer que : exp An(R) ⊂ SOn(R) et V ⊥
n ⊂ An(R)⊥. c) Montrer que Vn = Mn(R).

Exercice 601 [Mines MP 2025 # 580] 1. On munit Rn de sa structure euclidienne canonique. Soit A ∈ Mn(R). Soit F un sous-
espace vectoriel de Rn stable par A. Montrer que F⊥ est stable par AT .

1. SoitA ∈ M3(R) telle queAAT = ATA. Montrer queA est diagonalisable ou semblable à une matrice de la forme :

λ 0 0
0 α −η
0 n α

.

Exercice 602 [Mines MP 2025 # 581] Soit A ∈ An(R). Montrer que det(In +A) ≥ 1.
Exercice 603 [Mines MP 2025 # 582] 1. Soit A ∈ Mn(R) telle que A+AT = A2. Trouver un polynôme annulateur de A.

1. Caractériser les matrices A de Mn(R) telles que A+AT = A2.
Exercice 604 [Mines MP 2025 # 583] Soit A ∈ Mn(R) telle que A2 = 0. Montrer que Im(A+AT ) = ImA+ ImAT .
Exercice 605 [Mines MP 2025 # 584] Soit M ∈ Mn(R).

1. Montrer que u : S 7→ MSMT définit un endomorphisme de Sn(R).

1. Montrer que u : S 7→ MSM− definit un endomorphisme de Sn(R).

1. Montrer que u est un automorphisme si et seulement si M est inversible.
Exercice 606 [Mines MP 2025 # 585] Soient M,N ∈ Mn(R) non nulles, la matrice N étant nilpotente d’indice n.

1. Montrer que rgN = n1.

1. On suppose que MNT = NTM = NMT . Montrer que Rn = ImM ⊕ ImN . c) Étudier la réciproque de b).
Exercice 607 [Mines MP 2025 # 586] 1. Soit A ∈ Sn(R). Montrer l’équivalence des énoncés suivants :

1. xTAx ≥ 0 pour tout x ∈ Rn, ii) SpA ⊂ R+.

1. Montrer que, pour tout x ∈ Rn, u) Sp A ⊂ R+. b) Montrer que, pour tout A ∈ Mn(R), ATA ∈ S+
n (R).

1. Montrer que, pour tout S ∈ S+
n (R), il existe A ∈ Mn(R) telle que S = ATA, puis déterminer {A ∈ Mn(R), ATA = S}.

Exercice 608 [Mines MP 2025 # 587] 1. Soit A ∈ Mn(R). Montrer que A ∈ An(R) si et seulement si les coefficients diagonaux
de P−1AP sont nuls pour toute matrice P ∈ On(R).

1. Soit A ∈ An(R). Montrer que le rang de A est pair.
Exercice 609 [Mines MP 2025 # 588] On pose σ(A) =

∑n
i=1
∑n
j=1 a

2
i,j pour A = (ai,j)1⩽i,j⩽n ∈ Mn(R).

1. Calculer σ(Ω) pour Ω ∈ On(R).

1. Montrer que σ(ΩTAΩ) = σ(A) pour tout A ∈ Mn(R) et tout Ω ∈ On(R).

1. Calculer σ(A) lorsque A représente une projection orthogonale dans une base orthonormée.

1. Déterminer les matrices P ∈ GLn(R) telles que ∀A ∈ Mn(R), σ(P−1AP ) = σ(A).
Exercice 610 [Mines MP 2025 # 589] Soient n,m ∈ N∗, S ∈ Sm(R). On pose A =

(
Tr(Si+j−2)

)
1⩽i,j⩽n. Montrer que rg(A) =

min(n, deg(πS)), où l’on a noté πS le polynôme minimal de Ŝ.
Exercice 611 [Mines MP 2025 # 590] Soit (E, ⟨, ⟩) un espace euclidien.

1. Soit u ∈ S(E). Montrer que E = Ker(u) ⊕ Im(u).

1. Soit u ∈ S+(E). Montrer qu’il existe h ∈ S+(E) tel que u = h2.

1. Soient f, g ∈ S+(E). Montrer que Ker(f + g) = Ker(f) ∩ Ker(g). Que dire de Im(f + g)?
Exercice 612 [Mines MP 2025 # 591] Soit C : A ∈ An(R) 7→ (InA)−1(In +A) ∈ SOn(R).

1. Montrer que C est bien définie.

1. Étudier l’inversibilité de In + C(A). Montrer que C est injective. L’application C est-elle surjective? Dans le cas contraire,
donner son image.

Exercice 613 [Mines MP 2025 # 592] Soit G un sous-groupe borné de GLn(R). Montrer que G ∩ S++
n (R) = {In}.

Exercice 614 [Mines MP 2025 # 593] On munit Rn de son produit scalaire canonique. SoitA ∈ S++
n (R). Une fonction f : Mn(R) →

R est strictement convexe si ∀(A,B) ∈ Mn(R)2, A ̸= B ⇒ (∀t ∈ R) [0,1[,f((1-t)A+tB)<(1-t)f(A)+tf(B)). Montrer que la fonction
x 7→ ⟨Ax, x⟩ est convexe sur Rn. Étudier sa stricte convexité.
Exercice 615 [Mines MP 2025 # 594] Déterminer les applications f de Rn dans Mn(R) telles que, pour tout X ∈ Rn et toute
P ∈ On(R), on ait f(PX) = Pf(X)P−1.
Exercice 616 [Mines MP 2025 # 595] Soit A ∈ Sn(R). Déterminer le nombre de matrices B ∈ Mn(R) telles que A = B2.
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Exercice 617 [Mines MP 2025 # 596] Montrer que si M ∈ S+
n (R) alors Com(M) ∈ S+

n (R).
Exercice 618 [Mines MP 2025 # 597] Soit A = (ai,j)1⩽i,j⩽n ∈ Sn(R) telle que Sp(A) ⊂ R+∗. a) Montrer que ai,i > 0 pour
1 ⩽ i ⩽ n, puis que a2

i,j ⩽ ai,iaj,j pour 1 ⩽ i, j ⩽ n.

1. Montrer que max1⩽i,j⩽n |ai,j | = max1⩽k⩽n ak,k . c) Que dire de la matrice Ai,j =
(
ai,i ai,j
ai,i ai,j

)
pour 1 ⩽ i < j ⩽ n?

Exercice 619 [Mines MP 2025 # 598] Soient A,B ∈ Sn(R). Montrer que si un intervalle I de R contient toutes les valeurs propres
de A et B, alors I contient également les valeurs propres de (1-t)A+tB pour tout $t ∈ [0, 1].$
Exercice 620 [Mines MP 2025 # 599] Soit A ∈ Sn(R). Pour i ∈ [[1, n]], on note Ai la matrice extraite des i premières lignes et
colonnes de A. Montrer que A ∈ S++

n (R) ⇐⇒ ∀i ∈ [[1, n]], det(Ai) > 0.
Exercice 621 [Mines MP 2025 # 600] Montrer que le spectre de

A =
(

1
i+ j

)
1≤i≤n

est inclus dans R+∗.
Exercice 622 [Mines MP 2025 # 601] Soient α ∈ R, n ∈ N∗ et S =

(
α|i−j|)

1≤i,j≤n.
1. Calculer det(Sn).

1. À quelle condition a-t-on S ∈ S++
n (R)?

Exercice 623 [Mines MP 2025 # 602] $ $ a) Soient U, V ∈ S+
n (R). Montrer qu’il existe R ∈ S+

n (R) tel que U = R2 et en déduire
tr(UV ) ≥ 0.

1. Soit I un intervalle ouvert de R, f : I → Mn(R) dérivable et P ∈ R[X]. Montrer que : α : t 7→ trP (f(t)) est dérivable et
calculer α′.

α : t 7→ trP (f(t)) est dérivable et calculer α. c) Soient A,B ∈ S+
n (R) telles que B −A ∈ S+

n (R). Montrer que : tr(eA) ≤ tr(eB).
Exercice 624 [Mines MP 2025 # 603] Soit M ∈ GLn(R).

1. Montrer qu’il existe un unique couple (O,S) ∈ On(R) × S++
n (R) tel que M = OS.

1. Calculer sup{tr(AM), A ∈ On(R) }.
Exercice 625 [Mines MP 2025 # 604] Soient E un espace euclidien de dimension n > 0 et u ∈ S(E). On note λ1 ⩽ · · · ⩽ λn les
valeurs propres de u et, pour k ∈ [0, n], on note Gk l’ensemble des sous-espaces vectoriels de E de dimension k. On note enfin E la
sphère unité de E.

1. Pour un sous-espace vectoriel non nul V de E, montrer que x ∈ V ∩ S 7→ ⟨x, u(x)⟩ possède un maximum et un minimum.

1. Montrer, pour tout k ∈ [1, n], les identités λk = minV ∈Gk
maxx∈V ∩S⟨x, u(x)⟩ = maxV ∈Gn+1−k

minx∈V ∩S⟨x, u(x)⟩.

2) Analyse

Exercice 626 [Mines MP 2025 # 605] Donner un exemple de forme linéaire discontinue sur un espace normé.
Exercice 627 [Mines MP 2025 # 606] Soit

E = {f ∈ C2([0, 1],R), f(0) = f ′(0) = 0}.

Pour f ∈ E, on pose N(f) = ||f + 2f ′ + f ′′||∞.

1. Montrer que N est une norme sur le R -espace vectoriel E.

1. Soit f ∈ E. On pose g = f + 2f’ + f”. Exprimer f en fonction de g. c) Montrer qu’il existe a > 0 telle que ∀f ∈ E, ∥f∥∞ ≤ aN(f).

1. Les normes N et ∥∥∞ sont-elles équivalentes?
Exercice 628 [Mines MP 2025 # 607] Pour a ∈ R et P ∈ R[X], on pose Na(P ) = |P (a)| + max{|P ′(x)|, x ∈ [−1, 1]}.

1. Justifier que Na est une norme.

1. Pour a, b ∈ R, Na et Nb sont-elles équivalentes?

Exercice 629 [Mines MP 2025 # 608] Pour P ∈ R[X] , on pose ||P ||∞ = supt∈[0,1] |P (t)|, ||P ||1 =
∫ 1

0 |P (t)| dt et

N(P ) = sup
n∈N

∣∣∣∣∫ 1

0
tnP (t) dt

∣∣∣∣ .
1. Montrer que N est une norme sur R[X].

1. Comparer les normes N et ∥∥∞.

1. Comparer les normes N et ∥ · ∥1.
Exercice 630 [Mines MP 2025 # 609] Soit Q ∈ R[X] \ {0}. Pour P ∈ R[X] on pose ∥P∥Q = supt∈[−1,1] |P (t)|Q(t)|.
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1. Montrer que ∥∥Q est une norme sur R[X].

1. On pose Q1 = 1. Donner une condition suffisante sur Q pour que ∥ ∥Q et ∥ ∥Q1 soient équivalentes.

1. On suppose que Q admet un zéro α dans [-1,1].

1. Montrer qu’il existe P ∈ R[X] de degré 2 tel que P (α) = 1, P ′(α) = 0 et ∀t ∈ [−1, 1] \ {α}, 0 ≤ P (t) < 1.

ii) Montrer que (t 7→ P (t)nQ(t))n∈N converge uniformément sur [-1,1] vers la fonction nulle.
• iii) Conclure que ∥∥Q et ∥∥Q1 ne sont pas équivalentes.

Exercice 631 [Mines MP 2025 # 610] 1. Existe-t-il une norme sur Mn(R) vérifiant :
∀A ∈ Mn(R), ∀P ∈ GLn(R), ∥P−1AP∥ = ∥A∥? b) Même question en remplaçant GLn(R) par On(R).
Exercice 632 [Mines MP 2025 # 611] L’ensemble des polynômes scindés à racines simples et de degré n est-il un ouvert de Rn[X]?
Un fermé de Rn[X]? L’ensemble des polynômes scindés, à racines simples est-il un ouvert de Rn[X]? Un fermé de Rn[X]?
Exercice 633 [Mines MP 2025 # 612] Soient p ∈ N∗ et S un segment de R. On noteE = C0(S,R), que l’on munit de la norme infinie.
On note Zp l’ensemble des éléments de E qui s’annulent en au moins p points.

1. Montrer que Z1 est fermé dans E.

1. Déterminer l’adhérence de Zp pour n’importe quel p dans N∗.
Exercice 634 [Mines MP 2025 # 613] Soit f : R2 → R continue. Montrer que la restriction de f à un cercle de rayon strictement
positif n’est pas injective.
Exercice 635 [Mines MP 2025 # 614] Soient (E, || ||) un espace vectoriel normé et u ∈ L(E) tel que ∀x ∈ E, ||u(x)|| ≤ ||x||.
Pour tout n ∈ N , on pose : vn = 1

n+1
∑n
k=0 u

k .

1. Simplifier vn ◦ (uid).

1. Montrer que Ker(u id) et Im(u id) sont en somme directe.

1. Montrer que les deux propriétés suivantes sont équivalentes :

1. Ker(u id) ⊕ Im(u id) = E ;

ii) (vn) converge simplement sur E et Im(u− id) est fermé dans E.
Exercice 636 [MinesMP 2025 # 615] SoitK un convexe compact non vide d’un espace norméE.a) Soit u un endomorphisme continu
de E tel que u(K) ⊂ K . Montrer que C = (id − u)(K)
est convexe et compact. En utilisant la suite xn =

∑n−1
k=0(id −u)(uk(x)) montrer que u admet

un point fixe.
1. Soit (un)n≥1 une suite d’endomorphismes continus de E qui stabilisent tous K et qui commutent. On note Fn l’ensemble des

points de K fixes par u1, . . . , un. Montrer que Fn est non vide pour tout n. En déduire qu’il existe un point fixe commun à tous
les endomorphismes un.

Exercice 637 [Mines MP 2025 # 616] Soient N1, N2 et N3 des normes sur respectivement Rm[X],Rn[X] et Rn+m[X].
1. Justifier queN4 : (P,Q) 7→ N1(P )+N2(Q) est une norme sur Rm[X]×Rn[X]. b) Montrer que infP∈Rm[X]\{0}

Q∈Rn[X]\{0}

N3(PQ)
N1(P )N2(Q) > 0.

Exercice 638 [Mines MP 2025 # 617] Soit B l’espace des suites réelles bornées muni de la norme infinie.
1. Pour X ∈ P(N) on pose uX = (1X(n))n≥0. Montrer que φ : X 7→ uX est une bijection de P(N) sur {0, 1}N.

1. On suppose l’existence d’une partie dénombrable A = {ak, k ∈ N} de B dense dans B. Soient b > 0 et X ∈ P(N).

Justifier l’existence de kX = min{k ∈ N, ||uXak||∞ ≤ b}. Aboutir à une contradiction.
Exercice 639 [Mines MP 2025 # 618] Soient n et p deux entiers naturels. Soit f ∈ L(Rn,Rp). Montrer que f est surjective si et
seulement si l’imageqdirecte par f de tout ouvert de Rn est un ouvert de Rp.
Exercice 640 [Mines MP 2025 # 619] 1. On munit E = C0([0, 1],R) de la norme ∥∥∞.
Les parties A =

{
f ∈ E,

∫ 1
0 f = 1

}
et B = {f ∈ E, f([0, 1]) ⊂ [0, 1]} sont-elles compactes?

Si (E, ∥∥) un espace vectoriel normé et K un compact non vide de E, on dit que f : K → K est une isométrie si ∀(x, y) ∈ K2, ||f(x)
- f(y)|| = ||x - y||.

1. Dans R, quelles sont les isométries de [0,1] ?

1. Soit f une isométrie du compact K . Montrer que f est surjective.

1. Soient K un compact et f : K → K telle que : ∀(x, y) ∈ K2, ∥f(x)f(y)∥ ≥ ∥xy∥. Montrer que f est une isométrie.
Exercice 641 [MinesMP 2025 # 620] Soient (E, || ||) un espace vectoriel normé et f : E → E vérifiant : ∀(x, y) ∈ E2, ||f(x)−f(y)|| ≤
||x− y||2. Montrer que f est constante.
Exercice 642 [Mines MP 2025 # 621] Soient K un compact non vide et f : K → K une fonction continue telle que : ∀(x, y) ∈
K2, ||f(x) − f(y)|| ≥ ||x− y||.
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1. Montrer que f est bijective.

1. Montrer que f−1 est continue.
Exercice 643 [Mines MP 2025 # 622] Soient (E, ∥∥) un espace normé de dimension finie et f : E → E telle que, pour tous x, y ∈ E,
∥f(x) − f(y)∥ ≤ 1

4 (∥f(x) − x∥ + ∥f(y) − y∥). Montrer que f admet un unique point fixe.
Exercice 644 [Mines MP 2025 # 623] On pose E = C0(R+,R) ∩ L2 que l’on munit de la norme ∥ ∥2. Si f ∈ E, on pose

φ(f) : x ∈ R+ 7→

{
1
x

∫ x
0 f sin x > 0

f(0) sinn.

. Montrer que φ est un endomorphisme continu de E.
Exercice 645 [Mines MP 2025 # 624] Soit C un fermé non vide de Rn tel que : ∀(x, y) ∈ C2, x ̸= y ⇒]x, y[∩C ̸= ∅. Montrer que C
est convexe.
Exercice 646 [Mines MP 2025 # 625] 1. Soient (E, || ||) un espace vectoriel normé et f une forme linéaire continue non nulle sur

E. On fixe x0 ∈ E tel que f(x0) ̸= 0.

1. Montrer que ∥f∥op = |f(x0)|
d(x0,Ker f) .

calculer ∥Φ∥op.
ii) Montrer que les deux énoncés suivants sont équivalents : il existe a ∈ E tel que ||a|| = 1 et ||f ||op = |f(a)|, il existe y ∈ Ker(f) tel
que d(x0,Ker f) = ||x0y||.

1. On munit l’espaceE = C0([−1, 1],R) de la norme ∥∥∞, et on définit l’application Φ : u ∈ E 7→
∫ 1

0 u(t)dt−
∫ 1

0 u(t)dt. Montrer
que Φ est une forme linéaire continue, et

Exercice 647 [Mines MP 2025 # 626] Pour tout A ∈ Mn(R), on pose S(A) = {P−1AP,P ∈ GLn(R)}. Pour tout k ∈ N∗, on pose
Qk = Diag(kn, kn−1, . . . , k). a) Soit T ∈ Mn(R) une matrice triangulaire supérieure. Calculer limk→+∞ Q−1

k TQk .
1. Soit A ∈ Mn(R). Montrer que A est trigonalisable si et seulement si S(A) contient une matrice diagonale.

1. Montrer l’équivalence des énoncés suivants : i)A est nilpotente, ii) S(A) contient une matrice triangulaire supérieure de diagonale
nulle, iii) 0 ∈ S(A).

Exercice 648 [Mines MP 2025 # 627] On considère l’ensemble des matrices de Mn(C) dont le polynôme caractéristique est scindé
à racines simples. Cet ensemble est-il ouvert ? fermé?
Exercice 649 [Mines MP 2025 # 628] Soir r ∈ [0, n]. Déterminer l’intérieur, l’adhérence et les composantes connexes par arcs de
l’ensemble des matrices de rang r de Mn(C).
Exercice 650 [Mines MP 2025 # 629] On munit Cn de la norme ∥ · ∥2. Pour r ∈ R+ et G un sous-groupe de GLn(C), on dit que G
vérifie P(r) si ||AX −X||2 ⩽ r||X||2 pour tout A ∈ G et tout X ∈ Cn.

1. Pour quels r le groupe SO2(R) vérifie-t-il P(r)?

1. Soient G sous-groupe de GLn(C) qui vérifie P(r), A ∈ G et λ ∈ sp(A). Montrer que |λ| = 1 puis que Ker(A − λIn)2 =
Ker(A−λIn). En déduire que les éléments de G sont diagonalisables.- c) Montrer que si r <

√
2 alors le seul groupe qui vérifie

P(r) est {In}.

Exercice 651 [Mines MP 2025 # 630] Pour n ∈ N, on pose Pn =
∑n
k=0

Xk

k! .
1. Montrer que Pn n’a pas de racine réelle si n est pair, et a une unique racine réelle sinon.

1. On note xn la racine réelle de P2n+1. Montrer que (xn)n≥0 est strictement décroissante et tend vers −∞.

Exercice 652 [MinesMP 2025 # 631] Soient a, b ∈ N avec b > a ≥ 1. Déterminer la limite de la suite de terme général
∑b
n=0 ln

(
1 − k

n2

)
.

Exercice 653 [Mines MP 2025 # 632] Déterminer la limite de la suite de terme général
∑n
k=0

n+k
2+sin(n+k)+(n+k)2

Exercice 654 [Mines MP 2025 # 633] Pour n ∈ N∗, soit un =
(

cos
(

nπ
3n+1

)
+ sin

(
nπ

6n+1

))n
. Déterminer la limite de (un).

Exercice 655 [Mines MP 2025 # 634] On considère une suite réelle u vérifiant u0 > 0 et ∀n ∈ N, un+1 = √
un + 1

n+2 .
1. Montrer qu’il existe n ∈ N tel que un > 1.

b ) Montrer que u est décroissante à partir d’un certain rang, puis qu’elle est convergente, et déterminer sa limite.
Exercice 656 [Mines MP 2025 # 635] Soit α ∈]1,+∞[.

1. Montrer que, pour tout n ∈ N∗, l’équation
∏n
k=1(kx+ n2) = αn2n possède une unique solution strictement positive, que l’on

notera xn.

1. Montrer que ∀n ∈ N∗, xn < 2α.

1. Montrer que (xn) converge et déterminer sa limite.
Exercice 657 [Mines MP 2025 # 636] On note, pour j ∈ N∗, kj = min

{
n ∈ N∗,

∑n
k=1

1
k ≥ j

}
.

1. Montrer que ki est bien défini.
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1. Étudier la monotonie et la limite éventuelle de (kj)j∈N∗ .

1. Montrer que kj+1
ki

j→+∞−−−−→ e.
Exercice 658 [Mines MP 2025 # 637] Soit (an) une suite strictement monotone telle que an → +∞ et (an+1 − an) est bornée. Soit
f ∈ C1(R+∗,R) telle que f ′(x) −→

x→+∞
0. Montrer que, si f(an) −→ ℓ ∈ R, alors f(x) −→

x→+∞
ℓ.-

Exercice 659 [Mines MP 2025 # 638] Pour a ∈ {0, 1}, on pose v1,a = x ∈ R et vn+1,a =
(
2 + 1

n

)
vn,aa pour n ∈ N∗.

1. Expliciter tn ̸= 0 tel que vn,0 = xtn pour tout n ∈ N∗. b) Exprimer vn+1,a

tn+1

vn,a

tn
en fonction de tn+1.

1. En déduire la limite des suites (vn,a)n∈N en fonction de x.
Exercice 660 [Mines MP 2025 # 639] Soit (an) définie par a0 = 0, a1 = 1, et, pour n ≥ 1, an+1 = 4an −an−1. a) Montrer que, pour
tout n, a2

n − an−1an+1 = 1.

1. Soit, pour n ∈ N∗, Sn =
∑n
k=1 arctan

(
1

4a2
k

)
. Exprimer Sn en fonction de an et an+1.

1. Montrer que Sn
π−−−−−→

n→+∞
π
12

Exercice 661 [Mines MP 2025 # 640] Soit (xn) définie par x0 > 0 et, pour n ∈ N, xn+1 = xn + e−x2
n . En étudiant les suites de

termes généraux un = ex2
n

r et vn = un+1 − un, trouver un équivalent puis un développement asymptotique de xn
Exercice 662 [Mines MP 2025 # 641] Soit α = ln 2

ln(10) .
1. Montrer que α ∈ R \ Q.

1. Si x ∈ R, on pose {x} = x|x|. Montrer que A = {{nα}, n ∈ N} est dense dans [0, 1].

1. Montrer qu’il existe k ∈ N tel que l’écriture décimale de 2k commence par 2025.
Exercice 663 [Mines MP 2025 # 642] 1. Soit a ∈ [1/2, 1].
Déterminer la limite de la suite de terme général un = 2−n∑

n−na

2 ⩽k⩽n+na

2

(
n
k

)
.

1. Soit (In)n∈N une suite d’ensembles telle que ∀n ∈ N, In ⊂ [0, n]. Y a-t-il équivalence entre : i) |In| = o(n), ii) la suite de terme
général 2−n∑n

k=0
(
n
k

)
tend vers 0?

Exercice 664 [Mines MP 2025 # 643] 1. Donner un équivalent de Hn =
∑n
k=0

1
k .

1. Donner un équivalent de un, cardinal de {(x, y, z) ∈ [[1, n]]3, xy = z}. c) Donner un équivalent de vn, cardinal de {(x, y, z) ∈
[[1, n]]3, xy = z2}.

Exercice 665 [Mines MP 2025 # 644] Soient λ ∈ R et (un)n≥0 une suite d’éléments de R+∗. On suppose que un+1
un

= 1λn +O
( 1
n2

)
.

Déterminer la nature de la série
∑
un.

Exercice 666 [Mines MP 2025 # 645] Soit α ∈ R. Nature de
∑∞
n=0(−1)n sin(arctan(nα))

n ?
Exercice 667 [Mines MP 2025 # 646] Soit α un réel > 1. Pour tout n ≥ 1, on pose un =

∑∞
n=0

1
kα .

1. Vérifier la bonne définition de un, et en donner un équivalent quand n → +∞. b) On pose vn = un2
un

pour tout n ≥ 1. Étudier
la convergence des séries

∑
vn et∑

(−1)nvn.

Exercice 668 [Mines MP 2025 # 647] Pour n ∈ N∗, on pose un =
√
n!

(1+
√

1)(1+
√

2)···(1+
√
n) . Étudier la convergence et calculer∑∞

n=0 un.

Exercice 669 [MinesMP 2025 # 648] On admet que
∑+∞
n=0

1
n2 = π2

6 . Démontrer la convergence et calculer la somme :
∑+∞
n=1

(−1)n

2n−1
∑+∞
k=−1

(−1)k−1

2k−1 .

Exercice 670 [Mines MP 2025 # 649] 1. Montrer que :
∑n
k=0(−1)⌊

√
k⌋ = O(

√
n).

1. Soit z ∈ U. Montrer que
∑ (−1)⌊

√
k⌋

k zk est une série convergente.
Exercice 671 [Mines MP 2025 # 650] Soit (un)n≥0 ∈ (R+)N. On pose, pour n ∈ N, vn = 1

1+n2un
. Montrer que si la série

∑
vn

converge alors la série
∑
un diverge.

Exercice 672 [Mines MP 2025 # 651] 1. Montrer que la série
∑ 2k+1(k!)2

(2k+1)! converge. On pose σ =
∑+∞
k=1

2k+1(k!)2

(2k+1)! .

1. Soient a>0 et (un) ∈ CN telle que limn→+∞ un = ℓ ∈ C.

Montrer que 1
(1+a)n

∑n
k=0

(
n
k

)
akun −→

n→+∞
ℓ.

1. En déduire que, si la série de terme général un converge, alors la série de terme général

a

(1 + a)n+1

n∑
k=0

(
n

k

)
akuk

converge. Lorsqu’il y a convergence, montrer que∑+∞
i=1

(
a

(1+a)n+1

∑n
i=1
(
n
i

)
aiui

)
=
∑+∞
i=1 ui.
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1. Montrer que arctan(x) =
∑+∞
n=0

(−1)n

2n+1 x
2n+1 pour tout x ∈ [−1, 1].- e) En déduire la valeur de σ.

Exercice 673 [Mines MP 2025 # 652] On pose an = n!en

nn·
√
n

.

1. Montrer que
∑

(ln(an+1) ln(an)) converge.

1. Donner un équivalent de
∑+∞
k=0

1
k2 quand n tend vers +∞.

1. Démontrer que n! ∼
√

2πnnne−n (1 + 1
12n + o

( 1
n

))
.

Exercice 674 [Mines MP 2025 # 653] 1. Soit a > 0. Discuter de la nature de
∑ 1

(n!)a/n en fonction de a.

1. Soit (vn)n≥0 ∈ RN telle que
∑

(n!)2/nv2
n converge. Montrer que

∑
vn converge.

Exercice 675 [Mines MP 2025 # 654] Montrer que les séries
∑∞
n=1

sin(lnn)
n et

∑∞
n=1

∫ n+1
n

sin(ln t)
t dt sont de même nature.

Quelle est cette nature?
Exercice 676 [Mines MP 2025 # 655] Soit (un) ∈ RN de limite nulle. Nature de

∑
un avec les conditions suivantes :

1. n(un+1 − un) → 1, ii) n2(un+1 − un) → 1, iii) np(un+1 − un) → 1 avec p > 2.
Exercice 677 [Mines MP 2025 # 656] Soit (un) strictement positive telle que

∑
un converge.

1. Montrer que 1
n

∑
kuk → 0.

1. Montrer que la série de terme général 1
n(n+1)

∑n
k=1 kuk converge.

1. Montrer que la série de terme général 1
n+1 (n!

∏n
k=1 uk)1/n converge, puis montrer que

+∞∑
k=0

1
n+ 1

(
n!

n∏
k=0

uk

)1/n

⩽
+∞∑
k=0

uk.

Exercice 678 [Mines MP 2025 # 657] Soit
∑
an une série convergente à termes positifs ou nuls.

1. Montrer que : ∀n ∈ N∗, (
∏n
k=1 ak)1/n

⩽ 1
n(n!)1/n

∑n
k=1 kak .

1. Montrer que : ∀n ∈ N∗, (
∏n
k=1 ak)1/n

⩽ e
n(n+1)

∑n
k=1 kak .- c) Montrer que :

∑+∞
k=0 (

∏n
k=0 ak)1/n

⩽ ek
∑+∞
k=0 ak .

Exercice 679 [Mines MP 2025 # 658] Soit f strictement croissante de R dans R. Montrer que l’ensemble des points de discontinuité
de f est au plus dénombrable.
Exercice 680 [MinesMP 2025 # 659] Soient a et b deux réels. Caractériser l’existence d’une fonction continue décroissante f : R → R
telle que ∀x ∈ R, f(f(x)) = ax+ b.
Exercice 681 [Mines MP 2025 # 660] Soit f : R → R telle que, pour tout x ∈ R, il existe ε > 0 pour lequel f|[x−ε,x+ε] est convexe.

1. Montrer que f est dérivable à droite en tout point.

1. Montrer que f est convexe et continue sur R.
Exercice 682 [Mines MP 2025 # 661] Soit f ∈ C0(R,R). Montrer que f est convexe si et seulement si :

∀(x, y) ∈ R2, x < y ⇒ f

(
x+ y

2

)
⩽

1
y − x

∫ y

−∞
f(t) dt.

Exercice 683 [Mines MP 2025 # 662] Soient α > 1 et fα : x ∈] − 1 − α,+∞[ 7→ α ln
(

1 + x
1+α

)
.

1. Montrer que fα admet un unique point fixe xα et que xα ∈] − 2,−1[.

1. On suppose que α est tel que xα

1+α > − 1
2 . Montrer que

∣∣∣∣∣ln
(

1 + xα
1 + α

)
− xα

1 + α
+ 1

2

(
xα

1 + α

)2
∣∣∣∣∣ ⩽ 8

3
|xα|3

(1 + α)3 .

Exercice 684 [Mines MP 2025 # 663] On note E l’ensemble des applications réelles continues sur R de carré intégrable. Pour tout

f ∈ E, on pose ||f || =
(∫

− f
2
)1/2

.

1. Montrer que (E, || ||) et un espace vectoriel normé.

1. Soit f ∈ E de classe C2 telle que f ′′ ∈ E. Montrer que f ′ ∈ E et ||f ′||2 ≤ ||f || · ||f ′′||.
Exercice 685 [Mines MP 2025 # 664] Soit I un intervalle ouvert de R. On note S l’ensemble des fonctions continues sur Itelles que,
pour tout x ∈ I , limh→0

1
h (f(x+ h) + f(x− h) − 2f(x)) = 0.

1. On suppose f dérivable sur I . Montrer que f ∈ S.

1. On suppose que f ∈ S et que f admet un maximum en x0 ∈ I . Montrer que f est dérivable en x0.
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Exercice 686 [Mines MP 2025 # 665] On pose f(x) = e−1/x2 pour x ∈ R∗, et f(0) = 0. a) Montrer que f est de classe C∞ et qu’il
existe une suite (Pn)n≥0 ∈ R[X]N telle que ∀x ∈ R∗, ∀n ∈ N, f (n)(x) = Pn(1/x)e−1/x2 .

1. Montrer que f n’est solution sur R d’aucune équation différentielle de la forme y’=a(x)y avec a : R → R continue.- c) Montrer
que Pn est scindé sur R quel que soit n ∈ N.

Exercice 687 [Mines MP 2025 # 666] Étude et graphe de f : x 7→ ln(|x|)
ln(|x−2|) .

Exercice 688 [Mines MP 2025 # 667] Soit f ∈ D3(R), telle que ff (3) = 0.
1. Montrer que si f’ est strictement monotone sur un intervalle I , f prend au plus deux fois chaque valeur sur I .

1. Soit Γ = {x ∈ R, f ′′(x) = 0}. Montrer que si Γ ̸= ∅, alors Γ n’est ni majoré, ni minoré. c) Montrer que Γ est un intervalle de
R. Caractériser f .

Exercice 689 [Mines MP 2025 # 668] 1. Soient λ > 0 et fλ : x ∈ R+∗ 7→ x−λe1/x. Montrer l’existence d’un unique
g(λ) > 0 tel que fλ(g(λ)) = 1. b) Trouver un développement asymptotique de g(λ) lorsque λ → +∞ et lorsque λ → 0+.
Exercice 690 [Mines MP 2025 # 669] Soit E = C0(R,R). Soit F un sous-espace vectoriel de E de dimension finie. On suppose que
F est stable par produit. Montrer que F ne contient que des fonctions constantes.
Exercice 691 [Mines MP 2025 # 670] On munit R2 de sa structure euclidienne canonique. Soient r ∈ R+ et v ∈ R2 tel que ||v|| ≤ r.
Montrer qu’il existe f ∈ C∞(R,R2) vérifiant :

∀x ∈ R, ∥f(x)∥ = r,
1

2π

∫ 2π

0
f = v et ∀x ∈ R, f(x+ 2π) = f(x).

Exercice 692 [Mines MP 2025 # 671] Soient A,B ∈ Mn(C). Montrer l’équivalence entre
1. AB = BA, ii) ∀t ∈ R, et(A+B) = etAetB .

Exercice 693 [Mines MP 2025 # 672] Calculer
∫ π/2

0
x cos(x) sin(x)

cos4(x)+sin4(x)dx.

Exercice 694 [Mines MP 2025 # 673] Soient a, b ∈ R avec a < b. On se place sur E = C0([a, b],R). On introduit, pour f ∈ E et

p ∈ N∗ : ||f ||p =
(∫ b

a
|f |p

)1/p
.

1. Montrer que ∥∥p est une norme sur E. b) Que vaut limp→+∞ ∥f∥p ?

1. Si f ≥ 0 et g > 0 sur [a, b], que vaut limp→+∞

(∫ b
−b gf

p
)1/p

?

Exercice 695 [MinesMP 2025 # 674] Soit f ∈ C2([0, 1],R) telle que f
( 1

2
)

= f ′ ( 1
2
)

= 0. Montrer que
∫ 1

0 f
′′(x)2dx ≥ 320

[∫ 1
0 f(x)dx

]2
.

Exercice 696 [Mines MP 2025 # 675] On pose E = C0(R+,R). Soit p ∈ N.
1. Soit f ∈ E. Montrer qu’il existe un unique élément u(f) ∈ E vérifiant :∀x > 0, u(f)(x) = 1

xp+1

∫ x
0 tpf(t)dt.

1. Montrer que u est linéaire et injective.

1. Déterminer les valeurs propres de u.
Exercice 697 [Mines MP 2025 # 676] Soit a ∈ R. On pose Ea = {f ∈ C2([0, 1],R); f(0) = f(1) = 0 et f ′(0) = a}. Montrer que∫ 1

−1 f
′′(t)2dt ≥ 3a2 pour tout f ∈ Ea.

Exercice 698 [Mines MP 2025 # 677] Déterminer les f de C0([0, π],R) vérifiant ∀n ∈ N∗,
∫ π

0 f(t) cos(nt)dt = 0.

Exercice 699 [Mines MP 2025 # 678] Déterminer la borne inférieure de
∫ 1

0 |f ′ − f | lorsque f : [0, 1] → R parcourt l’ensemble des
fonctions de classe C1 telles que f(0) = 0 et f(1) = 1.
Exercice 700 [Mines MP 2025 # 679] Soient f ∈ C0([a, b],K) avec K = R, ou C et δ > 0. Montrer qu’il existe P ∈ K[X] tel que
||f − P ||∞ ≤ δ et

∫∞
−∞ f =

∫∞
−∞ P . On pourra commencer par le cas réel.

Exercice 701 [Mines MP 2025 # 680] Expliciter la fonction F : x 7→
∫ sin2 x

a
arcsin

(√
t
)
dt+

∫ cos2 x

a
arccos

(√
t
)
dt.

Exercice 702 [Mines MP 2025 # 681] Déterminer A =
{∫ 1

0
f(t)etdt∫ 1

0
f(t)dt

; f ∈ C0([0, 1],R+) \ {0}
}

.

Exercice 703 [Mines MP 2025 # 682] Soient f : R → R continue et g : x 7→ 1
x

∫ x
0 cos(x− y)f(y) dy.

1. Calculer la limite de q en 0.

1. On suppose que f admet une limite finie en +∞. Déterminer la limite de g en +∞.

Exercice 704 [Mines MP 2025 # 683] On admet que
∫ +∞

0
sin(u)
u du = π

2 . Convergence et calcul de
∫ +∞

0
22 cos(u)u sin(u)

u4 du.

Exercice 705 [Mines MP 2025 # 684] Soit x ∈ R. Pour tout n ∈ N, on pose : In =
∫ π

0
cos(nt) cos(nx)

cos t cos x dt.
1. Donner un sens à l’intégrale In. b) Expliciter In.

Exercice 706 [Mines MP 2025 # 685] 1. Montrer que, pour tout réel a > -1,
∫ π/2

0
dt

1+a sin2 t = π
2

√
a+1 .

Ind. Poser x = tan t.b) Soit α un reer > 0. Etudier la convergence de
∑
un, ou un =

∫ +∞
0

dt
1+(nπ)α sin2 t
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1. Étudier la convergence de l’intégrale
∫ +∞

0
dt

1+tα sin2 t .
Exercice 707 [Mines MP 2025 # 686] Calculer ∫ 1

0
(−1)⌊1/x⌋dx.

Exercice 708 [Mines MP 2025 # 687] Soient f une fonction continue périodique de R dans R et α ∈ R+∗.
L’intégrale ∫ +∞

1

f(t)
tα

dt

est-elle convergente? absolument convergente?
Exercice 709 [Mines MP 2025 # 688] 1. Soit
$a > 0.$ Étudier la convergence de l’intégrale

∫ +∞
1

cos(at)
t dt.

1. Soient

a1, . . . , an > 0

et λ1, . . . , λn ∈ R.
Discuter la convergence de l’intégrale

∫ +∞
0

∑n
i=1 λi

cos(ait)
t dt et en cas de convergence, la calculer.

Exercice 710 [Mines MP 2025 # 689] 1. Soit

f ∈ C0(R+∗,R+∗)

décroissante et intégrable. Soit S : r ∈ R+∗ 7→
∑+∞
k=0 f(kr).

Exercice 711 [Mines MP 2025 # 589] 1. Soit

f ∈ C∞(R++,R++)

decroissante et integrable. Soit S : r ∈ R
Montrer que S(r) existe et donner un équivalent de S(r) lorsque r → 0+.
Montrer que S(r) existe et donner un équivalent de S(r) lorsque r → 0+.

1. Soient f ∈ C0(R+,C) et a, b ∈ R avec b > a > 0. On suppose que
∫ +∞

1
f(t)
t dt converge. Prouver la convergence et calculer∫ +∞

0
f(at)−f(bt)

t dt.

1. Calculer

I =
∫ +∞

−t

e−t − e−2t

t
dt.

Exercice 712 [Mines MP 2025 # 690] Soit
f : R+ → R+∗

une fonction de classe C1 telle que f ′(x)
f(x) ∼ 2

x quand x → +∞.
Exercice 713 [Mines MP 2025 # 690] Soit

f : R+ → R+∗

une fonction de classe C1 telle que f(x)
f(x) ∼ 2

x quand x → +∞. Montrer que 1
x

∫ x
−x f(t)dt ∼ f(x)

3 quand x → +∞.
Exercice 714 [Mines MP 2025 # 691] Soient

f ∈ C(R+,R)

et ℓ ∈ R∗. On suppose que : f(x)
∫ x

0 f −−−−−→
x→+∞

ℓ. Déterminer un équivalent simple de f(x) quand x tend vers +∞.

Exercice 715 [Mines MP 2025 # 692] Pour tout x > 0 , on pose f(x) =
∫ +∞
x

e−t

t dt.

Exercice 716 [Mines MP 2025 # 692] Pour tout x > 0 , on pose f(x) =
∫∞
x

e−t

t dt.

1. Montrer que f est bien définie.

1. Étudier l’intégrabilité de

f sur ]0,+∞[.
1. Le cas échéant, calculer

∫ +∞
0 f(x)dx.. a) Montrer qu’il existe un réel

γ tel que
∑∞
k=1

1
k = lnn+ γ + o(1) quand n → +∞

1. Montrer que
∫ +∞
a

e−ax−e−bx

x dx = ln(b) − ln(a) pour tous réels a > 0 et b > 0.

1. Montrer l’existence de I =
∫ 1

0

(
1
t − 1

ln(1+t)

)
dt puis l’égalité
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1. Montrer l’existence de

I =
∫ 1

0

(
1
t

− 1
ln(1 + t)

)
dt

puis l’égalité I =
∫ +∞

0 e−u
(

1
u − 1

1−e−u

)
du.

1. Montrer que I =
∑+∞
n=0

∫ +∞
0

(
e−nu−e−(n+1)u

u − e−nu
)
du.

1. En déduire que

$I = -γ.$
Exercice 717 [Mines MP 2025 # 694] Soit f : [0, 1] → R de classe C1 telle que f(0) = f(1) = 0.

1. Montrer que ∫ 1

0
f(t)f ′(t) cotn(πt)dt

converge.

1. En déduire que π2 ∫ 1
0 f(t)2dt ≤

∫ 1
0 f

′(t)2dt.

605 Soit
f ∈ C1(D+,D)

On suppose the fact integrable out D+ and f(x)
Exercice 718 [Mines MP 2025 # 695] Soit f ∈ C1(R+,R). On suppose que f est intégrable sur R+, que f(x) −→

x→+∞
0 et que f’ est

croissante. Montrer que, pour tout x ≥ 0,
∫ +∞

−∞ f2 ≤ 2
3f(x)

∫ +∞
−∞ f .

Exercice 719 [Mines MP 2025 # 696] On note E l’ensemble des fonctions continues et de carré intégrable de R+ dans R. Soit f ∈ E.
On pose g(0) = f(0) et g(x) = 1

x

∫ x
0 f pour tout x > 0.

$f ∈ E.$ On pose g(0) = f(0) et g(x) = 1
x

∫ x
0 f pour tout x > 0

1. Montrer que g est continue et
∫ x

0 g2 = −xg(x)2 + 2
∫ x

0 fg(x)

1. Montrer que

g est continue et
∫ x

0 g2 = −xg(x)2 + 2
∫ x

0 fg.
1. Montrer que, pour tout x ≥ 0,

∫ x
0 g2 ≤ 4

∫ x
0 f2.

En déduire que g ∈ E et
∫ +∞

0 g2 ⩽ 4
∫ +∞

0 f2.∣∣f(x) −
∑
k ake

−kx
∣∣ ⩽ ε;

Exercice 720 [Mines MP 2025 # 697] On pose, pour n ∈ N , fn(x) = xn ln(x) si x ∈]0, 1], et fn(0) = 0. Montrer que (fn) converge
uniformément sur [0, 1] vers 0.
Exercice 721 [Mines MP 2025 # 698] Soient a, b ∈ R avec a < b. Quelles sont les fonctions de [a, b] dans R qui sont limite uniforme
sur [a,b] d’une suite (pn)n≥0 de polynômes tels que, pour tout n ∈ N et tout x ∈ [a, b], p′′

n(x) > 0?
Exercice 722 [Mines MP 2025 # 699] Soit f une fonction de R dans C. Montrer l’équivalence entre :

1. pour tout ε > 0, il existe n ∈ N et (a0, . . . , an) ∈ Rn+1 tels que, pour tout x ∈ R+,

ii) f est continue sur R+ et admet une limite finie en +∞.
Exercice 723 [Mines MP 2025 # 700] Soit (fn) une suite de fonctions convexe sur [a,b] à valeurs dans R. On suppose que (fn)
converge simplement sur [a, b] vers une fonction f .

1. Montrer que f est convexe.

1. Soient α, η tels que : a < α < η < b. Montrer qu’il existe K > 0 tel que :

∀n ∈ N,∀(x, y) ∈ [α, η]2, |fn(x)fn(y)| ⩽ K|xy|.
1. i) Montrer que la suite (fn) converge uniformément vers f sur tout segment de [a,b[ mais pas nécessairement sur [a, b].

• ii) Montrer que si f est continue, alors (fn) converge uniformément vers f sur [a,b].

Exercice 724 [Mines MP 2025 # 701] On pose f : x 7→
∑+∞
n=0

xe−nx

ln(n) .
1. Déterminer les domaines de définition, de continuité, puis de dérivabilité de f .

1. Déterminer la limite de f en +∞, puis en donner un équivalent simple.

Exercice 725 [Mines MP 2025 # 702] Soit f : x 7→
∑+∞
n=0(−1)n ln

(
n+1+x
n+x

)
. Montrer que f est bien définie sur R+∗. Déterminer la

limite et un équivalent de f en +∞.
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Exercice 726 [Mines MP 2025 # 703] 1. Soit x ∈ [0, 1[. Justifier l’existence de f(x) =
∏+∞
n=1

(
1+xn

1+xn+1

)xn

.

1. Montrer que, pour tout x ∈]0, 1[, ln(f(x)) = ln 2 + x−1
x

∑+∞
n=1 x

n ln(1 + xn).

1. En déduire que, pour tout x ∈]0, 1[, ln (f(x)) = ln 2 +
∑+∞
m=1

(−1)m

m
xm

1+x+···+xm .

1. Montrer que f possède une limite finie en 1 et la déterminer

On admettra que
∑+∞
n=1

1
n2 = π2

6 .
Exercice 727 [Mines MP 2025 # 704] 1. Déterminer le domaine de définition de f : x 7→

∑+∞
n=0

x
n(1+n2x)

• b) Déterminer la limite de f en +∞.

• c) Déterminer un équivalent de f en 0+.

Exercice 728 [Mines MP 2025 # 705] 1. Montrer que f : x 7→
∑+∞
n=0

cos(nx)
n3/2 est définie et continue sur R.

1. Pour n ∈ N et x ∈ R, donner une expression simplifiée de
∑∞
n=0 sin(kx).

1. Montrer que f est de classe C1 sur tout segment inclus dans R \ 2πZ.
Exercice 729 [Mines MP 2025 # 706] On pose f(x) =

∑+∞
n=1

xn

1+x2n .

1. Domaine de définition de f ?

1. Étudier la continuité de f sur son domaine de définition. Est-elle de classe C1 ?

1. Déterminer des équivalents de f en 0, 1−, 1+ et +∞.
Exercice 730 [Mines MP 2025 # 707] Soient a > 0 et f : R → R dérivable telle que : ∀x ∈ R, f ′(x) = f(ax).

1. Montrer que f est de classe C∞.

1. Calculer f (n) et expliciter f (n)(0) en fonction de f(0).

1. Déterminer le rayon de convergence de la série entière :
∑ 1

n!a
n(n−1)/2xn.

On suppose a ∈]0, 1[ et l’on note : g : x 7→
∑+∞
n=0

1
n!a

n(n−1)/2xn.

1. Montrer que g est bien définie sur R, de classe C∞ et : ∀x ∈ R, g′(x) = g(ax).

1. On suppose f(0) = 0. Montrer que f = 0. f) Résoudre l’équation fonctionnelle : y’(x) = y(ax).
Exercice 731 [Mines MP 2025 # 708] Soit f : R → R bornée et dérivable, vérifiant : ∀x ∈ R, f ′(x) = f(x+ 1).

1. Montrer que : ∀x ∈ R, f(x) =
∑+∞
n=0

f(n)
n! x

n.

1. Montrer que : ∀k ∈ N, f(k) = −
∑n=0
n=k+2

f(n)
(n−k)!

1. Montrer que f = 0.

Exercice 732 [Mines MP 2025 # 709] Soit f : x ∈ R \ Z 7→ −π2

sin2(πx) +
∑
n∈Z

1
(x−n)2 .

1. Montrer que f est bien définie, 1-périodique et continue.

1. Montrer que f est prolongeable par continuité sur R et que

∀x ∈ R, 4f(x) = f
(x

2

)
+ f

(
x+ 1

2

)
.

1. Montrer que f=0 et en déduire :
∑+∞
n=0

1
n2 = π2

6 .

Exercice 733 [Mines MP 2025 # 710] Soit f ∈ C1(R+,R+∗) une fonction croissante telle que f ′(x)
f(x) ∼ a

x→+∞
a
x avec a > 0.

1. Rappeler les théorèmes d’intégration des équivalents et donner un équivalent de ln(f(x)) quand x → +∞.

1. On pose u : x 7→
∑∞
n=0 f(n)e−nx. Déterminer le domaine de définition de u et donner les limites de u aux bornes de ce

domaine.
Exercice 734 [Mines MP 2025 # 711] Soit p ∈]0, 1[. Soit f définie par : f(x) =

∑∞
n=0 n

xpn.

1. Tracer une allure du graphe de f .

1. Déterminer le domaine de définition de f .

1. Étudier l’intégrabilité de f en −∞.
Exercice 735 [Mines MP 2025 # 712] Soient λ ∈ C et Fλ : s 7→

∑+∞
n=0

λn

s(s+1)···(s+n) .
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1. Déterminer l’ensemble ∆λ des s ∈ R+∗ pour lesquels Fλ(s) est bien défini.

1. Trouver la limite de Fλ quand s → sup(∆λ). c) Donner un équivalent de Fλ(s) quand s tend vers inf(∆λ).

1. Calculer
∫ 1

0 y
n(1 − y)s−1dy. En déduire une expression intégrale de Fλ(s).

Exercice 736 [Mines MP 2025 # 713] On admet que π est irrationnel. Soit α > 1. On pose, pour n ∈ N∗ : an =
(

cos(n)
n + α

n

)n
.

1. Déterminer le rayon de convergence R de la série entière
∑
anx

n.

1. Étudier la convergence de la série en R.
Exercice 737 [Mines MP 2025 # 714] Soient q ∈] − 1, 1[ et f : x 7→

∑+∞
n=0 sin(qnx).

1. Montrer que f est de classe C∞ sur R.

1. Montrer que f est développable en série entière au voisinageqde 0.

Exercice 738 [Mines MP 2025 # 715] Soit f : x 7→
∫ +∞

−∞ e−t sh
(
x

√
t
)
dt.

1. Donner le domaine de définition de f .

1. Développer f en série entière puis exprimer f à l’aide des fonctions usuelles.

Exercice 739 [Mines MP 2025 # 716] Pour tout n ∈ N, on pose : an =
∫ π/4

0 tann t dt. Déterminer le rayon de convergence de la
série entière

∑
anx

n, faire l’étude aux bords et calculer la somme.
Exercice 740 [Mines MP 2025 # 717] Notons Dn le nombre de permutations de {1, . . . , n} qui n’admettent aucun point fixe. On
pose par convention D0 = 1.

1. Montrer que
∑n
k=0

(
k
k

)
Dk = n!.

1. Soit S : x 7→
∑+∞
n=0

Dn

n! x
n. Montrer que S a un rayon de convergence ≥ 1.

1. Calculer exS(x) et en déduire une expression de Dn.
Exercice 741 [Mines MP 2025 # 718] On définit f(z) = z

ez−1 pour z complexe lorsque cela a un sens, et f(0) = 1. On
définit une suite réelle

(bn)n∈N

par b0 = 1 et ∀n ∈ N \ {0, 1},
∑n−1
k=0

(
n
k

)
bk = 0.

1. Déterminer le domaine de définition de f .

1. Montrer que |bn| ≤ n! pour tout n ∈ N.

1. Montrer que f est développable en série entière autour de 0 et que f(z) =
∑+∞
n=0

bn

n! z
n pour z voisin de 0. Montrer que le rayon

de convergence de la série entière en question appartient à [1, 2π].

1. En considérant z 7→ f(z) + z
2 , calculer bn pour tout n ∈ N impair.

1. Montrer que tan est développable en série entière autour de 0 et expliciter le développement en série entière associé en fonction
des bn. Ind. Considérer f(z) + f(-z).

Exercice 742 [Mines MP 2025 # 719] Soit p ∈ R. L’application f : x ∈ R 7→
(
x+

√
1 + x2

)p est-elle développable en série entière
au voisinageqde 0?
Exercice 743 [Mines MP 2025 # 720] Pour n ∈ N , on pose un : x ∈ R 7→

∏n
k=0

(
1 − x

2k

)
.

1. Montrer que la suite (un) converge simplement sur R vers une fonction u que l’on ne cherchera pas à expliciter.

1. Montrer que u est continue sur R.

1. Montrer que u est développable en série entière au voisinageqde 0.
Exercice 744 [Mines MP 2025 # 721] On considère :

f : x 7→
+∞∑
n=0

e−nein
2x.

1. Montrer que f est bien définie et de classe C∞ sur R.

1. Montrer que f n’est pas développable en série entière au voisinageqde 0.
Exercice 745 [Mines MP 2025 # 722] Soit (un) une suite définie par u0 ∈]0, π/2[ et un+1 = sin(un) pour n ∈ N. Pour n ∈ N, on
pose an =

∫ un

0
dt

1+sin t .
Pour n ∈ N , on pose an =

∫ un

0
dt

1+sin t .

1. Déterminer la limite de la suite (un) et étudier le comportement de la suite (an).
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1. Montrer la divergence de
∑
u2
n et la convergence de

∑
u3
n.

1. Déterminer le rayon de convergence de la série entière
∑
anx

n. Préciser le comportement de sa somme en 1 et en -1.
Exercice 746 [Mines MP 2025 # 723] Soit (an)n≥0 une suite complexe telle que

∑
n|an| converge. Soit f : z 7→

∑+∞
n=0 anz

n.
1. Montrer que le rayon de convergence de f est ≥ 1.- b) On suppose que a1 ̸= 0 et que

∑+∞
n=0 n|an| ≤ |a1|. Montrer que f est

injective sur le disque
unité ouvert.
Exercice 747 [Mines MP 2025 # 724] Pour n ∈ N, on note p(n) le cardinal de l’ensemble {(x, y, z) ∈ N3 : x + 2y + 3z = n}. Soit
G : t 7→

∑+∞
n=0 p(n)tn. a) Montrer que le rayon de G est ≥ 1 et que ∀t ∈] − 1, 1[ , G(t) = 1

(1−t)(1−t2)(1−t3)

1. Expliciter p(n) et en déterminer un équivalent.
Exercice 748 [Mines MP 2025 # 725] Soient I un intervalle ouvert de R et f ∈ C∞(I,R) telle que, pour tout n ∈ N, f (n) ≥ 0.
Montrer que, pour tout x ∈ I , il existe r > 0 et (an)n≥0 ∈ RN tels que ]xr, x+ r[⊂ I et ∀t ∈] − r, r[, f(x+ t) =

∑+∞
n=0 ant

n.
Exercice 749 [Mines MP 2025 # 726] 1. Déterminer les endomorphismes continus du groupe (R,+). Si (an)n≥0 ∈ RN, on dit

que (an)n≥0 vérifie la propriété P si le rayon de convergence de
∑
anx

n est supérieur ou égal à 1 et si x 7→
∑+∞
n=0 anx

n admet
une limite finie en 1−.

1. Montrer que, si
∑
an converge absolument, (an)n≥0 vérifie P . Étudier la réciproque.

1. Déterminer les fonctions f de R dans R telles que, pour toute suite (an)n≥0 vérifiant P , la suite (f(an))n≥0 vérifie P .
Exercice 750 [Mines MP 2025 # 727] 1. Soient (p, q) ∈ (N∗)2 et f ∈ C0([0, p/q],R). Pour n ∈ N∗, on pose : Pn =
Xn(p−qX)n

n! Montrer que :
∫ p/q

0 Pn(t)f(t)dt −−−−−→
n→+∞

0. b) Montrer que π est irrationnel

Exercice 751 [Mines MP 2025 # 728] Déterminer un équivalent de
∫ +∞

0
e−nt| cos t|√

t
dt lorsque n → +∞.

Exercice 752 [Mines MP 2025 # 729] Déterminer un équivalent de In =
∫ +∞

0 (1 + nx4)−ndx.

Exercice 753 [MinesMP 2025 # 730] Soit f ∈ C0([0, 1],R) strictement croissante vérifiant f(0)=0 et f(1)=1. Montrer que :
∫ 1

0 f(t)ndt −−−−−→
n→+∞

0.
Exercice 754 [Mines MP 2025 # 731] On pose : ∀x ∈]0, 1[ , f(x) = −x

ln(1−x) et ∀n ∈ N, In =
∫ 1

0 x
nf(x) dx.

1. Étudier la bonne définition, la convergence et la limite de la suite (In).

1. Déterminer un équivalent simple de In.
Exercice 755 [Mines MP 2025 # 732] Soit f ∈ C0(R+,R+) bornée.

Déterminer la limite de la suite de terme général 1
n

(∫ +∞
0

(
ln
(
1 + enf(x)))n e−xdx

)1/n
.

Exercice 756 [Mines MP 2025 # 733] Soit
a ∈ R∗ \ {−1, 1}.

On pose In =
∫ π

0
cos(nt)

1−2a cos t+a2 dt.

1. Montrer que a(In + In+2) = (a2 + 1)In+1 pour tout n.

1. Calculer In.

Exercice 757 [Mines MP 2025 # 734] Pour n ∈ N, on pose In =
∫ π/4

0 (tan(x))ndx.
1. Trouver une relation de récurrence vérifiée par (In) et en déduire un équivalent de In.

1. Donner le rayon de convergence de
∑
Inx

n.

1. Montrer que I2n = (−1)n
∑+∞
k=−∞

(−1)k

2k+1 . Exprimer de même I2n+1.

Exercice 758 [Mines MP 2025 # 735] Soit x ∈ R. Pour n ∈ N, on pose In =
∫ π

2
0 cosn(t)dt et Jn =

∫ π
2

0 cosn(t) cos(2xt)dt.
1. Donner une relation entre In et In+2. b) Montrer que la suite ((n+ 1)InIn+1) est constante et en déduire In ∼

n→+∞

√
π

2n .

1. i) Montrer l’existence de α > 0 tel que ∀t ∈ [0, π/2], cos(t) ⩽ 1αt2 et déduire que
∫ π

2
−∞

√
nt cosn(t)dt −−−−−→

n→+∞
0.

J0 ii) Soit f ∈ C1([0, π/2],R). Montrer que 1
I

∫ π
2

0 f(t) cosn(t)dt −−−−−→
n→+∞

f(0).

• iii) Montrer que, si x ̸= ±n
2 , alors Jn =

(
1 4x2

n2

)−1
n−1
n Jn−2.

• iv) Conclure que, si x ∈] − π, π[, alors πx
∏∞
n=0

(
1x

2

k2

)
−−−−−→
n→+∞

sin(πx).

Exercice 759 [Mines MP 2025 # 736] Exprimer
∫ +∞

0
ln2(x)
x2+1 dx sous forme de somme d’une série.
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Exercice 760 [Mines MP 2025 # 737] On appelle suite de fonctions de Bertrand une suite (fn) de fonctions continues sur R+ à
valeurs positives, uniformément majorées et vérifiant : ∀n ∈ N,

∫ +∞
0 fn = 1. Soit B une suite de fonctions de Bertrand et

∑
an une

série numérique réelle. On dit que
∑
an est B -convergente si −

∑
anfn converge simplement sur R+, vers une fonction continue ;-

−
∫ +∞

0
∑+∞
n=0 anfn est une intégrale convergente.

1. Montrer que toute série absolument convergente est B -convergente.

1. On pose : ∀n ∈ N,∀t ∈ R+, fn(t) = tne−t

n! . Montrer que (fn) est une suite de fonctions

de Bertrand. Expliciter une série divergente qui est b-convergente.

1. Pour n ∈ N, on définit fn : t ∈ R+ 7→


0 si t ⩽ n

tn si n < t ⩽ n+ 1
n+ 2t si n+ 1 < t ⩽ n+ 2

.

Montrer que (fn) est une suite de Bertrand et montrer qu’une série
∑
an converge si et seulement si elle est B -convergente. En cas

de convergence, montrer que
∑+∞
n=0 an =

∫ +∞
0

∑+∞
n=0 anfn.

Exercice 761 [Mines MP 2025 # 738] Montrer l’existence et calculer : limλ→+∞
∫ π/2

0 cos(λ sin t)dt.
Exercice 762 [Mines MP 2025 # 739] Soit f : [0, 1] → R une fonction continue. On pose F(0)=0 et, pour x ∈ [0, 1], F (x) =

1√
π

∫ x
0

f(t)√
x−tdt. Étudier la continuité de F .

Exercice 763 [Mines MP 2025 # 740] Soit F : a ∈ R+ 7→
∫ +∞

0
dx

(1+x2)(1+xa) . Montrer que F est constante, en déduire sa valeur.

Exercice 764 [Mines MP 2025 # 741] Pour tout x ∈ R, existence et calcul de
∫ +∞

−t
eixt−1
t e−tdt.

Exercice 765 [Mines MP 2025 # 742] Soit F : x 7→
∫ +∞

0
e−xt

1+t2 dt.

1. Domaine de définition D de F - b) Montrer que F (x) =
∫ +∞

−t
sin(t−x)

t dt pour tout x ∈ D. c) En déduire que
∫ +∞

0
sin t
t dt = π

2 .

Exercice 766 [Mines MP 2025 # 743] 1. Déterminer les z ∈ C tels que
∫ +∞

0 tz−1e−tdt soit absolument convergente. On note
G(z) cette intégrale.

1. i) On pose In : z 7→
∫ n

0 tz−1 (1 tn)n dt. Justifier que In est bien définie.

ii) Montrer que limn→+∞ In(z) = G(z).- c) Montrer que G ne s’annule pas sur son domaine de définition.
Exercice 767 [Mines MP 2025 # 744] On pose F : x 7→

∫ +∞
0

arctan(xt)
t(1+t2) dt. a) Déterminer le domaine de définition D de F .

1. Montrer que F est de classe C1, puis calculer F .

1. En déduire la valeur de
∫ +∞

−t2
(arctan t)2

t2 dt.

Exercice 768 [Mines MP 2025 # 745] 1. Montrer que
∫ +∞

0 sin(x2)dx est une intégrale convergente.

1. Montrer que : G : t 7→
(∫ t

0 e
ix2
dx
)2

+ i
∫ 1

0
eit2(x2+1)

x2+1 dx est de classe C1 sur R et

calculer G’. c) On admet que :
∫ 1

0
eit2(x2+1)

x2+1 dx → 0 quand t → +∞. Calculer
∫ +∞

0 sin(x2)dx.

Exercice 769 [Mines MP 2025 # 746] Soit F : x 7→
∫ +∞

0
e−xt

1+t dt. a) Domaine de définition D de F . Montrer que F est positive et
décroissante.

• b) Montrer que F (x) ⩽
∫ +∞

−∞ e−xtdt pour tout x ∈ D et en déduire la limite de F en +∞.

• c) Montrer que F est de classe C1 sur D et que F (x)F ′(x) = 1
x pour tout x ∈ D. En

• déduire que F est de classe C∞ sur D. d) Montrer que F (x) = ex
∫ +∞

−t
e−t

t dt pour tout x ∈ D et en déduire la limite de F en
0+.

• e) Montrer que F (x) ∼ − ln x.

•
Exercice 770 [Mines MP 2025 # 747] Pour x>0, on pose Γ : x 7→

∫ +∞
0 tx−1e−tdt.

• a) Trouver une relation entre Γ(x) et Γ(x+ 1) pour x>0.

• b) On pose, pour n ∈ N∗, un = ln(Γ(n)) Montrer que un = n ln(n) − n− ln(n)
2 + ln 2π

2 + o(1).
Exercice 771 [Mines MP 2025 # 748] Soient E =

{
f ∈ C2([0, 1],C) , f(0) = f(1) = 0

}
et F = C0([0, 1],C). a) Montrer que

∆ : f 7→ f ′′ est un isomorphisme de E dans F .
1. Pour g ∈ F , on pose G : x ∈ [0, 1] 7→

∫ 1
0 |x− t|g(t)dt. Montrer que G est de classe C2 et calculer G”.

1. En déduire une fonction de deux variables k : [0, 1]2 → R telle que

$∀ g ∈ F, ∀ x ∈ [0,1], ∆-1(g)(x) =
∫

0
1 k(x,t) g(t) dt.$
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Exercice 772 [Mines MP 2025 # 749] Soit F : a 7→
∫ +∞

0
dt√

(1+t2)(1+at2)
. Donner un équivalent de F en +∞.

Exercice 773 [Mines MP 2025 # 750] On pose

f : x 7→
∫ +∞

0

(
e−xt

∫ t

0

sin(u)
u

du

)
dt.

Montrer que f est définie sur R+∗ et exprimer f à l’aide des fonctions usuelles.
Exercice 774 [Mines MP 2025 # 751] 1. Déterminer le domaine de définition de f : x 7→

∫ +∞
0

tx

et−1dt et montrer que f est de
classe C1 sur ce domaine.

1. Donner un équivalent de f en chacune des bornes du domaine.
Exercice 775 [Mines MP 2025 # 752] Soient f , g continues sur R. a) On suppose f intégrable sur R et g bornée.
Montrer que (f ∗ g) : x 7→

∫ +∞
−∞ f(t)g(x− t)dt est continue et bornée sur R.

1. On suppose f et g de carré intégrable sur R. Montrer que f g est définie et bornée sur R.
Exercice 776 [Mines MP 2025 # 753] Soit

f ∈ C0([0, 1],R+∗).

Soient Nf : x ∈ R+∗ 7→
(∫ 1

0 f(t)xdt
)1/x

.

1. Montrer que Nf est de classe C∞ sur R+∗.

1. Déterminer la limite de Nf en +∞.

1. Déterminer la limite de Nf en 0+.
Exercice 777 [Mines MP 2025 # 754] On pose E = C0([0, 1],R) et on se donne K : [0, 1]2 → R continue.

1. Montrer que T : f ∈ E 7→
[
x 7→

∫ x
0 f(t)K(x, t)dt

]
est un endomorphisme de E.

1. Soit φ : [0, 1]2 → R continue et telle que ∂2φ soit définie et continue sur [0, 1]2.

1. Montrer que (u, s) ∈ [0, 1]2 7→
∫ u

0 φ(x, s) dx est de classe C1 (dans un sens à préciser).

ii) En déduire que g : s ∈ [0, 1] 7→
∫ s

0 φ(x, s) dx est de classe C1, et expliciter sa dérivée.

1. On pose T :f ∈ E 7→
[
x 7→

∫ 1
x
f(t)K(x, t) dt

]
. On note ⟨ , ⟩ le produit scalaire sur E défini par ⟨a, b⟩ =

∫ 1
0 a(t) b(t) dt.

Montrer que ∀(f, g) ∈ E2, ⟨T (f), g⟩ = ⟨f, T (g)⟩ et que T est l’unique endomorphisme de E ayant cette propriété.
Exercice 778 [Mines MP 2025 # 755] Soit f ∈ C0(R,R) intégrable sur R. Montrer que l’équation différentielle y’-y+f=0 possède une
unique solution bornée.
Exercice 779 [Mines MP 2025 # 756] On considère l’équation différentielle (E) : 6(1 + t2)y′′ − 2y = t.

1. Déterminer une solution polynomiale non nulle φ de (1 + t2)y′′ − 2y = 0.

1. Résoudre (E) grâce au changement de fonction inconnue y = φz.
Exercice 780 [Mines MP 2025 # 757] Soient k ∈ N∗ et f ∈ C0(R,R) 2π -périodique.
L’équation différentielle y′′ + k2y = f admet-elle une solution 2π -périodique?
Exercice 781 [Mines MP 2025 # 758] Soient φ ∈ C0(R,R) et K ∈ R+∗. Montrer que toute solution non nulle de l’équation différen-
tielle y′′ + φ(x)y′ −Ky = 0 s’annule au plus une fois sur R.
Exercice 782 [Mines MP 2025 # 759] Soit f ∈ C2(R,R) telle que ∀x ∈ R, f(x) + f ′′(x) ≥ 0.
Montrer que ∀x ∈ R, f(x) + f(x+ π) ≥ 0.
Exercice 783 [Mines MP 2025 # 760] Soit () l’équation différentielle 2xy” + y’ - y = 0.

1. Trouver une solution f de () développable en série entière au voisinageqde 0 et telle que f(0)=1.

1. Exprimer f à l’aide de fonctions usuelles.

1. Déterminer toutes les solutions de ().
Exercice 784 [Mines MP 2025 # 761] On pose E = C∞(R,R) et φ l’endomorphisme de E défini par :
∀f ∈ E,∀t ∈ R, φ(f)(t) = f ′(t) + tf(t). a) Déterminer les éléments propres de φ.

1. Déterminer les éléments propres de φ2.

1. Résoudre l’équation différentielle : y′′ + 2ty + (t2 + 3)y = 0.
Exercice 785 [Mines MP 2025 # 762] Soit (E) l’équation différentielle sur R+∗ : ty” + ty’ y = 0.

1. Déterminer les réels a tels que ha : t 7→ ta soit solution de (E).
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1. Soient g : t ∈ R+∗ 7→ e−t

t2 et G : t ∈ R+∗ 7→
∫ t

1 g(s) ds. Dresser le tableau de variation de G. Étudier la limite de G en 0+ et
montrer que G admet une limite finie en +∞.

1. Soient f ∈ C2(R+∗,R) et h : t 7→ tf(t). Montrer que h est solution de (E) si et seulement

si f’ est solution de : (E’) : z′ +
(
1 + 2

4
)
z = 0.

1. Résoudre l’équation (E) et étudier le comportement des solutions en 0+.
Exercice 786 [Mines MP 2025 # 763] On note (S) le problème de Cauchy (−2y′′ + xy′ + y = 0, y(0) =

√
π, y′(0) = 0).

1. Montrer que (S) possède une unique solution développable en série entière sur R et l’expliciter.

1. On pose : f : x 7→
∫ +∞

−∞ etx−t2dt. Montrer que f est de classe C2 et expliciter f(x).

Exercice 787 [MinesMP 2025 # 764] Montrer que la fonction x 7→ exp
(
− 1
x2

)
n’est pas solution sur R+∗ d’une équation différentielle

linéaire homogène à coefficients constants.
Exercice 788 [Mines MP 2025 # 765] Déterminer les f ∈ C1(R+∗,R) telles que ∀x ∈ R+∗, f ′(1/x) = −f(x/2).
Exercice 789 [Mines MP 2025 # 766] Soit q : R+ → R+∗ continue. On suppose que (E) : y” + q(x)y = 0 admet une solution strictement
positive y et on pose f = y′

y .- a) Trouver une équation différentielle d’ordre 1 dont f est solution.
1. Montrer que f est décroissante et strictement positive.

1. Montrer que q est intégrable sur R+ et que
∫ +∞

−∞ q(t)dt = O
( 1
x

)
.

Exercice 790 [Mines MP 2025 # 767] L’espace Rn est muni de sa structure euclidienne canonique. Soit A ∈ Mn(R). Montrer
l’équivalence des énoncés suivants : i) A ∈ An(R),

• ii) toute solution x : R → Rn de l’équation différentielle x’ = Ax est de norme constante.
Exercice 791 [Mines MP 2025 # 768] 1. Soient f, g ∈ C0(R+,R+∗).
On suppose qu’il existe A > 0 telle que ∀x ≥ 0, f(x) ≤ A+

∫ x
0 f(t)g(t)dt. Montrer que ∀x ≥ 0, f(x) ≤ A exp

(∫ x
0 g(t)dt

)
.

1. Soient a, b ∈ C0(R+,R) telles que b est intégrable sur R+ et u 7→ u a(u) est intégrable sur R+. Soit x une solution sur R+ de
l’équation différentielle x” + ax = b. Montrer que,

pour tout t ≥ 0 , x(t) = x(1) + (t− 1)x′(1) −
∫ t

1 (t− u) a(u)x(u) du+
∫ t

1 (t− u) b(u) du.
Exercice 792 [Mines MP 2025 # 769] Résoudre les systèmes différentiels

{
x′ = 7x+ 3y + tet

y′ = 3x− y + et
,


x′ = 2x− y − z

y′ = −x+ y + z

z′ = x+ 2y + 2z{
x′′ = 9x+ 10y
y′′ = −5x− 6y

,

{
x′(t) = (t+ 3)x(t) + 2y(t)
y′(t) = −4x(t) + (t− 3)y(t)

.

Exercice 793 [Mines MP 2025 # 770] Soit A ∈ M2n(R) telle que A2 + I2n = 0. Déterminer les solutions de : X’ = AX.
Exercice 794 [Mines MP 2025 # 771] Déterminer les matrices A de Mn(R) telles que, pour tout t ∈ R+, la matrice etA soit stochas-
tique, c’est-à-dire que tous ses coefficients sont positifs, et que la somme des coefficients sur n’importe quelle ligne vaut 1.
Exercice 795 [Mines MP 2025 # 772] Soit n ∈ N∗. On pose A = {M ∈ Mn(R); ∀i, j ∈ [1, n], (−1)i+jmi,j ≥ 0}.

1. Montrer que A est stable par + et ×. b) Soient A ∈ A et M ∈ C1(R+,Mn(R)) vérifiant : ∀t ∈ R+,M ′(t) = AM(t) et
M(0) ∈ A. Montrer que : ∀t ∈ R+,M(t) ∈ A.
Exercice 796 [MinesMP 2025 # 773] SoitA : [0, 1] → Mn(R) une fonction de classe C1 telle que ∀t ∈ [0, 1], A2(t)−5A(t)+6In = 0.

1. Montrer qu’il existe une fonction P : [0, 1] → GLn(R) telle que, pour tout t ∈ [0, 1],
A(t) = P (t)A(0)P (t)−1. b) Soient t ∈ [0, 1], λ ∈ R etX ∈ Mn,1(R) tels queA(t)X = λX . Montrer queA(t)A′(t)X = (5λ)A′(t)X .

1. Montrer qu’il existe une fonction P : [0, 1] → GLn(R) de classe C1 telle que ∀t ∈ [0, 1], A(t) = P (t)A(0)P (t)−1.

Exercice 797 [Mines MP 2025 # 774] On considère la fonction f : R2 → R, (x, y) 7→

{
(x2 + y2)x si (x, y) ̸= (0, 0)
1 si x = y = 0.

.

1. Étudier la continuité de f .

1. Montrer que f est de classe C1 sur R2 \ {(0, 0)}. Admet-elle des dérivées partielles en (0,0) ?

1. Étudier les variations de la fonction x 7→ f(x, 0).

1. Étudier les extrema de f .
Exercice 798 [Mines MP 2025 # 775] Soit

f : (x, y) ∈ R2 7→
√

1 + x2 +
√

1 + y2 − xy√
2
.

Déterminer les extrema de f et préciser leur nature.
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Exercice 799 [Mines MP 2025 # 776] Soit D = {(x, y) ∈ [0, π]2 : x+ y ≤ π}.
Déterminer les extrema de φ : (x, y) ∈ D 7→ sin(x) sin(y) sin(x+ y).
Exercice 800 [Mines MP 2025 # 777] Soit f définie sur R2 par : ∀(x, y) ∈ R2, f(x, y) = x2xy2.

1. Déterminer les points critiques de f .

1. Soit D une droite passant par (0,0). Montrer que la restriction de f à D admet un minimum local en (0,0).

1. La fonction f possède-t-elle un extremum local en (0,0) ?
Exercice 801 [Mines MP 2025 # 778] Soit E un espace vectoriel normé non nul. Soit N une norme quelconque sur E. Montrer que
N n’est pas différentiable en 0.
Exercice 802 [Mines MP 2025 # 779] 1. Soient

f ∈ C1(Rn,R)

et x ∈ Rn. Montrer : f(x) = f(0) +
∑n
i=1 xi

∫ 1
0

∂f
∂xi

(tx)dt.

1. Soit D le sous-espace des formes linéaires φ sur E = C∞(Rn,R) vérifiant : ∀(f, g) ∈ E2, φ(fg) = f(0) φ(g) + g(0) φ(f).

Montrer que D est de dimension finie puis que dim D = n.
Exercice 803 [Mines MP 2025 # 780] 1. Soient (E, ∥∥) un R -espace vectoriel normé de dimension finie, f ∈ L(E,R) \ {0}.
On pose g : x ∈ E 7→ f(x)e−∥x∥2 . Montrer que g admet un minimum et un maximum.

1. On prend E = Rn muni de sa structure euclidienne canonique. Soient a ∈ Rn \ {0} et g : x ∈ E 7→ ⟨a, x⟩ e−∥x∥2 . Déterminer
le minimum et le maximum de g et indiquer les points en lesquels ils sont atteints.

Exercice 804 [Mines MP 2025 # 781] Déterminer les extrema de f : (x, y) ∈ R2 7→ xey + yex.
Exercice 805 [Mines MP 2025 # 782] On considère la fonction f : (a, b) ∈ R2 7→

∫ 1
−1 |t2 + at+ b|dt.

1. Déterminer le minimum de la fonction b 7→ f(0, b).

1. On fixe b ∈ R. Déterminer le minimum de la fonction a 7→ f(a, b).

1. Déterminer le minimum de f .
Exercice 806 [Mines MP 2025 # 783] Soient (E, ∥∥E), (F, ∥∥F ), (G, ∥∥G) trois espaces vectoriels normés. On pose, pour (x, y) ∈
E × F , ∥(x, y)∥E×F = max(∥x∥E , ∥y∥F ). Soit B : E × F → G bilinéaire et
continue. a) Montrer qu’il existe α > 0 tel que, pour tout (x, y) ∈ E × F vérifiant la condition
||(x, y)||E×F ≤ α, on ait ||B(x, y)||G ≤ 1.
En déduire que ||B(x, y)||G ⩽ ||x||E ||y||F

α2 pour tout (x, y) ∈ E × F .

1. Montrer que B est différentiable et que dB(x, y) · (h, k) = B(x, k) +B(h, y).

1. Montrer que (u, v) ∈ L(E)2 7→ u ◦ v est différentiable et exprimer sa différentielle.
Exercice 807 [Mines MP 2025 # 784] 1. Calculer la différentielle de la fonction det : Mn(R) → R en In. b) Montrer de deux

façons différentes que det n’atteint pas d’extremum local en In.

1. Que peut-on dire d’un éventuel extremum local de la fonction det ? d) On fixe r ∈ [1, n − 1]. Expliciter une matrice «simple»
de rang r de Mn(R). La fonction det y atteint-elle un extremum local ?

Exercice 808 [Mines MP 2025 # 785] Soient U un ouvert de Rn, x0 ∈ U et trois applications f, g1, g2 : U → R telles que g1 ≤ f ≤ g2
et g1(x0) = g2(x0). On suppose de plus que g1 et g2 sont différentiables sur U . Montrer que f est différentiable en x0.
Exercice 809 [Mines MP 2025 # 786] Soit (E, || ||) un espace vectoriel normé de dimension finie (non nulle). Soit f : BF (0, 1) → R
continue, constante sur la sphère unité et différentiable sur la boule ouverte Bo(0, 1). Montrer que f admet un point critique sur
Bo(0, 1).
Exercice 810 [Mines MP 2025 # 787] On munit E = Mn(R) d’une norme sous-multiplicative. a) Montrer qu’il existe C ∈ R+ tel
que ∀X ∈ E, | trX| ≤ C||X||.

1. Montrer que g : X 7→ X2 est différentiable sur E et calculer sa différentielle. c) Montrer que f : X 7→ trX2 est différentiable
sur E et calculer sa différentielle.

1. Montrer que : ∀(A,B) ∈ E2, | trA2 − trB2| ≤ 2C max(||A||, ||B||)||A−B||.
Exercice 811 [Mines MP 2025 # 788] Soient f : Rn → R une fonction différentiable, et k un entier ≥ 1. Montrer l’équivalence des
énoncés suivants :

1. ∀t ∈ R+, ∀x ∈ Rn, f(tx) = tkf(x), ii) ∀x ∈ Rn, df(x)(x) = kf(x).
Exercice 812 [Mines MP 2025 # 789] Soit φ définie sur R+ par : ∀t > 0, φ(t) = −t ln t et φ(0) = 0. Soit N ≥ 2.
On pose : ΣN =

{
p ∈ (R+)N ;

∑N
i=1 pi = 1

}
.

Soit h définie sur ΣN par : ∀p ∈ ΣN , h(p) =
∑N
i=1 φ(pi).
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1. Montrer que ΣN est un compact convexe. b) Montrer que φ est continue et strictement concave sur R+, c’est-à-dire que
∀λ ∈ [0, 1[, ∀(x, y) ∈ (R+)2, x ̸= y ⇒ φ((1 − λ)x + λy) ⩽ (1 − λ)φ(x) + λφ(y). c) Soient a, b ∈ R+ tels que a < b. Soit
t ∈ [0, (b− a)/2].

Montrer que φ(a+ t) + φ(b− t) > φ(a) + φ(b).

1. Montrer que h admet un maximum, atteint en un unique point p.- e) En raisonnant sur q = (p1 +ε, p2 −ε, p3, . . . , pN ), montrer
que p1 = · · · = pN .

Exercice 813 [Mines MP 2025 # 790] Soit f ∈ S(Rn) dont toutes les valeurs propres sont strictement positives.
1. Rappeler pourquoi f possède une base orthonormée de vecteurs propres.

1. Rappeler pourquoi ∀x ∈ Rn \ {0}, ⟨x, f(x)⟩ > 0. c) Soit v ∈ Rn. Montrer que g : x ∈ Rn 7→ 1
2 ⟨x, f(x)⟩ − ⟨v, x⟩ est de classe

C1.

1. Déterminer le gradient de q en tout point

1. Montrer que g admet un unique point critique, en un point noté c, et préciser sa valeur.

1. Montrer que q a un extremum global en c. La fonction q possède-t-elle d’autres extrema?

•
Exercice 814 [Mines MP 2025 # 791] Soit f : (x1, . . . , xn) ∈ Rn 7→ exp (n− 1 −

∑n
k=1 xk) +

∑n
k=1 e

xk .
1. Déterminer les points critiques de f .

1. Préciser la hessienne aux points critiques. Qu’en déduire sur f ? c) Déterminer les extrema de f .
Exercice 815 [Mines MP 2025 # 792] Soit n ∈ N. On munit Rn+1 de sa structure euclidienne canonique. Pour x = (x0, . . . , xn) ∈
Rn+1 et y = (y0, . . . , yn) ∈ Rn+1, on pose

f(x, y) =

 ∑
i+j=k

xiyj


0⩽k⩽2n

∈ R2n+1.

1. Montrer que, si x et y sont non nuls, alors f(x, y) est non nul.

1. On pose u : x ∈ Rn+1 7→ f(x, x) et v : x ∈ Rn+1 \ {0} 7→ f(x,x)
∥f(x,x)∥ .

Étudier la différentiabilité de u et v et calculer leurs différentielles quand c’est possible.
1. Déterminer le rang de dv(x) pour x ∈ Rn+1 non nul.

Exercice 816 [Mines MP 2025 # 793] Soit n ≥ 2. On munit Rn de sa structure euclidienne canonique. Soient c > 0 et f : Rn → Rn de
classe C1 telle que ∀(x, y) ∈ (Rn)2, ||f(x)f(y)|| ≥ ||xy||.

1. Soit a ∈ Rn. Montrer que ∥df(a)(h)∥ ≥ c∥h∥ pour tout h ∈ Rn. En déduire que df(a)
est bijective.

1. Soient b ∈ Rn et gb : x 7→ ||f(x)b||2. Montrer que gb admet un minimum sur Rn.

1. En déduire que f est bijective.
Exercice 817 [Mines MP 2025 # 794] On considere l’application f : P ∈ Mn(R) 7→ PTP ∈ Sn(R).

1. Montrer que, si M ∈ GLn(R), la différentielle de f en M est surjective. b) On pose g = f|Sn(R). Si M ∈ GLn(R) ∩ Sn(R), la
différentielle de g en M est-elle surjective?

Exercice 818 [Mines MP 2025 # 795] Soient p ∈ N∗, D1, . . . , Dp des droites affines de R2 non parallèles deux à deux, f1, . . . , fp des
formes linéaires non nulles telles que chaque fi soit constante (égale à ai ) sur Di. On pose T = R2 \

⋃r
i=1 Di, et on considère une

composante connexe par arcs C de T .
1. Soit i ∈ [1, p]. Montrer que gi = fiai ne changeqpas de signe sur C . b) Soit Φ : (x, y) ∈ C 7→

∑p
i=1 bi ln |gi(x, y)| où les bi

sont des constantes >0.

1. Montrer que Φ est de classe C2.

ii) Soient z1 et z2 dans C , et Ψ : t ∈ [0, 1] 7→ Φ(tz1 + (1 − t)z2). Montrer que Ψ est concave et que Ψ′′ ne s’annule pas. iii) Si C est
bornée, montrer que Φ n’admet qu’un seul point critique sur C . La fonction Φ admet-elle un extremum en ce point ?
Exercice 819 [Mines MP 2025 # 796] Soit f une fonction de classe C2 de R2 dans R. Déterminer la limite lorsque r tend vers 0 de

1
2πr2

∫ π
−π f(r cos(t), r sin(t))dt.

Exercice 820 [Mines MP 2025 # 797] Soient r > 0 et a ∈ Rn. Soit f ∈ C0(Bf (a, r),R), de classe C2 sur Bo(a, r).
On pose :

∆f =
n∑
k=1

∂2f

∂x2
k

.
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1. On suppose : ∀x ∈ Bo(a, r), ∆(f)(x) > 0. Montrer que f admet un maximum sur Bf (a, r) et que ce dernier ne peut pas être
atteint sur Bo(a, r).

1. On suppose : ∀x ∈ Bo(a, r), ∆(f)(x) ≥ 0. Montrer que f atteint un maximum sur Bf (a, r) et que ce dernier est atteint en un
point de la sphère de centre a et de rayon r. Ind. Pour ε > 0, poser fε : x 7→ f(x) + ε||xa||2.

Exercice 821 [Mines MP 2025 # 798] Soit n ≥ 2. Soit f : Rn → R de classe C2 telle que, pour tout x ∈ Rn, les valeurs propres de la
hessienne de f en x soient supérieures ou égales à 1. Montrer que, pour tout x ∈ Rn, f(x) ≥ f(0) + ⟨∇f(0), x⟩ + ∥x∥2

2 et en déduire
que f admet un minimum.
Exercice 822 [Mines MP 2025 # 799] Soit f : Rn → R de classe C1. On suppose qu’il existe un réel α > 0 tel que ∀(x, y) ∈
(Rn)2, ⟨∇f(x)∇f(y), xy⟩ ≥ α||x− y||2. Montrer que f → +∞.
Exercice 823 [Mines MP 2025 # 800] $ $ Soit f : Rn → Rn.

1. On suppose f de classe C2. Montrer que sa jacobienne Jf (x) est antisymétrique pour tout x ∈ Rn si et seulement s’il existe
A ∈ An(R) et b ∈ Rn tels que f(x) = Ax + b pour tout x ∈ Rn.

1. On suppose f de classe C1. Montrer que sa jacobienne Jf (x) est symétrique pour tout x ∈ Rn si et seulement s’il existe
g : Rn → R de classe C2 telle que f = ∇g.

Exercice 824 [Mines MP 2025 # 801] Soit G : Rn → R de classe C1. On suppose qu’il existe α > 0 tel que, pour tous x, y ∈ Rn,
G(y)G(x) ≥ ⟨∇G(x), yx⟩ + α

2 ∥yx∥2

1. Montrer que, si f : Rn → R est continue et si lim∥x∥→+∞ f(x) = +∞, alors f admet un minimum.

1. Montrer que G atteint son minimum en un unique point.

1. Soit x ∈ Rn tel que ∇G(x) ̸= 0. Montrer que la fonction t 7→ G(x + t∇G(x)) atteint son minimum en un unique point. Que
se passe-t-il si ∇G(x) = 0?d) Soit la suite (uk) définie par u0 ∈ Rn et, pour tout k ∈ N, uk+1 = uk + tk∇G(uk), où tk ∈ R est
tel que la fonction t 7→ G(uk + t∇G(uk)) atteint son minimum en t = tk . Quelle est la relation entre ∇G(uk+1) et ∇G(uk)?

1. Montrer que (uk) converge.
Exercice 825 [Mines MP 2025 # 802] 1. Soit U un ouvert convexe de Rn et f : U → R une fonction de classe C2. Montrer que f

est convexe si et seulement si Hf (x) ∈ S+
n (R) pour tout x ∈ U (où Hf (x) désigne la matrice hessienne de f en x).

1. On fixe p ∈ R+∗. Soit

f : (x1, . . . , xn) ∈ (R+∗)n 7→

(
n∑
i=1

xpi

)1/p

.

À quelle condition la fonction f est-elle convexe?
Exercice 826 [Mines MP 2025 # 803] Soit f : Rn → R une fonction de classe C2. On note Hf (x) la matrice hessienne de f au point
x.

1. Montrer que si Hf (x) = 0 pour tout x ∈ Rn, alors il existe a ∈ Rn et b ∈ R tels que f(x) = ⟨a, x⟩ + b pour tout x ∈ Rn.

1. Montrer que si la fonction x 7→ Hf (x) est constante sur Rn, alors il existe u ∈ S(Rn), a ∈ Rn et b ∈ R tels que f(x) =
1
2 ⟨u(x), x⟩ + ⟨a, x⟩ + b pour tout x ∈ Rn.

Exercice 827 [Mines MP 2025 # 804] Soit E un espace euclidien non nul dont on note S la sphère unité. Soit u ∈ S(E). On pose :
f : x 7→ ⟨u(x), x⟩ et g : x 7→ ||x||2 − 1.

1. Montrer que f et g sont différentiables sur E et calculer les différentielles.

1. Montrer que la restriction de f à S admet un maximum, en un vecteur e.

1. Montrer que e est un vecteur propre de u.
Exercice 828 [MinesMP 2025 # 805] Montrer que l’ensemble des vecteurs tangents àSLn(R) au point In est l’hyperplan des matrices
de trace nulle de Mn(R).
Exercice 829 [Mines MP 2025 # 806] Soit f ∈ C1(Rn,Rn) telle que l’imageqde tout fermé de Rn par f est fermée. On suppose
de plus que, pour tout a ∈ Rn, df(a) est bijective. On pose X = f(Rn).

1. Soit x ∈ X . Montrer que l’espace tangent TxX est égal à Rn. b) Montrer que X = Rn. Ind. On pourra raisonner par l’absurde.
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3) Probabilités

Exercice 830 [Mines MP 2025 # 807] Soient n ≥ 2 et X , Y deux variables aléatoires indépendantes suivant la loi uniforme sur
P([[1, n]]).

1. Déterminer E(card(X)).

1. Déterminer E(card(X ∩ Y )).
Exercice 831 [Mines MP 2025 # 808] Soient n, p ∈ N avec 1 ≤ p < n. On considère une urne contenant p boules blanches et n-p
boules noires. On effectue des tirages sans remise des boules de l’urne. Donner la loi et l’espérance de la variable donnant le rang de
la dernière boule blanche tirée.
Exercice 832 [Mines MP 2025 # 809] Soit X une variable aléatoire à valeurs dans N. On dit que X est sans mémoire si : ∀(m,n) ∈
N2,P(X > n) > 0 et P(X > m+ n | X > n) = P(X > m).

1. Soit p ∈ [0, 1[. On suppose que X ∼ G(p). Montrer que X est sans mémoire. b) On suppose que X est sans mémoire.

• i) Montrer que P(X > 0) = 1, puis que : ∃p ∈]0, 1[ ,∀n ∈ N,P(X > n) = (1 − p)n.

• ii) Montrer que X ∼ G(p).
Exercice 833 [Mines MP 2025 # 810] On considère une urne contenant deux fois plus de boules noires que de blanches. On y effectue
des tirages avec remise, et on note X la variable aléatoire donnant le nombre de tirages nécessaires pour obtenir pour la première fois
deux boules noires consécutives. Pour
tout n ≥ 0, on pose un = P(X > n). a) Montrer que un+2 = 1

3un+1 + 2
9un pour tout n ≥ 0.

1. En déduire la loi de X c) Montrer que X admet des moments de tout ordre, et calculer son espérance.

1. Calculer la fonction génératrice de Xn et en déduire sa loi et son espérance.
Exercice 834 [Mines MP 2025 # 811] Soit p ∈ [0, 1[. On dispose d’une urne contenant des boules blanches et noires, avec une
proportion p de boules blanches. On effectue des tirages successifs avec remise. Pour tout n ∈ N∗, on note Xn le nombre de tirages à
effectuer pour obtenir n boules blanches.

1. Déterminer la loi de X1 et sa fonction génératrice.
Exercice 835 [Mines MP 2025 # 812] Alice et Bob possèdent chacun un sac avec n jetons numérotés de 1 à n. Alice tire un jeton au
hasard. Bob tire ensuite des jetons, sans remise, jusqu’à ce que le numéro tiré soit supérieur ou égal au numéro tiré par Alice. On note
Y le nombre de jetons tirés par Bob.
Exercice 836 [Mines MP 2025 # 813] On pose, pour k ∈ N∗ : P(X = k) = k−1

2k .
1. Montrer que cette relation définit une loi de probabilité.

1. Calculer la fonction génératrice de X .

1. Calculer l’espérance de X .

Déterminer la loi de Y.
Exercice 837 [Mines MP 2025 # 814] Soient a ∈ R+∗ et p ∈ [0, 1] \ {1/2}. On considère des variables aléatoires X et Y à valeurs
dans N telles que ∀(k, n) ∈ N2, P(X = k, Y = n) = a (1−p)n−k

2n 1k⩽n.
1. Calculer a, puis les lois de X et Y. b) Calculer, si elles existent, l’espérance et la variance de X et Y.

1. Calculer la covariance de X et Y. Les variables aléatoires X et Y sont-elles indépendantes?
Exercice 838 [Mines MP 2025 # 815] Soient a ∈]0, 1[, b > 0 et (X,Y) un couple de variables aléatoires à valeurs dans N2 tel que :
∀(i, j) ∈ N2, P(X = i, Y = j) = e−bbiaj(1−a)i−j

j!(i−j)! 1i≥j .
1. Les variables aléatoires X et Y sont-elles indépendantes?

1. Déterminer la loi de Z = X Y.

1. Déterminer les lois de X et Y.d) Les variables aléatoires Y et Z sont-elles indépendantes?
Exercice 839 [Mines MP 2025 # 816] Soient X , Y des variables aléatoires telles que X ∼ B(n, p) et Y = 1

X+1 . Calculer E(Y ).
Exercice 840 [Mines MP 2025 # 817] Soit X ∼ P(λ).

1. Calculer la probabilité que X soit paire.

1. On pose Y = (−1)X . Espérance et loi de Y.
Exercice 841 [Mines MP 2025 # 818] Soit X une variable aléatoire à valeurs entières ayant un moment d’ordre 2.

Montrer que E
(

1
X + 1

)
⩽ 1 − 2

3 E(X) + 1
6 E(X2) et caractériser l’égalité.

Exercice 842 [Mines MP 2025 # 819] Soit X une variable aléatoire à valeurs dans N.
1. Montrer que : ∀t ∈ [0, 1[ ,

∑+∞
k=0 P(X > k) tk = 1−GX (t)

1−t .
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1. On suppose que X2 est d’espérance finie.

Montrer que :

∀t ∈ [0, 1],
+∞∑
k=0

P(X > k)tk ≥ 3 − t

2 E(X) + t− 1
2 E(X2).

Exercice 843 [Mines MP 2025 # 820] On considère deux compartiments séparés par une valve. À l’instant t=0, le compartiment A
contient 2N particules et le second est vide. On ouvre la valve. À chaque instant, de manière équiprobable, une des 2N particules passe
d’un compartiment à l’autre. On note Xn la variable aléatoire donnant le nombre de particules dans le compartiment A à l’instant n.

1. Soit k ∈ [0, 2N ]. Trouver une relation entre P(Xn > k), P(Xn−1 > k + 1), P(Xn−1 = k + 1) et P(Xn−1 = k).

1. En déduire que, pour n ≥ 1, E(Xn) = 1 +
(
1 1
N

)
E(Xn−1).

1. Déterminer E(Xn) pour n ∈ N, puis limn→+∞ E(Xn).
Exercice 844 [Mines MP 2025 # 821] Une urne contient r boules rouges et b boules blanches. À chaque tirage, on pioche une boule
dans l’urne et on remet la boule tirée dans l’urne si et seulement si elle est rouge. On note En,b l’espérance du nombre de boules
blanches tirées à l’issue de n tirages (on considère r comme fixé définitivement).

1. Montrer que F : (u, v) ∈] − 1, 1[2 7→
∑

(n,b)∈(N∗)2 En,bu
nvb est convenablement définie.

1. Montrer la relation (b + r)En,b = b + bEn−1,b−1 + rEn−1,b (si b>0 et n>0). c) Montrer que ∂2F est bien définie sur ]-1, 1[ et
que

∀(u, v) ∈] − 1, 1[2, v ∂2F (u, v) + r F (u, v) = uv
(1−u)2(1−v)2 .

Exercice 845 [Mines MP 2025 # 822] 1. Montrer que le polynôme P = X3X2X1 admet une unique racine réelle et deux racines
complexes non réelles de module strictement inférieur à 1.b) On lance une pièce équilibrée. Pour n ≥ 3, An est l’événement «
obtenir trois pile consécutifs pour la première fois à l’instant n ».

Déterminer une relation de récurrence d’ordre 3 vérifiée par la suite (P(An))n≥3 et en déduire sa limite.
Exercice 846 [Mines MP 2025 # 823] On lance simultanément n ∈ N∗ fois deux pièces équilibrées. Soit En l’événement « les deux
pièces donnent le même nombre de pile ».

1. i) Pour a, b, n ∈ N tels que a+ b ⩽ n, montrer que
∑n
k=0

(
a
k

)(
b

n−k
)

=
(
a+b
n

)
.

ii) Calculer P (En). b) On note N le nombre de fois où les pièces ont donné le même nombre de pile au cours des n lancers. Calculer
E(N).
Exercice 847 [Mines MP 2025 # 824] On donne la formule du crible de Poincaré : si A1, . . . , Ap sont des ensembles finis alors

card(A1 ∪ · · · ∪Ap) =
p∑
k=1

(−1)k−1
∑

1≤i1<···<ik≤p

cardAi1 ∩ · · · ∩Aik .

1. On munit Sn de la probabilité uniforme. On note X la variable aléatoire qui donne le nombre de points fixes d’une permutation
de Sn.

1. Calculer P(X=0).

1. Déterminer la loi de X .

1. Démontrer la formule de Poincaré.
Exercice 848 [Mines MP 2025 # 825] Une pièce tombe sur pile avec probabilité p ∈]0, 1[. On la lance jusqu’à obtenir pile, et on note
N le nombre de lancers effectués. On relance alors N fois la pièce, et on note X le nombre de pile obtenus. Déterminer la loi de N ,
celle de X et calculer E(X).
Exercice 849 [Mines MP 2025 # 826] On dispose de n chapeaux et n tiroirs. On rangeqaléatoirement chaque chapeau dans un des
tiroirs (chaque tiroir pouvant contenir jusqu’à n chapeaux). On note Xk la variable aléatoire donnant le numéro du tiroir dans lequel
est rangé le chapeau numéro k. On note Zn la variable aléatoire donnant le nombre de tiroirs vides à l’issue du rangement.

1. Calculer l’espérance et la variance de Zn.

1. Déterminer un équivalent de E(Zn) et de V(Zn) lorsque n tend vers +∞.
Exercice 850 [Mines MP 2025 # 827] 1. Donner la loi d’une somme de n variables aléatoires indépendantes suivant chacune la

loi géométrique de paramètre p ∈]0, 1[.

1. On lance un dé qui a une probabilité p ∈]0, 1[ de tomber sur 6. On note X le nombre de lancers nécessaires pour avoir n fois 6.
Déterminer la loi et l’espérance de X .

Exercice 851 [Mines MP 2025 # 828] Soient X , Y deux variables aléatoires indépendantes suivant la loi géométrique de paramètre
p ∈]0, 1[.

1. Calculer l’espérance et la variance de (X+1)2

X , notamment en fonction de
∫ 1

0
ln(u)
1−u du.

1. Calculer l’espérance de (X+1)2

V et de (X + 1)2Y .- c) Les variables aléatoires (X+1)2

V et (X + 1)2Y sont-elles indépendantes?
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Exercice 852 [Mines MP 2025 # 829] Soit X une variable aléatoire telle que X + 1 ∼ G(p).
1. Soient m,n ∈ N∗ et x ∈]0, 1[. Montrer que 1−xnm

1−xm ⩽ 1−xn

1−x .

1. Les événements « m divise X » et « n divise X » sont-ils indépendants? On pourra commencer par le cas n ∧m = 1.
Exercice 853 [Mines MP 2025 # 830] Soient a, b > 0 et X une variable aléatoire à valeurs dans N telle que, pour tout n ∈ N,
P(X = n+ 1) = aP(X = n) + bn+1.

1. Montrer que a, b sont strictement inférieurs à 1 et expliciter la loi de X .

1. Calculer E(X).
Exercice 854 [Mines MP 2025 # 831] Soit (Ek) une suite de variables aléatoires i.i.d. suivant la loi uniforme sur {−1, 1}. Montrer
l’existence d’un réel ℓ tel que :

∀α > 0, lim
n→+∞

P
(∣∣∣∣∣ 1n

n∑
k=1

cos
(
k

n
+ Ek

)
− ℓ

∣∣∣∣∣ > α

)
= 0.

Exercice 855 [Mines MP 2025 # 832] 1. Donner une condition sur le couple (r, s) ∈ R2 pour qu’il existe une variable aléatoire
X à valeurs dans N telle que P(X = n) = r

(2n
n

)
sn pour tout n ∈ N. On suppose dans le suite sette condition vériféée et en se

denne une telle variable. Y - dans la suite cette condition vérifiée et on se donne une telle variable X . b) Montrer que GX est
solution sur [0,1] de l’équation différentielle (1-4st)y’(t)=2sy(t).

1. En déduire l’espérance et la variance de X .
Exercice 856 [Mines MP 2025 # 833] 1. Déterminer une condition nécessaire et suffisante sur α ∈ R pour qu’il existe une va-

riable aléatoire X à valeurs dans N vérifiant ∀t ∈ [0, 1] Gx(t) = 1
1−1 .

variable aléatoire X à valeurs dans N vérifiant ∀t ∈ [0, 1], GX(t) = 1
(2−t)α

1. Calculer l’espérance et la variance de X et montrer que P(X = n) = O
(
n⌊α⌋

2n

)
.

Exercice 857 [Mines MP 2025 # 834] Soient X1, . . . , Xn des variables aléatoires i.i.d. suivant la loi géométrique de paramètre p. On
introduit Y = max(X1, . . . , Xn). Calculer P(Y ≥ k) et P(Y = k) pour k ∈ N. Montrer que Y est d’espérance finie.
Exercice 858 [Mines MP 2025 # 835] Pour n ≥ 2, soit Xn une variable aléatoire à valeurs dans [[1, n]] telle que, pour tout k ∈ [[1, n]],
P(Xn = k) = ln(k)

ln(n!) . Déterminer un équivalent de E(Xn) et E(X2
n) lorsque n tend vers +∞.

Exercice 859 [Mines MP 2025 # 836] Soient a et b dans R avec a < b. Quelle est la variance maximale d’une variable aléatoire à
valeurs dans [a,b] ?
Exercice 860 [MinesMP 2025 # 837] Soient f : R → R+ bornée etX une variable aléatoire réelle.Montrer que : (E(f(X)n))1/n −−−−−→

n→+∞
sup{f(x) ; x ∈ R, P(X = x) > 0}.
Exercice 861 [Mines MP 2025 # 838] SoientX ,Y deux variables aléatoires indépendantes suivant les lois géométriques de paramètres
respectifs p et q.

1. Calculer la probabilité que la matrice A =
(
X 1
0 Y

)
soit diagonalisable.

1. Calculer la probabilité que
(

1
0

)
(resp.

(
0
1

)
,
(

1
1

)
) soit vecteur propre de A.

Exercice 862 [Mines MP 2025 # 839] Une matrice est dite à spectre simple lorsque toutes ses valeurs propres sont de multiplicité 1.

1. Soit M =
(
A b
bT c

)
∈ Sn+1(R), où A ∈ Sn(R). On suppose que M n’est pas à spectre simple. Montrer que M possède un

vecteur propre dont le dernier coefficient est pul

simple. Montrer que M possède un vecteur propre dont le dernier coefficient est nul. b) En déduire que A possède un vecteur propre
orthogonal à b.

1. Soient X1, . . . , X5 des variables i.i.d. de Bernoulli de paramètre p. Montrer que la pro-
babilité que la matrice aléatoire

N =


2 0 0 X1
0 1 X5 X2
0 X5 −1 X3
X1 X2 X3 X4


soit à spectre simple est
supérieure ou égale à 3p3 − 2p4.
Exercice 863 [Mines MP 2025 # 840] Soit n ∈ N∗. On définit la matrice J = (Ji,j)1⩽i,j⩽n ∈ Mn(C) par Ji+1,i = 1, J1,n = 1 et
Ji,j = 0 sinon.

1. Calculer le polynôme caractéristique de J ainsi que son polynôme minimal. Soient X0, . . . , Xn−1 des variables aléatoires i.i.d.
de loi uniforme sur {−1, 1}.
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OnposeM =



X0 Xn−1 · · · · · · X1

X1 X0
. . . X2

X2 X1 X0
. . .

...
...

. . . . . . Xn−1
Xn−1 · · · X2 X1 X0


∈ Mn(C).

1. Exprimer M en fonction de J .

1. On suppose dans cette question que n=2. Calculer P(M ∈ GL2(C)).

1. Déterminer le spectre de M .

1. On suppose que n est premier et on admet qu’alors le polynôme 1 +X +X2 + · · · +Xn−1 est irréductible sur Q. Déterminer
P(M ∈ GLn(C)).

Exercice 864 [Mines MP 2025 # 841] Soient X1, . . . , Xn i.i.d. de loi B(p), U = (X1 · · ·Xn) et M = UTU .

1. Déterminer la loi de rg(M) et de tr(M).

b ) Calculer la probabilité de l’événement « M est un projecteur ».

1. Ici n = 2, V =
(

1
1

)
et S = VMV T . Déterminer l’espérance et la variance de S.

Exercice 865 [MinesMP 2025 # 842] Soientn ≥ 2 entier, etV un sous-espace vectoriel de Rn de dimension k. On note pV la projection
orthogonale sur V , M sa matrice dans la base canonique. On écrit M=D+Aoù D est diagonale et A a tous ses coefficients diagonaux
nuls. SoitX = (X1, . . . , Xn)T un vecteur aléatoire dont les composantesXi suivent la loi de Rademacher et sont indépendantes. Soit
enfin R = d(X, V).

1. Montrer que 0 ≤ R ≤
√
n.

1. Montrer que ∀x ∈ Rn, d(x, V )2 = ∥x∥2⟨x, pV (x)⟩. c) Montrer que R2 = nkXTAX et calculer l’espérance de R2.

1. Montrer que tr(D2) ≥ k2

n .

1. Calculer l’espérance de (XTAX)2.
Exercice 866 [Mines MP 2025 # 843] Soit (Xi)i≥1 une suite i.i.d. de variables aléatoires suivant la loi géométrique de paramètre
p ∈ [0, 1[. Pour n ≥ 1, on pose Mn = max{X1, . . . , Xn}.

1. Donner une expression de E(Mn).

1. Pour tout n ≥ 1, on définit la fonction fn : t ∈ R+ 7→ 1(1qt)n. Montrer que l’intégrale
∫ +∞

0 fn(t)dt est convergente, et en
donner un équivalent quand n → +∞.

1. Donner un équivalent de E(Mn) quand n → +∞.
Exercice 867 [MinesMP 2025 # 844] Soit f : R+ → R une fonction continue et bornée. Soit h>0. On définit la suite de fonctions (uhn)n∈N par uh0 =
f et, pour tous n ∈ N et x ≥ 0, uhn+1(x) = uh

n(x+h)−uh
n(x)

h .
1. Exprimer uhn à l’aide de f .

1. On pose ahn = uhn(0) et S(x, h) =
∑+∞
k=0

ah
kx

k

k! , où x ≥ 0. Montrer que S(x,h) est bien

définie. c) Exprimer S(x,h) à l’aide de la variable aléatoire Xh, où Xh ∼ P
(
x
h

)
. En déduire limh→0+ S(x, h).

Exercice 868 [Mines MP 2025 # 845] Soient (pn)n≥1 une suite d’éléments de ]0,1[ et (Xn)n≥1 une suite de variables aléatoires
indépendantes telle que, pour tout n,Xn ∼ G(pn). Montrer que A = {ω,Xn(ω) −−−−−→

n→+∞
+∞ } est un événement, et calculer sa

probabilité en fonction de (pn).
Exercice 869 [Mines MP 2025 # 846] Soit (Xk)k≥1 une suite de variables de Rademacher idépendantes. Pour n ∈ N∗, soit Sn =
X1 + · · · +Xn.

1. Calculer E(etSn) si n ∈ N∗ et t ∈ R.

1. Montrer que, pour n ∈ N∗ et a ∈ R+∗, P(|Sn| ≥ na) ⩽ 2 exp
(

−na2

2

)
.

1. Montrer que le résultat de la question précédente subsiste si on suppose que (Xk)k≥1 est une suite i.i.d. de variables aléatoires
centrées et bornées par 1.

Exercice 870 [Mines MP 2025 # 847] Soient a, b ∈ R avec a ≤ b,X une variable aléatoire à valeurs dans [a, b], (Xn)n≥1 une suite
de variables i.i.d. suivant la loi de X . Pour n ∈ N∗, on pose Sn = X1 + · · · +Xn.
Soit

f ∈ C0([a, b],R).

Montrer que E
(
f
(
Sn

n

))
−→

n→+∞
f (E(X)).
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Exercice 871 [Mines MP 2025 # 848] Soit (Xn)n≥1 une suite de variables aléatoires i.i.d. à valeurs réelles et admettant un moment
d’ordre 4.
On note m = E(X1), V2 = E((X1 −m)2) et V4 = E((X1 −m)4).
Pour ε > 0 et n ∈ N∗, on définit l’événement Aεn =

{∣∣ 1
n

∑n
k=1 Xk −m

∣∣ ≥ ε
}

.

1. Majorer P (Aεn) en fonction de ε, V2 et V4.

1. Montrer que la série
∑

P(Aεn) converge.

1. Montrer que P
(⋂+∞

n=1
⋃+∞
k=nA

ε
k

)
= 0.

Exercice 872 [Mines MP 2025 # 849] Soient p, α ∈]0, 1[. On pose q = 1 - p et β = 1 − α. Soit (Ω,A,P) un espace probabilisé. Soit
(Xn)n∈N une suite i.i.d. de variables aléatoires suivant la loi G(p). On pose :

A =
{
ω ∈ Ω ;

∑ 1
nαXn(ω) converge

}
et Aβ =

+∞⋃
n=1

+∞⋂
n=1

(Xn ⩽ nβ).

1. Soit k ∈ N∗. Montrer que : P
(⋃+∞

n=k
(
Xn > nβ

))
⩽
∑k=1
n=k n

n=kqn
β−1.

1. Montrer que P (Aβ) = 0.

1. Calculer P(A).
Exercice 873 [Mines MP 2025 # 850] Soit (λn)n≥1 ∈ (R+)N∗ . On suppose que

∑
λn converge. Soit (Xn)n≥1 une suite de variables

aléatoires indépendantes telle que Xn ∼ P(λn) pour tout n ≥ 1.

1. Montrer que
∑

P(Xn ̸= 0) converge.

1. Montrer que
⋂
n∈N∗

⋃
k≥n(Xk ̸= 0) est un événement négligeable.

1. Montrer que
∑
Xn converge presque sûrement. On note S =

∑+∞
n=1 Xn et on admettra dans la suite qu’il s’agit d’une variable

aléatoire (à valeurs dans N ∪ {+∞} ).

1. Soient Y et Z deux variables aléatoires à valeurs dans N.

Montrer que ∀t ∈ [0, 1], |GY (t)GZ(t)| ≤ 2P(Y ̸= Z). e) Montrer que S ∼ P(θ) pour θ =
∑+∞
i=1 λn.

IX) Mines - PSI

1) Algèbre

Exercice 874 [Mines PSI 2025 # 851] 1. Montrer que : ∀θ ∈]0, π/2[, sin θ < θ < tan θ].

1. En déduire que : ∀θ ∈]0, π/2[, cot2 θ < 1
θ2 < 1 + cot2 θ.

1. Montrer que, ∀θ ∈]0, π/2[, sin((2n+1)θ)
(sin θ)2n+1 = Im

(
(1 + i cot θ)2n+1) ;

1. Montrer qu’il existe un polynôme Pn tel que, ∀θ ∈]0, π/2[, sin((2n+1)θ)
(sin θ)n+1 = Pn((cot θ)2).

1. Calculer la somme des racines de Pn.

1. Montrer que, pour 1 ⩽ k ⩽ n, cot
(

kπ
2n+1

)
est racine de Pn.

1. En déduire que
∑+∞
m=0

1
m2 = π2

6 .
Exercice 875 [Mines PSI 2025 # 852] On considère des entiers N ≥ 1 et n ≥ 2, et une famille de réels (ai)1≤i≤n tous distincts. On
pose φ : P ∈ RN [X] 7→ (P (a1), P ′(a1), P (a2), P ′(a2), . . . , P (an), P ′(an)).

1. Quel est le rang de φ? b) À quelle condition, φ est-il un isomorphisme? Cette condition étant remplie, déterminer l’imageqré-
ciproque de (x1, y1, . . . , xn, yn) ∈ R2n par φ.

Exercice 876 [Mines PSI 2025 # 853] Soient n ∈ N∗ et K = R ou C. On pose V = {M ∈ Mn(K), rg(M) ≤ 1}. a) SoitM ∈ Mn(K).
Montrer que M appartient à V si et seulement s’il existe X,Y ∈ Kn tels que M = XY T .

1. SoientM1 = X1Y
T

1 etM2 = X2Y
T

2 avecX1, X2, Y1, Y2 ∈ Kn. Montrer que, siM1+M2 est de rang inférieur ou égal à 1, alors
(X1, X2) est liée ou (Y1, Y2) est liée.

Exercice 877 [Mines PSI 2025 # 854] Soient I0, . . . , In des segments de R non réduits à des points. Existe-t-il P ∈ Rn+1[X] tel que
∀k ∈ {0, . . . , n},

∫
L
P (t)dt = 0? Même question avec P ∈ Rn[X].

Exercice 878 [Mines PSI 2025 # 855] Soient A,B ∈ Mn(C). On pose M =
(
A A
A B

)
.

1. Déterminer la rang de M . b) A quelle condition la matrice M est-elle inversible ?
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1. Cette condition étant vérifiée, déterminer l’inverse de M .
Exercice 879 [Mines PSI 2025 # 856] Soient E un K -espace vectoriel de dimension n et u ∈ L(E) nilpotent d’indice n.

1. Montrer que ∃x ∈ E tel que (x, u(x), . . . , un−1(x)) soit une base deE. b) Soit F un sous-espace vectoriel de dimension k stable
par u. Montrer que F = Ker(uk).

Exercice 880 [Mines PSI 2025 # 857] Soit n ≥ 2. Soit ∆ la matrice diagonale Diag(n, n − 1, . . . , 1). Déterminer l’ensemble I des
matrices semblables à ∆ et qui commutent avec ∆.

Exercice 881 [Mines PSI 2025 # 858] Soit A =

1 3 0
3 −2 −1
0 −1 1

 ∈ M3(C).

1. Déterminer le nombre de sous-espaces vectoriels de C3 stables par A.

1. Soit E = {M ∈ M3(C), AM = MA}. Déterminer la dimension de E.

1. Combien l’équation M2 = A a-t-elle de solutions dans M3(C)? dans M3(R)?

Exercice 882 [Mines PSI 2025 # 859] Soit A =

1 1 1
0 1 1
0 0 1

.

1. Déterminer une base de l’espace vectoriel engendré par les puissances de A. c) Déterminer l’ensemble des matrices commutant
avec A.

Exercice 883 [Mines PSI 2025 # 860] Soit E un K-espace vectoriel de dimension n. Soient U et V deux sous-espaces vecto- riels de
L(E) tels que U + V = L(E) et tels que ∀u ∈ U, ∀v ∈ V, u ◦ v + v ◦ u = 0. a) Montrer qu’il existe p ∈ U et q ∈ V deux projecteurs
tels que p+ q = id.

1. Si v ∈ V , on pose φ(v) = v|Ker(p) ∈ L(Ker p,E). Montrer que φ est injective. En déduire que dim(V ) ≤ (n − r)2, avec
r = rg(p).

1. Montrer que U ou V est égal à {0}.
Exercice 884 [Mines PSI 2025 # 861] Soient A ∈ Mp(C) et ∆ : M ∈ Mp(C) 7→ AMMA ∈ Mp(C). a) Montrer : ∀n ∈
N, ∀(M,N) ∈ Mp(C)2,∆n(MN) =

∑n
k=0

(
n
k

)
∆n−k(M)∆k(N).

1. Soient B,H ∈ Mp(C) telles que A et B commutent et ∆(H) = B. Montrer que, pour tout n ∈ N, ∆n+1(Hn) = 0.

1. Montrer que, pour tout n ∈ N, ∆n(Hn) = n!B.

1. Soit ∥∥ une norme. Montrer que (∥∆(Hn)∥ 1
n )n≥1 tend vers une limite finie.

Exercice 885 [Mines PSI 2025 # 862] Soit G ⊂ GLn(C) tel que : i) si A,B ∈ G alors AB ∈ G ; ii) si A ∈ G alors A−1 ∈ G ; iii) si
A ∈ G alors il existe k ∈ N∗ tel que Ak = In. Soit F le sous-espace de Mn(C) engendré par les éléments de G et (M1, . . . ,Mr) une
base de F formée d’éléments de G. On considère φ : A ∈ G 7→ (tr(AMi))1≤i≤r ∈ Cr .

1. Montrer que φ est injective.

1. Montrer que φ(G) est fini.

1. Que peut-on en déduire sur la dimension de F ?
Exercice 886 [Mines PSI 2025 # 863] Soient a0, . . . , an ∈ C distincts. Soient A et B ∈ Mn(C). On pose Φ : P ∈ Cn[X] 7→
(P (a0), . . . , P (an)) ∈ Cn+1

1. Montrer que Φ est un isomorphisme. b) Montrer que, pour tout i ∈ [0, n], il existe un unique Li ∈ Cn[X] tel que Li(ai) = 1 et
Li(ai) = 0 si j ̸= i.

1. Exprimer χA comme une combinaison linéaire des Li. d) En déduire que f : A ∈ Mn(C) 7→ χA ∈ Cn[X] est continue.

1. Montrer finalement que χAB = χBA.
Exercice 887 [Mines PSI 2025 # 864] Soient A et B ∈ Mn(R) telles que AB BA = B.a) Montrer que ∀X,Y ∈ Mn(R), tr(XY ) =
tr(Y X).

1. Montrer que ∀k ∈ N, ABk −BkA = kBk .

1. En déduire que B est nilpotente (on pourra utiliser θ : X 7→ AX −XB ).
Exercice 888 [Mines PSI 2025 # 865] Montrer que

A =


0 . . . 0 1
...

...
...

...
0 . . . 0 1
1 . . . 1 1

 ∈ Mn(R)

est diagonalisable puis diagonali-
ser A.
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Exercice 889 [Mines PSI 2025 # 866] Soient A,B ∈ Mn(C) avec A diagonalisable. On pose P : t ∈ C 7→ det(tA+B) ∈ C.

1. Montrer que P est un polynôme en t et que degP ⩽ rgA. b) Montrer qu’il existe B ∈ Mn(C) telle que degP = rgA.
Exercice 890 [Mines PSI 2025 # 867] Soient

(a1, a2, . . . , an) ∈ Cn

avec a2 ̸= 0, An =


a1 a2 · · · an
a2 0 · · · 0
...

...
. . .

...
an 0 · · · 0

 ∈ Mn(C).

1. Quel est le rang de An ? b) Montrer que χAn
= Xn−2(X2 − a1X − bn) avec bn = a2

2 + a2
3 + · · · + a2

n. c) La matrice An est-elle
diagonalisable?

Exercice 891 [Mines PSI 2025 # 868] Soit An ∈ Mn(R) telle que ai,i = i et ai,j = 1 si i ̸= j. On note Pn son polynôme
caractéristique.

1. Montrer que Pn+1 = (X − n)Pn −X(X − 1) · · · (X − n+ 1). b) En déduire que An possède n valeurs propres distinctes.
Exercice 892 [Mines PSI 2025 # 869] Soit

A =

0 z z
1 0 z
1 1 0


avec z ∈ C.

1. Si z=1, justifier que A est diagonalisable.

1. Pour quels z ∈ C, la matrice A est-elle diagonalisable?
Exercice 893 [Mines PSI 2025 # 870] Soit

E = Rn[X].

Si P ∈ E, on pose L(P ) : x ∈ E 7→ ex
∫ x

0 etP (t)dt.

1. Montrer que L(P) est bien défini.

1. Montrer

∀k ∈ [0, n]

, L(Xk)(x) = (−1)kk!
∑k
j=0(−1)j x

j

j! .

1. Montrer que L est un automorphisme de E.

1. Trouver les éléments propres de L. Est-il inversible ?
Exercice 894 [Mines PSI 2025 # 871] On définit une suite (fn)n≥0 par f0 = 1, f1 = 1 et, pour n ∈ N, fn+2 = fn+1 + fn. Pour
n ∈ N∗, on pose An = (fi+j−2)1≤i,j≤n ∈ Mn(R).

1. Représenter explicitement A2, A3 et A4.- b) Donner l’ordre de la valeur propre 0 dans An.

1. Montrer que la matrice An admet deux valeurs propres distinctes an < 0 < bn.

1. Étudier les suites (an) et (bn).
Exercice 895 [Mines PSI 2025 # 872] Soient E un K -espace vectoriel et f, g ∈ L(E).

1. Montrer que les valeurs propres non nulles de f ◦ g sont valeurs propres de g ◦ f .

1. On suppose E de dimension finie. Montrer que les valeurs propres de f ◦ g sont valeurs propres de g ◦ f .

1. Soient E = R[X], f : P 7→ XP et g : P 7→ P ′. Est-ce que 0 est valeur propre de f ◦ g ? de g ◦ f ? Conclure.

Exercice 896 [Mines PSI 2025 # 873] Soit A ∈ Mn(R) diagonalisable. La matrice M =
(
A In
In A

)
∈ M2n(R) l’est-elle également?

Exercice 897 [Mines PSI 2025 # 874] Soit A ∈ Mn(R). On pose B =
(
A A
A A

)
.

1. Exprimer les sous-espaces propres de B en fonction de ceux de A.

1. Donner une condition nécessaire et suffisante pour que B soit diagonalisable.
Exercice 898 [Mines PSI 2025 # 875] Soit A ∈ Mn(C).

1. Montrer que A est nilpotente si et seulement si Sp(A) = {0}.
On pose EA = {X ∈ Cn; ∃λ ∈ C, AX = λX}.

1. On suppose det(A) = 0. Montrer que EA est un espace vectoriel si et seulement si A est nilpotente.
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1. On suppose det(A) ̸= 0. À quelle condition nécessaire et suffisante, EA est-il un espace vectoriel ?
Exercice 899 [Mines PSI 2025 # 876] Soit

A =

 0 −3 5
−1 −2 5
−1 −3 6

 .

1. Déterminer les valeurs propres de A. La matrice A est-elle diagonalisable?

1. Montrer que, pour tout n ∈ N, il existe des réels an et bn tels que An = anI3 + bnA.

1. La matrice A est-elle inversible ? Le résultat de la question précédente reste-t-il valable pour tout n ∈ Z?

1. Existe-t-il (α, β) ∈ R2 tel que M = αI3 + βA et M2 = A?
Exercice 900 [Mines PSI 2025 # 877] Soient E un K -espace vectoriel de dimension n ∈ N∗, f ∈ L(E) de rang appartenant à [1,
n-1] et H un supplémentaire de Ker f .

1. i) Montrer que f induit un isomorphisme g de H sur Im f .

• ii) Montrer qu’il existe deux bases b1 et b2 de E telles que : Matb1,b2(f) =
(
Ir 0
0 0

)
.

1. Soit C ∈ Mn(C) telle que rg(C) = r. Montrer qu’il existe P,Q ∈ GLn(C) telles que :

C = P

(
Ir 0
0 0

)
Q.

c) Soit (A,B) ∈ Mn(C) telles que AC = CB avec C ∈ Mn(C) et rg(C) = r. Montrer que A et B ont au moins r valeurs propres
communes (comptées avec multiplicité).

1. Redémontrer le résultat précédent dans le cas où C est inversible.
Exercice 901 [Mines PSI 2025 # 878] On se place dans M2(C). On pose Φ : M ∈ M2(C) 7→ tr(M)I2 −M .

1. Calculer Φ(M).

1. Montrer que Φ est un automorphisme et déterminer sa matrice dans la base canonique.

1. Déterminer les valeurs propres et les espaces propres de Φ.

1. Montrer que M et Φ(M) ont le même polynôme caractéristique.

1. Montrer qu’il existe P ∈ GLn(C) tel que ∀M ∈ M2(C), Φ(M) = PMTP−1.
Exercice 902 [Mines PSI 2025 # 879] Soient K = R ou C, n ∈ N∗, E = Mn(K) et A ∈ E. On pose fA : M ∈ E 7→ AM .

1. Montrer que, pour tout P ∈ K[X], il existe B ∈ E tel que P (fA) = fB .

1. Montrer que fA est diagonalisable si et seulement si A est diagonalisable.

1. Exprimer les valeurs propres et les espaces propres de fA en fonction de ceux de A.
Exercice 903 [Mines PSI 2025 # 880] 1. On considère le polynôme P = X5 −4X4 +2X3 +8X2 −8X . Montrer que P(2)=P’(2)=0

et en déduire une factorisation de P en polynômes irréductibles de R[X]. b) Trouver les matrices M ∈ Mn(R) telles que
M5 − 4M4 + 2M3 + 8M2 − 8M = 0 et
tr(M) = 0.

Exercice 904 [Mines PSI 2025 # 881] Soit E un K -espace vectoriel de dimension supérieure ou égale à 2. Soient f1, . . . , fn des
endomorphismes de E tels que f1 + · · · + fn = id et, si 1 ≤ i, j ≤ n avec i ̸= j, alors
des endomorphismes de E tels que f1 + · · · + fn = id et, si 1 ⩽ i, j ⩽ n fi ◦ fj = 0. Soient λ1, . . . , λn ∈ K. On pose g =

∑n
i=1 λifi.

Diagonaliser g.
Exercice 905 [Mines PSI 2025 # 882] 1. Montrer que ln2 est intégrable sur [0,1] et calculer

∫ 1
0 ln2(t)dt.

1. Soient a, b ∈ R. Établir l’inégalité : |ab| ⩽ a2+b2

2 .

1. En déduire que l’ensemble E =
{
f ∈ C0([0, 1],R) ;

∫ 1
0 f

2(t) dt converge
}

est un R -espace vectoriel.

1. Montrer que l’application (α, β) ∈ R2 7→
∫ 1

0 (ln tαtβ)2dt atteint un minimum.

1. Déterminer la valeur de ce minimum et les points en lesquels il est atteint.
Exercice 906 [Mines PSI 2025 # 883] On munit Mn(R) de sa structure euclidienne canonique.
Soit F = {M ∈ Mn(R), tr(M) = 0}.

1. Montrer que F est un sous-espace vectoriel et déterminer sa dimension.

1. Si A ∈ Mn(R), calculer d(A,F).
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Exercice 907 [Mines PSI 2025 # 884] Soient A,B ∈ Mn(R) non nulles.
1. Montrer que l’application (X,Y ) ∈ Mn(R)2 7→ tr(XTY ) est un produit scalaire sur Mn(R).- b) Soit φ : X ∈ Mn(R) 7→

tr(AX)B. L’endomorphisme φ est-il diagonalisable?

1. Trouver une condition nécessaire et suffisante pour que φ soit un projecteur orthogonal.
Exercice 908 [Mines PSI 2025 # 885] 1. Soient E un espace vectoriel et p un projecteur de E.
Montrer que Ker(p− id) ∩ Im(p− id) = {0}.

1. Soient E un espace vectoriel normé et u ∈ L(E) tel que : ∀x ∈ E, ||u(x)|| ≤ ||x||.

• i) Soit x ∈ E tel que u(x) = x et il existe y ∈ E tel que x = u(y) y.

Montrer par récurrence que pour tout n ∈ N, ||nx + y|| ≤ ||y||. ii) Montrer que Ker(uid) ∩ Im(uid) = {0}. c) Soient E un espace
euclidien et p un projecteur de E tel que ∀x ∈ E, ∥p(x)∥ ≤ ∥x∥. Montrer que p est un projecteur orthogonal.
Exercice 909 [Mines PSI 2025 # 886] Soient

A =

1 0 0
0 − 1

2

√
3

2
0 −

√
3

2 − 1
2


et B =

0 1 0
0 0 1
1 0 0

.

1. Montrer que A est semblable à B.

1. Déterminer P ∈ O3(R) telle que PTAP = B.
Exercice 910 [Mines PSI 2025 # 887] Soit V un hyperplan de M2(R) dont tous les éléments sont diagonalisables sur R.

1. Donner un exemple de tel hyperplan.

1. Soit F =
{(

a b
−b a

)}
(a,b)∈R2

. Montrer que F ∩ V ̸= {0} et en déduire que I2 ∈ V .

1. On munit M2(R) de son produit scalaire canonique. Quelle est la dimension de V ⊥ ? Montrer qu’il existe Q ∈ GL2(R) telle
que QV Q−1 = S2(R).

Exercice 911 [Mines PSI 2025 # 888] Soit T ∈ Mn(R) telle que ti,j = 1 si |i-j| = 1 et 0 sinon. On pose M = T − 2In.

1. Montrer que M est diagonalisable sur R.

1. Comparer les éléments propres de M et ceux de T .

1. Soit λ ∈ Sp(T ).

• i) Montrer qu’il existe i ∈ [1, n] tel que |ti,iλ| ⩽
∑
i̸=i |ti,j |.

• ii) En déduire qu’il existe α ∈ [0, π] tel que λ = 2 cos(α).

iii) Trouver une condition nécessaire et suffisante pour que X = (x1, . . . , xn)T soit vecteur propre de T associé à λ.
• iv) En déduire que α ∈]0, π[.

Exercice 912 [Mines PSI 2025 # 889] Pour P,Q ∈ R[X], on pose ⟨P,Q⟩ =
∫ +∞

0 P (x)Q(x) e−xdx. On admet que c’est bien un
produit scalaire sur R[X]. On pose : ∀P ∈ R[X], φ(P ) = XP ′′ + (1 −X)P ′.

1. Justifier que ⟨P,Q⟩ pour P,Q ∈ R[X] est bien défini.

1. Justifier que φ est un endomorphisme.

1. Soient P1, P2 des vecteurs propres de φ associés à des valeurs propres différentes. Montrer que P1 et P2 sont orthogonaux.d)
Soit N ≥ 2. Démontrer que φ induit un endomorphisme φN sur RN [X] et que φN est diagonalisable.

1. Écrire φN dans la base (1, X, . . . ,XN ). Donner les valeurs propres de φN .

1. Pour n ∈ N, soit Ln : x 7→ ex

n!
dn

dxn (xne−x). Montrer que Ln est polynomiale et donner ses coefficients.

1. Montrer que (L0, . . . , LN ) forme une base de RN [X].
Exercice 913 [Mines PSI 2025 # 890] 1. Soient A ∈ S++

n (R) et B ∈ On(R). Comparer Tr(A) et Tr(AB).

1. Soit M ∈ Mn(R). Montrer que la série
∑+∞
k=0

Mk

k! converge. On note sa limite exp(M).

1. On admet que, si M,N ∈ Mn(R) commutent, alors exp(M +N) = exp(M) exp(N). Montrer que, si B ∈ An(R), alors, pour
tout x ∈ R, on a exp(xB) ∈ On(R).

Exercice 914 [Mines PSI 2025 # 891] Soit n ≥ 2.
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1. Montrer que la somme de deux matrices de S++
n (R) appartient encore à S++

n (R).

1. Soient A,B ∈ S++
n (R). Montrer que In +AB et AB + BA sont inversibles.

Exercice 915 [Mines PSI 2025 # 892] Soient U et V sans S+
n (R). Montrer que det(U + V ) ≥ det(U) + det(V ).

Exercice 916 [Mines PSI 2025 # 893] Soient (E, ⟨, ⟩) un espace euclidien, u ∈ S(E), λ1 ⩽ λ2 ⩽ · · · ⩽ λn les valeurs propres de u.
1. Montrer que, ∀x ∈ E, λ1||x||2 ≤ ⟨u(x), x⟩ ≤ λn||x||2. b) Trouver x1, xn ∈ E \ {0} tels que ⟨u(x1), x1⟩ = λ1||x1||2 et

⟨u(xn), xn⟩ = λn||xn||2.

1. Montrer qu’il existe y1, yn ∈ E tels que ∥y1∥ = 1, ∥yn∥ = 1, ⟨u(y1), y1⟩ = λ1 et ⟨u(yn), yn⟩ = λn.

1. On note S la sphère unité de E. Que valent infx∈S⟨u(x), x⟩ et supx∈S⟨u(x), x⟩?
Exercice 917 [Mines PSI 2025 # 894] Soit E = RN. On note F le sous-espace de E constitué des suites de carré sommable. Si
u = (un)n≥0 ∈ E, on pose D(u) = (un+1 − un)n≥0.

1. Montrer que D est un endomorphisme de E. Est-il injectif ? surjectif ?

1. Trouver les valeurs propres et les vecteurs propres de D. Quelle est la dimension de ses espaces propres? Si u, v ∈ F , on pose
⟨u, v⟩ =

∑+∞
n=0 unvn, ce qui définit bien un produit scalaire sur l’ensemble F des suites de carré sommable.

1. Montrer que
{

⟨U,D(U)⟩
⟨U,U⟩ ; U ∈ F,U ̸= 0

}
=] − 2, 0[.

Ind. Considérer l’application D(id).
Exercice 918 [Mines PSI 2025 # 895] Soit E = S++

n (R).
1. Montrer que ∀A ∈ GLn(R), tr(ATA) > 0.

1. Montrer que ∀S ∈ E,∃A ∈ GLn(R), S = ATA.

1. Montrer que ∀(S, S′) ∈ E2, tr(SS′) > 0.
Exercice 919 [Mines PSI 2025 # 896] 1. Rappeler la définition de S+

n (R) et de S++
n (R).

1. i) Pour A,B ∈ Sn(R), on note A ≤ B si et seulement si AB ∈ S+
n (R). Montrer que

c’est une relation d’ordre sur Sn(R). ii) SoitA ∈ S++
n (R). Montrer qu’il existeC ∈ S++

n (R) telle queC2 = A. iii) SoientM ∈ S++
n (R)

et M ′ ∈ Sn(R). Montrer que M’MM’ appartient à S++
n (R).

1. i) Montrer que, si M ∈ S++
n (R), alors M inversible et M−1 ∈ S++

n (R).
ii) Soit f : M ∈ S++

n (R) 7→ M−1 ∈ S++
n (R). Montrer que f est décroissante, i.e. si A ≤ B alors f(B) ≤ f(A). Ind. Montrer que si

In ≤ B alors f(B) ≤ f(In).

2) Analyse

Exercice 920 [Mines PSI 2025 # 897] Soient n ≥ 2, U un ouvert de Rn et γ : [0, 1] → U une fonction continue. Montrer qu’il existe
δ > 0 tel que ∀t ∈ [0, 1], B(γ(t), δ) ⊂ U .
Exercice 921 [Mines PSI 2025 # 898] Soient a>0 et ω ∈ C0(R+, ]0,+∞[). Pour f ∈ E = C0([0, a],R), on pose T (f) : x ∈]0, a] 7→

1∫ x

0
ω(t) dt

∫ x
0 f(t)ω(t) dt.

1. Montrer que T(f) est continue sur [0, a] et prolongeable par continuité sur [0, a].

1. Montrer que T est un endomorphisme injectif de E et qu’il est continu lorsque E est muni de la norme infinie.

1. Déterminer ses éléments propres.

Exercice 922 [Mines PSI 2025 # 899] Soient X,Y ∈ Mn(R). On pose Z =
(

0 X
Y 0

)
.

1. Soit M ∈ Mn(R). Montrer qu’il existe une suite de matrices inversibles convergeant vers M .

1. Si X est inversible, montrer que ∀λ ∈ R, χZ(λ) = χXY (λ2). Est-ce toujours vrai si X n’est pas inversible ?
Exercice 923 [Mines PSI 2025 # 900] 1. Soit P ∈ R[X] unitaire de degré n. Montrer que P est scindé sur R si et seulement si

∀z ∈ C, | P (z) |≥| Im z |degP .

1. Montrer que l’ensemble des matrices trigonalisables de Mn(R) est un fermé de Mn(R).

1. Montrer que l’adhérence des matrices diagonalisables dans Mn(R) est égale à l’ensemble des matrices trigonalisables.
Exercice 924 [Mines PSI 2025 # 901] Pour n ≥ 2, on considère le polynôme Pn = Xn +Xn−1 + · · · +X1.

1. Montrer que Pn admet une unique racine dans R+, notée xn.

1. Montrer que xn ∈ [1/2, 1].

1. Montrer que (xn) converge vers un réel ℓ. d) Donner un équivalent de xn − ℓ.
Exercice 925 [Mines PSI 2025 # 902] Soit (un)n≥0 une suite réelle. On pose, pour n ∈ N, vn = 1

2n

∑n
k=0

(
n
k

)
uk .
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1. On suppose que (un) converge. Montrer la convergence de (vn) et trouver sa limite.

1. Étudier la réciproque.
Exercice 926 [Mines PSI 2025 # 903] Soit a ∈ R+∗.

1. Si n ∈ N, montrer que l’équation
∑n
k=0

1
x−k = a admet une unique solution dans

n,+∞, que l’on notera xn.

1. Étudier la monotonie de la suite (xn).

1. Trouver un équivalent simple de xn.
Exercice 927 [Mines PSI 2025 # 904] Soient (xn) ∈ CN et λ ∈ C avec |λ| > 1. Montrer que la suite (xn) converge si et seulement si
la suite (xn + λxn+1) converge.
Exercice 928 [Mines PSI 2025 # 905] On pose F : x 7→

∫ +∞
x

e−t2dt.
1. Trouver un équivalent de F en +∞.

1. Soit (an)n∈N telle que : a0 = 1 et, pour n ∈ N, an+1 = an +
∫ +∞
an

e−t2 dt. Trouver un équivalent de an.

Exercice 929 [Mines PSI 2025 # 906] Soient n ≥ 2, M0, . . . ,Mn−1 des points distincts de R2. On note Mk = (xk, yk). On suppose
que M0 = (0, 0) et, pour tout k ∈ [0, n− 2], (xk+1 = xk et yk+1 = yk ± 1) ou (xk+1 = xk ± 1 et yk+1 = yk). On constitue ainsi des
chemins. On note cn le nombre de chemins auto-évitants (i.e. tels que pour tous i ̸= j, Mi ̸= Mj ). On pose un = ln(cn).

1. Que valent c1 et c2 ? b) Montrer que pour tout n, m entiers naturels cn+m ≤ cncm.

1. On fixe m ∈ N∗ et ε > 0. En utilisant la division euclidienne de n par m, démontrer qu’il existe un entier N tel que, pour tout
n > N , cn

n ≥ cm

m ε.

1. Démontrer que cn

n −→ ℓ où ℓ = sup
{
ck

k , k ∈ N∗}.

Exercice 930 [Mines PSI 2025 # 907] Nature de la série de terme général ln
(

tan
(∑n

k=1
(−1)k

2k+1

))
?

Exercice 931 [Mines PSI 2025 # 908] Pour n ∈ N∗, on pose fn : x ∈ R+ 7→
∑n
i=0

xk

k! et on note (En) l’équation fn(x) = 2.
1. Montrer que (En) admet une unique solution dans R+ ; on notera xn cette solution.

1. Montrer que la suite (xn) converge.

1. Déterminer la limite ℓ de la suite (xn).

1. La série
∑

(xnℓ) est-elle convergente?

Exercice 932 [Mines PSI 2025 # 909] Nature de la série de terme général eun2 avec un =
∑n
k=0

(−1)k

k+1 .
Exercice 933 [Mines PSI 2025 # 910] Résoudre dans C2(R,R) l’équation fonctionnelle : f(2x) = 4f(x) + 3x + 1.
Exercice 934 [Mines PSI 2025 # 911] Soit f : R → R telle que f(x) = ex−1

x si x ̸= 0 et f(0) = 1.

1. Montrer que f est de classe C∞ sur R

1. Montrer que f réalise une bijection de R sur R+∗.

1. Donner le développement limité à l’ordre 5 de f−1 au voisinageqde 1.
Exercice 935 [Mines PSI 2025 # 912] Pour f ∈ C0(R,R), on note () la propriété : ∀(x, y) ∈ R2, f(x+ y)f(x− y) = f(x)2 − f(y)2.

1. Montrer que si f vérifie () alors f est de classe C2 et qu’il existe λ ∈ R tel f ′′ = λf . b) Déterminer toutes les solutions de ().

Exercice 936 [Mines PSI 2025 # 913] Soit f : x 7→
∫ 2 ln(x)

1/2
et

t dt. Quel est le comportement de f(x) lorsque x → 1?

Exercice 937 [Mines PSI 2025 # 914] 1. Montrer que, pour t ∈ R \ 2πZ,
∑n
k=0 cos(kt) = sin((n+ 1

2 )t)
2 sin( t

2 ) − 1
2 .

1. Montrer que ∀x ∈]0, π],
∫ x

−π
∑+∞
t=0 cos(kt)dt = π−x

2 .

Exercice 938 [Mines PSI 2025 # 915] Pour tout n ∈ N, on pose In =
∫ +∞

0 xneωxdx, où ω = −
(

1
2 + i

√
3

2

)
.

1. Calculer In. En déduire un exemple de fonction g continue sur R+, à valeurs réelles et non identiquement nulle, telle que
∀k ∈ N,

∫ +∞
0 tkg(t)dt = 0.

1. Soit f ∈ C0([a, b],R) telle que ∀k ∈ N,
∫ b

0 t
kf(t)dt = 0. En admettant le théorème d’approximation de Weierstrass, montrer

que f̃ est identiquement nulle.

Exercice 939 [Mines PSI 2025 # 916] Pour N ∈ N∗, on pose HN =
∑N
i=1

1
k . Soit I =

∫ 1
0

(
1
t − 1

ln(1−t)

)
dt.

1. Montrer que HN = ln(N) + γ +O(1/N)
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1. Montrer que I est bien défini. c) Montrer que I =
∫ +∞

0

(
1

1−e−u − 1
u

)
e−udu.

1. En déduire que I = γ, en utilisant ux : t 7→ e−xt
(

1 − 1−e−t

ι

)
.

Exercice 940 [Mines PSI 2025 # 917] On pose f : x 7→
∫ +∞

−∞
sin t
t2 dt et J =

∫ +∞
0

sin t
t dt.

1. Montrer que f est de classe C1 sur ]0,+∞[ et donner f’. b) Montrer que l’intégrale J converge. On admet que J = π
2 .

1. Montrer que f(x) = O
( 1
x

)
.- d) Trouver un équivalent de f en 0+

1. La fonction f est-elle intégrable sur ]0,+∞[?

1. Calculer
∫ +∞

−∞ f(x)dx en fonction de J .

Exercice 941 [Mines PSI 2025 # 918] Soit f : [2,+∞[→ R+∗] telle que f soit intégrable. On pose g : x 7→ f(x)1−1/x. Que dire de
l’intégrabilité de g?
Exercice 942 [Mines PSI 2025 # 919] Pour tout x ∈ R+∗, on définit la suite (fn(x))n∈N par f0(x) = x et ∀n ∈ N, fn+1(x) =
1
2

(
fn(x) + x

fn(x)

)
. Étudier la convergence simple, puis la convergence uniforme, de la suite de fonctions (fn)n∈N.

Exercice 943 [Mines PSI 2025 # 920] Soit (an)n∈N une suite réelle convergeant vers ℓ ∈ R∗. On pose f : x ∈ R+ 7→
∑+∞
n=0

ane
−x

n! xn.
1. Étudier la convergence normale de f sur R+, puis sur des intervalles appropriés.

1. Déterminer la limite de f en +∞.
Exercice 944 [Mines PSI 2025 # 921] Soit f : x 7→

∑+∞
n=2

1
nx ln(n) .

1. Donner le domaine de définition de f . Montrer la continuité de f sur cet intervalle.

1. Donner les limites et des équivalents aux bornes.
Exercice 945 [Mines PSI 2025 # 922] Soit, pour n ∈ N∗, un : x ∈ R 7→ x

x2+n2 pour n ∈ N∗. Soit S =
∑+∞
n=0 un.

1. Montrer que S est définie sur R.

1. La série converge-t-elle normalement sur R?

1. Montrer que S est de classe C1.

1. Trouver un équivalent de S quand en 0+. On rappelle que
∑+∞
n=0

1
n2 = π2

6 .

1. Trouver la limite de S en +∞.

1. La série de fonctions converge-t-elle uniformément sur R?
Exercice 946 [Mines PSI 2025 # 923] Pour tout réel x > 0, on pose f(x) = −

∑+∞
n=0 ln(1e−nx).

1. Montrer que f est bien définie sur R+∗.

1. Soit a > 0. La série de fonctions définissant f est-elle uniformément convergente sur [a,+∞[?Sur R+∗?]

1. Déterminer des équivalents de f en 0+ et +∞.

Exercice 947 [Mines PSI 2025 # 924] 1. Déterminer le rayon de convergence de
∑ (n+1)(n+2)

2n xn. b) Calculer la somme
∑+∞
n=0

(n+1)(n+2)
2n .

Exercice 948 [Mines PSI 2025 # 925] Pour n ∈ N∗, on note an le nombre de bijections d’un ensemble à n éléments n’ayant pas de
point fixe. On pose a0 = 1.

1. Montrer que, pour tout n ∈ N, n! =
∑n
k=0

(
n
k

)
an−k .

1. Montrer que la série entière
∑ an

n! x
n a un rayon strictement positif.

1. Calculer ex
∑+∞
n=0

an

n! x
n.

1. Exprimer an sous forme d’une somme.

Exercice 949 [Mines PSI 2025 # 926] Soit f : x 7→
∫ x

−∞ e−t2dt.
1. Montrer que f est de classe C1 et calculer sa dérivée.

1. On pose g : x 7→ ex
2
f(x). Montrer que g est solution du problème de Cauchy : y(0) = 0 et y’ 2xy = 1.

1. Déterminer les fonctions développables en série entière solutions du problème de Cauchy.

1. En déduire que g est développable en série entière et déterminer son développement.

Exercice 950 [Mines PSI 2025 # 927] 1. Soit f ∈ C0([1,+∞[,R) telle que f(x) → 0 quand x → +∞. Montrer que
∫ +∞

1 f et
∑+∞
n=1

∫ n+1
n

f sont de même nature.

1. Montrer que
∑+∞
n=1

∫ n+1
n

cos(ln t)
t dt et

∑+∞
n=1

cos(lnn)
n sont de même nature.

1. En déduire le rayon de convergence de la série entière
∑
n

cos(lnn)
n xn.
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Exercice 951 [Mines PSI 2025 # 928] 1. Montrer que
∑n
i=1

1
k = ln(n) + γ + o(1) avec γ ∈ R.

1. Soient a>0 et fa : x ∈]a,+∞[ 7→
(
1 − a

x

)x. Montrer que fa est bien définie et croissante. Donner la limite de fa en +∞.

1. Pour n ∈ N∗, justifier l’existence de In =
∫ n

0 ft(n) ln(t)dt.

1. Justifier que In −→
n→+∞

∫ +∞
0 e−t ln(t)dt.

1. En déduire que
∫ +∞

0 e−t ln(t)dt = −γ.

Exercice 952 [Mines PSI 2025 # 929] Soit, pour n ∈ N, Un =
∫ 1

0
tn+1

ln(1−t)dt.

1. Montrer que, pour tout n ∈ N, Un est bien définie.

1. Trouver un équivalent de Un.

Exercice 953 [Mines PSI 2025 # 930] Soit, pour n ∈ N, fn : x ∈ R+ 7→ xne−x

x! .
1. Montrer que (fn) converge simplement sur R+ vers une fonction g. b) Montrer que (fn) converge uniformément sur R+.

1. Calculer
∫ +∞

0 fn(x)dx et limn→∞
∫ +∞

0 fn(x)dx. Pouvait-on s’attendre à un tel résultat au regard du cours?

Exercice 954 [Mines PSI 2025 # 931] 1. Soient a et b strictement positifs. Montrer que
∫ 1

0
ta−1

1+tb dt =
∑+∞
n=0

(−1)n

a+nb .

1. Calculer
∑+∞
n=0

(−1)n

1+3n .

Exercice 955 [Mines PSI 2025 # 932] Soit f : x ∈ R+ 7→
∫ +∞

0
1e−xt

t sin(t)dt. a.i) Justifier la convergence de l’intégrale I =∫ +∞
0

sin t
t dt.

• ii) En déduire que f est bien définie sur R+

1. La fonction f est-elle continue sur R+∗ ? Sur R+ ?

1. Montrer que f est dérivable sur R+∗. Exprimer f’ d’une manière simple.

1. Trouver une expression de f . En déduire la valeur de I .

Exercice 956 [Mines PSI 2025 # 933] Soient f : x 7→
∫ +∞

0
e−xt

1+t2 dt et g : x 7→
∫ +∞

0
sin t
x+tdt. a) Montrer que f et g sont de classe C2

sur R+ et qu’elles vérifient l’équation différentielle y′′ + y = 1
x .

1. Montrer que f et q sont continues en 0.

1. Trouver les limites de f et g en +∞. d) En déduire que
∫ +∞

−t
sin t
t dt = π

2 .

Exercice 957 [Mines PSI 2025 # 934] On pose cos : z ∈ C 7→ eiz+e−iz

2 .
1. Exprimer cos z en fonction de Re e(z) et Im(z).

1. En déduire max|z|≤1 | cos z|2. c) On pose f : (x, y) ∈ R2 7→ cos(x+ iy).

Montrer que la fonction r ∈ R+ 7→
∫ 2π

0 f(r cos θ, r sin θ) dθ est constante.

Exercice 958 [Mines PSI 2025 # 935] Soit s > 0. Soit w : (a, x, y, t) ∈ R × R × R+∗ × R 7→ ay2s

((x−t)2+y2)s+ 1
2

.

1. Pour tout (a, x, y) ∈ R × R × R+∗, établir la convergence de
∫ +∞

−∞ w(a, x, y, t)dt.

1. Montrer qu’il existe une unique constante c ∈ R telle que, pour tout (x, y) ∈ R × R+∗, f+∞∫ +∞
−∞ w(c, x, y, t)dt = 1. c) Soient x ∈ R et ε > 0. On pose Uε = {t ∈ R, |tx| > ε}.

Montrer que
∫
Us
w(c, x, y, t)dt −→

y→0+
0.

1. Soit f une fonction continue et bornée sur R.

Pour tout x ∈ R, prouver
∫ +∞

−∞ w(c, x, y, t)f(t)dt −−−−→
y→0+

f(x).

Exercice 959 [Mines PSI 2025 # 936] À partir des solutions développables en séries entière, trouver toutes les solutions de (x2 +
x)y′′ + (3x+ 1)y′ + y = 0.

Exercice 960 [Mines PSI 2025 # 937] Soient E = C0([0, 1],R) et k : (x, t) ∈ [0,+∞[2 7→

{
t2/x si x > t

x/t2 si x < t
x = t Pour f ∈ E on

pose T (f) : x 7→
∫ 1

0 k(x, t)f(t)dt.

1. Montrer que, pour x ∈]0, 1], T (f)(x) = 1
x

∫ x
0 t2f(t)dt+ x2 ∫ 1

x
f(t)
t dt.

1. Montrer que T (f) ∈ E et calculer T(f)(0).
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1. Montrer que T est un endomorphisme de E.

1. i) Montrer que T(f) est C1 sur [0,1] et calculer T(f)’(0).

ii) Montrer que T(f) est de classe C2 sur ]0,1].
iii) Résoudre y′′ 2

x2 y = −3f . On pourra chercher les solutions de l’équation homogène sous la forme x 7→ xn avec n ∈ Z.
Exercice 961 [Mines PSI 2025 # 938] Soient E = C∞(R,R) et p ∈ E. Soit φ : y ∈ E 7→ y′ + py.

1. Montrer que φ est un endomorphisme de E. b) Montrer que Im(φ2) ⊂ Im(φ). Soient g ∈ Im(φ2) et f un antécédent de g par
φ2.

Trouver un antécédent de g par φ en fonction de f et de p.

1. Cas particulier : p = th (pour toute la suite) Calculer φ2(q) pour q ∈ E.

1. Soit (E) : y′′ + 2 th(x)y′ + y = ch2(x). Trouver une solution particulière de la forme yp = a+ b ch2 avec (a, b) ∈ R2.

1. Donner les solutions de y′ + th(x)y = ch2(x).
Exercice 962 [Mines PSI 2025 # 939] Déterminer toutes les fonctions continues f : R → R telles que l’équation différentielle y”(x)
+ y’(x) + f(x)y(x) = 0 admette une base de l’ensemble des solutions de la forme (g2, g), où g est une fonction de classe C2.
Exercice 963 [Mines PSI 2025 # 940] On note (E) l’équation différentielle y′′ = (x21)y.

1. Soit y une solution de (E). On suppose que y(0) = 0 (resp. y’(0) = 0). Montrer que y est impaire (resp. paire). Ind. Utiliser le
théorème de Cauchy linéaire.

1. Pour quelle(s) valeur(s) de a ∈ R, la fonction x 7→ eax
2 est-elle solution de (E) ?

1. Soit u ∈ C2(R,R). Montrer que x 7→ u(x)e−x2/2 est solution de (E) si et seulement si uest solution d’une équation différentielle
que l’on déterminera.

1. Exprimer l’ensemble des solutions de (E) à l’aide de φ : x ∈ R 7→
∫ x

−∞ et
2
dt.

Exercice 964 [Mines PSI 2025 # 941] Soit (x, y) ∈ R2. On pose f(x, y) =
∑+∞
i=1

x2n

1+y2n .
1. Déterminer le domaine de définition de f ; le représenter graphiquement.

1. Étudier l’existence des dérivées partielles d’ordre 1 de f .
Exercice 965 [Mines PSI 2025 # 942] On pose un : (x, a) ∈] − ρ, ρ[×]0,+∞[ 7→ xn

n+a ].

1. Vérifier ∀a, a′ ∈ R+, ∀x ∈] − ρ, ρ[, |un(x, a′) − un(x, a)| ⩽ |a−a′|
n2 .

1. On pose F : (x, a) 7→
∑+∞
n=0 un(x, a). Montrer que F est continue sur ] − ρ, ρ[×]0,+∞[.

1. Montrer que F est dérivable par rapport à x et que ∂F
∂x est C0.

Exercice 966 [Mines PSI 2025 # 943] Pour x, y ≥ 0, on définit f(x, y) = xy
(x+1)(y+1)(x+y) et on pose f(0, 0) = 0.

1. Montrer que f est continue sur [0,+∞]2. b) Déterminer ses extrema.
Exercice 967 [Mines PSI 2025 # 944] Soit f : (x, y) ∈ R2 \ {(0, 0)} 7→ x2y2

(1+x2)(1+u2)(x2+u2) .
1. Montrer que f est continue en (0,0).

1. La fonction f ainsi prolongée est-elle de classe C∞ ?

1. Montrer que f admet un minimum global, le calculer.

1. Montrer que f admet un maximum global.

3) Probabilités

Exercice 968 [Mines PSI 2025 # 945] Soit n ∈ N∗. On considère l’univers Ω = {1, 2, . . . , n}. Pour p ∈ N, on note Ap l’ensemble des
éléments de Ω multiples de p.- a) Soit d ∈ N∗ avec d divisant n. Calculer P(Ad).

1. Soit n = pα1
1 pα2

2 . . . pαr
r la décomposition en facteurs premiers de n.

Montrer que Ap1 , . . . , Apr
sont indépendants.

1. Soit φ(n) le nombre d’éléments de Ω premiers avec n.

Montrer que

φ(n) = n

r∏
i=1

(
1 − 1

pi

)
.

Exercice 969 [Mines PSI 2025 # 946] On dispose d’une station d’appels. Le nombre d’appels entre 10 h et 11 h est une variable
aléatoire X qui suit la loi de Poisson de paramètre λ. La probabilité pour qu’un appel concerne le standard A est p ∈ [0, 1]. On note
Y la variable aléatoire correspondant au nombre de personnes ayant choisi le standard A entre 10 h et 11 h. Donner la loi de Y.
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Exercice 970 [Mines PSI 2025 # 947] On considère un immeuble de trois étages avec un rez-de-chaussée). Cinq personnes prennent
l’ascenseur. On considère que chacune va aller à un étageqde manière équiprobable et indépendamment des quatre autres. L’ascenseur
ne fait pas demi-tour, il ne fait qu’une montée pour déposer les personnes. On note Xi le nombre de personnes qui descendent à
l’étageqi.

1. Donner la loi de X1, E(X1), V(X1).

1. Que dire de X2 et X3 ?

On considère Yi qui vaut 1 si l’ascenseur s’arrête au i-ème étage, 0 sinon.
1. Déterminer P (Yi = 0) et P (Yi = 1).

1. En déduire E(Z) avec Z la variable aléatoire représentant le nombre d’arrêts de l’ascenseur.
Exercice 971 [Mines PSI 2025 # 948] Soit (Xn)n≥2 une suite de variables aléatoires indépendantes suivant la loi de Bernoulli de
paramètre pn = n−α où α est un réel strictement positif.
On pose τ = min{n ≥ 2, Xn(ω) = 1} ∈ N∗ ∪ {+∞}.

1. Trouver une condition nécessaire et suffisante sur α pour que P(τ = +∞) = 0.

1. Trouver une condition nécessaire et suffisante sur α pour que E(τ) < +∞.
Exercice 972 [Mines PSI 2025 # 949] Soit p ∈ [0, 1]. On a un détecteur de particules qui détecte une particule avec la probabilité p, de
manière indépendante. On note N le nombre de particules qui traversent le détecteur. On suppose N ∼ P(λ). On note S le nombre
de particules détectées. a) Soit 0 ≤ s ≤ n. Calculer P(S = s | N = n). Puis P(S = s,N = n) et enfin P(S = s).

1. En déduire E(S) et V(S).

1. Sans calculs, donner la loi de N S.

1. Les variables N S et S sont-elles indépendantes?

1. Les variables N -S et S sont-elles indépendantes e) Les variables N et S sont-elles indépendantes?

1. Calculer P(N = n|S = s) avec 0 ≤ s ≤ n.
Exercice 973 [Mines PSI 2025 # 950] Soient n ∈ N, a ∈ R+ et p ∈]0, 1[. On considère une variable aléatoireX à valeurs dans N dont
la loi est donnée par ∀k ∈ N, P(X = k) = a

(
n+k
k

)
pk .

1. Que vaut a?

1. Déterminer E(X).
Exercice 974 [Mines PSI 2025 # 951] Soient p1, p2 ∈]0, 1[. On considère deux variables aléatoires indépendantes X et Y de lois

respectives G(p1) et G(p2). On note M la matrice aléatoire
(
X 1
0 V

)
.

1. Déterminer la probabilité que M soit diagonalisable.

1. Soit q ∈]0, 1[. On considère une variable aléatoire Z de loi B(q) indépendante de (X,Y).

On note M’ la matrice aléatoire
(
X Z
1 Y

)
. Quelle est la probabilité que M’ soit diagonalisable?

Exercice 975 [Mines PSI 2025 # 952] On dispose d’une pièce pour laquelle la probabilité de faire pile est p ∈ [0, 1[. On note q = 1 - p.
On réalise une suite de lancers indépendants jusqu’à faire deux pile, pas nécessairement consécutifs et on note X le nombre de face
obtenus.

1. Montrer que l’espérance de X est finie et la calculer.

1. Lorsque X=n, on tire une boule dans une urne contenant n+1 boules numérotées de 0à n. On note Y le numéro de la boule tirée.

Montrer que l’espérance de Y est finie et la calculer.
Exercice 976 [Mines PSI 2025 # 953] On considère une pièce que donne pile avec une probabilité 2/3 et face avec une probabilité
1/3. Soit Xk une variable aléatoire qui vaut 1 si on obtient face au k-ième lancer et à 0 sinon. Soit T la variable aléatoire qui compte
le nombre de lancers nécessaires pour avoir deux face consécutifs.

1. Quelles sont les valeurs possibles de T?

1. On note pn = P(T = n).

• i) Calculer p1 et p2.

ii) Soit n ≥ 3. Montrer que (X1 = 1, X2 = 0), (X1 = 1, X2 = 1), (X1 = 0) forme un système complet d’évènements.
• iii) En déduire que, pour tout n ≥ 2, pn = 2

9pn−2 + 2
3pn−1.

• iv) En déduire une expression de pn en fonction de n.

1. Est-ce que T possède une espérance?
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Exercice 977 [Mines PSI 2025 # 954] On considère une urne contenant n boules numérotées de 1 à n. On effectue des tirages
successifs. À chaque tirage, on retire les boules de numéro supérieur ou égal à celui obtenu. On noteXn le nombre de tirages nécessaires
pour vider l’urne.

1. Calculer E(X1) et E(X2).

1. Montrer que E(Xn) = 1 + 1
n

∑n−1
k=1 E(Xk).

1. Déterminer E(Xn).
Exercice 978 [Mines PSI 2025 # 955] Soient n,N ≥ 2. On considère n variables aléatoires i.i.d. de loi U({1, . . . , N}). On note T le
nombre de valeurs distinctes prises par ces n variables.

1. Calculer E(T ). b) Donner un équivalent de E(T ) lorsque

1. n → +∞, à N fixé ; ii) N → +∞, à n fixé ; iii) n = N → +∞. c) Calculer V(T).
Exercice 979 [Mines PSI 2025 # 956] Soit (Xn) une suite de variables aléatoires indépendantes telles queXn ∼ P(λn) avec

∑∞
n=1 λn

convergente. On note A l’événement « la suite (Xn) est nulle à partir d’un certain rang ».

1. Déterminer la probabilité de A.

1. Montrer que X = limn→+∞
∏∞
k=0 e

Xk est presque sûrement définie.
Exercice 980 [Mines PSI 2025 # 957] Soient E un espace euclidien et (u1, ..., un) une famille de vecteurs unitaires de E. Soient
X1, ..., Xn des variables aléatoires indépendantes et de même loi uniforme sur {−1, 1}. Soit X = ∥X1u1 + · · · +Xnun∥2.

1. Calculer E(X).

1. Montrer qu’il existe (ε1, . . . , εn) ∈ {−1, 1}n tel que ∥ε1u1 + · · · + εnun∥ ⩽
√
n.

Exercice 981 [Mines PSI 2025 # 958] Soient a > 0, p ∈]0, 1[ et X ,Y deux variables aléatoires à valeurs dans N telles que ∀(i, j) ∈
N2, P(X = i, Y = j) = api+j .

1. Calculer a.

1. Déterminer la loi de X et de Y, E(X) et V(X).

1. Calculer la covariance de X et Y.

1. Soit U = max(X,Y ). Soit n ∈ N. Déterminer la loi de U sachant (X + Y = 2n+ 1).
Exercice 982 [Mines PSI 2025 # 959] Une variable aléatoireX est décomposable s’il existe deux variablesZ etY indépendantes dantes
et non constantes telles queX ∼ Y +Z . a) SoitX une variable aléatoire à valeurs dans N décomposable telle que P(X = 0) > 0. Soit
(Y, Z) un couple de variables aléatoires indépendantes et non constantes telles que X ∼ Y + Z . Montrer que Y et Z sont à valeurs
dans N. Donner une relation entreGX , GY etGZ . Y+Z. Montrer que Y et Z sont a valeurs dans N. Donner une relation entreGX , GY
et GZ b) Soient n ≥ 2, p ∈]0, 1[, X ∼ B(n, p). Montrer que X est décomposable.

1. Soit n ≥ 2 non premier, X ∼ U([[0, n− 1]]).

• i) Montrer ∃r, s ∈ N \ {0, 1} tels que GX(t) =
(

1
r

∑r−1
i=0 t

i
)

×
(

1
s

∑s−1
j=0 t

rj
)

.

• ii) En déduire que X est décomposable.

X) Mines - PC

1) Algèbre

Exercice 983 [Mines PC 2025 # 960] Calculer minσ∈Sn

∑n
i=1

⌊
σ(i)
i

⌋
Exercice 984 [Mines PC 2025 # 961] Soit n ∈ N∗. Soient A, B, C trois points du plans complexe d’affixes a, b et c. On suppose que
le triangle ABC n’est pas aplati et que a, b, c ∈ Un.

1. Combien y a-t-il de tels triangles?

1. Combien d’entre eux sont rectangles?-

Exercice 985 [Mines PC 2025 # 962] Pour z ∈ C, on pose f(z) = eiz−e−iz

2i et φ(z) = |f(z)|2.
1. La fonction φ est-elle bornée sur b) Montrer que φ est bornée sur D = {z ∈ C, |z| ≤ 1} et déterminer son maximum sur D.

Exercice 986 [Mines PC 2025 # 963] On pose f : z ∈ C \ {i} 7→ 1
z−i .

1. Montrer que l’imageqde toute droite du plan complexe ne passant pas par i est un cercle privé de l’origine.

1. Peut-on généraliser à f : z ∈ C \ {b} 7→ z−a
z−b , avec (a, b) ∈ C2 et a ̸= b?

Exercice 987 [Mines PC 2025 # 964] On dit que P ∈ R[X] de degré n ≥ 0 est un polynôme réciproque si P = XnP
( 1
Y

)
. Soit P un

polynôme réciproque.
1. Soit z une racine complexe de P . Montrer que z ̸= 0. Montrer que 1/z est une racine de P de même multiplicité que z.
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1. On note α, β les multiplicités (éventuellement nulle) de 1 et -1 comme racines de P . Montrer qu’il existe q un N et Q ∈ R[X]
de degré q tels que :

P = (X − 1)α(X + 1)βXqQ

(
X + 1

X

)
.

1. Factoriser X7 5
2X

6 + 3
2X

5 + 3
2X

2 5
2X + 1.

Exercice 988 [Mines PC 2025 # 965] Soient p, q ∈ N∗ distincts. Déterminer les P ∈ C[X] tels que P (Xp)q = P (Xq)p.
Exercice 989 [Mines PC 2025 # 966] Soit P ∈ R[X] de degré n dont les racines sont distinctes, réelles, strictement supérieures à 1.
On pose Q = (X2 + 1)PP ′ +X(P 2 + P ′2). Montrer que Q admet au moins 2n-1 racines réelles distinctes.
Exercice 990 [Mines PC 2025 # 967] Soit φ : P ∈ R[X] 7→ PP ′.

1. Pour n ∈ N, montrer que la restriction de φ à Rn[X] induit une bijection sur Rn[X].

1. Pour Q ∈ R[X], montrer qu’il existe un unique R ∈ R[X] tel que Q = R R’.

1. Avec les notations précédentes, on suppose ∀x ∈ R, Q(x) ≥ 0.

En considérant f : x 7→ e−xR(x), montrer que : ∀x ∈ R, R(x) ≥ 0. d) On suppose R scindé sur R à racines simples. Montrer que Q
est scindé sur R à racines simples.
Exercice 991 [Mines PC 2025 # 968] Soient L1, . . . , Ln les polynômes de Lagrangeqassociés au n-uplet (−1,−2, . . . ,−n).
Pour k ∈ [1, n], soit αn,k =

∏
1≤i≤n
i̸=k

(i− k).

Soient enfin
fn : x 7→ 1

(x+ 1) · · · (x+ n)

et gn(x) =
∑n
k=1

1
αn,k(x+k) .

1. Donner l’écriture factorisée des polynômes Li et les valeurs de Li(−j) pour i, j ∈ [1, n].

1. Montrer que (L1, . . . , Ln) est une base de Rn−1[X]. Donner la décomposition de P ∈ Rn−1[X] dans cette base.- c) Calculer∑
Lk et en déduire une expression simple reliant fn et gn.

1. Montrer que fn est intégrable sur R+ pour n ≥ 2.

1. Trouver une relation simple entre 1
αn,k

et
(
n−1
k−1
)
.

1. Donner une expression de
∫ +∞

0 fn(t)dt.

Exercice 992 [Mines PC 2025 # 969] Si P ∈ C[X] et k ∈ Z, on pose ck(P ) = 1
2π
∫ π

−π P (eit)e−iktdt.
1. Exprimer les ck(P ) en fonction des coefficients de P .

1. Déterminer les polynômes P ∈ C[X] vérifiant P (U) ⊂ R.
Exercice 993 [Mines PC 2025 # 970] Soit n ≥ 2. On considère l’égalité (∗) : (1 + iX)2n+1 − (1 − iX)2n+1 = 2iX Qn(X).

1. Montrer qu’il existe un unique Qn ∈ R[X] tel que () soit vérifiée. Déterminer le degré et le coefficient dominant de Qn.

1. Déterminer les racines de Qn.

1. Calculer
∏n−1
k=0

(
4 + tan2

(
kπ

2n+1

))
.

Exercice 994 [Mines PC 2025 # 971] Soit u ∈ R. On pose P0 = 1 et, pour k ∈ N∗, Pk = X(Xku)k−1.

1. Montrer que (P0, . . . , Pn) est une base de Rn[X]. b) Montrer que ∀P ∈ Rn[X], P (X) = P (0) +
∑n
k=0

P (k)(ku)
k! Pk(X).

Exercice 995 [Mines PC 2025 # 972] Soit P ∈ R[X] de degré n ∈ N∗. On suppose que P est minoré sur R. On pose Q = P + P ′ +
· · · + P (n). Montrer que Q est minoré sur R.
Exercice 996 [Mines PC 2025 # 973] Déterminer les P ∈ C[X] tels que P (U) ⊂ U.
Exercice 997 [Mines PC 2025 # 974] Soit P ∈ R[X] tel que : ∀x ∈ R, P (x) ≥ 0. Montrer qu’il existe (Q,R) ∈ R[X]2 tel que
P = Q2 +R2.
Exercice 998 [Mines PC 2025 # 975] Soit P ∈ R[X] tel que, pour tout x ∈ [−1, 1], P (x) ≥ 0.

1. On suppose que deg(P ) ⩽ 2. Montrer qu’il existe α, β ∈ R+ et a ∈ [−1, 1] tels que P = α(Xa)2 + β(1X2).

1. On revient au cas général.

Montrer qu’il existe A,B ∈ R[X] tels que P = A2 +B2(1X2).
Exercice 999 [Mines PC 2025 # 976] Soit n ∈ N∗. Soit E un K -espace vectoriel de dimension n. Soit F un sous-espace vectoriel de
E. Montrer que dim(F ) = n1 si et seulement s’il existe Φ ∈ L(E,K) non nulle telle que F = Ker(Φ).
Exercice 1000 [Mines PC 2025 # 977] Soient p et q deux projecteurs d’un espace vectoriel E. Montrer que p-q est un projecteur si
et seulement si q ◦ p = p ◦ q = q.
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Exercice 1001 [Mines PC 2025 # 978] Soient E un espace vectoriel de dimension n et u ∈ L(E). Donner une condition nécessaire
et suffisante pour qu’il existe v ∈ L(E) tel que u ◦ v = 0 et u + v inversible.
Exercice 1002 [Mines PC 2025 # 979] Soit

A ∈ Mn(R).
Résoudre XT +X = tr(X)A.
Exercice 1003 [Mines PC 2025 # 980] Soient n ≥ 2 et A ∈ Mn(R) telle que rg(A) = 1 et tr(A) = 0. Montrer que A est semblable
à E1,n.
Exercice 1004 [Mines PC 2025 # 981] 1. Existe-t-il

(A,B) ∈ Mn(R)2

tel que AB −BA = In ?

1. Soit A ∈ Mn(R) non nulle et de trace nulle. Montrer qu’il existe u ∈ Rn tel que (u, Au)est libre.

1. Soit A ∈ Mn(R) de trace nulle. Montrer que A est semblable à une matrice à diagonale nulle.
Exercice 1005 [Mines PC 2025 # 982] Soient

A ∈ M3,2(R)

et B ∈ M2,3(R) telles que AB =

 0 −1 −1
−1 0 −1
1 1 2

.

1. « Décrire » AB.

1. Montrer que BA est inversible.

1. Étudier le noyau et l’imageqde A et B.

1. Déterminer BA.
Exercice 1006 [Mines PC 2025 # 983] $$ Soit (A,B,C) ∈ Mn(R)3. Montrer que rg(ABC) + rg(B) ≥ rg(AB) + rg(BC).
Exercice 1007 [Mines PC 2025 # 984] Soient

x1, x2 ∈ C.

Montrer que ∣∣∣∣∣∣∣∣∣∣
1 0 1 0 0
x1 1 x2 1 0
x2

1 2x1 x2
2 2x2 2

x3
1 3x2

1 x3
2 3x2

2 6x2
x4

1 4x3
1 x4

1 4x3
2 12x2

2

∣∣∣∣∣∣∣∣∣∣
= 0 si et seulement si x1 = x2.

Exercice 1008 [Mines PC 2025 # 985] Soit
(a1, . . . , an, b0, . . . , bn) ∈ K2n.

Exercice 1009 [Mines PC 2025 # 985] Soit
(a1, . . . , an, b0, . . . , bn) ∈ K2n.

Calculer ∆n =

∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 + b1 b1 b1 · · · b1

b2 a2 + b2
...

b3 b3
. . .

...
...

...
. . . bn−1

bn bn · · · bn an + bn

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Exercice 1010 [Mines PC 2025 # 986] Calculer ∣∣∣∣∣∣∣∣∣∣∣

1 2 · · · n− 1 n
2 3 · · · n 1
...

...
...

...
n− 1 n · · · n− 3 n− 2
n 1 · · · n− 2 n− 1

∣∣∣∣∣∣∣∣∣∣∣
.

Exercice 1011 [Mines PC 2025 # 987] 1. Pour

(x1, . . . , xn) ∈ Cn

, calculer V (x1, . . . , xn) =

∣∣∣∣∣∣∣
1 · · · xn−1

1
...

...
1 · · · xn−1

n

∣∣∣∣∣∣∣.
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1. Montrer :

∀(m1, . . . ,mn) ∈ Zn

n−1∏
k=1

k! |
∏

1≤j<i≤n

(mj −mi)

1. Montrer :

∀(m1, . . . ,mn) ∈ Zn
n−1∏
k=1

k! |
∏

1≤j<i≤n

(mj −mi).

Ind. Considerer Dn =

∣∣∣∣∣∣∣
1 m1 m1(m1 − 1) · · · m1 · · · (m1 − n+ 1)
...

...
...

...
1 mn mn(mn − 1) · · · mn · · · (mn − n+ 1)

∣∣∣∣∣∣∣.
Exercice 1012 [Mines PC 2025 # 988] 1. Soit (U, V ) ∈ Mn(R)2 tel que U + iV ∈ GLn(C). Montrer qu’il existe x0 ∈ R tel que

U + x0V ∈ GLn(R).

1. Soient M et N dans Mn(R) semblables sur C. Montrer que M et N sont semblables sur R.

1. Soit A ∈ M2(R). Montrer que A est semblable à une unique matrice de la forme
(
a 0
0 b

)
, (a, b) ∈ R2, ou

(
a 1
0 a

)
, a ∈ R, ou

encore
(
a −b
b a

)
, (a, b) ∈ R2, b ̸= 0.

Exercice 1013 [Mines PC 2025 # 989] Soient A et B dans Mn(R) telles que BAB = A et ABA = B. Montrer que A2 = B2. Montrer
que A et B ont le même noyau et la même image.
Exercice 1014 [Mines PC 2025 # 990] SoientA,B ∈ M3(R) telles que det(A) = det(B) = det(A+B) = det(A−B) = det(A−B)
0. Montrer que ∀x, y ∈ R, det(xA+ yB) = 0.
Exercice 1015 [Mines PC 2025 # 991] SoientA,B ∈ Mn(Z). On suppose que ∀k ∈ [0, 2n], det(A+kB) = ±1. Déterminer det(A)
et det(B).

Exercice 1016 [Mines PC 2025 # 992] Soient A, B, C , D dans Mn(R). On pose M =
(
A B
C D

)
et J =

(
In 0
0 −In

)
. On suppose

que MTJM = J . Montrer que A et D sont inversibles.
Exercice 1017 [Mines PC 2025 # 993] Soit p ∈ N avec p ≥ 2. Déterminer toutes les matrices M ∈ M2(C) triangulaires supérieures
telles que Mp = I2.
Exercice 1018 [Mines PC 2025 # 994] Soit D l’endomorphisme de dérivation de K[X]. Déterminer tous les sous-espaces vectoriels
de K[X] stables par D.
Exercice 1019 [Mines PC 2025 # 995] Soient E un K -espace vectoriel de dimension n, ainsi que u1, . . . , un des endomorphismes
nilpotents de E commutant deux à deux. Simplifier u1 ◦ · · · ◦ un.
Exercice 1020 [Mines PC 2025 # 996] Soit A ∈ M2(C). Montrer que A et AT sont semblables. Et si A ∈ M2(R)?
Exercice 1021 [Mines PC 2025 # 997] Soient E un R -espace vectoriel de dimension n et f ∈ L(E) tel que f2 = − id.

1. Montrer que n est pair.

1. Soit x ∈ E. Montrer que Vect (x, f(x)) est stable par f .

1. On suppose n=2p. Montrer qu’il existe une famille (e1, . . . , ep) de Ep telle que (e1, u(e1), . . . , ep, u(ep)) soit une base de E.
Préciser la matrice de f dans cette base.

Exercice 1022 [Mines PC 2025 # 998] Soit A ∈ M3n(R) telle que A3 = 0 et rgA = 2n. Montrer que A est semblable à 0 0 0
In 0 0
0 In 0

.

Exercice 1023 [Mines PC 2025 # 999] Soit E un K -espace vectoriel de dimension finie. Soient L1 et L2 des sous-espaces vectoriels
de L(E) tels que (1) L(E) = L1 ⊕ L2 et (2) ∀(u, v) ∈ L1 × L2, u ◦ v + v ◦ u = 0.
we correst the L(L) ters que (1) L(L) = L1 ⊕ L2 et (2) ∀(u, v) ∈ L1 × L2, u ◦ v + v ◦ u = 0. a) Montrer qu’il existe un projecteur
p1 ∈ L1 et un projecteur p2 ∈ L2 tels que p1 + p2 = id.

1. Montrer que rg(p1) + rg(p2) = dimE.

1. Montrer, pour i ∈ {1, 2}, que si w ∈ Li, alors Im p1 et Ker p1 sont stables par w.

1. Montrer que L1 = {0} ou L2 = {0}.
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Exercice 1024 [Mines PC 2025 # 1000] Soit
(a1, . . . , an) ∈ Cn.

À quelle condition la matrice 
0 · · · 0 a1
...

...
...

0 · · · 0 an−1
a1 · · · an−1 an


est-elle diagonalisable?
Exercice 1025 [Mines PC 2025 # 1001] Soient

(a, b) ∈ C2

et M =



a b 0 · · · 0

b
. . . . . . . . .

...

0
. . . . . . . . . 0

...
. . . . . . . . . b

0 · · · 0 b a


. Éléments propres de M ?

Exercice 1026 [Mines PC 2025 # 1002] Soient a1, . . . , an ∈ R et M = (mi,j)1≤i,j≤n ∈ Mn(R) telle que mn−i+1,i = ai pour
1 ≤ i ≤ n, les autres coefficients étant nuls. Déterminer une condition nécessaire et suffisante pour que M soit diagonalisable.
Exercice 1027 [Mines PC 2025 # 1003] Soit A ∈ Mn(R) telle que tr(A) ̸= 0. Soit φ : M ∈ Mn(R) 7→ tr(A)M − tr(M)A.

1. Préciser Im φ et Ker φ.

1. En déduire les éléments propres de φ.
Exercice 1028 [Mines PC 2025 # 1004] Soit n ∈ N∗. Pour j ∈ [0, 2n], on pose fj : t 7→ shj(t) ch2n−j(t) définie sur R.a) On note F
le sous-espace vectoriel de RR engendré par les fi.
Montrer que F = (f0, . . . , f2n) est une base de F .

1. On note D l’opérateur de dérivation sur F . Montrer que D induit un endomorphisme.

Donner ses éléments propres.
Exercice 1029 [Mines PC 2025 # 1005] Soient A ∈ C[X] et B =

∏n
k=1(X − λk), où n ≥ 1 et les λk sont des complexes distincts

et non racines de A. Pour j ∈ [[1, n]], on pose Pj =
∏n

k=1
k ̸=j

(X − λk). Soient N ≥ n− 1 et φ
l’application qui à P ∈ CN [X] associe le reste de la division de AP par B.

1. Montrer que Φ est un endomorphisme de CN [X].

1. Donner le noyau et l’imageqde Φ.

1. Donner une expression de Pi(z) sans produit, pour z ̸= λi.

1. L’endomorphisme Φ est-il diagonalisable? Préciser ses éléments propres.
Exercice 1030 [Mines PC 2025 # 1006] 1. Soit A ∈ Mn(K) telle que rg(A) = 1. Donner le polynôme caractéristique de A.

1. En déduire une condition nécessaire et suffisante de diagonalisabilité pour une matrice de rang 1.

1. L’ensemble des matrices diagonalisables de Mn(K) est-il un sous-espace vectoriel de Mn(K)?

1. Existe-t-il une base de Mn(K) formée de matrices diagonalisables de rang 1?
Exercice 1031 [Mines PC 2025 # 1007] 1. Déterminer le commutant

C(M) de M =

−1 0 2
0 0 1
0 1 1

.

1. Montrer que C(M) = Vect(In,M,M2)
Exercice 1032 [Mines PC 2025 # 1008] Soient A,B ∈ Mn(C) telles que AB = 0. Montrer qu’il existe P ∈ GLn(C) tel que P−1AP
et P−1BP soient triangulaires supérieures.
Exercice 1033 [Mines PC 2025 # 1009] Montrer que deux matrices de Mn(C) qui commutent sont simultanément trigonalisables.
Exercice 1034 [Mines PC 2025 # 1010] Soient E un C -espace vectoriel de dimension finie, f ∈ L(E) et P ∈ C[X]. Que dire du
spectre de P(f) ?
Exercice 1035 [Mines PC 2025 # 1011] Soient A,B,M ∈ Mn(C) et λ, µ ∈ C∗ avec λ ̸= µ. On suppose que In = A + B,
M = λA+ µB et M2 = λ2A+ µ2B.

1. Montrer que M est inversible et déterminer M−1.
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1. Montrer que M est diagonalisable et déterminer son spectre.
Exercice 1036 [Mines PC 2025 # 1012] Résoudre dans

M3(R)

l’équation X2 =

1 0 0
1 1 0
1 0 4

.

Exercice 1037 [Mines PC 2025 # 1013] Soit A ∈ Mn(R). À quelle condition la matrice
(
A A
0 A

)
est-elle diagonalisable?

Exercice 1038 [Mines PC 2025 # 1014] Soit A ∈ Mn(C) diagonalisable. Montrer que B =
(
In A
A In

)
est diagonalisable.

Exercice 1039 [Mines PC 2025 # 1015] Soient n ∈ N∗ et A ∈ Mn(R) telle que ∀i ∈ [1, n], ai,i = 0 et ∀j ̸= i, ai,j = j. a) Si λ ∈ R
est une valeur propre de A et (x1 . . . xn)T un vecteur propre associé, montrer que (λ+ 1)x1 = (λ+ 2)x2 = · · · = (λ+ n)xn.

1. Montrer que −1,−2, . . . ,−n ne sont pas valeurs propres de A.

1. Montrer que λ est valeur propre de A si et seulement si
∑∞
k=1

k
λ+k = 1.

1. En déduire que A est diagonalisable.
Exercice 1040 [Mines PC 2025 # 1016] Soient E un R -espace vectoriel de dimension finie n, f, g ∈ L(E) tels que f ◦ g = f+q.

1. Montrer que Im f = Im g et Ker f = Ker g.

1. On suppose f diagonalisable, montrer que f ◦ g est diagonalisable et que ses valeurs propres ne peuvent pas être dans ]0, 4[.
Exercice 1041 [Mines PC 2025 # 1017] Soit E un R -espace vectoriel de dimension finie. Soit u ∈ L(E) de spectre vide.

1. Montrer qu’il existe P ∈ R[X] de degré 2 tel que Ker(P (u)) ̸= {0}.

1. Montrer que l’on peut trouver un sous-espace stable par u de dimension 2.

1. En déduire que tout endomorphisme d’un R-espace vectoriel de dimension finie admet un sous-espace stable de dimension 1
ou 2.

Exercice 1042 [Mines PC 2025 # 1018] Soit p ∈ N avec p ≥ 2.
Soit (un)n∈N ∈ CN telle que, pour tout n ∈ N, un+p = un+p−1 + un+p−2 + · · · + un.
On note P = Xp −

∑p−1
i=0 X

i et pour n ∈ N, Un = (un un+1 · · · un+p−1)T .

1. Trouver une matrice A ∈ Mp(C), ne dépendant pas de (u0, . . . , up−1), telle que, pour tout n ∈ N, Un+1 = AUn. En déduire
une expression de Un en fonction A, U0 et n.

1. Montrer que le polynôme caractéristique χA de A est P . c) Montrer que P admet une unique racine α sur R+∗ en considérant
T=(X-1)P, puis

que α ∈]1, 2[.
Exercice 1043 [Mines PC 2025 # 1019] Soient A,B ∈ Mn(C) telles que AB = BA2 et ∀λ ∈ Sp(A), |λ| ̸= 1. Montrer que A et B
ont un vecteur propre en commun.
Exercice 1044 [Mines PC 2025 # 1020] Soient A ∈ Mn(R) telle que A2 = −In et f ∈ L(Rn) canoniquement associé à A.

1. Montrer que n est pair.

1. Montrer qu’il existe une base dans laquelle la matrice de f est diagonale par blocs avec pour blocs diagonaux
(

0 −1
1 0

)
.

1. Montrer qu’il n’existe pas d’hyperplan stable par f .
Exercice 1045 [Mines PC 2025 # 1021] Soit A ∈ Mn(C). Montrer l’équivalence entre les assertions suivantes :

• A est diagonalisable,

• ∀P ∈ C[X], P (A)n = 0 =⇒ P (A) = 0,

• le seul élément nilpotent de C[A] est 0.
Exercice 1046 [Mines PC 2025 # 1022] Soient A,B,C ∈ Mn(C) telles que AB BA = C , AC CA = 0 et BC CB = 0.

1. Soit M ∈ GLn(C). i) Que dire de la famille (Mk)0≤k≤n2 ?

• ii) Montrer qu’il existe une famille (λk)1⩽k⩽n2 telle que In +
∑n2

k=1 λkM
k = 0.

iii) Montrer qu’on peut trouver un indice k tel que Tr(Mk) ̸= 0.
1. Montrer que C n’est pas inversible.

1. Montrer que A, B et C admettent un vecteur propre commun.
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1. Montrer qu’il existe une matrice P inversible telle que P−1AP , P−1BP et P−1CP soient triangulaires.

1. Montrer que C est nilpotente.
Exercice 1047 [Mines PC 2025 # 1023] Soit A ∈ M3(R) telle que A2 = A3 et dim(E1(A)) = 1.

1. Montrer que Ker A2 et E1(A) sont supplémentaires. b) Montrer que Ker A2 et E1(A) sont stables par A.

1. Montrer que A est semblable à

1 0 0
0 0 ε
0 0 0

 avec ε ∈ {0, 1}.

Exercice 1048 [Mines PC 2025 # 1024] On note Dn l’ensemble des matrices carrées diagonalisables dans Mn(R).
1. L’ensemble Dn est-il un sous-espace vectoriel de Mn(R)?

1. Soit V ⊂ Dn un sous-espace vectoriel de Mn(R). Montrer que dimV ⩽ n(n+1)
2 .

1. Exhiber un sous-espace vectoriel de Mn(R) contenu dans Dn de dimension n(n+1)
2 .

Exercice 1049 [Mines PC 2025 # 1025] Soit A ∈ Mn(C). On suppose tr(Ak) −−−−−→
k→+∞

0. Montrer : ∀λ ∈ Sp(A), |λ| < 1.

Exercice 1050 [Mines PC 2025 # 1026] Si A ∈ Mn(C), montrer que A est nilpotente si et seulement si ∀k ∈ N∗, tr(Ak) = 0.
Exercice 1051 [Mines PC 2025 # 1027] On dit que M ∈ Mn(C) est d’ordre fini s’il existe un entier k ∈ N∗ tel que Mk = In. Dans
ce cas, on appelle ordre de M le plus petit entier k ∈ N∗ tel que Mk = In.

1. Montrer que les matrices d’ordre fini sont diagonalisables.

1. Soit M une matrice d’ordre p et soit k ∈ N∗. Montrer que Mk = In ⇐⇒ k ∈ pZ.

1. Soient Vn l’ensemble des matrices d’ordre fini de Mn(C) à coefficients dans Z et On l’ensemble des ordres des éléments de Vn.
Montrer que Vn est non vide et que On est fini.

Exercice 1052 [Mines PC 2025 # 1028] Soit E préhilbertien. Pour (a, b) ∈ E2 et α ∈ R, on pose fα : x 7→ x+ α⟨x, a⟩b.
1. A-t-on fα ∈ L(E)?

1. Déterminer O2.- b) Donner une condition nécessaire et suffisante pour que fα soit un isomorphisme, dans le cas où E est
euclidien.

1. Pour β ∈ R, calculer fα ◦ fβ .

1. En supposant fα ∈ GL(E), préciser f−1
α .

1. Qu’en est-il lorsque l’on suppose E simplement préhilbertien.
Exercice 1053 [Mines PC 2025 # 1029] Soient E et F deux espaces euclidiens et f ∈ L(E,F ).

1. Pour tout y ∈ F , montrer qu’il existe un unique (x, y′) ∈ (Ker f)⊥ × (Im f)⊥ tel que y = f(x) + y’.

1. Avec les notations précédentes, on note g : y 7→ x. Montrer que g est linéaire.

1. Préciser Ker q et Im q.
Exercice 1054 [Mines PC 2025 # 1030] Soit E un espace euclidien.

1. Montrer : ∀f ∈ L(E,R), ∃!a ∈ E, ∀x ∈ E, f(x) = ⟨a, x⟩.

1. On munit E = Rn[X] du produit scalaire (P,Q) 7→
∫ 1

0 PQ. Soit f : P 7→ P (0).

Montrer qu’il existe A ∈ E tel que : ∀P ∈ E, f(P ) =
∫ 1

0 AP .
1. Montrer que A(0) > 0 et deg(A) = n.

1. Montrer qu’il n’existe pas de A ∈ R[X] tel que P (0) =
∫ 1

0 AP pour tout P ∈ R[X].

1. Montrer qu’il n’existe pas de C ∈ R tel que : ∀P ∈ R[X], |P (0)| ≤ C||P ||.
Exercice 1055 [Mines PC 2025 # 1031] On munit Rn de sa structure euclidienne canonique. Soit (u1, . . . , up) une famille de Rn. On
note la propriété suivante (1) : ∀(i, j) ∈ [[1, p]]2, i ̸= j =⇒ ⟨ui, uj⟩ < 0. a) Soit (ui)1≤i≤p une famille vérifiant (1). Montrer qu’il
existe une sous-famille libre de u - a) Soit (ui)1⩽i⩽p une famille vérifiant (1). Montrer qu’il existe une sous-famille libre de u ayant
p-1 vecteurs.

1. Montrer qu’il n’existe pas de famille ayant au moins n+2 vecteurs vérifiant (1).

1. Donner une famille (u1, . . . , un+1) vérifiant (1).
Exercice 1056 [Mines PC 2025 # 1032] SoientE un espace euclidien, F un sous-espace vectoriel deE, pF le projecteur orthogonal de
E sur F et (f1, . . . , fp) une base de F . On poseG = (⟨fi, fj⟩)1≤i,j≤p. orthogonal deE sur F et (f1, ..., a) Montrer queG ∈ GLp(R).

1. Soient y ∈ E, Y =

⟨y, f1⟩
...

⟨y, f1⟩

 et X =

x1
...
x−

 la solution de GX = Y.

103



Montrer que pF (y) =
∑p
i=1 xifi.

Exercice 1057 [Mines PC 2025 # 1033] Soit E = C1([0, 1],R). On pose ∀(f, g) ∈ E2, ⟨f, g⟩ =
∫ 1

0 (f(t) g(t) + f ′(t) g′(t))dt
1. Montrer que ⟨ , ⟩ est un produit scalaire.

1. Soit V = {f ∈ C2([0, 1],R), f = f ′′}. Montrer que V est un sous-espace vectoriel de dimension finie et déterminer une base
de V .- c) Montrer que V ⊕W = E et que V ⊥ = W .

Exercice 1058 [Mines PC 2025 # 1034] Soit M ∈ Mn(R) de trace nulle. Montrer qu’il existe une matrice orthogonale P telle que
PTMP soit de diagonale nulle.
Exercice 1059 [Mines PC 2025 # 1035] 1. L’ensemble O2(R) est-il un sous-espace vectoriel de M2(R)?

1. Déterminer Vect (O2(R)).

Exercice 1060 [Mines PC 2025 # 1036] Soit M ∈ On (R). Étudier la limite de la suite de matrices Ak =
(

1
k

∑k−1
i=0 M

i
)
k∈N∗

.

Exercice 1061 [Mines PC 2025 # 1037] Soit A ∈ Sn(R) ∩ GLn(R) semblable à son inverse.
1. Montrer que tr(A2) ≥ n.

1. Montrer que tr(A2) ≥ n si et seulement si A est une matrice de symétrie orthogonale.

Exercice 1062 [Mines PC 2025 # 1038] Soient a ∈ ]0, 1[ et M =

 0 a 1 − a
a 1 − a 0

1 − a 0 a

.

1. La matrice M est-elle diagonalisable? Préciser ses valeurs propres.

1. Montrer que (Mn)n∈N converge vers une matrice L. Caractériser géométriquement L.

1. Soit S ∈ Sp(R). Donner une condition nécessaire et suffisante pour que (Sn)n∈N converge et déterminer alors sa limite.

1. Soit A ∈ Ap(R) telle que (An)n∈N converge. Déterminer sa limite.
Exercice 1063 [Mines PC 2025 # 1039] Pour

(a, b) ∈ R

, on pose M(a, b) =


a2 ab ab b2

ab a2 b2 ab
ab b2 a2 ab
b2 ab ab a2

.

1. Montrer que M(a, b) est diagonalisable.

1. Donner les valeurs propres et les vecteurs propres de M(a,b).

1. Donner une condition nécessaire et suffisante pour que M(a, b)n → 0.

Exercice 1064 [Mines PC 2025 # 1040] Soient n ≥ 3 et M =


1 2 . . . n
2 0 . . . 0
...

...
...

n 0 . . . 0

.

1. Montrer que M est diagonalisable.

1. Déterminer les valeurs propres de M et leur multiplicité.

1. Trouver un polynôme annulateur de M .

Exercice 1065 [Mines PC 2025 # 1041] Soient n ≥ 2, A =



0 1 0 . . . 0

1
. . . . . .

...

0
. . . . . . . . . 0

...
. . . . . . 1

0 . . . 0 1 0


∈ Mn(R) et Xℓ =



sin
(
ℓπ
n+1

)
sin
(

2ℓπ
n+1

)
sin
(

2ℓπ
n+1

)
...

sin
(
nℓπ
n+1

)


pour

ℓ ∈ [[1, n]]. On pose, pour p, q ∈ [[1, n]], Sp,q =
∑n
k=1 sin

(
kpπ
n+1

)
sin
(
kqπ
n+1

)
.

1. Justifier que A est diagonalisable. Que peut-on dire de ses sous-espaces propres?

1. Montrer que (X1, . . . , Xn) est une base de vecteurs propres de A.

1. Calculer Sp,q pour p, q ∈ [[1, n]] avec p ̸= q.
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Exercice 1066 [Mines PC 2025 # 1042] Soit

U =

u1
...
un

 ∈ Mn,1(R),

avec
n∑
i=1

u2
i = 1. On pose A = In − 2UUT .

Montrer que A est orthogonale. Caractériser A.
Exercice 1067 [Mines PC 2025 # 1043] Soit A ∈ Mn(R). Montrer que les matrices AAT et ATA sont semblables.
Exercice 1068 [Mines PC 2025 # 1044] Montrer que On(R) = {A ∈ GLn(R), ATA = AAT et (Ak)k∈Z est bornée}.
Exercice 1069 [Mines PC 2025 # 1045] Déterminer les matrices M ∈ Mn(R) telle que M2 = MMT .
Exercice 1070 [Mines PC 2025 # 1046] Soient (a, b) ∈ R∗2 et Φa,b : M ∈ Mn(R 7→ aM + bMT ).

1. Déterminer les valeurs propres et les espaces propres associés de Φa,b.

1. Donner la trace et le polynôme caractéristique de Φa,b.

1. Donner une condition nécessaire et suffisante pour que Φa,b soit inversible. Préciser alors Φ−1
a,b.

1. L’endomorphisme Φa,b est-il autoadjoint pour le produit scalaire (M,N) 7→ tr(MTN)?

Exercice 1071 [Mines PC 2025 # 1047] On munit E = Rn[X] du produit scalaire (P,Q) 7→
∫ 1

−1 PQ. Soit Φ : E → E

l’endomorphisme défini par : Φ(P ) = (1 −X2)P ′′ + 2XP ′.

1. Montrer que Φ est autoadjoint.

b ) Montrer que Φ est diagonalisable et donner ses valeurs propres.
1. Montrer qu’il existe une unique base orthonormée (P0, . . . , Pn) deE telle que, pour tout k ∈ [0, n], degPk = k et ⟨Pk, Xk⟩ > 0.

1. Pour k ∈ [0, n], on pose Qk = (−1)kPk(−X). Montrer que (Q0, . . . , Qn) est une base orthonormée de E, telle que pour tout
k ∈ [1, n], on a deg(Qk) = k et ⟨Qk, Xk⟩ > 0.

1. Conclusion?

1. Montrer que, pour tout C ∈ Rn−1[X], C et Pn sont orthogonaux.

1. Montrer que Pn est scindé sur ]0,1[ à racines simples.
Exercice 1072 [Mines PC 2025 # 1048] Soit A ∈ Sn(R). Soit F un sous-espace vectoriel de Rn tel que, pour tout X ∈ F \ {0},
XTAX > 0. On note k la dimension de F . Montrer que A possède au moins k valeurs propres strictement positives.

2) Analyse

Exercice 1073 [Mines PC 2025 # 1049] Pour q ∈]0, 1[ , on pose Nq : P ∈ R[X] 7→
∑+∞
k=0 |P (k)|qk .

1. Montrer que Nq est une norme.

1. Existe-t-il un produit scalaire sur R[X] dont Nq soit la norme associée?

1. Soit (p, q) ∈ [0, 1]2 avec p ̸= q. Les normes Np et Nq sont-elles équivalentes?
Exercice 1074 [Mines PC 2025 # 1050] Soient E = C[X] et b ∈ C. Si P =

∑
k≥0 akX

k , on pose ∥P∥ = sup{|ak|, k ∈ N} ;
c’est une norme sur E. Soit f : P ∈ E 7→ P (b)

1. Montrer que f est linéaire.

1. Étudier la continuité de f .
Exercice 1075 [Mines PC 2025 # 1051] Soit E = R[X]. Pour P =

∑+∞
n=0 anX

n et Q =
∑+∞
n=0 bnX

n dans E, on pose

⟨P,Q⟩ =
+∞∑
n=0

anbn et φ(P ) =
+∞∑
n=0

an
2n .

1. Montrer que ⟨ , ⟩ est un produit scalaire et que φ est une forme linéaire sur E. On munit E de la norme euclidienne associé à
ce produit scalaire.

1. Soit ψ une forme linéaire continue de (E, ∥ · ∥). Montrer que Ker ψ est un fermé de E.

1. Montrer que H = Kerφ est un fermé de (E, ∥ · ∥).

1. Soit A une partie de E, montrer que A⊥ est une partie fermée de E.
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Exercice 1076 [Mines PC 2025 # 1052] Soit n ∈ N∗. Soit ω = e
2iπ

n et V =
(
ω(k−1)(ℓ−1))

1⩽k,ℓ⩽n+1 ∈ Mn+1(C).
Si

P =
n∑
k=0

akX
k ∈ Cn[X]

, on pose N1(P ) = sup|z|=1 |P (z)| et N2(P ) = max0≤k≤n |ak|.

1. Calculer
∑n−1
k=1 ω

k .

1. Calculer V V . En déduire que V est inversible et calculer V −1.

1. Soit P =
∑n
k=0 akX

k ∈ Cn[X]. Déduire de b) une expression des ak en fonction des

P (ωℓ), 0 ⩽ ℓ ⩽ n− 1.

1. Justifier l’existence de N1(P ) et montrer que N2 ⩽ N1.

1. Trouver α et β dans R+∗ tels que αN1 ⩽ N2 ⩽ βN1.

Exercice 1077 [Mines PC 2025 # 1053] Soit E = C0([0, 1],R). On munit E de la norme donnée par ∀f ∈ E, ∥f∥2 =
√∫ 1

0 f(t)2dt.
Soit K : [0, 1]2 → R tel que K(s,t) = (1-s)t si 1 ≥ t < s et K(s, t) = (1 − t)s sinon.
Si f ∈ E, on pose T (f) : s ∈ [0, 1] 7→

∫ 1
0 K(s, t) = (1 − t)s sin

1. Montrer que T est un endomorphisme de E.

1. Montrer que, pour tout f ∈ E, ||T (f)||2 ≤ 1
2

√
10 ||f ||2.

Soit F = {f ∈ C2([0, 1],R), f(0) = f(1) = 0}.

1. Montrer que l’image de T est incluse dans F .

1. A-t-on égalité ?
Exercice 1078 [Mines PC 2025 # 1054] On munitE = Mn(C) d’une norme ∥∥. PourA ∈ Mn(C), on pose ρ(A) = 0 maxλ∈Sp(A) |λ|.

1. L’application ρ est-elle une norme sur Mn(C)?

1. Soit A ∈ Mn(C). On suppose que Ap −−−−−→
p→+∞

0. Montrer que ρ(A) < 1.

1. i) Soit λ ∈ C vérifiant |λ| < 1. Pour k ∈ N, montrer
(
p
k

)
λp−k −−−−−→

p→+∞
0.

ii) Soit A ∈ Mn(C). On admet qu’il existe (B,N) ∈ Mn(C)2 tel que A = B + N , avec N nilpotente, BN = NB et B diagonalisable.
On suppose que ρ(A) < 1. Montrer que Ap −−−−−→

p→+∞
0.

Exercice 1079 [Mines PC 2025 # 1055] Déterminer la limite de la suite de terme général
∑n−1
n=1

1√
n2−k2 .

Exercice 1080 [Mines PC 2025 # 1056] Pour n ∈ N , soit fn : x 7→ −1 +
∑n
k=1

xk

k .

1. Montrer que, pour tout n ≥ 2, l’équation fn(x) = 0 d’inconnue x ∈]0, 1[ admet une unique solution qu’on notera xn.

1. Montrer que la suite (xn)n≥2 ainsi définie est décroissante et convergente.

1. Calculer sa limite.
Exercice 1081 [Mines PC 2025 # 1057] Pour n ∈ N∗ , on pose un = 1

n (
∏n
k=1(3k − 1))1/n. Calculer limn→+∞ un.

Exercice 1082 [Mines PC 2025 # 1058] Montrer que

2n∑
k=1

1√
k

∼
n→+∞

2(
√

2 − 1)
√
n.

Exercice 1083 [Mines PC 2025 # 1059] Étudier la suite (zn), où z0 ∈ C \ R− et, pour n ∈ N, zn+1 = 1
2 (zn + |zn|).

Exercice 1084 [Mines PC 2025 # 1060] On définit f : x ∈ R 7→ π + arctan(π − x). On considère une suite (un) ∈ Rn

vérifiant u0 ∈ [π/2, 3π/2] et, pour n ∈ N, un+1 = f(un).

1. Étudier les variations de f . Montrer que (π, π) est un centre de symétrie du graphe de f . Préciser les asymptotes.

1. Montrer : ∀x ∈ R+∗, x > arctan x. En déduire, pour x ∈ [π/2, 3π/2], le signe de f ◦ f(x) − x.

1. Déterminer les solutions de f ◦ f(x) = x. d) Étudier la convergence de (u2n).

1. Étudier la convergence de (un).

Exercice 1085 [Mines PC 2025 # 1061] Soit (εn) ∈ (R+∗)N. Pour n ∈ N on pose : un =
√
ε0 +

√
ε1 +

√
· · · + √

εn.
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1. Étudier (un) dans le cas où (εn) est constante.

1. Montrer que (un) est croissante. c) Montrer que (un) converge si et seulement s’il existe a>1 tel que, pour tout n ∈ N, ϵn ⩽ a2n .

Exercice 1086 [Mines PC 2025 # 1062] Soit (xn) ∈ (R+∗)N telle que : xn → 0 et ln(xn)
x1+···+xn

→ a < 0. Déterminer la limite de(
ln(xn)

ln x

)
.

Exercice 1087 [Mines PC 2025 # 1063] Soit (un)n≥1 ∈ RN telle que : u1 > 0 et, pour tout n ∈ N, un+1 = un + 1
nu .

1. La suite (un) est-elle convergente? b) Donner un équivalent simple de un.
Exercice 1088 [Mines PC 2025 # 1064] Soit, pour n ≥ 2, un =

∑n
k=0

ln k
k a) Déterminer un équivalent de un.

1. Déterminer un équivalent de un − ln2 n
2 .

Exercice 1089 [Mines PC 2025 # 1065] Soit a > 0. Soit (un) la suite définie par u0 = a et ∀n ∈ N, un+1 = arctan(un).

1. Montrer que un −−−−−→
n→+∞

0.

1. Donner un équivalent de un.

1. Quelle est la nature de la série
∑
un ?

Exercice 1090 [Mines PC 2025 # 1066] Soit (un) la suite définie par u0 > 1 et ∀n ∈ N, un+1 = un + ln(un).

1. Déterminer la limite de (un).

1. Soit a > 1. Nature de
∑ 1

ua ?

1. Nature de
∑ lnun

un
? d) Nature de

∑ 1
u ?

Exercice 1091 [Mines PC 2025 # 1067] Soit θ ∈ R. Déterminer la nature de
∑
n≥1

einθ

n et calculer sa somme en cas de convergence.
Exercice 1092 [Mines PC 2025 # 1068] Soient

a, b, c ∈ R+

tels que a+ b+ c = π
2 . Montrer que sin(a) sin(b) sin(c) ⩽ 1

8 .
Exercice 1093 [Mines PC 2025 # 1069] Soit P ∈ R[X]. Soit n ∈ N∗. Montrer que P (x) = o(xn−1) si et seulement si Xn divise P .

Exercice 1094 [Mines PC 2025 # 1070] Soit (A,B, α) ∈ R3. Soit f la fonction définie par : f(x) =


A(−x)α si x < 0
0 si x = 0
Bxα si x > 0.

Discuter, en fonction de (A,B, α), du caractère dérivable de f , de son caractère C1. Soit k ∈ N∗. Discuter du caractère Ck de f .
Exercice 1095 [Mines PC 2025 # 1071] Soient (a, b) ∈ R×] − π, π] et va,b : t ∈] − 2π,−π[ 7→ t+ ea−(b−t) cotn(t) sin t.

1. Montrer qu’il existe y ∈] − 2π,−π] tel que va,b(y) = b.

1. En déduire que le système
{
x+ ex cos y = a

y − ex sin y = b
admet une solution.

1. Montrer que l’application f : z ∈ C 7→ zez ∈ C est surjective.
Exercice 1096 [Mines PC 2025 # 1072] Déterminer les

f ∈ C0(R,R)

vérifiant : ∀(x, y) ∈ R2, f(x)f(y) =
∫ x+y

Rn+y f(t)dt.
Exercice 1097 [Mines PC 2025 # 1073] Soit f ∈ C0(R,R) telle que : ∀(x, y) ∈ R2 f(x+ y)f(x− y) = (f(x)f(y))2 ().

1. Quelles sont les valeurs possibles de f(0) ?

1. Montrer que, si f(x0) = 0, alors f
(
x0
2n

)
= 0 pour tout n ∈ N.

1. Montrer que, si f s’annule, alors est nulle.

1. Déterminer les fonctions qui vérifient ().
Exercice 1098 [Mines PC 2025 # 1074] Soit f : R+ → R continue et surjective.

1. Montrer que f a une infinité de zéros.

1. Montrer que tout réel a une infinité d’antécédents par f .
Exercice 1099 [Mines PC 2025 # 1075] 1. Soit f : I → R continue et injective, où I est un intervalle de R. Montrer que f est

strictement monotone.

1. Soit f : [0,+∞[→ [0,+∞[ continue telle que : ∀x ∈ [0,+∞[, f(f(x)) = x. Montrer : ∀x ∈ [0,+∞[, f(x) = x.
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Exercice 1100 [Mines PC 2025 # 1076] On admet le résultat suivant : si f : I → R est continue et injective, où I est un intervalle de
R, alors f est strictement monotone. On note E l’ensemble des f ∈ C0(R,R) telle f ◦ f = id. On fixe un f ∈ E \ {id}.

1. Montrer que f est décroissante.

1. Montrer que f admet un unique point fixe, que l’on note d.c) On note g|[d,+∞[. Montrer que g est strictement décroissante, que
g(d)=d et que limx→+∞ g(x) = −∞.

1. Réciproquement, montrer que, si on se donne d ∈ R et une fonction continue g : [d,+∞[→ R strictement décroissante, telle
que g(d) = d et limx→+∞ g(x) = −∞, alors il existe f ∈ E \ {id} tel que f |[d,+∞[ = g.

1. Donner une condition nécessaire et suffisante sur g pour f soit de classe C1.
Exercice 1101 [Mines PC 2025 # 1077] Soit E = C0(R,R). Déterminer les sous-espaces vectoriels de E vérifiant :

1. pour tout f ∈ F , on a |f | ∈ F , ii) pour tout f ∈ F , si f ≥ 0, alors
√
f ∈ F . Ind. Soit f ∈ F . Poser g = |f|. Que dire de

(g, g1/2, . . . , g1/2n)?
Exercice 1102 [Mines PC 2025 # 1078] Soient f, g ∈ C0(R,R). On suppose que f ◦ g est décroissante. Montrer que f ◦ g et g ◦ f ont
un unique point fixe.
Exercice 1103 [Mines PC 2025 # 1079] Déterminer les f ∈ C0(R,R) telles que : ∀x ∈ R, f(x) = 1 + 2

∫ x
0 f(t) cos(xt) dt.

Exercice 1104 [Mines PC 2025 # 1080] Pour n ∈ N, calculer I(n) =
∫ π/2

0 cos((n+ 2)x) cosn(x)dx.

Exercice 1105 [Mines PC 2025 # 1081] On suppose π = a
b avec (a, b) ∈ N∗2. Pour n ∈ N, on pose Pn = Xn(a−bX)n

n! .

1. Pour tout (n, k) ∈ N2, montrer que P (k)
n (0) et P (k)

n (π) sont des entiers. b) Pour n ∈ N, on pose In =
∫ π

0 Pn(t) sin(t)dt.
Montrer : ∀n ∈ N, In ∈ Z.

1. Montrer : ∀n ∈ N, In > 0.

1. Montrer qu’il existe un réel ξ tel que : ∀n ∈ N, In ⩽ π ξ
n

n! . Conclure.

Exercice 1106 [Mines PC 2025 # 1082] Soient f, g ∈ C0(0, 1],R+∗ ). Pour n ∈ N, on pose un =
∫ 1

0 g(t)f(t)ndt. Étudier la suite(un+1
u

)
. Ind. Commencer par étudier la limite de

(
u

1/n
n

)
.

Exercice 1107 [Mines PC 2025 # 1083] Soit E l’ensemble des fonctions des f ∈ C1(R,R) 2π -périodiques.
1. Montrer qu’il existe A,B ∈ R tels que, pour toute f ∈ E,

supm |f | ⩽ A
∫ 2π

0 |f ′| +B
∫ 2π

0 |f |.
1. Est-ce toujours vrai pour des fonctions à valeurs complexes?

Exercice 1108 [Mines PC 2025 # 1084] Soit p ∈ N. Montrer que t 7→ e−(t−pπ)2 sin(t) est intégrable sur R et que son intégrale est
nulle.
Exercice 1109 [Mines PC 2025 # 1085] Soient a > 1 et b > 1 deux réels. Calculer

∫ π
0 ln

(
b cos t
a cos t

)
dt.Ind. Remarquer quex 7→ ln

(
x+

√
x2 − 1

)
est une primitive sur ]1,+∞[ de x 7→ 1√

x2−1 .

Exercice 1110 [Mines PC 2025 # 1086] Soient f : R → R croissante et bornée, ainsi que (a, b) ∈ R2 avec a < b. Convergence et
calcul de

∫ +∞
−∞ (f(b+ t) − f(a+ t)) dt.

Exercice 1111 [Mines PC 2025 # 1087] Soit f : R → R continue, telle que limx→−∞ = ℓ et l’intégrale
∫ +∞

0 f(x) dx est convergente.
Soit (a, b) ∈ R2 avec a < b. Montrer que l’intégrale

∫ +∞
−∞ (f(b+ x) − f(x+ a))dx convergente et la calculer.

Exercice 1112 [Mines PC 2025 # 1088] Calculer ∫ +∞

0
exp

(
−at2 − b

t2

)
dt

, pour (a, b) ∈ (R+∗)2.
Exercice 1113 [Mines PC 2025 # 1089] Soit f : t 7→ 1

t −
⌊ 1
t

⌋
.

1. La fonction f est-elle intégrable sur ]0, 1[?

1. Calculer
∫ 1

0 f(t)dt.

I =
∫ +∞

1

ln(|1 − x|) cos(ln x)
xα(1 + x) dx et J =

∫ 1

0

ln(|1 − x|) cos(ln x)
xα(1 + x) dx.

Exercice 1114 [Mines PC 2025 # 1091] Pour n ∈ N∗ , on pose In =
∫ +∞

0
sin2n+1(t)

t dt et Jn =
∫ +∞

0
sin(nt)
t dt.

1. Montrer que I0 converge. On admet que I0 = π
2 .

1. Montrer que : ∀n ∈ N, ∀t ∈ R, sin2n+1(t) =
∑∞
n=0(−1)k

(2n+1
n−k

) sin((2k+1)t)
22n .

1. Montrer l’existence de Jn et de In pour tout n ∈ N
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1. Montrer que, pour tout n ∈ N, il existe qn ∈ Q tel que In = qnπ.
Exercice 1115 [Mines PC 2025 # 1092] Soit (C) : (y’ + 2xy = 1, y(0) = 0.)

1. On note φ la solution de (C). Justifier l’existence et l’unicité de φ.

1. Exprimer φ(x) à l’aide d’une intégrale que l’on de cherchera à calculer.

1. Pour x>0, sachant que t2 ⩽ tx pour t ∈ [0, x], donner le comportement de φ au voisinageqde +∞.

1. Montrer e−x2 ∫ x
−t2

et2

t2 dt = o
( 1
x

)
.

1. Donner un équivalent simple de φ(x).
Exercice 1116 [Mines PC 2025 # 1093] Pour n ∈ N et x ∈ [0, π/2], on pose fn(x) = sinn(x) cos(x) et gn(x) = nfn(x).Étudier la
convergence simple et uniforme des suites (gn) et (fn).
Exercice 1117 [Mines PC 2025 # 1094] Soit (fn) la suite définie par f0 : x ∈ R+ 7→ 0 et, pour n ∈ N, fn+1 : x ∈ R+ 7→ 0
fn(x) + 1

2
(
x− (fn(x))2)

1. Montrer que (fn) converge uniformément sur [0,1].

1. Est-ce que (fn) converge uniformément sur [0,+∞[?

Exercice 1118 [Mines PC 2025 # 1095] Pour n ∈ N∗, soit fn : x ∈ R+ 7→ ln(n+x)
n2+x2 .

Étudier la Convergence simple/uniforme/normale de
∑
fn.

Exercice 1119 [Mines PC 2025 # 1096] Soit S : x 7→
∑+∞
n=0

(−1)n

√
x+n .

1. Étudier la continuité, la dérivabilité et les limites en 0 et en +∞ de S.

1. On admet que
∫ +∞

0 e−t2dt =
√
π

2 .

Montrer que, pour tout x > 0, S(x) = 1√
π

∫ +∞
0

e−tx
√
t(1+e−t)dt.

Exercice 1120 [Mines PC 2025 # 1097] Soit S : x 7→
∑+∞
n=1

(−1)n

1+nx .

1. Montrer que S est bien définie et continue sur ]0,+∞[.

1. Déterminer la limite de S en +∞ et donner un équivalent de S(x) quand x → +∞.

Exercice 1121 [Mines PC 2025 # 1098] Soit f : x 7→
∑+∞
n=0

√
x lnn

1+n2x .

1. Donner le domaine de définition de f .

1. Étudier la continuité de f .

1. Déterminer la limite puis un équivalent de f en +∞.

1. Déterminer la limite puis un équivalent de f en 0+.
Exercice 1122 [Mines PC 2025 # 1099] On considère f(x) =

∑+∞
n=0 un(x), où un(x) = 1

n+n2x2 .

1. Montrer que f est définie sur R∗, paire.

1. Montrer que
∑
un ne converge pas normalement.

1. Montrer que f est intégrable sur R+∗ et donner son intégrale sous la forme de la somme d’une série numérique.

d) Montrer que f est monotone sur R+∗.

1. Donner la limite, puis un équivalent en +∞.

1. Donner la limite, puis un équivalent en 0.
Exercice 1123 [Mines PC 2025 # 1100] Soit f ∈ C0([a, b],R). On pose f0 = f et, pour n ∈ N, fn+1 : x ∈ [a, b] 7→

∫ x
a
fn(t)dt.

On pose g =
∑+∞
n=0 fn. Justifier la définition de g et l’exprimer en fonction de f .

Exercice 1124 [Mines PC 2025 # 1101] Soit (an)n≥0 ∈ (R+)N décroissante. Pour n ∈ N, soit un : x ∈ [0, 1] 7→ anx
n(1 − x).

1. Montrer que
∑
un converge simplement.

1. Montrer que la convergence est normale si et seulement si
∑ an

n converge.

1. Montrer que la convergence est uniforme si et seulement si an
∼→ 0.

Exercice 1125 [Mines PC 2025 # 1102] Soient f ∈ C0(R,C) et M ∈ R+. On suppose que ∀(x, y) ∈ R2, |f(x+ y)f(x)f(y)| ≤ M .
1. Si M=0, montrer qu’il existe α ∈ C tel que ∀x ∈ R, f(x) = αx.

1. Si M=0, montrer qu’il existe α ∈ C tel que ∀x ∈ R, f(x) = αx. b) Pour n ∈ N et x ∈ R, on pose vn(x) = f(2nx)
2n . En considérant

la série
∑

(vn+1 − vn),
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montrer que (vn) converge uniformément sur R vers une fonction continue g.
1. Montrer que g est la seule application linéaire telle que la fonction f -g soit bornée sur R.

Exercice 1126 [Mines PC 2025 # 1103] 1. Montrer : ∀x ∈
[
−π

2 ,
π
2
]
, 2
π |x| ⩽ | sin x|.

1. Donner le rayon de convergence de
∑

zn

sin(nπ
√

3)

Exercice 1127 [Mines PC 2025 # 1104] Soit p ∈ N∗. Rayon de convergence et somme de la série entière
∑
k≥0

xkp

(kp)! ?
Exercice 1128 [Mines PC 2025 # 1105] Soit

∑
anz

n une série entière de rayon de convergence R ∈ R+∗ > 0 telle que
∑
anR

n soit
absolument convergente.

1. Donner un exemple de telle série.

1. On pose f : x 7→
∑+∞
n=0 anx

n. Montrer que f est continue sur [-R, R].

1. Pour t ∈ R \ {−1, 0, 1}, on pose g(t) = 1
t ln

∣∣∣ 1−t
1+t

∣∣∣.
1. Montrer que

∫ 1
0 g converge.

• ii) Exprimer g comme une somme de série entière sur ]-1,1[. En déduire
∫ 1

0 g.

iii) Calculer
∫ +∞

1 g.-
Exercice 1129 [Mines PC 2025 # 1106] Soit f : x 7→

∑+∞
n=0

n!
1×3···×(2n+1)x

2n+1.
1. Déterminer le rayon de convergence R de f .

1. Montrer que f est solution de l’équation différentielle (E) : (x2 − 2)y′ + xy + 2 = 0.

1. En déduire une expression de f(x).

1. La série entière converge-t-elle pour x = R?

Exercice 1130 [Mines PC 2025 # 1107] On donne
∑+∞
n=1

1
n2 = π2

6 . Pour n ∈ N∗, on pose un =
∑

(i,j)∈N∗2

i⊥i=n

1
i2j2 .

1. Donner un équivalent de un lorsque n → +∞.

1. Donner le rayon de convergence de
∑
unz

n.
Exercice 1131 [Mines PC 2025 # 1108] Soit α ∈]0, 1[. Donner un équivalent de S : x 7→

∑+∞ xn

nα en 1−.
Exercice 1132 [Mines PC 2025 # 1109] Soit (Tn) la suite de polynômes définie par T0 = 1 et, pour n ∈ N, Tn+1(X) = X(Tn(X) +
T ′
n(X)). In+1(A) = A(In(A) + In(A)). a) Expliciter T1, T2, T3 et T4.

1. Montrer que, pour tout n ∈ N, Tn+1(X) = X
∑n
k=0

(
n
k

)
Tk(X).

1. Soit φ : t 7→ exp(et). Montrer que, pour tout n ∈ N et tout t ∈ R, φ(n)(t) = Tn(et)φ(t).

1. Soit n ∈ N. Développer x 7→ Tn(x)ex en série entière.
Exercice 1133 [Mines PC 2025 # 1110] Soit D = {z ∈ C , |z| ⩽ 1}. Soit (an)n∈N une suite de nombres complexes. On suppose que
la série

∑
nan est absolument convergente.

1. Montrer que le rayon de convergence de la série entière
∑
anz

n est supérieur ou égal à 1.

1. Pour z ∈ D, on note f(z) =
∑+∞
n=0 anz

n. On suppose que a1 ̸= 0 et que
∑+∞
n=0 n|an| ⩽ |a1|.

Montrer que f est injective.
Exercice 1134 [Mines PC 2025 # 1111] On pose f : (x, s) 7→

∑+∞
s=0

xn

ns .
1. Calculer f(x,0) et f(x,1) lorsque c’est possible.

1. Donner le rayon de convergence (à s fixé).

1. Donner le domaine de définition.

1. Donner une relation entre f(x, s) et f(x, s 1).

1. Donner une expression simple de f(x,-1) et f(x,-2). f) Donner un équivalent simple de f(x,-p) au voisinageqde 1−, avec p ∈ N∗.
Exercice 1135 [Mines PC 2025 # 1112] Soit (an) ∈ RN telle que limn→+∞(nan) = 0.a) Montrer que le rayon de convergence de∑
anx

n est au moins 1.

1. Montrer que le rayon de convergence de∑
anx

n est au moins 1 + ∞

1. Montrer que
∑+∞
n=0 anx

n = o(ln(1 − x)).

Exercice 1136 [Mines PC 2025 # 1113] On note I =
∫ +∞

1
e−t

t dt et, pour n ≥ 1, un =
∫ +∞

1 e−xn

dx.
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1. Montrer que I est bien définie. b) Montrer que (un) est bien définie.

1. Trouver un équivalent de un lorsque n → +∞. Comment trouver le terme suivant du développement asymptotique?

1. Donner le domaine de convergence de la série entière
∑
anx

n.

Exercice 1137 [Mines PC 2025 # 1114] Pour n ∈ N, on pose lorsque cela a un sens In =
∫ +∞

1
1

1+t+···+tn dt.

1. Montrer que la suite (In)n≥2 est bien définie et calculer sa limite

1. Soit n ≥ 3. Montrer que In−1 =
∫ 1

0 u
n−3 1−u

1−un du.

Montrer que In−1 = 1
n2

∫ 1
0
n(1−s1/n)

1−s s−2/nds.

1. En déduire un équivalent de In

Exercice 1138 [Mines PC 2025 # 1115] On donne
∫ +∞

0 e− t2
2 dt =

√
2π.

Pour n ∈ N∗ on pose γn = n1/4 et φn : x 7→ γn√
2π

(
sin
(√

3
nγnx

)
√

3
nγnx

)n
. Soient également A>0 et f : R → R continue, nulle à l’extérieur

de [-A,A]. Montrer que
∫∞

− fφn → f(0).

Exercice 1139 [Mines PC 2025 # 1116] Pour n ∈ N, on pose In =
∫ 1

0 ln(t) ln(1 − tn) dd.

1. Trouver la limite de (In).

1. Trouver un équivalent de In. c) Pour α ∈ R, nature de la série
∑
Iαn .

Exercice 1140 [Mines PC 2025 # 1117] Soit, pour n ∈ N, In =
∫ 1

0
dt

1+tn .

1. Montrer que (In) admet une limite ℓ que l’on explicitera. b) Déterminer un équivalent de In − ℓ.

1. Montrer que
∫ 1

0
ln(1+y)

y dy =
∑+∞
k=0

(−1)k

(k+1)2 .

1. Déterminer un développement asymptotique de In à trois termes.

Exercice 1141 [Mines PC 2025 # 1118] Pour tout n ∈ N, on note In =
∫ 1

0
tn+1 ln t

1−t2 dt.

1. Montrer que In est bien définie. b) Écrire In sous forme d’une somme.

1. Déterminer un équivalent de In.
Exercice 1142 [Mines PC 2025 # 1119] Soient a, b > 0.

1. Montrer que
∑+∞
n=0

1
(a+nb)2 =

∫ +∞
0

te−at

1−e−bt dt.

1. Montrer que
∑+∞
n=0

(−1)n

a+nb =
∫ 1

0
ta−1

1+tb dt. Calculer
∑+∞
n=0

(−1)n

3n+1 .

Exercice 1143 [Mines PC 2025 # 1120] Soitx ∈ [0, 1[. Après avoir justifié l’existence des deux membres, montrer l’égalité
∑+∞
n=0

(−1)n

n+x =∫ +∞
0

tx−1

1+t dt.

Exercice 1144 [Mines PC 2025 # 1121] On pose S : t 7→
∑+∞
n=0 ln(1 + e−nt).

1. Convergence et calcul de
∫ 1

−1
ln(1+u)

u du.

1. La fonction S est-elle intégrable sur [1,+∞[?]0, 1]?

Exercice 1145 [Mines PC 2025 # 1122] Pour n ∈ N, on pose In =
∫ 1

0 ln(1 + tn)dt.
1. Déterminer la limite de (In).

1. Justifier l’existence de L =
∫ 1

0
ln(1+u)

u du.

1. Montrer que In ∼ L
r .

1. Montrer que L =
∑+∞
n=0

(−1)n−1

n2 .

Exercice 1146 [Mines PC 2025 # 1123] Soit F : x 7→
∫ +∞

1
dt

tx(1+t) .

1. Montrer que F est définie sur R+∗

1. Montrer que F est continue et décroissante sur R+∗.

1. Déterminer la limite de F en 0+ et en +∞. d) Déterminer un équivalent de F en 0+ et en +∞. Ind. Calculer F(x) + F(x+1).

Exercice 1147 [Mines PC 2025 # 1124] On pose f : x 7→
∫ +∞

0
e−x2(1+t2)

1+t2 dt. a) Montrer que f est définie sur R+∗ et de classe C1.b)
On pose F : x 7→

∫ x
0 exp(−t2)dt et l’on donne limt→∞ F =

√
π

2 .
Exprimer simplement f’(x).
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Exercice 1148 [Mines PC 2025 # 1125] Soit f : x 7→
∫ +∞

0
dt

tx(t+1) .

1. Déterminer le domaine de définition Df de f .

1. Montrer que f est continue sur son domaine de définition.

1. Montrer que la droite d’équation x = 1
2 est un axe de symétrie de la courbe représentative

1. Montrer que f est minorée par une valeur que l’on explicitera.

1. Déterminer un équivalent de f en 0.

Exercice 1149 [Mines PC 2025 # 1126] Pour x > 0, on pose s(x) =
∫ +∞

0
sin t
ext−1dt.

1. Montrer que s est continue sur ]0,+∞[.

1. Écrire s comme la somme d’une série de fonctions rationnelles.

1. Montrer que s(x) ∼ π
2π

Exercice 1150 [Mines PC 2025 # 1127] On pose F : x 7→
∫ +∞

0
e−t

x+tdt.

1. Donner le domaine de définition et montrer que F est monotone. b) Montrer que F est de classe C1.

1. Limite et équivalent de F en +∞.

1. Limite et équivalent de F en 0.

Exercice 1151 [Mines PC 2025 # 1128] On pose f : x 7→
∫ +∞

0
dt

1+t3+x3 .

1. Domaine de définition

1. Montrer que f est continue sur son domaine de définition.

1. Calculer f(0).
Exercice 1152 [Mines PC 2025 # 1129] On pose f : x 7→

∫ +∞
−∞

dt
(1+t2)(1+ixt) .

1. Montrer que f est définie, continue sur I b) Montrer : ∀x ∈ R, f(x) ∈ R.

1. Exprimer f(x) sans signe intégral.

Exercice 1153 [Mines PC 2025 # 1130] Soit I : a ∈ R+∗ 7→
∫ +∞

0
ln(t)
a2+t2 dt.

1. Montrer que I est bien définie

1. Calculer I(1).

1. En déduire une expression de I(a).

Exercice 1154 [Mines PC 2025 # 1131] On pose I : x 7→
∫ π

2
a
ex cos tdt. Donner un équivalent, puis un développement à deux termes

de I(x) lorsque x → +∞.
Exercice 1155 [Mines PC 2025 # 1132] Étudier F : x 7→

∫ +∞
0 e−xt sin(t)

t dt. En déduire la valeur de
∫ +∞

0
sin(t)
t dt.

Exercice 1156 [Mines PC 2025 # 1133] 1. Pour quelles valeurs de t la série
∑∞
n=1

1
nt converge-t-elle ? On note alors ζ(t) sa

somme.
Pour t>0, on pose Γ(t) =

∫ +∞
0 xt−1e−t dt. On admet la convergence de cette intégrale.

1. Soit t > 1. Justifier l’existence de
∫ +∞

0
xt−1

ex1 dx, et l’exprimer en fonction de ζ(t) et Γ(t).

1. Justifier que T (t) =
∫ +∞

0
xt−1

ex+1dx est définie pour t > 0 et, pour t > 1, exprimer T(t)à l’aide de ζ(t) et Γ(t).

Exercice 1157 [Mines PC 2025 # 1134] Soit F : x 7→
∫ +∞

0
ln(1+xt2)
t(1+t2) dt. Déterminer le domaine de définition D de F et montrer que

∀x ∈ D, F (x) = − 1
2
∫ x

−π
ln(t)
1−t dt.

Exercice 1158 [Mines PC 2025 # 1135] On donne
∫ +∞

−∞ e−t2dt =
√
π

2 et
∫ +∞

−∞
t2

1+t4 = π
√

2
4 .

1. Justifier l’existence de
∫ +∞

0
eiu
√
u
du, puis de K =

∫ +∞
0 eit

2
dt.

1. Pour x ∈ R, on pose f(x) =
∫ +∞

0
e−x2(i+t2)

i+t2 dt. Montrer que f est continue sur R.

1. Montrer que f est de classeC1 sur ]0,+∞[ et que ∀x > 0, f ′(x) = −
√
πe−ix2 . d) Montrer que

∫ +∞
0 cos(t2)dt =

∫ +∞
0 sin(t2)dt =

√
2π
4 .

Exercice 1159 [Mines PC 2025 # 1136] On pose f : x 7→
∫ +∞

0
e−xt

1+t2 dt et g : x 7→
∫ +∞

0
sin(t)
x+t dt.

1. Montrer que f et g sont continues sur R+.
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1. Montrer que f et g sont de sont de classe C2 sur ]0,+∞[, et solutions de y” + y = 1/t. c) Calculer
∫ +∞

0
sin t
t dt

Exercice 1160 [Mines PC 2025 # 1137] Soit f : x ∈ R+∗ 7→
∫ 1

0 ln(t) ln(1 − tx)dt.
1. Montrer que f est bien définie.- b) Écrire f comme somme d’une série de fonctions.

1. Déterminer la limite de f en 0+.
Exercice 1161 [Mines PC 2025 # 1138] Soit f : t 7→

∫ +∞
1

xt

ch(x) dx.

1. Justifier que f est définie et de classe C∞ sur R+.

1. Calculer f(0).

1. Montrer que, pour n ≥ 2, l’équation f(t) = n possède une unique solution notée tn.

Exercice 1162 [Mines PC 2025 # 1139] On pose J : x 7→
∫ +∞

−∞
dt

chx(t) .
1. Domaine de définition de J ?

1. Étudier la continuité de J .

1. Calcul de J(1) et J(2). d) Déterminer une relation entre J(x+2) et J(x).

1. Expliciter J(2p) et J(2p+1) pour p ∈ N∗.

1. A-t-on J(x) ∼ J(x+ 1)?

1. Donner un équivalent de J en +∞.
Exercice 1163 [Mines PC 2025 # 1140] Soit q ∈ C0(R,R). On considère l’équation différentielle (E) : y” + y = q.

1. Donner les solutions de (E).

1. Soit f une solution de (E) telle que : ∀x ∈ R, f ′′(x) + f(x) ≥ 0.

Montrer : ∀x ∈ R, f(x + π) + f(x) ≥ 0. c) Soit f une solution de (E) pour laquelle il existe a ∈ R tel que f(a + π) + f(a) = 0.
Montrer que f est de la forme λ cos +µ sin, avec (λ, µ) ∈ R2.
Exercice 1164 [Mines PC 2025 # 1141] Déterminer les f ∈ C2(R2,R) vérifiant ∂2f

∂x∂y = 0.

Exercice 1165 [Mines PC 2025 # 1142] Soit f : R2 → R telle que ∀(x, y) ∈ R2 \ {(0, 0)}, f(x, y) = x2y
x2+y2 et f(0,0) = 0.

1. Montrer que f est continue sur R2.

1. A-t-on f ∈ C1(R2,R)? c) Calculer ∂2f
∂x∂u (0, 0) et ∂2f

∂u∂x (0, 0) si elles existent.
Exercice 1166 [Mines PC 2025 # 1143] Soit f : R2 → R de classe C2. a) Pour tout (a, b, c, d) ∈ R4 montrer : f(b, d) − f(a, d) −
f(b, c) + f(a, c) =

∫ b
0 g(x)dx où g : x 7→

∫ d
c

∂2f
∂x∂u (x, y) dy.

1. Montrer qu’il existe M ∈ R tel que :
∀(x, y) ∈ [−1, 1]2, |f(x, y)f(0, y)f(x, 0) + f(0, 0)| ≤ M |xy|.
Exercice 1167 [Mines PC 2025 # 1144] Soient f ∈ C1(R2,R) et n ∈ N. Montrer l’équivalence entre les assertions :i)

∀(x, y) ∈ R2, ∀t ∈ R+, f(tx, ty) = tnf(x, y),

ii)
∀(x, y) ∈ R2, x

∂f

∂x
(x, y) + y

∂f

∂y
(x, y) = nf(x, y).

Exercice 1168 [Mines PC 2025 # 1145] Étudier les extrema de (x, y, z) 7→ x2 + y2 + z2 − 2xyz.
Exercice 1169 [Mines PC 2025 # 1146] Soient φ ∈ L(Rn,R) et f : x ∈ Rn 7→ φ(x)e−∥x∥2 . Montrer que f admet un minimum et un
maximum, que l’on déterminera.

3) Probabilités

Exercice 1170 [Mines PC 2025 # 1147] Soient Ω un ensemble de cardinal n et P(Ω) l’ensemble de ses parties. On appelle mesure
sur Ω toute application µ de P(Ω) dans R telle que, pour tout couple (A,B) de parties disjointes de Ω, µ(A ∪B) = µ(A) + µ(B). On
dit que µ est une mesure de probabilité si de plus µ est à valeurs dans R+ et µ(Ω) = 1. Soit x0 ∈ Ω. On définit δx0 : P(Ω) → {0, 1}
par ∀A ∈ P(Ω), δx0(A) = 1 si x0 ∈ A, et δx0(A) = 0 sinon. On admettra que δx0 est une mesure de probabilité.

1. Montrer que l’ensemble M(Ω) des mesures sur Ω est un espace vectoriel de dimension finie et calculer sa dimension.

1. Donner sans justifier une norme sur M(Ω).

1. On note Pr(Ω) l’ensemble des mesures de probabilité sur Ω. Est-il convexe? borné? ouvert ? fermé?

1. Montrer que, pour toute mesure µ ∈ M(Ω) il existe P1 et P2 probabilités et λ1, λ2 ∈ R tels que µ = λ1P1 + λ2P2.

Ind. On pourra introduire A = {ω ∈ Ω, µ({ω}) > 0} et B = {ω ∈ Ω, µ({ω}) < 0}.
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1. Montrer que N(µ) = inf{|λ1| + |λ2|;λ1, λ2 ∈ R,∃P1, P2 ∈ Pr(Ω), µ = λ1P1 + λ2P2} est une norme sur M(Ω).
Exercice 1171 [Mines PC 2025 # 1148] On munit P({1, 2, . . . , n})2 de la probabilité uniforme. Quelle est la probabilité pour que
deux parties de {1, 2, . . . , n} soient disjointes?
Exercice 1172 [Mines PC 2025 # 1149] On considère une particule se déplaçant sur un axe de N+1 positions, indexées par [[0, N ]].
Lorsqu’elle est en position k ∈ {1, . . . , n − 1}, la particule peut se déplacer en position k+1 avec probabilité p ∈]0, 1/2[ ou bien en
position k-1 avec une probabilité 1-p=q. On arrête le processus lorsque la particule atteint l’abscisse 0 ou N .
On note ua la probabilité que la particule termine son parcours en 0 en ayant commencé à l’abscisse a ∈ [0, N ].

1. Que valent u0 et uN ?

1. Pour 0 < a < N , trouver une relation entre ua, ua−1 et ua+1.

1. Quelle est la probabilité que le processus ne se termine pas?
Exercice 1173 [Mines PC 2025 # 1150] On dispose d’urnes numérotées (Un)n≥1. Dans l’urne Un il y a une boule blanche et n boules
noires. On commence par tirer une boule de l’urne U1. Si elle est blanche, on s’arrête et si elle est noire on recommence l’expérience
dans l’urne suivante. Ainsi de suite jusqu’à ce qu’on obtienne une boule blanche. On note X la variable aléatoire donnant le numéro
de l’urne où l’on tire pour le première fois une boule blanche.- a) Déterminer la loi de X .

1. Soit f : x 7→ |
√
x|. Montrer que f(X) est d’espérance finie et calculer cette espérance.

Exercice 1174 [Mines PC 2025 # 1151] Soit n ∈ N∗. On considère deux jeux de hasard. Les deux jeux consistent à tirer à Pile ou
Face un certain nombre de fois. Pour chaque lancer, on obtient Pile avec probabilité p ∈]0, 1[. Premier jeu : on tire 2n-1 fois la pièce.
On gagne lorsqu’on obtient au moins n fois Pile. Deuxième jeu : on tire 2n fois la pièce. On gagne lorsqu’on obtient au moins n+1 fois
Pile. Si on obtient n fois Pile, on a alors une chance sur deux de gagner.
On note X1 le nombre de Piles au jeu 1 et X2 le nombre de Piles au jeu 2.

1. Donner les lois de X1 et de X2.

1. Exprimer P (X2 > n).

1. Soient p1 la probabilité de gagner au jeu 1 et p2 la probabilité de gagner au jeu 2. Exprimer p2p1 en fonction de P(X1 = n) et
P(X2 = n).

1. À quel jeu vaut-il mieux jouer si l’on aime gagner?
Exercice 1175 [Mines PC 2025 # 1152] 1. Soit (Ω,A,P) un espace probabilisé. Caractériser lesA ∈ A tels que, pour toutB ∈ A,

A et B sont indépendants.

1. Soit Ω un ensemble fini. Existe-t-il une probabilité sur (Ω,P(Ω)) telle que les éléments de P(Ω) soient mutuellement indépen-
dants? Si oui, caractériser les probabilités qui vérifient cela.

1. Soient Ω un ensemble de cardinalN ∈ N∗ et P une probabilité sur Ω. Soit (A1, . . . , Am) une famille d’événements mutuellement
indépendants, non négligeables et non presque-sûrs. Montrer que 2m ⩽ N .

Exercice 1176 [Mines PC 2025 # 1153] Soit X et Y deux variables aléatoires réelles à valeurs dans un ensemble fini telles que
∀k ∈ N, E(Xk) = E(Y k). Montrer que X ∼ Y .
Exercice 1177 [Mines PC 2025 # 1154] Soit X une variable aléatoire positive, qui ne prend qu’un nombre fini de valeurs.
Soit k ∈ N∗. Montrer que E(Xk) =

∫ +∞
0 ktk−1P(X > t) dt.

Exercice 1178 [Mines PC 2025 # 1155] Soit (X,Y) un couple de variables aléatoires à valeurs dans (N∗)2 tel que, pour tout n ∈ N∗,
la loi conditionnelle de X sachant (Y = n) est la loi U([1, n]).

1. Montrer que X et Y + 1 X suivent la même loi.

1. On suppose X ∼ G(p). Déterminer la loi de Y et en déduire les valeurs possibles pour p.
Exercice 1179 [Mines PC 2025 # 1156] Soient (p, p′) ∈]0, 1[2 et (Xn)n∈N une suite de variables aléatoires indépendantes telles que,
pour tout n ∈ N∗, X2n ∼ B(p) et X2n−1 ∼ B(p′).
On pose Y = min{n ∈ N, Xn = 1}.

1. Montrer que Y est presque sûrement finie.

1. Loi, espérance et variance de Y.
Exercice 1180 [Mines PC 2025 # 1157] Soient X ,Y deux variables aléatoires indépendantes suivant des lois géométriques de para-
mètres respectifs p et q et U = X

V .- a) Calculer la loi de U .
1. Calculer l’espérance de U .

Exercice 1181 [Mines PC 2025 # 1158] Soit p ∈]0, 1[. Soit (Xn)n∈N∗ une suite de variables aléatoires indépendantes suivant la loi
B(p). On pose Yn = Xn +Xn+1 +Xn+2 pour tout n ∈ N∗.
Montrer que, pour tout ε > 0 , P

(∣∣ 1
n

∑n
k=1 Yk − 3p

∣∣ ≥ ε
)

−→
n→+∞

0.

Exercice 1182 [Mines PC 2025 # 1159] Soient X une variable aléatoire réelle et g : R → R+. Soient b > 0 et I une partie de R telle
que ∀x ∈ I, g(x) ≥ b.
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1. Montrer que P(X ∈ I) ⩽ E(g(X))
h .

1. On suppose que E(X) = 0 et que X admet une variance. Soit t > 0.

Montrer que P(X > t) ⩽ V(X)
V(X)+t2 .

Exercice 1183 [Mines PC 2025 # 1160] Soit (Xn)n≥1 une suite de variables aléatoires i.i.d. suivant B(p), avec p ∈]0, 1[. On note
q = 1 − p. On pose, pour n ∈ N∗, Sn =

∑n
i=1 Xi et Tn = Sn−np√

npq .

1. Loi et fonction génératrice de Sn.

1. Donner E(Tn) et V(Tn).

1. Soit x > 0. Exprimer E
(
xTn

)
et déterminer la limite de

(
E
(
xTn

))
n≥1.

Exercice 1184 [Mines PC 2025 # 1161] Soit N ∈ N∗. Soit (Un)n∈N une suite de variables aléatoires indépendantes suivant la loi
uniforme sur {1, 2, . . . , N}. On note µ l’espérance de U1 et σ2 la variance de U1.
Pour tout entier n ∈ N∗ , on définit les variables Sn = U1 + · · · + Un et Vn = Sn−nµ

σ
√
n

.

Soit t ∈ R. Montrer que E(etVn) −→
n→+∞

et
2/2.

Exercice 1185 [Mines PC 2025 # 1162] Soit (Xi)i≥1 une suite i.i.d. de variables aléatoires de loi uniforme sur {−1, 1}.
Pour n ∈ N∗ , on note Sn =

∑n
k=0 Xk et Pn =

∏n
k=0 Xk .

1. Déterminer l’espérance et la variance de Sk=1
n et de Pn.

1. Déterminer la loi de Pn.

1. Les variables Sn et Pn sont-elles indépendantes?
Exercice 1186 [Mines PC 2025 # 1163] Soit (Xn)n≥0 une suite de variables aléatoires i.i.d. à valeurs dans N. On suppose que
P(X0 = 0) < 1 et E(X0) < +∞. On note R le rayon de convergence de

∑
Xn t

n

1. Rappelez la définition du rayon de convergence d’une série entière.

1. Montrer que : (R > 1) = (Xn = 0 à partir d’un certain rangN ∈ N ). En déduire que (R > 1) est un événement et P(R > 1) = 0.

1. Soit 0 ≤ c < 1. Montrer que P(R ≤ c) = 0.

1. Montrer que P(R=1)=1.
Exercice 1187 [Mines PC 2025 # 1164] Soit (Xk)k∈N∗ une suite de variables aléatoires de même loi, à valeurs dans N et d’espérance
finie. Pour n ∈ N∗, on pose Mn = max(X1, . . . , Xn).
Montrer que la verieble eléctoire 1 ≤ Vn est d’espérance finie.

1. Montrer que la variable aléatoire 1{X1≥N+1}X1 est d’espérance finie. Montrer que limN→+∞ E
(
1{X1≥N+1}X1

)
= 0.

1. Pour N ∈ N, montrer que Mn ⩽ N +
∑n
k=1 1{Xk≥N+1}Xk .

1. Déterminer limn→+∞ E
(
Mn

n

)
. Ind. Revenir à la définition d’une limite.

1. Étendre ce résultat à une suite de variables aléatoires positives, de même loi et d’espérance finie.
Exercice 1188 [Mines PC 2025 # 1165] 1. Comparer E(X2) et E(X)2 lorsque X est une variable aléatoire réelle discrète telle

que E(X2) soit finie.

1. Soient N > 0 et (Xn)n≥1 une suite i.i.d. de variables à valeurs dans [0, N], ainsi que

f : R → R

de classe C1. Pour n ∈ N∗, on pose Sn =
∑n
i=1 Xk .

Montrer que E
(
f
(
Sn

n

))
→ f (E(X1)).

Exercice 1189 [Mines PC 2025 # 1166] SoientX , Y deux variables aléatoires et (Xn), (Yn) deux suites de variables aléatoires, toutes
à valeurs dans N, les variables étant définies sur un même espace probabilisé. On suppose : ∀ε > 0, P(|XnX| ≥ ε) −−−−−−→

n→+∞ 0 et
P(|YnY | ≥ ε) −−−−−−→

n→+∞ 0.
1. Pour tout (x, y) ∈ R2 et ε > 0, montrer : |x+ y| ≥ ε ⇒ |x| ≥ ε

2 ou |y| ≥ ε
2

1. Montrer : ∀ε > 0, P(|Xn + Yn(X + Y )| ≥ ε) −−−−−−→
n→+∞ 0.

1. Soit (Un) une suite de variables aléatoires i.i.d. suivant la loi B(p), où p ∈ [0, 1]. Pour n ∈ N, on pose Vn = Un+1 +Un. Montrer :
∀ε > 0, P

( 1
n

∑n
i=1 Vi − 2p ≥ ε

)
−→

n→+∞
0.

1. Montrer P(|X| ≥ M) −−−−−−−→
M→+∞ 0.

1. Montrer : ∀ε > 0, P(|XnYnXY | ≥ ε) −−−−−−→
n→+∞ 0.
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Exercice 1190 [Mines PC 2025 # 1167] Soit (Xk)k≥1 une suite de variables aléatoires réelles i.i.d. telle queX1 soit d’espérance finie,
mais pas X2

1 .
Pour (n, k) ∈ N∗ × N∗, on pose : Yn,k = Xk1(|Xk|⩽n), Sn =

∑n
Xk et Tn =

∑n
Yn,k .

1. Montrer que : 1
nE(SnTn) → 0.

1. Montrer que : ∀n ∈ N∗, P(Sn ̸= Tn) ⩽ nP(|X1| > n).

1. Pour n ∈ N∗ et ε > 0, montrer :

P
(

1
n

|Sn − E(Tn)| ≥ ε

)
⩽

V(Tn)
(nε)2 + nP(|X1| > n).

Exercice 1191 [Mines PC 2025 # 1168] Soit (εn)n≥1 une suite i.i.d. de variables aléatoires suivant la loi uniforme sur {−1, 1}.
Pour n ∈ N∗ , on pose Xn = 1√

n

∑n
i=1 εi.

Déterminer le comportement asymptotique de (E (ch(Xn)))n≥1 et (E (sh(Xn)))n≥1

Exercice 1192 [Mines PC 2025 # 1169] Soit p ∈ [0, 1[. Soit n ∈ N∗. Soient X1, . . . , Xn des variables aléatoires indépendent dantes
suivant la loi de Bernoulli de paramètre p. SoitN une variable aléatoire suivant la loi binomiale B(n, p), indépendante de (X1, . . . , Xn).
On pose Y = X1 + · · · +XN .

1. Montrer que Y est une variable aléatoire à valeurs dans N.

1. En utilisant les fonctions génératrices, trouver la loi de Y. c) Retrouver ce résultat sans utiliser les fonctions génératrices.
Exercice 1193 [Mines PC 2025 # 1170] Soient X et Y deux variables aléatoires indépendantes suivant les lois géométriques de

paramètres respectifs p et q. Quelle est la probabilité pour que
(
X 1
0 Y

)
soit diagonalisable?

Exercice 1194 [Mines PC 2025 # 1171] Soient p ∈ [0, 1] etX , Y deux variables aléatoires indépendantes suivant la loi G(p). On pose

M =
(
X Y
V X

)
. On note S et B respectivement la plus grande et la plus petite valeur propre de M .

1. Exprimer S et B en fonction de X et Y. Justifier qu’elles sont des variables aléatoires.

1. Calculer E(S), V(S), E(B) et V(B).
Exercice 1195 [Mines PC 2025 # 1172] Soit (Xi,j)(i,j)∈(N∗)2 i.i.d. suivant la loi uniforme sur {−1, 1}. Pour n ∈ N∗, on note An =
(Xi,j)1≤i,j≤n et Dn = det(An).

1. Calculer E(Dn).

1. Montrer, par récurrence, que, pour tout n ∈ N∗, V(Dn) = n!.

XI) Centrale - MP

1) Algèbre

Exercice 1196 [Centrale MP 2025 # 1173] 1. Donner la définition de la signature et calculer celle de la permutationσ =
(

1 2 3 4 5 6 7 8
2 5 8 3 6 1 7 4

)
.

σ =
(

1 2 3 4 5 6 7 8
2 5 8 2 6 1 7 4

)
1. Pour tout σ ∈ Sn, on note ε(σ) la signature de σ, et ν(σ) le nombre de ses points fixes.

1. On pose

A =


0 −1 · · · −1

−1
. . . . . .

...
...

. . . . . . −1
−1 · · · −1 0

 .

Calculer χA sous forme factorisée.
ii) En déduire la valeur de la somme

∑
σ∈S

ε(σ)
1+ν(σ) .

Exercice 1197 [Centrale MP 2025 # 1174] Soit G un groupe fini d’ordre n. On appelle caractère de G tout morphisme de groupes
χ de G vers C∗. On note Ĝ le groupe des caractères de G.

1. Montrer que Ĝ est un groupe multiplicatif, et que les éléments de Ĝ sont à valeurs dans Un.

1. Dans cette question, on suppose G cyclique.

Montrer que G est isomorphe à Z/nZ et que Ĝ est isomorphe à G.
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1. Dans cette question, on supposeG abélien. Montrer que, siH est un sous-groupe deG et ξ ∈ Ĥ , il existe χ ∈ Ĝ tel que χ|H = ξ.
Exercice 1198 [Centrale MP 2025 # 1175] On note, pour n ∈ N∗ , Fn =

∏
ξ∈Un

ω(ξ)=n
(X− ξ), où ω(ξ) est l’ordre de la racine n -ième ξ

comme élément du groupe C∗.

1. Montrer que ω(ξ) divise n pour tout ξ ∈ Un.

1. Exprimer (X − 1)Fn et Fn dans le cas où n est premier.

1. Soient A,B ∈ Q[X] tels que AB ∈ Z[X] et A ∈ Z[X] est unitaire. Montrer que B ∈ Z[X].

1. Montrer que, pour tout n ∈ N∗, Fn ∈ Z[X].

1. Soit n ∈ N∗. Calculer Fn(1).
Exercice 1199 [Centrale MP 2025 # 1176] 1. Écrire et démontrer l’inégalité de Jensen puis en déduire l’inégalité arithmético-

géométrique.
Soit P ∈ C[X]. On note H l’intersection des convexes de C contenant les racines de P .

1. Montrer que H est convexe et compact.

1. Soit z ∈ C\H .

• i) Montrer qu’il existe un unique q ∈ H tel que d(z, H) = d(z, q).

ii) Montrer qu’il existe ψ ∈ [0, π/2[ tel que ∀h ∈ H,
∣∣∣Arg

(
zh
zq

)∣∣∣ ⩽ ψ (argument dans [−π, π] ).

Exercice 1200 [Centrale MP 2025 # 1177] Soit A et B deux polynômes à coefficients complexes.

1. Montrer que deg(A+B) ⩽ max(deg(A),deg(B)), et donner un exemple où l’inégalité est stricte.

Dans la suite, on suppose que A et B n’ont pas de racine commune, et on pose C = A + B. On suppose enfin qu’aucun des polynômes
A, B, C n’est constant. On pose W = A’B - AB’.

1. Soit z une racine de multiplicité m de ABC. Montrer que z est de multiplicité m-1 comme racine de W .

1. On note µ le nombre de racines distinctes de ABC.

Montrer que µ ≥ deg(A) + deg(B) + deg(C) − deg(W ).

1. En déduire que µ > max(degA, degB, degC).
Exercice 1201 [Centrale MP 2025 # 1178] 1. Rappeler la définition d’un polynôme irréductible sur un corps K et l’énoncé du

théorème de d’Alembert-Gauss.- b) Soit P ∈ R[X] non nul tel que ∀x ∈ R, P (x) ≥ 0. Montrer que toute racine réelle de P est
de multiplicité paire et que le coefficient dominant de P est positif. En déduire qu’il existe (A,B) ∈ R[X]2 tel que P = A2 +B2.

1. Soit Q ∈ R[X] non nul tel que ∀x ∈ [−1, 1], Q(x) ≥ 0.

1. Montrer que si deg(Q) ⩽ 2 alors il existe (a, b) ∈ (R+)2 et λ ∈ [−1, 1] tels que Q = (Xλ)2 + b(1X2)

a(X − λ)2 + b(1 −X2). ii) Montrer plus généralement qu’il existe (A,B) ∈ R[X]2 tel que Q = A2 + (1 −X2)B2.
Exercice 1202 [Centrale MP 2025 # 1179] Dans ce qui suit, K désigne un corps.

1. Énoncer le théorème de division euclidienne dans K[X].

1. Soient P ∈ K[X] et a ∈ K. Déterminer le reste de la division euclidienne de P par (X−a)2. En déduire une condition nécessaire
et suffisante pour que a soit racine simple de P .

1. Pour n ≥ 2, on pose Pn = XnX + (−1)n. Déterminer le nombre des racines de P dans Q, dans R et dans C.

1. On note a1, . . . , an les racines complexes de Pn.

Calculer le déterminant ∣∣∣∣∣∣∣∣∣∣
1 + a1 1 · · · 1

1
. . . . . .

...
...

. . . . . . 1
1 · · · 1 1 + an

∣∣∣∣∣∣∣∣∣∣
.

Exercice 1203 [Centrale MP 2025 # 1180] 1. Soit A ∈ Mn(R). Montrer que ACom(A)T = det(A)In.

1. On définit GLn(Z) comme l’ensemble des matrices de GLn(R) à coefficients entiers, dont l’inverse est également à coefficients
entiers.

Soit A ∈ Mn(Z). Montrer que A ∈ GLn(Z) si et seulement si det(A) = ±1.
1. Soit P ∈ Q[X] un polynôme irréductible sur Q. Montrer que les racines complexes de P sont simples.
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Exercice 1204 [Centrale MP 2025 # 1181] On note Sn le groupe des permutations de {1, . . . , n} pour n ∈ N \ {0, 1}. Soit E un
C -espace vectoriel de dimension n. On se donne une base {e1, . . . , en} de E - C -espace vectoriel de dimension n. On se donne une
base (e1, . . . , en) de E. a) i) Soit G un groupe fini. Que vaut x|G| pour x ∈ G? Le démontrer dans le cas abélien. ii) Pour σ ∈ Sn, on
définit l’endomorphisme fσ par fσ(ei) = eσ(i). Montrer que σ 7→ fσ est un morphisme de groupes de Sn dans GL(E).

1. Soit σ ∈ Sn. Montrer que fσ est diagonalisable. Déterminer ses éléments propres.

1. On dit qu’un sous-espace de E est stable par permutation si tous les fσ le stabilisent. Déterminer les sous-espaces stables par
permutation.

Exercice 1205 [Centrale MP 2025 # 1182] 1. Soit A un ensemble fini de matrices diagonalisables de Mn(C) qui commutent
entre elles. Montrer qu’il existe une base de vecteurs propres communs à toutes les matrices de A.

1. Montrer que, si p ̸= n, les groupes GLn(C) et GLp(C) ne sont pas isomorphes.
Exercice 1206 [Centrale MP 2025 # 1183] Soient E un espace vectoriel de dimension finie sur K = R ou C, et u ∈ L(E).

1. Montrer que K[u] est de dimension finie et que dim K[u] = deg πu.- b) Montrer que si u est inversible alors u−1 ∈ K[u].

1. Montrer que exp(u) ∈ K[u].

1. On prend E = K[X] et D l’opérateur de dérivation. Montrer que u = idD est inversible. A-t-on u−1 ∈ K[u]?
Exercice 1207 [Centrale MP 2025 # 1184] Soit M ∈ Mn(C). On note λ1, . . . , λr les valeurs propres deux à deux distinctes de M .

1. Montrer que, pour tout P ∈ C[X], M et P(M) commutent.

1. On pose P =
∏r
k=1(Xλk). Montrer que P ′(M) ∈ GLn(C).

1. Soient A,B ∈ Mn(C) telles que AB = BA.

1. Montrer que A et B possèdent un vecteur propre commun.

ii) Montrer qu’il existe Q ∈ GLn(C) telle que les matrices Q−1AQ et Q−1BQ soient triangulaires supérieures.
1. On considère la suite (Mk)k≥0 définie par M0 = M et Mk+1 = Mk −P (Mk)P ′(Mk)−1 pour tout k ≥ 0. Montrer que la suite

(Mk)k≥0 est bien définie et étudier sa convergence.
Exercice 1208 [Centrale MP 2025 # 1185] Soit A ∈ Mn(K).

1. Montrer que A est diagonalisable si et seulement si A a un polynôme annulateur scindé à racines simples.

1. Soient A, B deux matrices diagonalisables de Mn(C) et qui commutent. Montrer que

A+ λB est diagonalisable pour tout λ ∈ C.
1. Soit n ≥ 3. Mettre en évidence deux matrices A, B de Mn(R) qui ne commutent pas et telles que A + λB soit diagonalisable

pour tout λ ∈ R.

1. Soient A, B deux matrices diagonalisables de M2(C) telles que A+ λB soit diagonalisable pour tout λ ∈ C. Montrer que A et
B commutent.

Exercice 1209 [Centrale MP 2025 # 1186] Soit Y une colonne de Cn−1 non nulle, z ∈ C et α = Y TY ∈ C.

On pose A =
(

0 Y
Y T z

)
.

1. Montrer que χA s’écrit Xn−2(X − λ)(X − µ). Calculer λ+ µ et λ2 + µ2 et en déduire χA en fonction de α, z et n.

1. Discuter du rang de A2. Déterminer le polynôme minimal de A selon que α est nul ou

non.
Exercice 1210 [Centrale MP 2025 # 1187] Soient n ∈ N∗ et F =

∑n−1
k=0 akX

k ∈ Cn−1[X]. On désigne par Φ l’application qui à
P ∈ Cn−1[X] associe la reste de la division euclidienne de PF par Xn1.

1. Rappeler la définition de la division euclidienne de deux polynômes.
Montrer que Φ ∈ L(Cn−1[X]).

1. i) Donner la matrice de Φ dans la base canonique. ii) Déterminer les éléments propres de Φ. L’endomorphisme Φ est-il diago-
nalisable?

Exercice 1211 [Centrale MP 2025 # 1188] Soit u un endomorphisme d’un R -espace vectoriel de dimension n. a) Montrer que les
valeurs propres de u sont exactement les racines de χu.b) Exprimer les coefficients des termes en Xn−1 et Xn−2 de χu en fonction
de tr(u) et tr(u2).

1. On suppose u de rang 2. Donner une condition nécessaire et suffisante sur tr(u) et tr(u2) pour que u soit diagonalisable.
Exercice 1212 [Centrale MP 2025 # 1189] Soient A ∈ Mn(C) et ρ(A) = maxλ∈Sp(A) |λ|.

1. Justifier que ρ(A) est bien défini. Montrer que les valeurs propres de A sont les racines de χA.

1. On pose PA(X) = XnχA
( 1
X

)
. Calculer la décomposition en éléments simples de P ′

A

PA
.
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1. On suppose que ρ(A) ⩽ 1 et que 1 /∈ Sp(A). Montrer que
∑+∞
k=1

tr(Ak)
k est bien défini et

que
∑+∞
k=1

tr(Ak)
k = −

∫ 1
0
P ′

A(t)
PA(t)dt.

Exercice 1213 [Centrale MP 2025 # 1190] Pour n ∈ N∗, soit Hn =
(

1
i+j+1

)
0<i,i<n−1

∈ Mn(R). On note E le R -espace

vectoriel des f : [0, 1[→ R continues et intégrables. On pose Kn : x 7→
∑n−1
k=1 x

k .

1. Énoncer et démontrer le critère d’injectivité d’une application linéaire.

1. Pour f ∈ E, on pose Tn(f) : x ∈ [0, 1[ 7→
∫ 1

0 Kn(xt)f(t)dt.

1. Montrer que Tn est un endomorphisme de E. ii) Montrer que 0 est valeur propre de Tn.

iii) Comparer les valeurs propres de Tn et de Hn.
Exercice 1214 [Centrale MP 2025 # 1191] Soient E un espace euclidien et une partie finie R de E \ {0} telle que :

• R engendre E,

• pour tout α ∈ R, R est stable par la réflexion sα par rapport à l’hyperplan de vecteur normal α,

• pour tout α ∈ R, les seuls vecteurs colinéaires à α dans R sont α et −α,

• pour tout (α, β) ∈ R2, nα,β = 2 ⟨α,β⟩
∥α∥2 ∈ Z.

1. Soit (α, β) ∈ R2.

• i) Donner la définition de la réflexion sα ainsi que son expression analytique.

• ii) Calculer nα,βnβ,α en fonction de ⟨α,β⟩
∥α∥∥β∥ .

iii) On suppose α, β non colinéaires et tels que nα,β > 0. Montrer que nα,β = 1 ou nβ,α = 1.
1. On munit E d’un ordre total ≤ qui respecte :

• ∀(x, y, z) ∈ E3, x ⩽ y =⇒ x+ z ⩽ y + z,

• ∀(x, y, λ) ∈ E2 × R+, x ⩽ y =⇒ λx ⩽ λy.

On note R+ l’ensemble des éléments de R plus grands que 0E au sens de ≤. On note B l’ensemble des éléments de R+ ne s’écrivant
pas comme somme de deux éléments de R+.

1. Soit x ∈ R+. Montrer que x s’écrit comme combinaison linéaire d’éléments de B à coefficients entiers positifs.

• ii) Montrer que B est une base de E.
Exercice 1215 [Centrale MP 2025 # 1192] Soit E un espace euclidien de dimension n ∈ N∗.

1. i) Donner la définition d’un endomorphisme autoadjoint.
Soient B une base orthonormale de E et f ∈ L(E). Montrer que f est autoadjoint si et seulement si sa matrice dans la base B est
symétrique.

1. Soient B une base orthonormale de E et f ∈ S+(E).

On note M = (mi,j)1⩽i,j⩽n ∈ Sn(R) la matrice de f dans la base B. Soit i ∈ [1, n].
Montrer que, simi,i = 0, alors les ligne i et colonne i de la matriceM sont nulles. Ind. Considérer l’application t 7→ ⟨f(ei+ tei), ei+
tei⟩.

1. Soient f ∈ S+(E) et g ∈ S(E) tels que ∀t ∈ R, det(ftg) = 0.

• i) Montrer que Ker(g) ̸= {0}.

• ii) Montrer que Ker(f) ∩Ker(g) ̸= {0}.
Exercice 1216 [Centrale MP 2025 # 1193] On pose, pour

A = (ai,j)1≤i,j≤n ∈ Mn(R), N(A) = max
1≤i,j≤n

(
|ai,j | + |aj,i|

2

)
.

1. Démontrer l’inégalité de Cauchy-Schwarz.

1. L’application N est-elle une norme sur Mn(R)?

1. Soient A ∈ Mn(R) et λ ∈ Sp(A). Montrer que |λ| ≤ nN(A).
Exercice 1217 [Centrale MP 2025 # 1194] L’espace Rn est muni de sa structure euclidienne canonique.

1. Soit f : [a, b] → R une fonction continue, positive et telle que
∫ b
a
f = 0. Montrer que f est nulle.
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1. Montrer que la matrice Mn =
(

1
i+j−1

)
1⩽i,j⩽n

est symétrique définie positive. Indi-

cation : 1
i+j−1 =

∫ 1
0 t

i+j−2dt.

1. On note λmin (resp. λmax ) la plus petite (resp. grande) valeur propre de Mn. Montrer que λmin||x||2 ⩽ xTMnx ⩽ λmax||x||2
pour tout x ∈ Rn.

1. On note F le sous-espace propre deMn associé à λmax. Montrer que, si x ∈ F , toutes les coordonnées de x sont de même signe.

1. Déterminer dimF .
Exercice 1218 [Centrale MP 2025 # 1195] 1. Soit A ∈ Sn(R). Justifier que A possède au moins une valeur propre réelle.

1. Soit A ∈ Sn(R). Soit (x1, . . . , xk) une famille libre formée de vecteurs propres de A tels que les valeurs propres associées
µ1, . . . , µk soient en ordre croissant.

On note S = Vect(x1, . . . , xk). Montrer que

µ1 = min
x∈S, ∥x∥=1

xTAx = min
x∈S\{0}

xTAx

xTx
et µk = max

x∈S, ∥x∥=1
xTAx = max

x∈S\{0}

xTAx

xTx
.

1. Soient A, B dans Sn(R). On note λ1(A) ≤ · · · ≤ λn(A) les valeurs propres de A (en tenant compte des multiplicités), et de
même pour B et A+B.

Montrer que ∀i ∈ [1, n], ∀j ∈ [0, n− i], λi(A+B) ⩽ λi+j(A) + λn−j(B).

2) Analyse

Exercice 1219 [Centrale MP 2025 # 1196] 1. Montrer que E = ℓ1(N), espace des suites réelles sommables, est un espace vec-
toriel normé pour u 7→

∑
|un|.

1. On munit E de la relation d’ordre partielle u ≤ v ⇐⇒ ∀n ∈ N, un ≤ vn. Soit (uk) une suite d’éléments de E croissante et
majorée par v ∈ E. Montrer que (uk) converge dans E.

1. Soient u, v deux éléments de E tels que u ≤ v. Montrer que l’ensemble des éléments wde E tels que u ⪯ w ⪯ v est compact.

1. Donner un exemple de partie compacte K de E telle qu’il n’existe pas de suite u ∈ E vérifiant ∀x ∈ K, |x| ≤ u.
Exercice 1220 [Centrale MP 2025 # 1197] Soient E un R -espace vectoriel de dimension finie, C un convexe compact d’intérieur
non vide de E, symétrique par rapport à 0.
Pour x ∈ E, on pose jC(x) = inf

{
λ ∈ R+∗, xλ ∈ C

}
, en convenant que inf ∅ = +∞.

1. i) Rappeler la définition d’une norme.

• ii) Montrer que jC est à valeurs réelles, positive et homogène.

• iii) Montrer que jC(x) = 0 si et seulement si x = 0.

1. i) Montrer que x ∈ C si et seulement si jC(x) ∈ [0, 1].

• ii) Montrer que, pour tous x, y ∈ E, jC(x+ y) ≤ jC(x) + jC(y).

Ind. Pour ε > 0 , poser x′ = x
jC(x)+ε , y′ = y

jC(y)+ε et t = jC(x)+ε
jC (x)+jC(y)+2ε .

1. On munit E d’une norme. Montrer l’existence de f : E → E, continue, bijective, et telle

que f(C) = B(0, 1) et f(C \ C̊) = S(0, 1).
Exercice 1221 [Centrale MP 2025 # 1198] 1. Soit u un endomorphisme d’un espace vectoriel normé E. Montrer que la conti-

nuité de u est équivalente à son caractère lipschitzien, et aussi à sa continuité en 0.

1. On munit ℓ2(Z), espace vectoriel des familles de réels de carré sommable indexées par Z (on admet qu’il s’agit d’un sous-espace
vectoriel de ZN ), de (u, v) 7→

∑
n unvn, dont on

admet qu’il s’agit d’un produit scalaire, et on munit ℓ2(Z) de la norme associée. On pose T : u ∈ ℓ2(Z) 7→ (2un − un+1 − un−1)n∈Z.
Montrer que T est un endomorphisme continu de ℓ2(Z).

1. Montrer que T est injectif mais non surjectif.

1. Montrer que T + id est surjectif.
Exercice 1222 [Centrale MP 2025 # 1199] 1. i) Montrer que l’imageqd’une partie connexe par arcs par une fonction continue

est connexe par arcs.
ii) Soit f : I → R continue et injective sur un intervalle I de R. Montrer que f est strictement monotone.Soit f ∈ C0(R,R) telle que,
pour tout n ∈ N∗ et toute matrice A = (ai,j)1≤i,j≤n ∈ GLn(R), la matrice f(A) = (f(ai,j))1≤i,j≤n est inversible.

1. Montrer que f est strictement monotone et ne s’annule pas sur R∗.

120



1. On suppose f croissante et surjective. Caractériser f .
Exercice 1223 [Centrale MP 2025 # 1200] 1. Rappeler la définition de On(R) et montrer que c’est un compact de Mn(R).

1. Soit A ∈ Mn(R). Montrer que ATA ∈ S+
n (R).

Montrer qu’il existe O ∈ On(R) et S ∈ S+
n (R) telles que A = OS.

1. On munit Mn(R) de la norme subordonnée à la norme euclidienne de Rn. On note B la boule unité de Mn(R).

• i) Montrer que B est convexe.

ii) Trouver les points extrémaux de B, c’est-à-dire les matrices A ∈ B telles que B \ {A} est convexe.
Exercice 1224 [Centrale MP 2025 # 1201] Soit En = Cn([−1, 1],C). Si f ∈ En, on pose πn(f) = maxk∈[0,n] ∥f (k)∥∞.

1. Montrer que πn est une norme sur En, puis calculer πn(x 7→ xn).

1. Si f ∈ En, on poseAn(f) : x ∈ [−1, 1] 7→ xf(x). Montrer queAn est un endomorphisme deEn, continu pour πn, et de norme
subordonnée n+1.

1. On suppose n ∈ N∗. Si f ∈ En, on pose Bn(f) : x ∈ [−1, 1] 7→
∫ 1

0 f
′(xt)dt. Montrer que Bn est une application linéaire de

En dans En−1. Montrer que Bn est continue pour les normes πn et πn−1, et de norme subordonnée 1.
Exercice 1225 [Centrale MP 2025 # 1202] 1. Énoncer les théorèmes de sommation des relations de comparaison pour les séries

numériques.

1. Montrer que
∑n
k=1 ln(k) = n ln(n)n+O(ln(n)).

1. Soient (ak)k≥2 une suite réelle et b : [2,+∞[→ R de classe C1. On pose A(t) =
∑⌊t⌋
k=1 ak

pour t ≥ 2. Montrer que
∑n
k=2 akb(k) = A(n)b(n) −

∫ n
2 b′(t)A(t) dt pour tout entier n ≥ 2.

1. On note P l’ensemble des nombres premiers. On pose R : t > 1 7→
∑
p∈P, p⩽t

ln p
p ln(t).

Montrer que
∑
p∈P,p⩽n

1
p = 1 + ln(lnn) ln(ln 2) + R(n)

lnn +
∫ n

2
R(t)
t(ln t)2 dt pour tout entier t = 1 + ln(lnn) ln(ln 2) + R(n)

lnn + R(n)
t(ln t)2 +

R(n)
t(ln t)2 + R(n)

t(ln t)2 + R(n)
??

1. Montrer qu’il existe une constante C telle que
∑
p∈P,n≤p

1
p = ln(lnn) + C +O

( 1
lnn
)

quand n → +∞.
Exercice 1226 [Centrale MP 2025 # 1203] 1. Énoncer et démontrer le théorème des bornes atteintes.b) Montrer que l’on définit

une norme sur R[X] en posant ∥P∥ = supx∈[−1,1] |P (x)| pour tout P ∈ R[X].

1. Montrer que, pour tout d ∈ N∗, il existe un unique polynôme Td ∈ R[X] unitaire de degré d tel que cos(dθ) = 2d−1Td(cos θ)
pour tout θ ∈ R.

1. Pour tout d ∈ N∗, on note Ed l’ensemble des polynômes unitaires de degré d de R[X].

1. Montrer que ||P || ≥ 1
2d−1 pour tout P ∈ Ed.

ii) Étudier le cas d’égalité.
Exercice 1227 [Centrale MP 2025 # 1204] 1. Rappeler la définition de la continuité uniforme pour une fonction de R dans R.

1. Soit f : R → R continue et périodique. Montrer que f est uniformément continue.

1. Soit f : R → R continue, périodique et non constante. Montrer que f admet une plus petite période strictement positive, que
l’on notera P(f).

1. Montrer que le résultat de la question précédente peut tomber en défaut si l’on omet l’hypothèse de continuité.

1. Soient f et g continues, périodiques et non constantes de R dans R. Montrer que f+g est périodique si et seulement si P (f)
P (g) ∈ Q.

Exercice 1228 [Centrale MP 2025 # 1205] Soient f ∈ C1([0, 1],R2) et ∥∥ une norme sur R2.

1. Soit ε > 0. Montrer qu’il existe η > 0 tel que :

∀(t, s) ∈ [0, 1]2, |t− s| ⩽ η ⇒ ||f(s) − f(t) − (s− t)f ′(t)|| ⩽ ε|s− t|.

1. En déduire que
∑n−1
k=0

∥∥f (k+1
n

)
− f

(
k
n

)∥∥ tend vers
∫ 1

0 ∥f ′(t)∥dt quand n → +∞.

Exercice 1229 [Centrale MP 2025 # 1206] Pour n ∈ N on pose In =
∫ π/2

0
sin((2n+1)t)

sin t dt et Jn =
∫ π/2

0
sin2(nt)

sin2 t dt.

1. Montrer que toute fonction continue par morceaux sur [0, 1] est limite uniforme d’une suite de fonctions en escalier.

1. Justifier l’existence des intégrales puis calculer In+1In, In, Jn+1Jn et Jn.

1. Soit f : [0, π/2] → C continue par morceaux.
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Montrer que ∫ π/2

0
f(t) sin2(nt)dt −−−−−→

n→+∞

1
2

∫ π/2

0
f(t)dt.

Exercice 1230 [Centrale MP 2025 # 1207] Soit f ∈ C2(R,R).

1. Rappeler l’inégalité de Cauchy-Schwarz pour un produit scalaire, ainsi que sa démonstration.

1. Montrer que si ff’ a une limite (finie ou infinie) non nulle en +∞, alors f2 tend vers +∞ en +∞.

1. On suppose désormais que f2 et (f ′′)2 sont intégrables sur R. Montrer que (f ′)2 l’est aussi.

1. Montrer que
(∫

D(f ′)2)2
⩽
(∫

D f
2) (∫

D(f ′′)2).
1. Montrer que f est uniformément continue et tend vers 0 en ±∞.

Exercice 1231 [Centrale MP 2025 # 1208] Pour une fonction f : N∗ → R et un réel s, on note Lf(s) =
∑+∞
n=1

f(n)
ns lorsque la

série converge absolument. On pose A(f) = inf{s ∈ R, Lf(s) défini} avec la convention inf ∅ = +∞.

1. Rappeler la définition de la borne inférieure d’une partie de R.

1. Soit s un réel tel que s > A(f). Montrer que Lf(s) est défini.

1. Soient f et g deux fonctions de N∗ dans C telles queA(f) < +∞ etA(g) < +∞. On suppose que ∀s > max(A(f), A(g)), Lf(s) =
Lg(s). Montrer que f = g.

1. Soient f et g deux fonctions de N∗ dans R telles que A(f) < +∞ et A(g) < +∞. On pose h(n) =
∑
d|n f(d) g(n/d). Montrer

que ∀s > max(A(f), A(g)), Lh(s) = Lf(s)Lg(s).
Exercice 1232 [Centrale MP 2025 # 1209] On note L2(R+) l’ensemble des fonctions continues de R+ dans R, de carré intégrable.

1. Montrer que (f, g) 7→
∫

D+ fg est un produit scalaire sur L2(R+).

1. Rappeler l’inégalité de Cauchy-Schwarz.

1. Montrer que x 7→ 1
x

∫ x
0 f est prolongeable en une fonction continue ψ sur R+.

1. Montrer que ψ ∈ L2(R+) et
∫ +∞

0 ψ2 ⩽ 4
∫ +∞

0 φ2.
Exercice 1233 [Centrale MP 2025 # 1210] 1. Énoncer les théorèmes de changement de variable et d’intégration par parties pour

les intégrales généralisées.

1. Soit P ∈ R[X] de degré supérieur ou égal à 2. Montrer que
∫ +∞

0 cos(P (t))dt converge.

1. Montrer que
∫ +∞

0 cos(t2)dt n’est pas absolument convergente.
Exercice 1234 [Centrale MP 2025 # 1211] 1. Caractériser la convexité pour les fonctions dérivables sur un intervalle.

1. Soit n ∈ N. Montrer qu’il existe un unique polynôme Pn ∈ R[X] tel que ∀θ ∈ R, sin((2n+ 1)θ) = (sin θ)Pn(sin2 θ).

1. Montrer que ∀x ∈ R, sin(πx) = (2n+ 1) sin
(

πx
2n+1

)∏n
k=1

(
1 sin2(πx/(2n+1))

sin2(kπ/(2n+1))

)
.

1. Pour x ∈ R et n ∈ N∗, on pose un(x) =
∏n
k=1

(
1x

2

k2

)
. Étudier la limite simple de la suite (un)n≥1.

Exercice 1235 [Centrale MP 2025 # 1212] Pour tous n ≥ 1 et x ∈ R, on pose Kn(x) =
∑n
k=−n

(
1 |k|
n

)
eikx.

1. Soient q ∈ C et m,n ∈ Z avec m ⩽ n. Calculer la somme
∑n
k=0 q

k . b) Pour tous n ≥ 1 et x ∈ R \ 2πZ, montrer que

Kn(x) = 1
n

∑n−1
i=0

∑j
j=0 e

ikx = 1
n

(
sin nx

2
sin x

2

)2
.

1. Soit f ∈ C0(R,C) 2π -périodique. On pose, pour k ∈ Z, ck = 1
2π
∫ 2π

0 f(t)e−iktdt. Pour

n ∈ N, soit Sn : x ∈ R 7→
∑n
k=−n cke

ikx et, pour n ∈ N∗, soit fn : x ∈ R 7→ 1
n

∑n−1
k=0 Sk(x).

1. Montrer que fn(x) = 1
2π
∫ 2π

0 f(t)Kn(x− t)dt pour tous n ≥ 1 et x ∈ R.
ii) Montrer que la suite (fn)n≥1 converge uniformément vers f sur R.
Exercice 1236 [Centrale MP 2025 # 1213] Pour n ≥ 1, soit fn : x ∈ R 7→ 1

n arctan
(
x
n

)
. On pose f =

∑+∞
n=0 fn.

1. Montrer que f est bien définie et de classe C1 sur R. La convergence de
∑
fn est-elle uniforme sur R+ ?

1. Montrer que f(x) −−−−−→
x→+∞

+∞ et f ′(x) −−−−−→
x→+∞

0. c) Trouver un équivalent de f’ en +∞.

Exercice 1237 [Centrale MP 2025 # 1214] Soit (an) ∈ RN telle que la série
∑
an converge. Soit S : x 7→

∑∞
n=1 an cos

(
x
n

)
.

On suppose que S a une limite réelle ℓ en +∞. On souhaite montrer que la suite (an) est nulle.

1. i) Énoncer l’inégalité de Taylor-Lagrangeqà un ordre quelconque.
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ii) Montrer que S est bien définie sur R.
1. On suppose dans cette question que la série

∑
an converge absolument et que ℓ = 0.

• i) Montrer que S est continue.

• ii) Soit m ∈ N∗. On pose I : T ∈ R+∗ 7→ 1
T

∫ T
0 S(x) cos

(
x
m

)
dx.

Montrer que limT→+∞ I(T ) = 0.
iii) Montrer que am = 0.

1. Traiter le cas général.
Exercice 1238 [Centrale MP 2025 # 1215] On pose E = C∞(R,R). Pour f ∈ E, on pose f0 = f et fn+1 : x 7→

∫ x
R tfn(t)dt pour

n ∈ N.
1. Énoncer le théorème d’intégration terme à terme.

1. Étudier la convergence simple de la suite (fn) puis de la série
∑
fn :

• i) dans le cas où f est constante, ii) dans le cas général.

1. Soit T : f 7→
∑+∞
n=0 fn. Montrer que T définit un automorphisme de l’espace vectoriel E.

Exercice 1239 [Centrale MP 2025 # 1216] 1. Démontrer le théorème d’interversion série-intégrale sous convergence uniforme
sur un segment

1. Soit I : x 7→
∫ π

2
− π

2
e2

√
x sin(t)dt. Montrer que I est développable en série entière sur R+.

1. Donner un équivalent en +∞ de g : x 7→
∑+∞
n=0

xn

(n!)2 .

Exercice 1240 [Centrale MP 2025 # 1217] 1. Énoncer le théorème d’intégration terme à terme sur un intervalle quelconque.

1. Pour tout n ∈ N, calculer l’intégrale In =
∫ +∞

0 tne−t2dt.

1. Soit L : x ∈ R 7→
∫ +∞

0 etxe−t2dt. Montrer que la fonction L est développable en série entière au voisinageqde 0. Préciser la
validité et les coefficients de ce développement. On admettra que

∫
R e

−t2/2 dt =
√

2π.
Exercice 1241 [Centrale MP 2025 # 1218] Soit (an) une suite réelle. Pour n ∈ N, on note An =

∑n
k=1 ak .

1. Donner la définition du produit de Cauchy de deux séries entières et donner une minoration de son rayon de convergence.

1. Montrer que, si le rayon de convergence de
∑
anx

n vaut 1, alors le rayon de convergence de
∑
Anx

n vaut également 1. La
réciproque est-elle vraie?

1. Montrer que les séries entières
∑ an

n! x
n et

∑ An

n! x
n ont même rayon de convergence.

Exercice 1242 [Centrale MP 2025 # 1219] 1. Rappeler la définition du rayon de convergence d’une série entière et le compor-
tement pour |z| < R et |z| > R.

1. Montrer que le rayon de convergence R de la série entière
∑

tan(n)zn est inférieur ou égal à 1.

On admet qu’il existe µ > 2 tel que, pour tous p ∈ Z et q ∈ N \ {0, 1},
∣∣ 1
π
p
a

∣∣ > 1
aµ .

1. Montrer que R=1.
Exercice 1243 [Centrale MP 2025 # 1220] Soient a ∈ R et k ∈ R. Soit (Ea) l’équation : ∀x ∈ R, f ′(x) = f(ax), d’inconnue f
dérivable de R dans R. On note Sa,k l’ensemble des solutions de (Ea) qui vérifient en plus f(0) = k.

1. Déterminer S1,k et S−1,k . Dans la suite, on suppose que |a| < 1.

1. Déterminer le rayon de convergence de
∑
n≥0 a

n(n−1)
2 xn

n! . En déduire un élément de Sa,k .

1. Soit f ∈ C0(R,R). Montrer que f appartient à Sa,k si et seulement si T(f) = f , où T (f) : x 7→ k +
∫ x

−∞ f(at) dt.

1. Montrer que Sa,k est un singleton.
Exercice 1244 [Centrale MP 2025 # 1221] 1. Rappeler la règle de d’Alembert.
En déduire que, pour tout p ∈ N, Ap =

∑+∞
n=1

1
np(2n

n ) est définie.

1. Soit S : x 7→
∑+∞
n=0

22n−1

n2(2n
n )x

2n. Déterminer le rayon de convergence R de S.

1. Montrer que, pour tout x ∈] −R,R[, S(x) = arcsin(x)2. Calculer A0, A1, A2.
Exercice 1245 [Centrale MP 2025 # 1222] Pour n ∈ N, on note un la somme des chiffres de l’écriture binaire de n.
On pose S : x 7→

∑∞
n=0 unx

n.

1. Soit f : R+ → R+ continue et décroissante.

Montrer que
∑
f(n) et

∫ +∞
0 f(t)dt sont de même nature.
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1. i) Donner le rayon de convergence R de
∑
unx

n.

ii) Donner une relation vérifiée par S(x2) et S(x).
1. Exprimer (1 − x)S(x) sous forme d’une somme, puis donner un équivalent de S en R−.

Exercice 1246 [Centrale MP 2025 # 1223] Une suite u ∈ CN est dite asymptotiquement périodique lorsqu’il existe des entiers
N ≥ 0 et T ≥ 1 tels que ∀n ≥ N, un+T = un.

1. Énoncer et démontrer le lemme d’Abel (sur les séries entières). b) Soit a ∈ CN asymptotiquement périodique. Déterminer le
rayon de convergence R de∑
anz

n et montrer qu’il existe une fraction rationnelle F ∈ C(X) telle que

∀z ∈ Do(0, R),
∑+∞
n=0 anz

n = F (z).
1. On définit une suite b ∈ RN par b0 = 1, et b2n+1 = −bn et b2n = bn pour tout n ∈ N. Montrer que b n’est pas asymptotiquement

périodique.
at1
Exercice 1247 [Centrale MP 2025 # 1224] Soient f : t 7→ et1

t et g : t 7→ t
et1 , prolongées continûment en 0.

1. Montrer que f est développable en série entière sur R. Montrer que f et g sont de classe C∞ sur R.

1. On admet que, si h est développable en série entière sur R et que h(0) ̸= 0, alors la fonction x 7→ 1
h(x) est développable en série

entière en 0.

Montrer l’existence et l’unicité d’une suite (Pn)n≥0 ∈ R[X]N telle que, pour un ρ > 0,

∀x ∈ R, ∀t ∈] − ρ, ρ[\{0}, text

et − 1 =
+∞∑
n=0

Pn(x)
n! tn.

1. Montrer le résultat admis.
Exercice 1248 [Centrale MP 2025 # 1225] Soit f : x 7→

∫ +∞
0

dt
1+tx .

1. Déterminer le domaine de définition D de f .- b) Énoncer le théorème de convergence dominée ; calculer les limites de f aux
bornes de D.

1. Montrer que f est de classe C1 et étudier le signe de sa dérivée.

Exercice 1249 [Centrale MP 2025 # 1226] Soit f : x ∈ R+∗ →
∫ +∞

0
e−t

t+xdt.
1. Rappeler le théorème de convergence dominée.

1. i) Montrer que f est bien définie sur R+∗.

ii) Trouver la limite de f en 0+ et en +∞.
1. Soit n ∈ N.

Montrer l’existence de a0, . . . , an ∈ Z tels que f(x) =
∑n
k=0

ak

xk + o
( 1
xn

)
.

Exercice 1250 [Centrale MP 2025 # 1227] On note C = C0(R,R) et S le sous-espace des fonctions continues nulles en dehors d’un
segment.
Pour f ∈ C , g ∈ S et x ∈ R, on pose γ(f, g)(x) =

∫
R f(t)g(x− t)dt.

1. i) Énoncer le théorème de dérivation sous le signe intégrale.

ii) On suppose g de classe C1. Montrer que γ(f, g) est dérivable et exprimer sa dérivée en fonction de f ,g et γ.
1. Soit φ ∈ S telle que

∫
R φ = 1. On pose, pour tous n ∈ N∗ et x ∈ R, φn(x) = nφ(nx).

Soit f ∈ C . Montrer que la suite (γ(f, φn)) converge simplement vers f . c) Soit f ∈ C . Pour tous x, τ ∈ R, on pose fτ (x) = f(x−τ).
On suppose que l’espace Vect(fτ , τ ∈ R) est de dimension finie. Montrer que f est de classe C∞.
On admettra que, si (f1, . . . , fn) est une famille libre de RR, il existe (x1, . . . , xn) ∈ Rn tel que la matrice (fi(xi))1≤i,j≤n soit
inversible.
Exercice 1251 [Centrale MP 2025 # 1228] 1. Énoncer le théorème de Cauchy pour les équations différentielles linéaires sca-

laires d’ordre n.
On note (E) l’équation différentielle xy” + y’ + xy = 0.

1. Montrer que F : x 7→ 1
π

∫ π
0 cos(x sin(t))dt est solution de (E).

1. Montrer que (E) admet une unique solution J développable en série entière au voisinageqde 0 et telle que J(0) = 1.

1. Montrer, pour tout réel p>1, que Ĵ(p) =
∫ +∞

0 J(t) e−pt dt est bien définie, et en donner une expression plus explicite.

1. Justifier qu’il existe une infinité de solutions de (E) sur R+∗ non développables en série entière au voisinageqde 0.
Exercice 1252 [Centrale MP 2025 # 1229] Soient ν ∈ R et (E) : x2y′′(x) + xy′(x) + (x2ν2)y(x) = 0.

1. Énoncer et démontrer le théorème d’intégration des relations de comparaison.
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1. Montrer l’existence d’une fonction ℓ :]0, 1[→ R+∗ deux fois dérivable telle que y est solution de (E) sur ]0,1[ si, et seulement si
la fonction z = ℓy est solution d’une équation différentielle du type z′′(x) + α(x)z(x) = 0.- c) Résoudre l’équation (E) sur [0,
1[.

Exercice 1253 [Centrale MP 2025 # 1230] Soit q ∈ C0(R,R) paire et π -périodique. Soit (E) : y” + qy = 0.
1. Montrer que l’ensemble S des solutions de (E) est un espace vectoriel et préciser sa dimension.

1. Pour y ∈ S, on note φ(y) : x 7→ y(x+ π). Montrer que φ est un endomorphisme de S.

1. Soit B = (y1, y2) la base de S formée des solutions vérifiant y1(0) = 1, y′
1(0) = 0,

y2(0) = 0 et y′
2(0) = 1. Montrer que MatB(φ) =

(
y1(π) y2(π)
y′

1(π) y′
2(π)

)
.

1. Étudier la parité de y1 et y2.

1. Montrer que detA = 1.

1. Montrer que A−1 =
(
y1(−π) y2(−π)
y′

1(−π) y′
2(−π)

)
puis que A + A−1 = (trA)I2. En déduire que y1(π) = y′

2(π). Montrer que χA est

de la forme X2 − 2aX + 1 pour un certain réel a.
Exercice 1254 [Centrale MP 2025 # 1231] Soit K = R ou C.
On munit l’espace Md(K) de la norme définie par N(A) = supj∈[[1 d]]

∑a
i=1 |ai,j |.

1. Montrer que N(AB) ≤ N(A)N(B) pour tous A,B ∈ Md(K)

1. On fixe k ∈ N. Montrer que l’application Rk : A ∈ Md(K) 7→ Ak ∈ Md(K) est différentiable, et calculer sa différentielle.

1. Soit A ∈ Md(K). Montrer que l’application φ : t ∈ R 7→ χtA ∈ Rd[X] est dérivable, et calculer sa dérivée.

1. Soient A,B ∈ Md(K). Montrer que l’application ψ : t ∈ R 7→ χtA(B) ∈ Md(K) est dérivable, et calculer sa dérivée.
Exercice 1255 [Centrale MP 2025 # 1232] 1. i) Énoncer le théorème spectral.
ii) Définir l’ensemble S+

n (R) et montrer l’équivalence avec la positivité du spectre. b) On fixe M ∈ Mn(R) et on pose φ : U ∈
On(R) 7→ tr(MTU). Montrer que φ admet un maximum, atteint en une matrice U0 ∈ On(R).

1. i) On fixe A ∈ An(R) et on pose ψ : t ∈ R 7→ φ(exp(tA)U0).
Montrer que ψ est bien définie, continue, et dérivable en 0. Donner deux expressions de ψ′(0).
ii) Conclure sur la nature du maximum de φ en U0.
Exercice 1256 [Centrale MP 2025 # 1233] Soient U un ouvert non vide d’un espace norméE de dimension finie et [a,b] un segment
inclus dans U avec a ̸= b.

1. Soit f : U → R différentiable.
Montrer qu’il existe c ∈ [a, b] tel que f(b) f(a) = df(c)(b a).

1. Soit f : U → F oùF est un espace euclidien. On suppose f différentiable surU et df bornée surU . Montrer que ||f(b)−f(a)|| ≤
sup ||df(x)||op||b− a||.

1. Montrer que l’inégalité est encore vérifiée si F est un espace vectoriel normé de dimension finie.
Exercice 1257 [Centrale MP 2025 # 1234] 1. Soient a, b ∈ R avec a < b et f : [a, b] → R continue.
Montrer que

n∑
k=1

b− a

n
f

(
a+ k

b− a

n

)
−−−−−→
n→+∞

∫ b

a

f(t)dt.

1. On suppose que n ∈ N∗ candidats se présentent à un poste de secrétaire. Le recruteur les rencontrent successivement et pour
chacun, il doit décider s’il l’engageqou pas. Si oui, il termine le processus de recrutement sans voir les candidats suivants. Sinon,
le candidat est définitivement éliminé.

La valeur de chaque candidat correspond à un score et on note s1 < · · · < sn la liste croissante des scores obtenus. On note σ ∈ Sn
une permutation aléatoire telle que le candidat qui passe devant le recruteur en position numéro j a obtenu le score sσ(j) pour tout
j ∈ [1, n].

1. Déterminer la loi de Sj , variable aléatoire du score du jème candidat.

ii) Déterminer la loi de Rj , variable aléatoire du rang du meilleur candidat parmi les j premiers.
1. On choisit la stratégie de refuser les mn premiers candidats, et de choisir le premier candidat dont le score est supérieur à l’un

des scores précédemment rencontrés.

• i) Soit pn la probabilité d’embaucher le meilleur candidat.
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Montrer que pn = mn

n

∑n
j=mn+1

1
j−1 .

ii) On suppose que mn

n −→
n→+∞

x ∈ R. Montrer que pn −→
n→+∞

x
∫ 1
x

dt
t .

Optimiser alors x pour maximiser la probabilité de recruter le meilleur candidat.
Exercice 1258 [Centrale MP 2025 # 1235] On suppose que N ≥ 2 candidats passent un concours. Pour k ∈ [[1, N ]], Xk est le
nombre de tentatives du candidat numéro k pour réussir le concours. On suppose que X1, . . . , XN sont indépendantes et suivent la
loi géométrique de paramètre p ∈]0, 1[. On pose SN = X1 + · · · +XN le nombre total de tentatives, et YN = max(X1, . . . , XN ) le
nombre maximal de tentatives.

1. Rappeler la définition d’une loi géométrique, ainsi que ses espérance et variance. Donner l’espérance et la variance de SN , ainsi
que la fonction génératrice de X1.

1. Donner les lois de SN et YN .

1. i) Montrer que YN est d’espérance finie, puis que E(YN ) =
∑N
k=1

(
N
k

) (−1)k−1

1−qk .

• ii) En utilisant f(x) =
∑n
k=1 x

k(1 − x)k , donner un équivalent de E(YN ) quand N → +∞.
Exercice 1259 [Centrale MP 2025 # 1236] Soient E un espace préhilbertien réel, (v1, . . . , vn) une famille de vecteurs unitaires de
E, et (X1, . . . , Xn) une famille de variables aléatoires i.i.d. suivant la loi uniforme sur {−1, 1}.

1. Que dire d’une variable aléatoire réelle, positive et d’espérance nulle ?- b) On pose U =
∑n
i=1 Xivi. Calculer E(||U ||2).

1. Montrer l’équivalence des énoncés suivants :

1. il existe ε1, . . . , εn ∈ {±1} tels que ∥
∑n
i=1 εivi∥ <

√
n, ii) il existe ε1, . . . , εn ∈ {±1} tels que ∥

∑n
i=1 εivi∥ >

√
n.

1. À quelle condition ces énoncés sont-ils réalisés ?
Exercice 1260 [Centrale MP 2025 # 1237] Soient X une variable aléatoire suivant P(λ) avec λ > 0 et φX : t 7→ E(eitX). a)
Montrer que X admet une espérance et la calculer. Calculer φX(t) pour t ∈ R.

1. Montrer que
∫ κ

−κ exp(k(eit1it))dt = 2π k
k

k! e
−k pour tout k ∈ N. c) Retrouver la formule de Stirling. On admettra que

∫
R e

−t2/2dt =√
2π.

Exercice 1261 [Centrale MP 2025 # 1238] Soit (Xn)n≥1 une suite i.i.d. de variables aléatoires suivant la loi de Poisson de paramètre
λ > 0. On pose, pour tout n ∈ N∗, Sn =

∑n
i=1 Xk . a) Calculer la fonction génératrice associée à une loi de Poisson.

1. Montrer que Sn ∼ P(nλ).

1. Montrer que, pour tout ε > 0, P(|Snnλ| ≥ nε) ≤ λ
nε2 .

d) Soit x > 0. Montrer que limn→+∞
∑⌊nx⌋
k=0 e

−λn (nλ)k

k! =
{

0 si 0 < x < λ,

1 si x > λ.

1. Si f : R+ → C est une fonction continue et nulle en dehors d’un segment, on pose

L(f) : x ∈ R+ 7→
∫ +∞

0
f(t)e−xtdt.

Montrer que, pour tout x ≥ 0, limn→+∞
∑⌊nx⌋
k=1 (−1)k n

k

k! L(f)(k)(n) =
∫ x

0 f .
Exercice 1262 [Centrale MP 2025 # 1239] On pose φ(x) = −x ln(x) pour x ∈ [0, 1] et φ(0) = 0. PourX une variable aléatoire sur
un espace probabilisé (Ω,A,P), on pose, sous réserve d’existence, H(X) =

∑
x∈X(Ω) φ(px) où px = P(X = x). a) i) Rappeler la

définition de l’espérance d’une variable aléatoire réelle discrète. Donner également le rayon de convergence et la valeur de la somme
des séries entières

∑
xn et

∑
nxn−1. ii) On suppose que X suit la loi géométrique de paramètre p ∈ [0, 1[. Justifier la finitude de

H(X) et calculer sa valeur.
1. On suppose queX est une variable aléatoire à valeurs dans N.- i) Pour x ∈]0, 1], on pose ψ(x) =

√
x ln2(x). Étudier la fonction

ψ et en déduire que, si X est d’espérance finie, alors H(X) est finie.

• ii) Que dire si E(X) = +∞?

1. Soit Z = (X, Y) un couple de variables aléatoires à valeurs dans R2 Montrer que si H(X), H(Y) et H(Z) existent, alors H(Z) ≤
H(X) +H(Y ).

Exercice 1263 [Centrale MP 2025 # 1240] On se place sur un espace probabilisé (Ω,A,P). Soient X une variable aléatoire dis-
crète et A un événement non négligeable. On pose E(X | A) =

∑
x∈X(Ω) xP(X = x | A).

1. Montrer que, si X ∈ L1 et si A est un événement non négligeable, alors E(X | A) est bien définie.

1. Soient (An)n≥0 un système complet d’événements et (an)n≥0 ∈ RN. On pose S=
∑
an 1An

. Montrer que S est une variable
aléatoire et que S admet une espérance si et

seulement si
∑

|an|P(An) converge.
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1. On suppose X ∈ L1. On suppose que, pour tout y ∈ Y (Ω), P(Y = y) > 0 et on pose E(X|Y ) =
∑
y∈Y (Ω) E(X|Y =

y)1Y=y. Montrer que E(E(X|Y )) = E(X).

1. On suppose que X et Y sont dans L2, que E(X | Y ) = Y et E(Y | X) = X . Montrer que

X = Y presque sûrement.
Exercice 1264 [Centrale MP 2025 # 1241] 1. Soit X une variable aléatoire à valeurs dans N. Montrer : E(X) =

∑+∞
n=0 P(X ≥

n).

1. Soit (Xk) une suite i.i.d. de variables de Poisson de paramètre λ > 0. On poseN = inf{k ∈ N∗, Xk > X0} ∈ [1,+∞]. Montrer
que N est une variable aléatoire.

1. L’espérance de N est-elle finie?
Exercice 1265 [Centrale MP 2025 # 1242] Soient X une variable aléatoire réelle et (a, b) ∈ R2.

1. Montrer que si X ∈ L2 alors aX + b ∈ L2, et exprimer V(aX + b) en fonction de V(X). b) Montrer que, si K(X) =
E((XE(X))4)

V(X)2 3 existe alors, pour tout (a, b) ∈ R∗ × R,
il en est de même pour K(aX + b), et l’exprimer en fonction de K(X).

1. Montrer l’équivalence entre les conditions suivantes :

1. il existe un réel δ > 0 tel que ∀t ∈]−δ, δ[, etX ∈ L1, ii) ∀n ∈ N, Xn ∈ L1 et
∑
n∈N

E(Xn)
n! tn a un rayon de convergence non nul.

Exercice 1266 [Centrale MP 2025 # 1243] Soit m ∈ N∗. On munit Rm de sa structure euclidienne habituelle. On note S sa sphère
unité. Pour une famille e = (ei)i∈I d’éléments de S (éventuellement infinie), on note Coh(e) = sup(i,j)∈I2 |⟨ei, ej⟩|.

1. Rappeler sans démonstration l’inégalité de Cauchy-Schwarz.

1. Soit e ∈ SI . Que signifie l’égalité Coh(e) = 0?c) Soit e ∈ SI telle que Coh(e) < 1. Montrer que I est fini.

Pour t ∈ R, montrer que E(et⟨X,Y ⟩) ≤ et
2/2m.

1. Soit Z une variable aléatoire réelle bornée. Montrer que etZ ∈ L1 pour tout réel t.

1. Soient X = (X1, . . . , Xn) et Y = (Y1, . . . , Yn) deux vecteurs aléatoires indépendants à

valeurs dans S, tels que pour tout i ∈ [1,m] les variables
√
nXi et

√
nYi soient de Rademacher (i.e., suivant la loi uniforme sur {−1, 1}

), et X1, . . . , Xn soient indépendantes d’une
part, Y1, . . . , Yn indépendantes d’autre part.

1. Soit ε > 0. Démontrer qu’il existe un ensemble fini I de cardinal ⌊emε2/4⌋ et une famille e ∈ SI telle que Coh(e) < ε.
Exercice 1267 [Centrale MP 2025 # 1244] Soit (Xn)n≥1 une suite de variables aléatoires i.i.d. de loi uniforme sur {−1, 1}. Pour
n ∈ N∗, on note Sn = X1 + · · · +Xn.

1. Montrer, à l’aide d’une comparaison série-intégrale, que la série
∑ 1

n ln4(n) converge.

1. i) Montrer que, pour tout a > 0, P(|Sn| ≥ a) ⩽ 3n2

a4 .

ii) On pose A =
⋃+∞
n=1

⋂+∞
m=n

(
|Sm| < m

3
4 ln(m)

)
. Montrer que P(A) = 1.

1. Montrer que la suite
(

Sn

n3/4 ln(n)

)
converge presque sûrement vers 0.

Exercice 1268 [Centrale MP 2025 # 1245] 1. Pour n ∈ N∗, donner la décomposition en facteurs irréductibles du polynôme
Tn − 1 dans R[T ] puis C[T ].

1. Soient X , Y deux variables aléatoires indépendantes à valeurs dans N. Rappeler pourquoi GX+Y = GXGY .

1. Soit un entier p ≥ 2. Sous les hypothèses précédentes, montrer queX + Y ne peut pas suivre la loi uniforme sur [2, 2p] sachant
que X et Y prennent toutes les valeurs dans [1, p]avec probabilité non nulle.

XII) Centrale - PSI

1) Algèbre

Exercice 1269 [Centrale PSI 2025 # 1246] Soit, pour n ≥ 2, Pn = XnX + 1.
1. Montrer que Pn admet au plus une racine réelle ; localiser cette racine dans un intervalle de longueur 1.

1. Déterminer les racines de P ′
n en utilisant les racines n-ièmes de l’unité.

1. Pour n=3, P3(X) = X3 −X + 1. On note η1, η2, η3 les racines de P3. Calculer

∣∣∣∣∣∣
1 + η1 1 1

1 1 + η2 1
1 1 1 + η3

∣∣∣∣∣∣.
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Exercice 1270 [Centrale PSI 2025 # 1247] Soient n ≥ 1, a, b ∈ R tels que a < b. On cherche à prouver l’existence et l’unicité de
(α0, . . . , αn) ∈ Rn+1 tel que (1) :

∀P ∈ Rn[X],
∫ b

a

P (x)dx = b− a

n

n∑
k=0

αkP

(
a+ k

b− a

n

)
.

1. On suppose l’existence de (α0, . . . , αn). Montrer que (1) est équivalent à (2)

∀Q ∈ Rn[X],
∫ n

0
Q(x) dx =

n∑
k=0

αkQ(k).

En déduire que les αk sont indépendants de (a, b).

1. Pour i ∈ [0, n], soit Bi =
∏

0⩽k⩽n
k ̸=i

(X − k). Montrer que (B0, . . . , Bn) est une base de

Rn[X]. Montrer l’existence et l’unicité de (α0, . . . , αn).

1. Montrer que ∀i ∈ [0, n], αi = αn−i.

1. Calculer les αi pour n=1, 2 et 3.

Exercice 1271 [Centrale PSI 2025 # 1248] Soit M =

0 1 1
0 2 0
0 0 0

.

1. Déterminer ker(M), Im(M), ker(M2), Im(M2). Ces deux derniers espaces sont-ils supplémentaires ?

Soient E un K -espace vectoriel de dimension finie et u ∈ L(E).
On pose N(u) =

⋃
k∈N ker(uk) et C(u) =

⋂
k∈N Im(uk).

1. Montrer que N(u) et C(u) sont des sous-espaces et supplémentaires, stables par u, que l’endomorphisme induit par u sur C(u)
est un automorphisme, et que celui induit sur N(u) est nilpotent.

1. Démontrer qu’il existe p dans N tel que N(u) = ker(up) et C(u) = Im(up).

1. Réciproquement, soient F et G deux sous-espaces supplémentaires de E stables par u tels que u induise un automorphisme de
F et un endomorphisme nilpotent de G. Montrer que F = C(u) et G = N(u).

Exercice 1272 [Centrale PSI 2025 # 1249] Soient E un K -espace vectoriel de dimension finie et f, g ∈ L(E) tels que f2 = g2 = id
et f ◦ g + g ◦ f = 0. On note Af = Ker(f − id), Bf = Ker(f + id), Ag = Ker(g − id), Bg = Ker(g + id).
Bg = Ker(g + id). a) Démontrer que g(Af ) = Bf et g(Bf ) = Af .

1. En déduire que la dimension de E est paire.

1. Montrer qu’il existe une base E de E telle que MatE(f) =
(
In 0
0 −In

)
, MatE(g) =

(
0 In
In 0

)
.

Exercice 1273 [Centrale PSI 2025 # 1250] 1. Montrer que : ∀A,B ∈ Mn(C),Tr(AB) = Tr(BA).

1. Soit f ∈ L(Mn(C),Mp(C)) telle que : ∀A,B ∈ Mn(C), f(AB) = f(A)f(B). Soit φ : M ∈ Mn(C) 7→ Tr(f(M)). Montrer :
∀A,B ∈ Mn(C), φ(AB) = φ(BA)

1. En déduire qu’il existe α ∈ C tel que : ∀M ∈ Mn(C),Tr(f(M)) = αTr(M).

Exercice 1274 [Centrale PSI 2025 # 1251] Pour tout k ∈ N∗ , on note Jk la matrice


0 (0)

1
. . .
. . . . . .

1 0

 ∈ Mk(R).

Si M est une matrice nilpotente de Mn(R), on appelle indice de nilpotence de M le plus petit entier p ∈ N∗ tel que Mp = 0.

1. Soit M ∈ Mn(R) nilpotente d’indice n. Montrer que M est semblable à Jn.

1. Soit M ∈ Mn(R) nilpotente d’indice p. Montrer que p ≤ n. c) Soit M ∈ Mn(R) nilpotente d’indice 2 et de rang r ∈
{1, . . . , n− 1}. Montrer que M est semblable à diag (J2, . . . , J2, 0n−r).

Exercice 1275 [Centrale PSI 2025 # 1252] 1. Soit A ∈ Mn(C). Montrer que A est nilpotente si et seulement si χA = Xn.

1. Soit A ∈ Mn(C). On suppose A semblable à 2A. Que peut-on dire de χA ? Montrer que A est nilpotente.

1. On pose A =
(

0 0
1 0

)
. Montrer que A est semblable à 2A.

1. Soit A ∈ Mn(C) telle que An−1 ̸= 0 et An = 0. Montrer que A est semblable à 2A.
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Exercice 1276 [Centrale PSI 2025 # 1253] SoientE un C -espace vectoriel de dimension n ∈ N∗ et u ∈ L(E) nilpotent. Soit p ∈ N∗

tel que up = 0.
1. Montrer que Sp(u) = {0}.

1. Soit v =
∑p−1
k=0 u

k . Montrer que v est un automorphisme et trouver v−1.

1. Montrer que Ker(v id) = Ker(u).

1. Trouver le spectre de v.
Exercice 1277 [Centrale PSI 2025 # 1254] Soient n ≥ 2 et E = Rn[X].

1. Rappeler la formule de Taylor pour P ∈ E et a ∈ R ; la démontrer dans le cas a = 0.

1. Soit P ∈ E.

Montrer qu’il existe un unique Q ∈ E tel que ∀x ∈ R, (x− 1)Q(x) =
∫ x

1 P (t)dt.

1. On note f l’application qui à P associe Q. Montrer que f est un endomorphisme de Ediagonalisable.
Exercice 1278 [Centrale PSI 2025 # 1255] Soit (a, b) ∈ R2 tel que ab(a − b) ̸= 0. Soient E un R -espace vectoriel de dimension
n ≥ 3 et f, u, v ∈ L(E) vérifiant f = au + bv, f2 = a2u+ b2v, f3 = a3u+ b3v.

1. Donner un exemple d’endomorphisme f ∈ L(R3) diagonalisable et non nul vérifiant ces
conditions.

1. On revient au cas général. Montrer que f est diagonalisable. c) Montrer que u et v sont des projecteurs qui commutent.

Exercice 1279 [Centrale PSI 2025 # 1256] Soit A =
(
a b
c d

)
∈ M2(R).

On note Φ l’endomorphisme de S2(R) défini par ∀M ∈ S2(R), Φ(M) = AM + (AM)T .a) Donner la matrice représentative de Φ
dans la base de S2(R) constituée des matrices

1. Donner la matrice représentative de

Φ dans la base de S2(R) constituée des matrices
(

1 0
0 0

)
,
(

0 0
0 1

)
et
(

0 1
1 0

)
.

1. Montrer que χΦ(X) = 4(X − (a+ d))χA(X/2).

1. Supposons Φ diagonalisable. La matrice A est-elle diagonalisable? d) Supposons A diagonalisable. L’endomorphisme Φ est-il
diagonalisable?

Exercice 1280 [Centrale PSI 2025 # 1257] Soit

T =
(
x y
0 z

)
avec (x, y, z) ∈ R3.

1. Pour tout n ∈ N, donner l’expression de Tn.

1. Soit En(T ) =
∑n
k=0

Tk

k! . Est-ce que En(T ) converge? On note E(T ) sa limite. Calculer

E(T). Les valeurs propres de E(T) et T peuvent-elles être égales ?
Exercice 1281 [Centrale PSI 2025 # 1258] Soient I = [0, π/2] et E = C0(I,R) muni du produit scalaire ⟨f, g⟩ =

∫ π
2

0 f(t)g(t)dt.
Si f ∈ E , on pose A(f) : x ∈ I 7→

∫ x
0 f(t)dt et B(f) : x ∈ I 7→

∫ π
2
x
f(t)dt.

1. Montrer que, pour tous f et g de E, ⟨A(f), g⟩ = ⟨f,B(g)⟩. En déduire que les valeurs propres réelles de B ◦A sont positives.

1. Montrer que, si

f ∈ E , alors ∀x ∈ I , A(f)(x)2 ≤ x
∫ x

0 f(t)2dt.

1. Montrer que, si f ∈ E, ||A(f)|| ≤ 1√
2 ||f ||.

Exercice 1282 [Centrale PSI 2025 # 1259] Soit A = (a1, . . . , an)T ∈ Kn \ {0}. On pose M = AAT .

1. Calculer le rang de M et montrer que M est symétrique.

1. Si

K = R

, montrer que M ∈ S+
n (R).

1. Soit M ∈ S+
n (R) de rang 1. Montrer qu’il existe A ∈ Rn \ {0} tel que M = AAT .
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∫
Solitiff = On (as) de rang 1. Institute of a resister T ∈ Rn (b) tell que M = 1.11

Exercice 1283 [Centrale PSI 2025 # 1260] On note V1 l’ensemble des matrices M ∈ Mn(R) telles que SpC(M) = {1}. a) Donner
un exemple de matrice M ∈ V1 différente de l’identité.
Soit M ∈ V1. Montrer que (M − In)n = 0.
Soit M ∈ V1. Montrer que (M − In)n = 0. b) Cas n = 4.
Donner un exemple de matrice A ∈ V1 telle que (A− In)2 ̸= 0 et (A− In)3 = 0.

1. Déterminer V1 ∩ Sn(R).

1. Déterminer

V1 ∩ O3(R)

et, plus généralement, V1 ∩ On(R).
Exercice 1284 [Centrale PSI 2025 # 1261] 1. Rappeler l’algorithme de Gram-Schmidt en le justifiant.

1. Soit A ∈ GLn(R). Montrer qu’il existe un couple (U, T ) ∈ On(R) × T +
n (R) tel que A = UT .

1. Montrer que ce couple est unique.
Exercice 1285 [Centrale PSI 2025 # 1262] On identifie M2,1(R) et R2. On munit R2 de sa structure euclidienne canonique. On
pose C = {A ∈ M2(R) ; ∀X ∈ R2, ∥AX∥ ⩽ ∥X∥}. On dit que A ∈ C est un point extrémal de C lorsque ∀B1, B2 ∈ C, A =
1
2B1 + 1

2B2 ⇒ A = B1 = B2.

1. Montrer O2(R) ⊂ C.

1. i) Soit A ∈ M2(R). Montrer qu’il existe R ∈ SO2(R) telle que AR ∈ S2(R).

• ii) En déduire qu’il existe Ω1,Ω2 ∈ O2(R) et (a, b) ∈ R2 tels que Ω1AΩ2 =
(
a 0
0 b

)
.

• iii) On suppose A ∈ C. Montrer que a et b appartiennent à [-1, 1].

1. Montrer que l’ensemble des points extrémaux de C est O2(R).
Exercice 1286 [Centrale PSI 2025 # 1263] 1. Soient M ∈ Sn(R) et λ ∈ C une valeur propre de M . Montrer que λ ∈ R. Ind.

Considérer Z̄TMZ , où Z est un vecteur propre associé à λ.

1. Soit A =


0 · · · 0 1
...

...
...

0 · · · 0 n− 1
1 · · · n− 1 n

 ∈ Mn(R).

1. Calculer tr(A) et tr(A2).

ii) Donner les valeurs propres et vecteurs propres de A.

2) Analyse

Exercice 1287 [Centrale PSI 2025 # 1264] On s’intéresse aux suites (Un) où U0 et U1 sont positifs et vérifient, pour tout n ∈ N,
Un+2 = 1

2
(
U2
n+1 + U2

n

)
1. Déterminer l’éventuelle limite de (Un). Montrer que, si trois termes consécutifs sont égaux, alors la suite (Un) est constante.

1. Calculer les premiers termes de la suite (Un) pour différentes valeurs de U0 et U1. Que peut-on en déduire? Pour les suites telles
que Un → +∞, s’intéresser à la suite définie par Vn = 1

2n ln
(
Un

2
)
.

1. Comparer les signes de Un+1Un et UnUn−2.

1. On suppose désormais (Un)n∈N non constante. Montrer que, s’il existe n0 tel que Un0+1 ≥ Un0 et Un0+1 ≥ Un0−1, alors la
suite (Un)n≥n0+1 est strictement croissante.

On admet que, s’il existe n ∈ N tel que Un+1 ≤ Un et Un+1 ≤ Un−1, alors la suite (Un) est strictement décroissante.

1. Supposons que, quel que soit N ∈ N, la suite (Un)n≥N ne soit pas strictement monotone. Montrer que U0 ̸= U1 et que, si
U0 < U1, alors U0 < U2 < U3 < U1 (vérifier si l’inégalité est stricte ou non). En déduire que la suite (Un) converge vers 1.

1. Établir, pour une suite (Un)n≥0 non constante appartenant à S, l’équivalence des propriétés suivantes :

il existe un entier N ≥ 0 tel que UN ≥ 1 et UN+1 ≥ 1, la suite (Un)n≥0 est strictement croissante à partir d’un certain rang, la suite
(Un)n≥0 tend vers +∞.
Exercice 1288 [Centrale PSI 2025 # 1265] On note C l’ensemble des suites à valeurs dans N \ {0, 1}. Si ∀k = (kn)n∈N ∈ C, soit
Φ(k) la suite de terme général Φ(k)n = 1

k0
+ 1

k0k1
+ . . .+ 1

k0k1...kn
.
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1. Étudier la convergence de Φ(k) dans les cas suivants :

• k est une suite constante,

• ∀n ∈ N, kn = n+ 2

• ∀n ∈ N, kn = 2n+ 2.

1. Si k ∈ C, montrer que la suite Φ(k) converge vers une limite ℓ ∈]0, 1].

Exercice 1289 [Centrale PSI 2025 # 1266] Soit, pour n ∈ N, an =
∫ π/4

0 tann(t)dt.
1. Trouver une relation entre an+1 et an−1.

1. Montrer de deux manières différentes que la suite (an) converge.

1. i) Montrer que an = 1
2n +O

( 1
n2

)
.

ii) Soient α ∈ R et x ∈ R. Pour n ∈ N∗, on pose un = an

nαx
n. Discuter en fonction de x et α la nature de

∑
un.

Exercice 1290 [Centrale PSI 2025 # 1267] Soit f : R+ → R, une fonction continue telle qu’il existe une suite de réels (ak)k∈N telle
que, quand x tend vers +∞, f(x) = a0 + a1

x + a2
x2 + · · · + ak

xk + o
( 1
xk

)
.

1. Donner une condition nécessaire et suffisante pour que
∑
f(n) converge.

1. On suppose que f ne s’annule pas sur N∗. On pose, pour n ∈ N∗, pn =
∏n
k=1 f(k). À quelle condition (pn)n∈N est-elle

convergente?

1. On pose, pour n ∈ N∗, gn =
∏n
k=1

(
1e− α

k

)
. À quelle condition sur α la suite (gn)n∈N est-elle convergente?

Exercice 1291 [Centrale PSI 2025 # 1268] Soit g : x ∈ R 7→ xx2.
1. Déterminer le plus grand intervalle I contenant 0 tel que g|I soit injective.

1. On pose J = g(I) et f la réciproque de g|I . Déterminer l’expression de f .

1. Montrer que f admet un développement en série entière au voisinageqde 0 et l’expliciter.
Exercice 1292 [Centrale PSI 2025 # 1269] Soit f ∈ C2([0, 1],R) telle que f(0) < 0, f(1) > 0, f’(0) > 0. On suppose que ∀x ∈
[0, 1], f ′′(x) > 0.

1. Montrer que f admet un unique zéro sur [0,1]. On notera z ce zéro.

1. Soit a ∈]z, 1]. Montrer que la tangente à la courbe de f en (a,f(a)) coupe l’axe des abscisses en un unique point appartenant à
]z,a[.

1. Soit (xn) la suite définie par x0 = 1 et, pour tout n ∈ N, xn+1 est l’abscisse du point d’intersection entre la tangente en
(xn, f(xn)) et l’axe des abscisses. Montrer que xn → z.

1. On pose M2 = supx∈[0,1] |f ′′(x)|. Prouver ∀n ∈ N, 0 ⩽ xn+1z ⩽
M2

2f ′(0) (xnz)2.

Exercice 1293 [Centrale PSI 2025 # 1270] Soient m ∈ N, a0, . . . , am ∈ R, P = a0 + a1X + . . .+ amX
m.

1. Expliciter (P (X))2 et en déduire que
∑

0⩽p,q⩽m
apaq

p+q+1 ≥ 0.

1. Exprimer
∫ π

−π |P (eit)|2dt en fonction de ak .

• c) Si Q ∈ C[X], montrer que
∫ 1

−1 Q(x)dx = −i
∫ π

−π Q(eit)eitdt.

1. En déduire que
∑

0≤p,q≤m
apaq

p+q+1 ≤ π
∑m
k=0 a

2
k .

Exercice 1294 [Centrale PSI 2025 # 1271] 1. Soit f : x 7→ ex

1+e4x sin2(x) . Montrer que f ne s’annule pas, n’a pas de limite en

+∞ et n’est pas bornée. b) Pour a>0, on pose J(a) =
∫ π

2
0

dx
1+a2 sin2(x) . Calculer J(a) à l’aide du changement de variable u = tan(x),

puis montrer que
∫ π

0
dx

1+a2 sin2(x) = 2J(a). c) Quelle est la nature de l’intégrale
∫ +∞

−∞ f ?

Exercice 1295 [Centrale PSI 2025 # 1272] 1. Existence et calcul de F (x) =
∫ +∞

0
dt

1+x2+t2 pour x ≥ 0. b) Calculer In =∫ π
0

dt
1+(nπ)α sin2(t) . Ind. Poser u = 1

tan(t) .

1. Nature suivant α > 0 de l’intégrale
∫ +∞

0
dt

1+tα sin2 t ?

Exercice 1296 [Centrale PSI 2025 # 1273] Pour n ∈ N∗, on pose : fn : x ∈ [0,+∞[ 7→ (−1)nn
n2+x ].

1. Étudier la convergence simple de
∑
fn. Montrer que sa somme S est continue.

1. Y a t-il convergence uniforme sur [0,+∞[?
Exercice 1297 [Centrale PSI 2025 # 1274] Soit (a, b) ∈ R2 avec a < b. Si φ ∈ C0([a, b],R), on pose ∥φ∥ = sup[a,b] |φ|.

1. Soit n ∈ N∗. Montrer qu’il existe un unique fn ∈ C2(R+∗,R) tel que fn(1) = fn(2) = 0 et, pour tout x ∈ R+∗, f ′′
n (x) =

(−1)n × 2−nx2 .
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1. Montrer la convergence uniforme des séries de fonction
∑
f ′′
n ,
∑
f ′
n et

∑
fn sur tout segment de R+∗.

1. Montrer que F =
∑∞
n=0 fn est de classe C2 sur R+∗. Montrer : ||F || ≤ 1/3.

Exercice 1298 [Centrale PSI 2025 # 1275] 1. Soit (an) ∈ (R+∗)N. On suppose que an+1
an

= 1αn +o
( 1
n

)
avec α > 1.Montrer que∑

an converge. Ind. Montrer que, pour tout β ∈]1, α[, la suite (nβan) est décroissante à partir d’un certain rang.

1. Déterminer le développement en série entière de
√

1 − x. Montrer qu’il y a convergence en x = ±1.

1. Soit u la suite définie par u0 = 1 et, pour n ∈ N, un+1 =
∑n
k=0 ukun−k .

On pose S : x ∈] −R,R[ 7→
∑+∞
n=0 unx

n. Déterminer S et en déduire une expression de un.
Exercice 1299 [Centrale PSI 2025 # 1276] Soit E l’ensemble des f ∈ C0(R,R) telles que

∫ +∞
−∞ f(x)2e−x2

dx converge.
1. i) Montrer que E est un R -espace vectoriel.

ii) Soit Φ : (f, g) ∈ E×E 7→
∫ +∞

−∞ f(x) g(x) e−x2dx. Montrer que Φ est bien définie et définit un produit scalaire surE - b) Calculer,
pour n ∈ N, In =

∫ +∞
−∞ xne−x2

dx. On donne
∫ +∞

−∞ e−x2
dx =

√
π.

1. On pose F : z ∈ C 7→
∫ +∞

−∞ ezx−x2
dx. Montrer que F est développable en série entière au voisinageqde 0 et donner son

développement.
Exercice 1300 [Centrale PSI 2025 # 1277] Soient (un) une suite complexe bornée et, pour n ∈ N, sn =

∑n
i=1 ui.

1. Déterminer les rayons de convergence de U : x 7→
∑+∞
k=0

uk

k! x
k et S : x 7→

∑+∞
k=0

sk

k! x
k .

1. Trouver une relation entre U’, S’ et S.

1. On suppose que la suite (sn) tend vers 0. Montrer que x 7→ e−xS(x) tend aussi vers 0 quand x tend vers l’infini.

1. On suppose que la suite (sn) tend vers ℓ ∈ C. Montrer que x 7→ e−xS(x) tend vers une limite à préciser quand x tend vers
l’infini.

Exercice 1301 [Centrale PSI 2025 # 1278] Pour n ∈ N∗, on pose Hn =
∑n
k=0

1
k .

1. Montrer qu’il existe γ ∈ R tel que Hn = lnn+ γ + o(1). b) Pour n ∈ N∗, on définit fn : x ∈ R+∗ 7→ (1x/n)n ln(x)1]0,n[(x).

Montrer que
∫ +∞

0 fn(x)dx −−−−−→
n→+∞

∫ +∞
0 e−x ln(x)dx.

1. Exprimer
∫ +∞

0 e−x ln(x)dx en fonction de γ.
Exercice 1302 [Centrale PSI 2025 # 1279] Soit (E) l’équation différentielle : y′′(t) + eity(t) = 0.Soit f solution de (E). Montrer que
f est 2π -périodique si et seulement si f(0) = f(2π) et f ′(0) = f ′(2π).
Exercice 1303 [Centrale PSI 2025 # 1280] 1. Soit g ∈ C0(R+,R). On pose h : x 7→

∫ x
0 sin(x − t)g(t)dt. Montrer que h est de

classe C2 et exprimer h” en fonction de h et g.
Déterminer toutes les solutions de R+ dans R de y” + y = g.

1. Soient a ∈ R et f ∈ C0(R+,R) telle que ∀x ∈ R+, f(x) ⩽ a+
∫ x

R+ f(t)dt.

Montrer que, pour tout x ≥ 0, f(x) ≤ aex.

1. Pour λ réel, on note Φλ la solution du problème de Cauchy :
y′′(x) + (1 − sin(λx))y(x) = 0, y(0) = 1, y′(0) = 0. Soit x0 ∈ R. On pose f : λ 7→ Φλ(x0). Montrer que f est lipschitzienne.

Exercice 1304 [Centrale PSI 2025 # 1281] 1. Montrer l’existence et calculer
∫ +∞

−∞
du

u2+u+1 .

1. Soient I un intervalle ouvert de R et y ∈ C̃1(I,R) telle que y′ = y2 + y+ 1. Montrer que I est un intervalle borné. Expliciter y.
Exercice 1305 [Centrale PSI 2025 # 1282] Soit f : (x, y) ∈ R+∗ × R+∗ 7→ 1

x + 1
y + xy.

1. Soit S = {(x, y, z), z = f(x, y)}. Déterminer l’équation du plan tangent à S en un point
(a, b, c) ∈ S. b) Montrer que f est minorée puis qu’elle admet un minimum atteint en un point que l’on déterminera.

Exercice 1306 [Centrale PSI 2025 # 1283] Soit φ : (x, y) ∈ [−1, 1]2 7→
∫ 1

−1 |t−x|×|t−y| dt. On pose µ = min(x,y)∈[−1,1]2 φ(x, y).

1. Montrer que φ est continue sur [−1, 1]2. En déduire l’existence de µ. b) On pose T =
{

(x, y) ∈ [−1, 1]2, −1 ⩽ x ⩽ y ⩽ 1
}

.
Montrer que, pour tous x, y ∈ T ,
φ(x, y) = 3(y − x)3 + 2

2 + 2xy.
Exercice 1307 [Centrale PSI 2025 # 1284] On munit R2 de la norme infinie : ∥(x, y)∥∞ = max(|x|, |y|). On note B(0, 1) =
{(x, y) ∈ R2 : ||(x, y)||∞ < 1} et B(0, 1) = {(x, y) ∈ R2 : ||(x, y)||∞ ≤ 1}.

1. Exprimer B(0,1) et B(0, 1) comme un produit de deux ensembles.

Soit f : (x, y) ∈ R2 7→ −(x2 + y2)2 + 3
2 (x2 + y2). b) Montrer que f est de classe C1, calculer son gradient et trouver ses points

critiques.
Soit S = {(x, y, f(x, y))}(x,y)∈B(0,1).
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1. Déterminer le plan tangent à S et orthogonal au vecteur (0, -1, 1).

Exercice 1308 [Centrale PSI 2025 # 1285] Soient a ∈ (0, 1) et f : (x, y) ∈ R2 7→ (x2 + 2axy + y2)e−(x2+y2)/2. a) Justifier que f
est de classe C2 et trouver ses points critiques.

1. Montrer que f admet en (0,0) un extrémum local. Est-il global ?

1. Montrer que f admet en (1,1) un maximum global.
Exercice 1309 [Centrale PSI 2025 # 1286] On définit

K : ∀(x, y) ∈ [0, 1] × [0, 1] → R

tel que : K(x, y) =
{
x(1 − y) si x ≤ y,

y(1 − x) si x > y.

1. Montrer que K est continue et bornée.

1. Soit z ∈ R, trouver l’équation du plan tangent à la surface d’équation K(x,y)=z.

3) Probabilités

Exercice 1310 [Centrale PSI 2025 # 1287] On considère une pièce donnant pile avec une probabilité 0 .
1. On lance n fois cette pièce. Soit Sn la variable aléatoire donnant le nombre de pile obtenus. Donner la loi de Sn.

1. On considère deux pièces (M1,M2) donnant pile avec une probabilité p1 ∈]0, 1[ et p2 ∈]0, 1[. Pour le premier lancer, on lance
la pièce M1. Pour n ≥ 2, on lance la pièce M1 au n-ième lancer si on a obtenu pile au (n-1)-ième lancer, et la pièce M2 sinon.
Pour n ∈ N∗, on note An l’évènement « on obtient pile au n-ième lancer ».

• i) Établir une relation entre P (An) et P (An−1).

• ii) Montrer que la suite (P(An))n≥1 converge et donner sa limite.

iii) On rappelle le théorème de Cesàro. Soit S′
n la variable aléatoire donnant le nombre de pile obtenus pendant les n lancers. Donner

un équivalent de E(S′
n) quand n → +∞.

Exercice 1311 [Centrale PSI 2025 # 1288] Soient λ > 0, X ∼ P(λ), Y ∼ P(λ) et X , Y indépendantes.
On pose

A =
(
X X
0 Y

)
∈ M2(R)

et T = tr(A).

1. Donner la loi de T , son espérance et sa variance.

1. Calculer P(A diagonalisable).

1. On pose Mx,y =
(
x x 0 y

)
et ℓx,y : M ∈ M2,3(R) 7→ Mx,yM .

• i) Que peut-on dire du rang de ℓx,y ?

• ii) Trouvez une condition nécessaire et suffisante pour que rg(ℓxy) = 6.

• iii) Donner la loi de rg(ℓX,Y ).
Exercice 1312 [Centrale PSI 2025 # 1289] Soit n ≥ 2. On note Ωn l’ensemble des applications de {1, . . . , n} dans lui-même. On
munit Ωn de la probabilité uniforme. Si f ∈ Ωn, on note Xn(f) le nombre d’éléments de {1, . . . , n} n’ayant aucun antécédent par f
et, pour i entre 1 et n, on pose Yi(f) = 1 si f−1({i}) = ∅ et Yi(f) = 0 sinon.

1. Déterminer la probabilité pn de S = {f ∈ Ωn , f surjective}. Donner un équivalent de pn lorsque n → +∞.

1. Déterminer la loi de Yi, puis celle de YiYj lorsque i ̸= j.

1. Calculer l’espérance et la variance de Xn.
Exercice 1313 [Centrale PSI 2025 # 1290] Soit θ ∈ R+∗. Des individus numérotés 1, 2, . . . arrivent successivement dans un restau-
rant qui abrite une infinité de tables infiniment longues. Les convives s’installent aux différentes tables avec les conditions suivantes :
lorsque le (k+ 1)e individu se présente, k ≥ 1, il choisit au hasard l’un des k individus déjà attablés avec la probabilité 1

k+θ et s’assied
à lamême table, ou occupe une nouvelle table avec la probabilité θ

k+θ . On note Kn la variable aléatoire indiquant le nombre de tables
occupées lorsque n individus ont pris place.

1. Déterminer P (Kn = 1).

1. Soit Gn la fonction génératrice de Kn.

Montrer que Gn(x) = Ln(hetax)
Ln(heta) , où Ln(x) =

∏n−1
i=0 (x+ i).

1. Calculer E(Kn) et V(Kn). Donner des équivalents de E(Kn) et V(Kn).

1. Étudier le comportement de la suite
(
Kn

lnn
)

quand n → +∞.
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XIII) Centrale - PC

1) Algèbre

Exercice 1314 [Centrale PC # 1291] 1. Soient A,B ∈ R[X] et P = A2 +B2.

• i) Montrer que P est nul ou de degré pair, de coefficient dominant strictement positif.

• ii) Les polynômes X4X2 + 1 et X41 peuvent-ils s’écrire A2 +B2 avec A,B ∈ R[X]?

• iii) Que dire des racines de P et leurs multiplicités ?

1. Montrer que tout polynôme P ∈ R[X] tel que ∀x ∈ R, P (x) ≥ 0 s’écrit A2 +B2 avec A,B ∈ R[X].
Exercice 1315 [Centrale PC # 1292] Soient E un espace vectoriel de dimension finie et f ∈ L(E). On dit que f admet un pseudo-
inverse s’il existe q ∈ L(E) tel que f ◦ q ◦ f = f , q ◦ f ◦ q = q et f ◦ q = q ◦ f .

1. Que dire si f est inversible ? si f est l’endomorphisme nul ?

1. On suppose que f admet un pseudo-inverse. Montrer que Im(f) ⊕ Ker(f) = E.

1. On suppose que Im(f) ⊕ Ker(f) = E. Soit f1 l’endomorphisme induit par f sur Im(f).

Montrer que f1 admet un pseudo-inverse. En déduire que f admet un pseudo-inverse. d) Montrer que f admet un pseudo-inverse si
et seulement si rg(f) = rg(f2).
Exercice 1316 [Centrale PC # 1293] 1. Donner une condition nécessaire et suffisante pour qu’une matrice de Vandermonde

soit inversible.

1. Soient (Q0, Q1, . . . , Qn) une famille de polynômes de Rn[X] et (z0, . . . , zn) des nombres

réels. Calculer le déterminant de la matrice R = (Qi(zi))0≤i,i≤n.
Exercice 1317 [Centrale PC # 1294] Soit n ∈ N∗. On note Sn l’ensemble des permutations de l’ensemble {1, . . . , n}. Pour σ ∈ Sn,
on pose Pσ = (δi,σ(j))1≤i,j≤n ∈ Mn(C).

1. Soient σ et s dans Sn. Montrer que PσPs = Pσ◦s et montrer que Pσ est une matrice orthogonale.

1. Soit σ ∈ Sn. Montrer qu’il existe ℓ ∈ N∗ tel que P ℓσ = In. Montrer que toutes les valeurs propres complexes de Pσ sont de
module 1 et que 1 est valeur propre de Pσ .

1. À quelle condition Pσ est-elle diagonalisable sur C? sur R?
Exercice 1318 [Centrale PC # 1295] Soient M ∈ Mn(C) et E = {P (M), P ∈ C[X]}. On note p le nombre de valeurs propres
distinctes de M .- a) Montrer que E est un espace vectoriel de dimension finie et que p ≤ dimE ≤ n.

1. Montrer que M est diagonalisable si et seulement si dim E = p.
Exercice 1319 [Centrale PC # 1296] Soient A ∈ Mn(R) et f : M ∈ Mn(R) 7→ AMMA.

1. Montrer que, si A nilpotente, alors f l’est également.

1. Montrer que, si | Sp(A)| = n, alors (In, A, . . . , An−1) est une base de Ker f .

1. Montrer que si A est diagonalisable alors AT l’est également. Donner une base de vecteurs propres de f dans ce cas.
Exercice 1320 [Centrale PC # 1297] Soient n ∈ N∗ et A ∈ Mn(K) diagonalisable. Soit p ∈ [[1, n]] le nombre de valeurs propres
distinctes de A. Dénombrer les polynômes P ∈ Kp−1[X] tels que A et P(A) soient semblables.
Exercice 1321 [Centrale PC # 1298] Soit A ∈ Mn(R) diagonalisable. Donner une condition nécessaire et suffisante pour qu’il
existe P ∈ R[X] tel que AT = P (A).
Exercice 1322 [Centrale PC # 1299] 1. Soient u, v ∈ L(Cn) tels que u ̸= 0, v ̸= 0 et u ◦ v = 0. Montrer que Keru ̸= {0} et

que Keru est stable par v. En déduire que u et v possèdent un vecteur propre en commun. b) Soient A,B ∈ Mn(C) telles que
AB=0. Montrer que A et B sont trigonalisables dans

Exercice 1323 [Centrale PC # 1300] Soient n ∈ N∗ et (A,B) ∈ Mn(C)2 tel que Sp(A) ∩ Sp(B) = ∅.
1. Montrer que χA(B) est inversible.

1. Montrer que pour tout Y ∈ Mn(C), il existeM ∈ Mn(C) tel que AM MB = Y. c) On suppose que Sp(A)∩Sp(B) ̸= ∅. Montrer
qu’il existe M ∈ Mn(C) \ {0} telle que AM = MB.

Exercice 1324 [Centrale PC # 1301] On pose φ : (A,B) ∈ M2(R)2 7→ tr(ATB).

1. Montrer que φ est un produit scalaire. b) On pose F =
{(

a b
b −a

)
; (a, b) ∈ R2

}
. Déterminer F⊥.

1. Pour α ∈ R, on pose Jα =
(

1 α
1 1

)
. Calculer la distance de Jα à F⊥.

a ∈ R, on pose a =
(
1 1

)
. Calcular la distance de a ∈ R a a ∈ R.
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Exercice 1325 [Centrale PC # 1302] Soient (E, ⟨, ⟩) un espace euclidien, (x1, . . . , xp) une famille de vecteurs de E et G =
(⟨xi, xj⟩)1≤i,j≤p ∈ Mp(R).

1. Montrer que, si (x1, . . . , xp) est une famille libre, alors det(G) > 0.

1. Dans le cas général, montrer que rg(x1, . . . , xp) = rg(G). c) Montrer que Sp(G) ⊂ R+.
Exercice 1326 [Centrale PC # 1303] Soit E = C0([−1, 1],R).

1. Montrer que ⟨f, g⟩ =
∫ 1

−1(1x2)f(x)g(x)dx définit un produit scalaire sur E.

1. Soit Ep (resp. Ei ) l’ensemble des éléments de E qui sont pairs (resp. impairs). Montrer que Ep et Ei sont orthogonaux et que
Ep ⊕ Ei = E.

1. Expliciter E⊥
p et E⊥

i .

une même base.
Exercice 1327 [Centrale PC # 1304] 1. Montrer que tout endomorphisme d’un R -espace vectoriel E de dimension finie n ≥ 2

admet une droite ou un plan stable.

1. Montrer que toute matrice de On(R) est diagonalisable dans C.
Exercice 1328 [Centrale PC # 1305] Déterminer toutes les matrices A dans Mn(R) telles que ATA2 = A et Tr(A) = n.
Exercice 1329 [Centrale PC # 1306] Soient E un espace euclidien non nul et u ∈ L(E).

1. Montrer qu’il existe un unique u∗ ∈ L(E) tel que : ∀(x, y) ∈ E2, ⟨u(x), y⟩ = ⟨x, u∗(y)⟩.

1. Montrer que u∗ ◦ u est diagonalisable et que ses valeurs propres sont positives.

1. Montrer que x 7→ ||u(x)|| est bornée sur la sphère unité. Exprimer max∥x∥=1 ∥u(x)∥ et min∥x∥=1 ∥u(x)∥ en termes de valeurs
propres de u∗ ◦ u.

Exercice 1330 [Centrale PC # 1307] On note C l’ensemble des matrices A ∈ Mn(R) telles que χA =
∏n
i=1(X[A]i,i).

1. Soit A ∈ C. Calculer tr(ATA).

1. Déterminer C ∩ Sn(R).

1. Déterminer C ∩ An(R).
Exercice 1331 [Centrale PC # 1308] Soit (A,B) ∈ Sn(R)2 tel que A2025 = B2025.

1. Montrer qu’il existe P ∈ R[X] tel que A = P (A2025). En déduire que A et B commutent.

1. Montrer qu’il existe Q ∈ On(R) telle que QTAQ et QTBQ sont diagonales.

1. Montrer A = B.

2) Analyse

Exercice 1332 [Centrale PC # 1309] Pour i ∈ {1, 2,∞} et A ∈ Mn(R), on pose ||A||i = sup{||AX||i;X ∈ Rn et ||X||i = 1} et,
lorsque A est inversible, Condi(A) = ||A||i||A−1||i.

1. Pour tout (A,B) ∈ Mn(R)2, montrer ||AB||i ≤ ||A||i||B||i.

1. Déterminer min{Condi(A);A ∈ GLn(R)}.

1. Déterminer Cond2(A) en fonction des valeurs propres de ATA.
Exercice 1333 [Centrale PC # 1310] Soit E = M2(R). On définit la norme N sur E en posant N(A) = max1≤i,j≤2 |ai,j |

lorsque A = (ai,j)1⩽i,j⩽2.
a) Montrer qu’il existe c ∈ R+∗ tel que : ∀(A,B) ∈ M2(R)2, N(AB) ⩽ cN(A)N(B).

1. Montrer que la suite
(∑n

k=0
Ak

k!

)
est convergente pour tout A ∈ M2(R). On note exp(A) la limite de la suite.

1. Pour t ∈ R, on pose At =
(
t 1
0 t

)
et Bt =

(
cos(t) − sin(t)
sin(t) cos(t)

)
. Calculer exp(At) et exp(Bt).

Exercice 1334 [Centrale PC # 1311] Une norme ∥∥ sur Mn(R) est dite sous-multiplicative si ∀A,B ∈ Mn(R), ∥AB∥ ≤ ∥A∥×∥B∥.
1. Donner un exemple de norme sous-multiplicative sur Mn(R).b) Soient ∥ ∥ une norme sous-multiplicative sur Mn(R) et Q ∈

GLn(R). On définit la norme ∥∥Q par ∀A ∈ Mn(R), ∥A∥Q = ∥Q−1AQ∥. Montrer que ∥∥Q est sousmultiplicative.

1. Soit (un)n∈N∗ ∈ (R+∗)N∗ telle que ∀m,n ∈ N∗, un+m ⩽ un × um. On définit ℓ = inf
{
u

1/n
n , n ∈ N∗

}
. Soit ε > 0.

1. Montrer qu’il existe mε tel que umε
⩽ (ℓ + ε)mε . ii) Montrer qu’il existe αε > 0 tel que ∀n ≥ mε, u

1/n
n ⩽ (ℓ + ε)1− rn

n α
1/n
ε

où rn est le reste

de la division euclidienne de n par mε. iü ) En déduire que la suite (u1/n
n ) converge et préciser sa limite.
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Exercice 1335 [Centrale PC # 1312] Soit f ∈ C1(R,R) telle que f(0) = 1,∀x ∈ R, f(x) > 0 et ∀x ∈ R, f ′(x) < 0. On considère
une suite (xn)n∈N vérifiant x0 ∈ R+∗ et, pour tout n ∈ N, xn+1 = xnf(xn). a) Étudier la suite (xn).

1. Soit (αn) ∈ RN telle que αn → ℓ ∈ R. Montrer que 1
n+1

∑n
k=0 αk → ℓ.

1. Nature de
∑
xn ?

Exercice 1336 [Centrale PC # 1313] Soit E l’ensemble des f ∈ C0([0, 1[,R) s’annulant en 0. Pour f ∈ E, on pose φ(f) définie
par : φ(f)(0) = 0 et ∀x ∈]0,+∞[, φ(f)(x) = 1

x

∫ x
0 f(t)dt.

1. Montrer que φ est un endomorphisme.

1. L’application φ est-elle injective? surjective?

1. Déterminer les valeurs propres et les espaces propres de φ.
Exercice 1337 [Centrale PC # 1314] Soit f ∈ C3([0, 1],R). Pour n ∈ N∗, on pose Sn(f) = 1

n

∑n−1
n=1 f

(
k
n

)
.

1. Quelle est la limite de (Sn(f))?

1. Montrer qu’il existe M > 0 tel que : ∀n ∈ N∗, ∀k ∈ {0, 1, . . . , n− 1}, ∀t ∈
⌈
k
n ,

k+1
n

⌉∣∣∣f(t) − f
(
k
n

)
−
(
t− k

n

)
f ′ ( k

n

)
− (t− k

n )2

2! f ′′ ( k
n

)∣∣∣ ⩽ M
6
(
t− k

n

)3.

1. En déduire que Sn(f) =
∫ 1

0 f(t)dt− 1
2n
∫ 1

0 f
′(t)dt+ 1

12n2

∫ 1
0 f

′′(t)dt+ o
( 1
n2

)
.

Exercice 1338 [Centrale PC # 1315] Soit f : x 7→
∫ 2π

−π
cos(t)
t dt. Déterminer les limites de f en 0+, en +∞ et en −∞, puis les

variations de f .
Exercice 1339 [Centrale PC # 1316] Pour n ∈ N, soient In =

∫ π/2
0 cos2n(t)dt et Jn =

∫ π/2
0 t2 cos2n(t)dt et Qn = Jn

In
.

1. Montrer : ∀n ∈ N, (2n+ 2)In+1 = (2n+ 1)In et ∀n ∈ N∗, In = −2n2Jn + n(2n− 1)Jn−1.

1. Montrer : ∀n ∈ N∗, Qn−1 −Qn = 1
2n2 .c) Montrer : ∀t ∈ [0, π/2], t ⩽ π

2 sin(t).

1. Montrer : ∀n ∈ N, 0 ⩽ Jn ⩽ π2

4 (In − In+1).

1. Prouver finalement :
∑+∞
n=0

1
n2 = π2

6 .

Exercice 1340 [Centrale PC # 1317] On pose f : x 7→
∏+∞
n=0

(
1 + e−n(x2+1)

)
= limN→+∞

∏N
n=0

(
1 + e−n(x2+1)

)
.

1. Montrer que f est définie, de classe C1 sur R. b) Étudier les variations de f .
Exercice 1341 [Centrale PC # 1318] Soit f : x 7→

∑+∞
n=1

xn

1−xn .

1. Domaine de définition? Montrer que f est de classe C1.

1. Donner un équivalent de f en 1. Ind. Considérer g : t 7→ f (e−t) et en chercher un équivalent en 0.
Exercice 1342 [Centrale PC # 1319] Soit f : x 7→

∑+∞
n=1

1
n(nx2+1) .

1. Déterminer le domaine de définition de f .

) Déterminer le domaine de définition de f .

1. Étudier la continuité de f sur ]0,+∞[ et calculer les limites de f en 0+ et en +∞. c) La fonction f est-elle intégrable sur
]0,+∞[?

Exercice 1343 [Centrale PC # 1320] Soit f : x 7→
∑+∞
n=1(−1)n−1 n

x2+n2 .

1. Déterminer le domaine de définition de f et étudier la continuité de f .

1. Pour x ∈ R et α > 0, justifier l’existence de Iα =
∫ +∞

0 cos(xt)e−αtdt et calculer cette

intégrale.

1. La fonction

f est-elle développable en série entière?
Exercice 1344 [Centrale PC # 1321] Soit φ : x ∈ R+∗ 7→

∑+∞
n=0

e−nx
√
n

.

1. Montrer que

φ est de classe C1 sur R+∗.

1. Donner un équivalent lorsque x → 0+ de φ(x).
Exercice 1345 [Centrale PC # 1322] Soit (an)n∈N une suite décroissante positive.
Pour n ∈ N, on pose fn : x 7→ anx

n(1 − x).
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1. Montrer la convergence simple de
∑
fn sur[0, 1].

1. Montrer que
∑
fn converge normalement sur [0,1] si et seulement si la série numérique

∑ an

a converge.c) Donner une condition
nécessaire et suffisante pour que

∑
fn converge uniformément sur [0, 1].

Exercice 1346 [Centrale PC # 1323] Soit f : R → R lipschitzienne.

1. Soient a ∈ R∗ et λ ∈] − 1, 1[. Montrer qu’il existe une unique fonction F : R → R lipschitzienne vérifiant : ∀x ∈ R, F (x) −
λF (x+ a) = f(x).

1. Expliciter F lorsque f = cos.
Exercice 1347 [Centrale PC # 1324] Pour n ∈ N et x ∈ R, on note Sn =

∑n
k=1

1
k et f : x 7→

∑+∞
k=0 Sn

xn

n! .
1. Donner le rayon de convergence de

∑
Sn

xn

x! .

1. Pour n ∈ N∗, on pose vn = Sn lnn. Montrer que
∑

(vn+1vn) est convergente.

1. Donner une équation différentielle vérifiée par f . d) Exprimer, pour x > 0, f(x) à l’aide de
∫ x

0 e−t ln(t)dt.
Exercice 1348 [Centrale PC # 1325] 1. Pour n ∈ N∗ et t ∈ R, calculer

∑n
i=1 sin((2k − 1)t).

1. Pour n ∈ N∗, justifier l’existence de In =
∫ π/2

0
sin2(nt)

sin t dt.

1. Rayon de convergence de
∑
Inx

n ?

Exercice 1349 [Centrale PC # 1326] Soit (an)n≥0 définie par a0 = 1 et, pour n ∈ N∗, an = 1
n!
∫ 1

0 t(t− 1) . . . (t− n+ 1) dt.
Rayon de convergence et somme de x 7→

∑+∞
n=0 anx

n.
Exercice 1350 [Centrale PC # 1327] On dit qu’une fonction f ∈ C∞(I,R) est absolument monotone si, pour tout x ∈ I et tout
k ∈ N, f (k)(x) ≥ 0.

1. Rappeler la formule de Taylor avec reste intégral.

1. Montrer que, si f et g sont absolument monotones, alors f + g et fg sont absolument monotones.

1. Soient R > 0 et f une fonction absolument monotone sur [0, R].

1. Soient n ∈ N et Rn(x) = f(x)
∑n
k=1

f(k)(0)
k! xk . Montrer que x 7→ Rn(x)

xn est croissante sur [0, R].

ii) Montrer que la série de Taylor de f converge simplement vers f sur [0, R].
Exercice 1351 [Centrale PC # 1328] Soit f : x 7→

∑+∞
n=0(−1)n ln(n)xn.

1. Déterminer le rayon de convergence de cette série entière.- b) On pose g : x ∈] − 1, 1[ 7→ (1 + x)f(x). Montrer que g est
développable en série entière

au voisinageqde 0 et expliciter ses coefficients. Déterminer son rayon de convergence. c) Montrer que la série définissant g converge
uniformément sur [0, 1].
Exercice 1352 [Centrale PC # 1329] Pour n ∈ N, on pose In =

∫ +∞
1

1
1+t+···+tn dt lorsque cela a un sens.

1. Montrer que la suite (In)n≥2 est bien définie et calculer sa limite.

1. Montrer que, pour tout n ≥ 2, In =
∫ 1

0 u
n−2 1−u

1−un+1 du.

1. Montrer que, pour tout n ≥ 2, In =
∑+∞
k=1

1
(nk+k−2)(nk+k−1) .

1. En déduire un équivalent de In.

Exercice 1353 [Centrale PC # 1330] Soit f : x 7→
∫ 1

0
ln(t22t cos(x)+1)

t dt.
1. Montrer que f est définie sur ]0, 2π

Montrer que ∀x ∈]0, 2π[, f(2πx) = f(x) et f
(
π x2
)

+ f
(
x
2
)

= 1
2f(x).

1. Montrer que f est de classe C1 sur ]0, 2π[. Calculer f’(x) pour tout x ∈]0, π[.

1. On donne
∑+∞
n=0

(−1)n−1

n2 = π2

12 . Calculer
∫ 1

0
ln(1+t)

t dt.

1. En déduire l’expression de f(x) pour tout x ∈ [0, 2π[.

Exercice 1354 [Centrale PC # 1331] Soit f : x ∈]0, 1[ 7→ x2

x−1 ln(x).
1. Montrer que f se prolongeqcontinûment sur [0,1] et que ce prolongement est de classe C1.

1. Pour n ∈ N, on pose un =
∫ 1

0 x
nf(x)dx. Montrer que un −→

n→+∞
0 et trouver un équivalent de un lorsque n → +∞.

1. Montrer que limn→+∞ n
∫ 1

0 x
nf(xn)dx =

∑+∞
k=0

1
k2 .

Exercice 1355 [Centrale PC # 1332] 1. Montrer que
∫ 1

0
ln(u)
1−u du = −

∑+∞
n=0

1
n2 .

1. Soit f ∈ C0([0, 1[ ,R) croissante telle que l’intégrale
∫ 1

0
f(u)
u du converge. Montrer que
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lim
x→1−

(1 − x)
+∞∑
n=1

f(xn) =
∫ 1

0

f(u)
u

du.

1. Donner un équivalent de x 7→
∑+∞
n=0 ln(1 − xn) lorsque x → 1−.

Exercice 1356 [Centrale PC # 1333] Pour x ∈] − 1,+∞[, on pose θ(x) = 2
∫ 1

0
s

1+x2 ds

1. Étudier les variations de θ et calculer θ(x).

1. Pour x > 0, on pose Γ : x 7→
∫ +∞

0 tx−1e−tdt. i) Justifier l’existence de Γ(x).

• ii) Donner un équivalent de Γ(x+ 1) lorsque x → +∞. Ind. Poser u = t−x√
x

.

Exercice 1357 [Centrale PC # 1334] Pour x ∈ R+, on pose f(x) =
∫ +∞

0
1 cos(t)
t2 e−xtdt.

1. Montrer que f est définie, continue sur [0,+∞[, de classe C2 sur ]0,+∞[.

1. Convergence et calcul de
∫ +∞

0
sin(t)
t dt.

Exercice 1358 [Centrale PC # 1335] On donne
∫ +∞

0 e−u2
du =

√
π. Soit f : x ∈ R 7→

∫ +∞
0

eixte−t
√
t
dt. Donner une expression

simple de f(x).
Exercice 1359 [Centrale PC # 1336] Pour x > 0, on pose f(x) =

∫ +∞
1

e−xt

1+t dt.
1. Montrer que f est bien définie et continue. Déterminer limx→+∞ f(x).

1. Déterminer (a0, . . . , an) ∈ Rn+1 tel que f(x) =
∑
x→+∞

∑n
k=1

ak

xk + o
( 1
xn

)
.

Exercice 1360 [Centrale PC # 1337] Soit F : x 7→
∫ +∞

−∞
e−xt2

1+t2 dt.
1. Montrer que F est définie et continue sur R+.

1. Déterminer une équation différentielle linéaire satisfaite par F sur ]0,+∞[. On admettra que
∫ +∞

0 e−t2dt =
√
π

2 .

Exercice 1361 [Centrale PC # 1338] 1. Déterminer le domaine de définition de la fonction Γ : x 7→
∫ +∞

0 tx−1e−tdt.

1. Montrer que x 7→
∫ +∞

0 e−xntg(t)dt est définie sur R+ pour toute fonction g continue et intégrable sur R+ vérifiant g(0) ̸= 0.

1. À l’aide du changement de variable u = x1/nt, montrer que f(x) ∼ Γ( 1
n )

nxn−1 g(0).
Exercice 1362 [Centrale PC # 1339] Soit λ ∈] − 1, 1[. On cherche les fonctions f ∈ C1(R,R) solutions de (E) : ∀x ∈ R, f ′(x) =
f(x) + f(λx).

1. Déterminer les solutions de (E) qui sont développables en série entière. b) Déterminer les solutions de (E).
Exercice 1363 [Centrale PC # 1340] 1. Déterminer les valeurs de m ∈ {0, 1, 2, 3, 4} pour lesquelles l’équation différentielle

xy′′ + (x− 4)y′ − 3y = xm admet au moins une solution polynomiale.

1. Déterminer les solutions développables en série entière au voisinageqde 0 de l’équation différentielle xy” + (x-4)y’ - 3y = 0.

Exercice 1364 [Centrale PC # 1341] Soit f : x 7→
∫ π/2
a

cos(x sin(t))dt.

1. Montrer que f est de classe C2 sur R et que, si x ∈ R, xf”(x) + f’(x) + xf(x) = 0.

1. Trouver les solutions de l’équation différentielle xy” + y’ + xy = 0 qui sont développables en série entière sur R.

1. Montrer que f est développable en série entière sur R.

1. En déduire la valeur de
∫ π/2

0 sinn(t)dt pour tout entier naturel n.

Exercice 1365 [Centrale PC # 1342] On donne
∫ +∞

−∞ e−t2dt =
√
π. Soit f : R → R une fonction lipschitzienne.

Soit K : (x, t) ∈ R × R+∗ 7→ 1√
4πte

− x2
4t et U : (x, t) ∈ R × R+∗ 7→

∫
R K(x− y, t)f(y)dy.

1. Montrer que, pour tout (x, t) ∈ R × R+∗, ∂U∂t (x, t) = ∂2U
∂x2 (x, t).

1. Montrer que, pour tout x ∈ R, U(x, t) −−−−→
t→0+

f(x).

Exercice 1366 [Centrale PC # 1343] Soit n ≥ 2. Soient A ∈ S++
n (R) et Y ∈ Rn fixé. Soit Φ : Rn → R, X 7→ ⟨X,AX − Y ⟩.

1. On suppose que n=2, A =
(

1 1/2
1/2 1

)
et Y =

(
1
1

)
. Montrer que Φ a un unique point critique et déterminer si Φ admet un

extremum local en celui-ci.

1. On revient au cas général. Montrer que Φ(X) −→
∥X∥→+∞

+∞.

Montrer que Φ admet un minimum et que celui-ci est atteint en un unique point.
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Exercice 1367 [Centrale PC # 1344] 1. Soit z ∈ C \ R−. On écrit z = x+ iy = reiθ avec (x, y) ∈ R2, r ∈ R+∗ et θ ∈] − π, π[.

Montrer que θ = 2 arctan
(

y

x+
√
x2+y2

)
. La formule θ = arctan

(
y
x

)
est-elle valable?

1. On noteD = R2\{(x, 0) , x ∈ R−}. Trouver les fonctions f de classe C1 surD telles que, pour tout u ∈ D, ⟨u,∇(f)(u)⟩ = 1
∥u∥

pour la structure euclidienne de R2.
Exercice 1368 [Centrale PC # 1345] Soit f : (x, y) 7→ (x− y)3 + 6xy.

1. La fonction f admet elle des extrema globaux sur R2 ?

1. Montrer que f admet un minimum et un maximum sur D =
{

(x, y) ∈ R2 , x2 + y2 ⩽ 1
}

. Déterminer ces extrema.

1. Étudier les extrema locaux de f sur R2.

3) Géométrie

Exercice 1369 [Centrale PC # 1346] On munit R2 de sa structure euclidienne canonique. Soit ε = (ε1, ε2) la base canonique de R2.
Soient D1 et D2 les disques fermés de centres ω1 et ω2 et de rayons r1 > 0 et r2 > 0. On pose f : (u1, u2) ∈ D1×D2 7→ | detε(u1, u2)|.

1. Montrer que f admet un maximum.

1. Soit (v1, v2) un point où f atteint son maximum. Pour i ∈ {1, 2}, montrer que vi appartient au cercle de centre ωi et de rayon
ri.

4) Probabilités

Exercice 1370 [Centrale PC # 1347] Pour λ > 0, soit Yλ une variable aléatoire suivant la loi de Poisson de paramètre λ.
1. Montrer qu’il existe L1, L2 ∈ Z[X] tels que, pour tout λ > 0, E(Yλ) = L1(λ) et E(Y 2

λ ) = L2(λ).

1. Soit p ∈ N∗. Montrer qu’il existe Lp ∈ Z[X] tel que ∀λ > 0, E(Y pλ ) = Lp(λ).
Exercice 1371 [Centrale PC # 1348] On dispose deN pièces qui ont toutes pour probabilité p ∈]0, 1[ de tomber sur Pile. Au premier
tour, on lance toutes les pièces et on ne conserve que les pièces qui sont tombées sur Pile pour le tour suivant. On recommence ainsi
l’expérience : on lance au tour n toutes les pièces tombées sur Pile au tour n-1. On note Xn le nombre de Pile obtenus au n-ième tour.
On note Un = (P(Xn = 0) · · · P(Xn = N))T . Déterminer une matrice A telle que, pour tout n, Un+1 = AUn. La matrice A est-elle
diagonalisable? Exprimer Un en fonction de A et de U0.
Exercice 1372 [Centrale PC # 1349] On effectue une infinité de lancers identiques et indépendants d’une pièce. La probabilité
d’obtenir Pile est p ∈]0, 1[. On note Y la variable aléatoire donnant le nombre de Face avant l’apparition du deuxième Pile.

1. Donner la loi de Y.

1. Montrer que Y est d’espérance finie, la calculer.

1. Soit k ∈ N∗. On note Yk la variable aléatoire donnant le nombre de Face avant l’apparition du k-ème Pile. Déterminer la loi de
Yk .

Exercice 1373 [Centrale PC # 1350] Soit p ∈]0, 1[. On considère une pièce qui tombe sur Pile avec une probabilité p. On lance la
pièce jusqu’à obtenir Pile pour la première fois. On note N le nombre de lancers. On lance ensuite N fois la pièce et on note X le
nombre de Pile obtenus lors de cette deuxième série de lancers.

1. Déterminer la loi de N , la loi du couple (N, X), puis celle de X .

1. Soit λ ∈]0, 1[. Soient U et V deux variables aléatoires indépendantes telles que U ∼ B(λ) et V ∼ G(λ). À quelle condition
(portant sur λ ) a-t-on X ∼ UV ?

1. Quelle est l’espérance de X?
Exercice 1374 [Centrale PC # 1351] On lance deux pièces équilibrées n fois. On note An l’événement « on obtient autant de Pile
que de Face après le n-ème lancer ». On note pn = P(An).

1. Montrer que
∑n
k=0

(
n
k

)2 =
(2n
n

)
.- b) Déterminer pn.

1. Déterminer le rayon de convergence et le domaine de définition de
∑
pnx

n.
Exercice 1375 [Centrale PC # 1352] Soit p ∈ N. On dispose de p+1 urnes numérotées de 0 à p contenant des boules rouges et
blanches. La proportion de boules rouges de l’urne numéro j est jp . On choisit au hasard une urne, on effectue n tirages avec remise
dans cette urne et l’on note Xn le nombre de boules rouges piochées.

1. Loi et espérance de Xn.

1. Pour k ∈ [[0, n]], calculer limp→+∞ P(Xn = k). Commenter.
Exercice 1376 [Centrale PC # 1353] Soient X et Y deux variables aléatoires indépendantes, X ∼ P(λ) et Y ∼ G(p). On pose

M =
(
X Y
Y X

)
.

1. Donner E(rg(M)).

1. Déterminer l’espérance et la variance de la plus grande valeur propre de M .
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XIV) Autres Écoles - MP

1) Algèbre

Exercice 1377 [IMT # 1354] Soient a et n deux entiers supérieurs ou égaux à a. Montrer que si an1 est premier, alors a = 2 et n est
un nombre premier.
Exercice 1378 [IMT # 1355] Résoudre l’équation x2 + x+ 1 = 0 dans Z/6Z et dans Z/7Z.
Exercice 1379 [IMT # 1356] Soit A ∈ M3(R) telle que A2 = 0 et A ̸= 0.

Montrer que A est semblable à

0 0 1
0 0 0
0 0 0

.

Exercice 1380 [IMT # 1357] 1. Soient n ∈ N∗, u, v ∈ L(Rn) nilpotents et non nuls tels que u◦v = v◦u. Montrer que rg(u◦v) <
rg(v).

1. Soient u1, . . . , un ∈ L(Rn) nilpotents et commutant deux à deux.

Montrer que u1 ◦ · · · ◦ un = 0.

Exercice 1381 [CCINP # 1358] Soit M ∈ M2(R) telle que M2 +M = J où J =
(

1 1
1 1

)
.

1. Déterminer les valeurs propres de J . En déduire les valeurs propres éventuelles de M .

1. Trouver un polynôme annulateur de M . Montrer que M est diagonalisable.

1. Déterminer les matrices M solutions.
Exercice 1382 [IMT # 1359] Déterminer une condition nécessaire et suffisante sur (a, b, c, d) ∈ R4 pour que

la matrice

1 a b
0 2 c
0 0 d

 soit diagonalisable.

Exercice 1383 [IMT # 1360] Pour tout c ∈ R , on considère la matrice A(c) =

−c 1 −1
1 1 − c 1

−1 −1 −c

.

1. La matrice A(c) est-elle diagonalisable?

1. Trouver P ∈ GL3(R) telle que la matrice P−1A(c)P soit triangulaire supérieure.

Exercice 1384 [IMT # 1361] Soient a > 0 et A =

0 −a a2

1 0 −a
1 1 0

 et u =

a0
1

.

1. Calculer Au. Que peut-on en déduire b) Calculer det(A). La matrice A est-elle inversible ?

1. Déterminer le spectre réel de A.

1. Trouver une condition nécessaire et suffisante pour que A soit diagonalisable.

Exercice 1385 [IMT # 1362] Déterminer les valeurs propres de A =


1 1 · · · · · · 1
1 0 · · · · · · 0
...

...
...

...
...

...
1 0 · · · 0

 ∈ Mn(R).

Exercice 1386 [IMT # 1363] Soit A =


1 1 0 · · · 0
... 0

. . . . . .
...

...
...

. . . . . . 0
1 0 · · · 0 1

 ∈ Mn(R). Déterminer les valeurs propres

de A, ainsi que la dimension de ses sous-espaces propres.
Exercice 1387 [IMT # 1364] Soit n ≥ 2. Soit A = (ai,j)1≤i,j≤n ∈ Mn(C) avec ai,j = −1 si i > j, ai,j = 1 si i < j et ai,i = 0. Soit
J ∈ Mn(C) dont tous les coefficients sont égaux à 1.

1. Soit λ ∈ C. Montrer que : P : x 7→ det(λInAxJ) est polynomiale de degré au plus 1.

1. En déduire χA.

1. Étudier la diagonalisabilité de A.
Exercice 1388 [CCINP # 1365] Soient n ∈ N∗ et A,B ∈ Rn[X] non nuls. On considère l’application f qui à P ∈ Rn[X] associe le
reste de la division euclidienne de AP par B.
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1. Montrer que f est un endomorphisme. Est-ce un automorphisme?

1. On note p le degré de B et λ1, . . . , λn ses racines.

• i) Montrer que 0 est valeur propre de f .

• ii) Soit α ∈ R∗ une valeur propre de f . Montrer qu’il existe i ∈ [1, p] tel que A(λi) = α.iii) L’endomorphisme f est-il diagona-
lisable?

Exercice 1389 [IMT # 1366] Soit

A =

 1 −1 0
−1 2 −1
0 −1 1


. Pour quels réels a la suite (anAn)n∈N converge-telle ?
Exercice 1390 [IMT # 1367] SoientE un espace vectoriel de dimension finie et α ̸= 0. Soient f, g ∈ L(E) telles que f ◦gg ◦f = αf .

1. Donner une expression simple de fn ◦ gg ◦ fn.

1. En s’intéressant à h 7→ h ◦ g − g ◦ h, montrer que f est nilpotente.

Exercice 1391 [CCINP # 1368] Soit A =
(
i
j

)
1⩽i,j⩽n

∈ Mn(R).

1. La matrice A est-elle inversible ?

1. Trouver un polynôme annulateur de A.

1. Montrer que A est diagonalisable et donner ses valeurs propres.

1. Donner les sous-espaces propres de A.

1. Soit M ∈ Mn(R) commutant avec A. Montrer que Ker(A) et Im(A) sont stables par M .
Exercice 1392 [IMT # 1369] Soient E = Sn(R), A,B ∈ E \ {0} et f : M ∈ E 7→ Tr(AM)B.

1. Quels sont les éléments propres de f ? L’endomorphisme f est-il diagonalisable?

1. On note C = {k ∈ R+ : ∀M ∈ Sn(R),Tr(f(M)2) ≤ kTr(M2)}. Montrer que C ̸= ∅ et déterminer son minimum.
Exercice 1393 [CCINP # 1370] Soit f ∈ L(Cn).

1. On suppose que f2 est inversible et diagonalisable. À l’aide d’un polynôme annulateur de f , montrer que f est diagonalisable.

1. On suppose que f2 n’est plus inversible, que f2 est diagonalisable et que Ker f = Ker f2. Montrer que f est diagonalisable.
Exercice 1394 [IMT # 1371] Soit A ∈ Mn(C) de rang 1. Montrer que A est diagonalisable si et seulement si tr(A) ̸= 0.
Exercice 1395 [CCINP # 1372] Soit f ∈ L(R3) vérifiant f3 + f = 0 et f ̸= 0.

1. Montrer que R3 = Ker f ⊕ Ker(f2 + id).

1. Soit x ∈ Ker(f2 + id) non nul. Montrer que (x, f(x)) est libre.

1. Montrer qu’il existe une base de R3 dans laquelle la matrice de f est

0 0 0
0 0 1
0 0 −1

.

1. Construire u ∈ L(R3) tel que u2 = f .
Exercice 1396 [IMT # 1373] Donner toutes les matrices M de Mn(R) vérifiant M5 = M2 et Tr(M) = n.
Exercice 1397 [Dauphine # 1374] Soient

a1, . . . , an ∈ K

et la matrice A =


0 · · · 0 a1
...

...
...

0 · · · 0 an−1
a1 · · · an−1 an

.

On suppose a1 et an non nuls.

1. Pour K = R, montrer que A est diagonalisable et trouver ses valeurs propres.

1. Pour K = C, justifier que A n’est pas toujours diagonalisable avec un contre-exemple pour n=2.
Exercice 1398 [CCINP # 1375] Soit A ∈ Mn(R) la matrice d’un projecteur de rang p ∈ [1, n].
On pose

B =
(
A 0
A −A

)
1. La matrice B est-elle diagonalisable? Ind. On pourra calculer B3.
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b ) Calculer les sous-espaces propres éventuels de B et donner leur dimension en fonction de n et p -
Exercice 1399 [Navale # 1376] On munit l’espace vectoriel Mn(R) du produit scalaire canonique.
Calculer la distance de la matrice M = (1)1⩽i,j⩽n à l’espace F des matrices de trace nulle.
Exercice 1400 [Navale # 1377] On munit

C0([0, 1],R)

du produit scalaire ⟨f, g⟩ =
∫ 1

0 f(t)g(t)dt. On pose e1 : t 7→ 1, e2 : t 7→ t et F = Vect(e1, e2). Calculer la distance de Φ : t 7→ t2 à
l’espace F .
Exercice 1401 [IMT # 1378] Soient p, q ∈ N∗ et M ∈ Mp,q(R).

1. Montrer que, pour tout λ ̸= 0, λ ∈ Sp(MMT ) ⇐⇒ λ ∈ Sp(MTM).

1. Montrer que, pour λ ̸= 0, les dimensions des espaces propres de MMT et MTM sont les mêmes.

1. Relier les polynômes caractéristiques de MMT et de MTM .
Exercice 1402 [CCINP # 1379] On munit Mn(R) de son produit scalaire canonique.

1. Montrer que Sn(R) et An(R) sont supplémentaires orthogonaux

1. Déterminer la distance de

M =

 0 2 1
2 0 2

−1 −1 0


à S3(R).
Exercice 1403 [CCINP # 1380] On munit Rn de son produit scalaire canonique, et on fixe v ∈ Rn \ {0}.

1. On pose Hv = In2 vT v
∥v∥2 . Montrer que Hv ∈ On(R).

1. Quelle est la nature de l’endomorphisme de Rn canoniquement associé à Hv ?

1. Soient x, y ∈ Rn \ {0} tels que ||x|| = ||y||.

1. Montrer que les vecteurs x y et x + y sont orthogonaux.

ii) Montrer qu’il existe V ∈ On(R) telle que Vx = y.
Exercice 1404 [IMT # 1381] Soit E l’espace des fonctions continues et 2π -périodiques de R dans R.- a) Montrer que l’application
qui à (f, g) ∈ E2 associe ⟨f, g⟩ = 1

2π
∫ 2π

0 fg définit un produit scalaire sur E.
1. Déterminer le projeté orthogonal de x 7→ sin2(x) sur Vect(x 7→ cos(x), x 7→ cos(2x)).

Exercice 1405 [CCINP # 1382] On munit E = Rn du produit scalaire canonique ⟨, ⟩. Soit A ∈ Mn(R). On note u l’endomorphisme
de Rn canoniquement associé à A et w celui associé à AT .

1. Montrer que : ∀x, y ∈ E, ⟨u(x), y⟩ = ⟨x,w(y)⟩.

1. Montrer que, si un sous-espace F est stable par u, alors F⊥ est stable par w.

1. On choisit ici A =

1 −1 1
1 0 1
0 1 0

.

• i) Calculer χA. Les matrices AT et A sont-elles diagonalisables dans Mn(R)?

• ii) Déterminer les sous-espaces stables par u.
Exercice 1406 [Navale # 1383] Soit n ≥ 2. Soit F : (A,B) ∈ Mn(R)2 7→ tr(A) tr(B) tr(AB). On note Ei,j , pour 1 ≤ i, j ≤ n, les
matrices élémentaires de Mn(R).

1. Calculer tr(Ei,jA) pour toute A ∈ Mn(R) et tout (i, j) ∈ [1, n]2.

1. Soit A ∈ Mn(R). On suppose que ∀M ∈ Mn(R), F (A,M) = 0. Montrer que A = 0.

1. Soit u un endomorphisme de Mn(R). Montrer que, si v : Mn(R) → Mn(R) est telle que : ∀A,B ∈ Mn(R), F(u(A), B) = F(A,
v(B)), alors v est linéaire.

1. L’application F définit-elle un produit scalaire?
Exercice 1407 [IMT # 1384] Soit A ∈ M2(R) telle que A2 = AT avec A ̸= 0.

1. Trouver un polynôme annulateur non nul de A.

1. Lorsque 0 ∈ Sp(A), trouver Sp(A) et montrer que A est orthogonalement semblable à la matrice
(

1 0
0 0

)
.

Exercice 1408 [CCINP # 1385] Soient E un espace euclidien de dimension n ≥ 2 et f ∈ S(E). On note a (resp. b) la plus petite
(resp. la plus grande) valeur propre de f .
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1. Montrer que a||x||2 ≤ ⟨f(x), x⟩ ≤ b||x||2 pour tout x ∈ E.

1. Soit r ∈ R+ tel que, pour tout x ∈ E, ⟨f(x), x⟩ ⩽ r||x||2. Montrer que b ⩽ r.

1. Soit k ∈ R. On note A ∈ Mn(R) la matrice définie par ai,i = k, ai,j = 1 si i = j ± 1, ai,j = 0 sinon. Montrer que la plus
grande valeur propre de A est inférieure ou égale à k + 2.

Exercice 1409 [IMT # 1386] Soient E un espace euclidien et a, b ∈ E unitaires et non colinéaires. On considère φ : x 7→ ⟨a, x⟩ a+
⟨b, x⟩ b. Montrer que φ est un endomorphisme autoadjoint et donner ses éléments propres.
Exercice 1410 [IMT # 1387] Soient E un espace euclidien de dimension n ≥ 3 et deux vecteurs a, b de E non colinéaires. On
considère l’endomorphisme f : x ∈ E 7→ ⟨a, x⟩ a+ ⟨b, x⟩ b. Déterminer Ker(f) et Im(f) puis montrer que f est autoadjoint.
Exercice 1411 [IMT # 1388] Soient M,N ∈ S+

n (R). Montrer que : 0 ≤ tr(MN) ≤ (trM)(trN).
Exercice 1412 [IMT # 1389] On munit Mn(R) du produit scalaire usuel. Soit A ∈ Sn(R), de polynôme caractéristique noté χA.
Montrer qu’il existe λ1, . . . , λn ∈ R tels que χA =

∏
(X − λk) et

que ||A||2 =
∑n
k=1 λ

2
k .

Exercice 1413 [IMT # 1390] Soient E un espace euclidien de dimension n et F un sous-espace de dimension r ∈ [1, n− 1]. Soit p le
projecteur orthogonal sur F . On note C = {f ∈ S(E), p ◦ f = f ◦ p}.

1. Soit f ∈ S(E). Montrer que f ∈ C si et seulement si f(F ) ⊂ F .

1. Soit f ∈ S+(E). Montrer que f2 = p si et seulement si f = p.

2) Analyse

Exercice 1414 [CCINP # 1391] On note E = C[X] et, pour P =
∑
k≥0 akX

k , ∥P∥ = supk≥0 |ak|.

1. Montrer que ∥∥ est une norme de E.

1. Soit b ∈ C. On souhaite étudier la continuité de l’application f : P ∈ E 7→ P (b) ∈ C. i) Montrer que, si |b| < 1, alors f est
continue.

• ii) Étudier la continuité de f lorsque |b|=1 à l’aide des polynômes Pn =
∑n
k=0 b

k
Xk .

• iii) Montrer que, si |b| > 1, alors f n’est pas continue.
Exercice 1415 [IMT # 1392] On munit E = C0([0, 1],R) la norme ∥ · ∥∞.
Si f ∈ E, on pose u(f) : x ∈ [0, 1] 7→

∫ 1
0 inf(x, t)f(t)dt. Montrer que u est un endomorphisme continu et calculer sa norme

subordonnée.

Exercice 1416 [IMT # 1393] Soient (un)n≥0, (vn)n≥0, (wn)n≥0 trois suites complexes. On suppose que, pour toutn ∈ N,


un+1 = 2un + vn + wn

vn+1 = un − vn + wn

wn+1 = un + vn − wn

.

Donner une condition nécessaire et suffisante sur (u0, v0, w0) pour que les trois suites convergent.
Exercice 1417 [IMT # 1394] Soient a, b, c ∈ R. Pour n ∈ N∗, on pose un = a ln(n) + b ln(n+ 1) + c ln(n+ 2). À quelles conditions
sur a, b, c la série

∑
un converge-t-elle ?

Exercice 1418 [IMT # 1395] On pose, pour n ≥ 3, un = ln
(
n42n3+2n1
n42n3

)
. Étudier la nature de la série de terme général un et calculer

sa somme en cas de convergence.
Exercice 1419 [IMT # 1396] Soit σ : N → N telle que σ(3n) = 4n, σ(3n+ 1) = 4n+ 2 et σ(3n+ 2) = 2n+ 1 pour tout n ∈ N.

1. Montrer que σ est bijective. b) On pose un = (−1)n

n et vn = uσ(n) pour tout n ≥ 1. Montrer que les séries
∑
un et

∑
vn sont

convergentes, et calculer leurs sommes.
Exercice 1420 [IMT # 1397] 1. Décomposer en éléments simples la fraction rationnelle 1

X2(X+1) .

1. Pour tout n ∈ N∗, on pose : un =
∑+∞
k=0

1
k2 .

• i) Déterminer la nature de la série de terme général un.

• ii) Déterminer la nature de la série de terme général un 1
n . iii) Déterminer la nature de la série de terme général (nun − 1)

Exercice 1421 [CCINP # 1398] On considère la suite (un)n≥0 définie par u0 ∈]0, π/2[ et, pour tout n ∈ N, un+1 = sin(un).
1. Montrer que la suite (un) converge et donner sa limite.

1. Étudier la nature de la série
∑

(un+1un). En déduire la nature de la série
∑
u3
n. c) Étudier la nature de la série

∑
ln
(un+1

u

)
. En

déduire la nature de la série
∑
u2
n.

Exercice 1422 [CCINP # 1399] On se donne deux réels α et β vérifiant 0 < β ≤ 1 < α. On pose, pour n ∈ N∗, Rn =
∑+∞
k=n+1

1
kα ,

Sn =
∑n
k=1

1
kβ et µn = Rn

Sn
.

1. Montrer que Rn est définie

1. Donner un équivalent de Rn puis de Sn. Étudier la nature des séries
∑
µn et

∑
(−1)nµn.
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Exercice 1423 [IMT # 1400] Soient α ≥ 0 et, pour n ∈ N∗, un =
∑∞
n=1

1
(n+k)α .

1. Étudier la convergence de (un) en fonction de α.

1. Étudier la convergence de
∑
un en fonction de α.

Exercice 1424 [IMT # 1401] Soit f ∈ C0([0, 1],R) telle que, pour tout n ∈ N,
∫ 1

0 f(t) tn dt = 0. Rappeler le théorème de Weierstrass.
Prouver que f est nulle.
Exercice 1425 [Dauphine # 1402] Soit f : [0, π] → R une fonction continue.
Montrer que limn→+∞

∫ π
0 f(t)| sin(nt)|dt = 2

π

∫ π
0 f(t)dt.

Exercice 1426 [IMT # 1403] Soient f, g ∈ C0([0, 1],R). Pour n ∈ N∗, on pose Sn = 1
n

∑n−1
k=1 f

(
k
n

)
g
(
k
n

)
et Tn = 1

n

∑n−1
k=0 f

(
k
n

)
g
(
k+1
n

)
. Déterminer les limites de (Sn) et (Tn).

Exercice 1427 [Navale # 1404] Justifier la convergence de∫ +∞

0

e−t
√
t+ x

dt

pour x ≥ 0.
Exercice 1428 [Navale # 1404] sustiner to convergence de∫ ∞

0

√
t+ x dx pour x ≥ 0

Exercice 1429 [CCINP # 1405] On pose I =
∫ +∞

0
t sin(t)
t2+1 dt.

1. Justifier l’existence de I . On pose, pour tout x ∈ R, J(x) =
∫ x

0
t| sin(t)|
t2+1 dt.

1. Montrer que, pour tout

n ∈ N∗ , J(nπ) =
∑n−1
k=0

∫ π
0

(u+kπ) sin(u)
(u+kπ)2+1 du.

Exercice 1430 [CCINP # 1406] Soit
f ∈ C1(]0, 1],R

) telle que |f ′(t)| ∼
t→0+

1
t3/2 .

Déterminer un équivalent en 0+ de F : x 7→
∫ 1

0 |f ′(t)|dt.

1. Déterminer un équivalent en

0+ de F : x 7→
∫ 1
x

|f ′(t)|dt.
1. En déduire que xf(x) −→

x→0+
0.

Montrer qua ∫ 1

−1
f(t)dt

converge

1. L’intégrale I est-elle absolument convergente?

1. Montrer que ∫ 1

−1
f(t)dt

converge.
Exercice 1431 [CCINP # 1407] Soit f : x ∈ [0, 1] 7→ 2x(1 − x). Pour n ∈ N∗, soit fn = f ◦ · · · ◦ f ( n fois).

1. Montrer que (fn) converge simplement sur [0,1] vers une fonction g que l’on précisera.

La convergence est-elle uniforme?
1. Soit a ∈ [0, 1/2]. Montrer que (fn) converge uniformément sur [a, 1 − a].

Exercice 1432 [IMT # 1408] On pose, pour x ∈ R , f(x) =
∑+∞
n=0

sin(nx)
n cosn(x).

1. Montrer que f est définie sur R.

1. Montrer que f est de classe C1 sur ]0, π[ puis calculer f’.
Exercice 1433 [IMT # 1409] Soit f : x 7→

∑+∞
h=0

1
sinh(nx) . Domaine de définition de f ? Équivalent en 0+ ?

Exercice 1434 [CCINP # 1410] On pose f : x 7→
∑+∞
n=1 e

−x
√
n.

1. Déterminer les domaines de définition et de continuité de

144



f .

1. Déterminer la limite de f en +∞.

1. Déterminer un équivalent de f(x) quand x → 0+.

Exercice 1435 [CCINP # 1411] Soit f : x 7→
∑+∞
n=1

xn−1

2n−1 . Déterminer le rayon de convergence de f .
Calculer

+∞∑
n=1

t2n−1

2n− 1

et en déduire f(x).

Exercice 1436 [IMT # 1412] Soit f : x 7→
∑+∞
n=0

(n!)2

(2n+1)!x
n.

1. Déterminer le rayon de convergence

R de f .
1. Donner une expression de f(x) pour x ∈] −R,R[.

Ind. Utiliser I(p, q) =
∫ 1

0 t
p(1 − t)qdt.

Exercice 1437 [IMT # 1413] On pose

an =
∫ π/4

0
tann(t)dt

pour tout n ≥ 0.

1. Étudier la convergence de la suite (an)n≥0.

1. Calculer an + an+2 pour tout n ≥ 2.

1. Déterminer le rayon de convergence de la série entière
∑
anx

n. On note f sa somme.

1. La fonction f admet-elle une limite en 1− ? e) Expliciter f .
Exercice 1438 [IMT # 1414] Pour tout n ∈ N∗, on pose : Hn =

∑n
k=1

1
k . Déterminer le rayon de convergence

de

f : x 7→
+∞∑
n=1

Hnx
n

et donner une expression de f(x).
Exercice 1439 [IMT # 1415] Pour tout n ≥ 1, on pose an =

∫ +∞
0

dt
ch(t)n .

1. Montrer que les an sont bien définis.

1. Étudier la convergence de la suite (an)n≥1. c) Quelle est la nature de la série
∑

(−1)nan ?

1. Déterminer le rayon de convergence de la série entière
∑
anx

n.

Exercice 1440 [CCINP # 1416] Soit F : x 7→
∫ +∞

0 cos(xt2)e−tdt.
1. Montrer que F est de classe C∞ sur R. Calculer F (k)(0).

1. La fonction F est-elle développable en série entière en 0?
Exercice 1441 [IMT # 1417] Soit, pour n ∈ N, In =

∫ e
0 (ln t)ndt.

1. Déterminer la limite de (In).

1. Montrer que, pour tout n ∈ N, In+1 = e(n+1)In. En déduire un équivalent de In.- c) Donner un développement asymptotique
à deux termes de In

Exercice 1442 [CCINP # 1418] 1. Montrer que l’intégrale In =
∫ +∞

0
dt

(1+t4)n est convergente pour tout n ∈ N∗.

1. Étudier la monotonie de la suite (In) et montrer qu’elle converge.

1. Montrer que, pour tout n ∈ N∗, In+1 = 4n−1
4n In.

1. Étudier la convergence de la série
∑

ln
( 4n−1

4n
)
. En déduire la limite de In.

1. On pose, pour n ∈ N∗ et x ≥ 0, fn(x) = x
(1+x4)n .

Étudier la convergence simple de la suite (fn) sur R+. Y a-t-il convergence uniforme?

1. Déterminer la limite de la suite (In) à l’aide du théorème de convergence dominée.

Exercice 1443 [IMT # 1419] Soit α > 1. Pour tout n ∈ N∗, on pose : In(α) =
∫ +∞

0
dt

(1+tα)n .
1. Vérifier la convergence de l’intégrale In(α). b) Montrer la suite (In(α))n≥1 est convergente et préciser sa limite.
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1. Montrer que la série
∑n
n≥1(−1)n−1In(α) est une série convergente et exprimer sa somme sous forme intégrale.

Exercice 1444 [IMT # 1420] Soit, pour n ∈ N∗, In =
∫ π/2

0
sin2(nx)
sin2(x) dx.

Justifier l’existence de In. Montrer que In ∼ n
∫ +∞

0
sin2(u)
u2 du.

Exercice 1445 [IMT # 1421] Soit, pour n ∈ N, In =
∫ 1

0
1

1+tn dt. Déterminer la limite de (In), puis un développement asymptotique
à deux termes de In.
Exercice 1446 [IMT # 1422] Montrer que

∫ +∞
0

x
e2xe−x dx =

∑+∞
n=0

1
(3n+2)2

Exercice 1447 [IMT # 1423] On admet que
∫

R e
−t2dt =

√
2π.

1. Existence et calcul de l’intégrale
∫

D t
2ne−t2dt pour tout n ∈ N.

1. Existence et calcul de l’intégrale
∫

T cos(tz)e−t2dt pour tout z ∈ C.

Exercice 1448 [IMT # 1424] Pour x ∈ R, on pose fx : t ∈ R+∗ 7→ sh(xt)
sh(t) .- a) Déterminer l’ensemble D des réels x pour lesquels

l’intégrale
∫ +∞

0 fx(t)dt converge.
1. Montrer l’égalité

∫ +∞
0 fx(t)dt =

∑+∞
n=0

2x
(2n+1)2x2 pour tout x ∈ D.

1. Trouver un équivalent de la somme quand x → 1−.

Exercice 1449 [IMT # 1425] On pose, pour x ∈ R, f(x) = e
x2
2
∫ x

0 e− t2
2 dt.

1. Montrer que f est de classe C∞ et trouver une équation différentielle vérifiée par f .
b ) Montrer que f est développable en série entière et donner son développement.
Exercice 1450 [CCINP # 1426] 1. Soit x ∈ R. Montrer que t 7→ e−t2 ch(xt) est intégrable sur [0,+∞[.

1. La fonction F : x 7→
∫ +∞

0 e−t2 ch(xt)dt est-elle de classe C1 ?

1. On admettra que
∫

R e
−t2/2 dt =

√
2π. Établir une équation différentielle vérifiée par F . Donner une expression simple de F .

Exercice 1451 [IMT # 1427] On admettra que
∫

R e
−t2/2dt =

√
2π. Soit f : x 7→

∫ +∞
0 e−t2 cos(tx)dt. Préciser le domaine de

définition de f et exprimer f à l’aide d’une équation différentielle.
Exercice 1452 [IMT # 1428] Soit η : x ∈] − 1,+∞[ 7→

∫ 1
0 (1 − t2)xdt. Montrer que η est bien définie et de classe C1.

Exercice 1453 [IMT # 1429] Soit F : x 7→
∫ +∞

0 e−t sin(xt)
t dt. Montrer que F est de classe C1 sur R et l’exprimer à l’aide des fonctions

usuelles.
Exercice 1454 [IMT # 1430] Soient E = C2(R,R), P (resp. I ) le sous-espace des fonctions paires (resp. impaires) de E.

1. Montrer que E = P ⊕ I .

1. Déterminer les f ∈ E telles que ∀x ∈ R, f ′′(x) + f(−x) = x+ cos(x).

Exercice 1455 [IMT # 1431] On considère l’équation différentielle xy′ + y = e−1/x2

x3 .
1. Résoudre cette équation sur R∗ puis sur R.

1. Donner un développement limité d’une solution de l’équation différentielle à l’ordre 3 au voisinageqde 0.
Exercice 1456 [CCINP # 1432] 1. Soit f une fonction de R2 vers R.

1. Donner, en utilisant des quantificateurs, la définition de la continuité de f en (0,0).

ii) Donner la définition de « f différentiable en (0,0) ».- b) On considère f : R2 → R définie par f(x, y) =
{
xy x2y2

x2+y2 si (x, y) ̸= (0, 0)
0 sinon.

1. Montrer que f est continue sur R2.
ii) Montrer que f est de classe C1 sur R2.
Exercice 1457 [IMT # 1433] Soit f : [a, b] → E où E est un espace euclidien et a, b ∈ R vérifient a < b. On suppose f continue sur
[a,b] et dérivable sur ]a,b[.
Montrer qu’il existe c ∈]a, b[ tel que ||f(b) − f(a)|| ≤ ||f ′(c)||(b− a). Ind. On pourra introduire φ : t 7→ ⟨f(t), f(b) − f(a)⟩.
Exercice 1458 [IMT # 1434] Soient K = {(x, y) ∈ R2, x, y ≥ 0 et 0 ≤ x + y ≤ 1} et f : (x, y) ∈ R2 7→ xy(1 − x − y). Montrer
que f atteint un maximum et un minimum sur K et les déterminer.
Exercice 1459 [CCINP # 1435] On munit Rn de sa structure euclidienne canonique. Soient u ∈ S(Rn) et f , g définies sur Rn par :
∀x ∈ Rn, f(x) = ⟨u(x), x⟩ et g(x) = ||x||21.

1. On pose K = g−1{0}. Montrer que K est compact.

1. Montrer que f|K admet un maximum en a ∈ K .

1. Montrer que g est différentiable et calculer sa différentielle et son gradient en tout point.

1. Montrer que f est différentiable et calculer sa différentielle et son gradient en tout point.

1. Montrer que a est un vecteur propre de u.
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3) Probabilités

Exercice 1460 [IMT # 1436] Est-il possible de truquer deux dés à six faces de sorte que la somme obtenue pour un double lancer
suive une loi uniforme?
Exercice 1461 [IMT # 1437] Une urne contient a boules blanches et b boules noires. On tire simultanément n boules et on note X le
nombre de boules blanches obtenues. Donner la loi de X . Calculer son espérance.
Exercice 1462 [CCINP # 1438] Lors d’une compétition de saut en hauteur, un participant saute à plusieurs reprises et, à l’instant n,
a une chance sur n de réussir son saut. S’il chute, la compétition s’arrête pour lui. On note X le nombre de sauts réussis. Quelle est la
loi de X? Existence et valeur de E(X) et de V(X)?
Exercice 1463 [IMT # 1439] On considère une pièce ayant une probabilité p ∈]0, 1[ d’obtenir pile et un dé équilibré à 6 faces. On
note N le nombre de lancers nécessaires pour obtenir pile, puis on lance N fois le dé. Quelle est la probabilité d’obtenir un unique 6
parmi les N lancers?
Exercice 1464 [IMT # 1440] Soit S la somme de N dés équilibrés à 6 faces, où N suit la loi uniforme sur [[1, 52]]. Déterminer la
probabilité des événements (S=1), (S=2), (S=3). Calculer l’espérance de S.
Exercice 1465 [IMT # 1441] On joue des parties indépendantes d’un jeu où la probabilité de gagner est de 2

3 . Soit An l’événement «
les parties n et n+1 sont gagnées, mais ce sont les premières à être gagnées consécutivement ». On note pn = P(An).

1. Calculer p1 et p2.

1. Montrer que, pour tout n ∈ N∗, pn+2 = 1
3pn+1 + 2

9pn.
Exercice 1466 [IMT # 1442] On dispose de N coffres. Avec probabilité p, on place dans l’un des coffres un trésor (le choix du coffre
est effectué sous loi uniforme). Quelle est la probabilité que le N -ième coffre contienne un trésor sachant que les N -1 autres coffres
sont vides?
Exercice 1467 [IMT # 1443] Soient n,N ∈ N \ {0, 1}. On considère N clients et n fournisseurs. Chaque client peut choisir indivi-
duellement un fournisseur. On note Xi le nombre de clients ayant choisi le fournisseur numéro i.

1. Pour tout i ∈ [1, n], déterminer la loi, l’espérance et la variance de Xi.

1. On pose Y = (
∑n
i=1 Xi)

2. Exprimer E(Y ) de deux manières.

1. Calculer E(XiXj) et Cov(Xi, Xj) pour (i, j) ∈ [1, n]2.
Exercice 1468 [IMT # 1444] Soient X et Y indépendantes de loi géométrique de paramètre p ∈]0, 1[. Calculer la loi de S=X+Y.
Déterminer la loi de X sachant (S=n).
Exercice 1469 [Navale # 1445] Soit (Xi)1⩽i⩽n une famille de variables aléatoires i.i.d. de loi géométrique de paramètre p ∈]0, 1[.
On pose X = min(X1, . . . , Xn). Calculer P(X ≥ k), en déduire la loi de X .
Exercice 1470 [IMT # 1446] Soit (X,Y) un couple de variables aléatoires à valeurs dans N2, dont la loi est donnée par P((X,Y ) =
(j, k)) = j+k

e2j+kj!k! pour tout (j, k) ∈ N2. Calculer E
(
2X+Y ).

Exercice 1471 [IMT # 1447] Soient X et Y deux variables indépendantes suivant la loi géométrique de para- mètre p ∈]0, 1[. On
pose D=X-Y et I = min(X,Y ). a) Rappeler l’espérance et la variance de X .

1. Déterminer la loi conjointe de (D, I).

1. Préciser les lois de D et I . Sont-elles indépendantes?
Exercice 1472 [IMT # 1448] Soit (Xk)k∈N une suite de variables aléatoires indépendantes de lois données par P(Xk = −kλ) =
P(Xk = kλ) = 1

2 , où λ ∈]0, 1/2[. Pour n ∈ N∗, on définit Sn =
∑n
k=1 Xk et Yn = Sn−E(Sn)

n .
1. Déterminer E(Sn) et V(Sn).

1. Donner un équivalent deun =
∑n
n=1 k

α, oùα > 0.c) Énoncer l’inégalité de Bienaymé-Tchebychev et déterminer limn→+∞ P(|Yn| >
α).

Exercice 1473 [ISUP # 1449] SoitX une variable aléatoire réelle d’espérance nulle et d’écart-type σ. Montrer que, pour tous λ, µ > 0,
P(X ≥ λ) ⩽ σ2+µ2

(λ+µ)2 et P(X ≥ λ) ⩽ σ2

λ2+σ2 .

XV) Autres Écoles - PSI

1) Algèbre

Exercice 1474 [IMT # 1450] Soit le polynôme P (X) = X4 +αX3 +βX − 16, avec α, β ∈ C. Déterminer les valeurs de α et β pour
lesquelles le polynôme P admet une racine triple.
Exercice 1475 [Navale # 1451] Soit A ∈ Mn(R). Soit DA = {M ∈ Mn(R),MT + M = Tr(M)A}. Caractériser le sous-espace
DA et déterminer sa dimension.
Exercice 1476 [IMT # 1452] Soient A,B ∈ Mn(R) telles que A2 = B2 = In et AB = -BA.

1. Montrer que A et B sont inversibles et diagonalisables.

1. Montrer que n est pair, puis que A et B sont semblables.
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Exercice 1477 [CCINP # 1453] Soit A = (ai,j)1⩽i,j⩽n ∈ Mn(R). Pour x ∈ R, on pose A(x) = (ai,j + x)1⩽i,j⩽n. On note
D(x) = det(A(x)).

1. On donne A =
(

1 4
−3 2

)
. Calculer D(x).

1. Montrer que D(x) est un polynôme en x de degré au plus 1.

1. Dans le cas où ai,i = a, ai,j = b pour i > j et c pour i < j, calculer det(A).
Exercice 1478 [ENSEA # 1454] On souhaite déterminer les suites (an)n∈N, (bn)n∈N et (cn)n∈N vérifiant la relation de récurrence

suivante :


an+1 = 3 an + bn

bn+1 = 3 bn + cn

cn+1 = 3 cn
1. Écrire le système sous la forme Xn+1 = AXn. En déduire Xn en fonction de A et de X0.

1. Calculer, pour tout n,An.

1. Conclure.
Exercice 1479 [IMT # 1455] Soient a ∈ C et U ∈ C[X] non nul. On pose f : P 7→ P + P (a)U .

1. Montrer que f est un endomorphisme de C[X].

1. Montrer que Ker(f) ⊂ V ect(U). c) Montrer qu’il y a égalité si et seulement si U(a) = -1. Que vaut le noyau de f sinon?
Exercice 1480 [CCINP # 1456] 1. Énoncer le théorème du rang.

1. On considère l’énoncé suivant :

« Soient E et F deux espaces et u ∈ L(E,F ). Alors u injective ⇔ u surjective. » Quelles hypothèses suffit-il de rajouter pour que cet
énoncé soit vrai ? Donner des contreexemples pour illustrer l’importance de ces hypothèses.- c) Démontrer que ces hypothèses sont
en fait équivalentes à ∀u ∈ L(E,F ), u injective ⇔ u surjective.
Exercice 1481 [CCINP # 1457] On considère E un espace vectoriel de dimension finie, p, q ∈ L(E)2 tels que p+ q = id etr rg(p) +
rg(q) ⩽ dim(E).

1. Montrer que Im(p) ⊕ Im(q) = E

1. Montrer que p et q sont des projecteurs.
Exercice 1482 [IMT # 1458] 1. Rappeler la définition de deux matrices semblables.

1. Soit A une matrice non inversible et non nulle.

• i) Montrer que A est semblable à une matrice A’ de première colonne nulle.

ii) Montrer qu’il existe (i, j) dans {1, . . . , n}2 tels que A′Ei,j = Ei,jA
′ = 0, où Ei,j est la matrice avec des zéros partout, excepté un

1 sur la i-ème ligne et la j-ème colonne.
• iii) En déduire qu’il existe B non nulle telle que AB = BA = 0.

1. Étudier la réciproque de la propriété précédente.
Exercice 1483 [IMT # 1459] 1. Soit A ∈ Mn(C). Montrer que det(A) = detA.

1. Soient A,B ∈ Mn(R) telles que AB = BA. Montrer que det(A2 +B2) ≥ 0.
Exercice 1484 [CCINP # 1460] Soient E un espace vectoriel de dimension n et u ∈ L(E). Pour k ∈ N on note Kk = Ker(uk) et
Ik = Im(uk).

1. Si u est injectif, que peut-on dire que Ik et Kk ?

1. Montrer que ∀k ∈ N, Ik+1 ⊂ Ik et Kk ⊂ Kk+1.

1. On suppose que u n’est pas injectif.

• i) Montrer qu’il existe p ∈ [[1, n]] tel que Ip+1 = Ip et Kp+1 = Kp.

• ii) Montrer que ∀k ∈ N, Kp+k = Kp et Ik+p = Ik .

• iii) En déduire que E = Ker(up) ⊕ Im(up).

Exercice 1485 [Navale # 1461] Soit M =


1 · · · · · · 1
...

...
1 · · · · · · 1

n− 1 · · · · · · n− 1

 ∈ Mn(R). La matrice M est-elle diagonalisable?
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Exercice 1486 [Navale # 1462] On note

A =
((

j − 1
i− 1

))
1⩽i,j⩽n+1

∈ Mn+1(R)

, avec comme convention que
(
j−1
i−1
)

= 0 si i > j.

1. La matrice A est-elle inversible ? Si oui, donner son inverse.

b ) La matrice A est-elle diagonalisable? Donner ses espaces propres.
Exercice 1487 [Navale # 1463] Soit A ∈ Mn(R) telle que ai,j = 1 si i = 1 ou i = n ou j = 1 ou j = n et 0 sinon. Déterminer les
éléments propres de A.
Exercice 1488 [IMT # 1464] Soit f : P ∈ Rn[X] 7→ (X2 − 1)P ′ − nXP . Montrer que f est un endomorphisme de Rn[X] et
déterminer ses valeurs propres.
Exercice 1489 [CCINP # 1465] Soient E un espace vectoriel de dimension finie, f et g dans L(E).

1. Soit λ une valeur propre non nulle de f ◦ g. Montrer que λ est valeur propre de g ◦ f .

1. Même question lorsque λ = 0.

1. Que peut-on en déduire sur les spectres de f ◦ g et g ◦ f ?
Exercice 1490 [IMT # 1466] Soient

(a, b) ∈ R2

et A =


1 1 0 0
0 b a 0
0 a b 0
0 0 1 1

.

1. À quelles conditions sur a et b, la matrice A est-elle diagonalisable?

1. Ces conditions étant vérifiées, déterminer une base de vecteurs propres de A.

Exercice 1491 [IMT # 1467] Soit A =

1 a b
0 1 c
0 0 −1

.

1. Calculer le spectre de A et son polynôme caractéristique.

1. Déterminer une condition nécessaire et suffisante sur a,b,c, pour que A soit diagonalisable.

Exercice 1492 [CCINP # 1468] Soit A =

 1 j j2

j j2 1
j2 1 j

.

1. i) Déterminer les valeurs propres de A.

ii) La matrice A est-elle diagonalisable? iii) Calculer la dimension du noyau de A.
1. Soit Φ : X ∈ M3(C) 7→ AXA.

1. Déterminer les valeurs propres de Φ.

ii) L’endomorphisme Φ est-il diagonalisable? iii) Déterminer son image.
Exercice 1493 [IMT # 1469] Soient n ≥ 2 et E = Mn(R). On définit f : M ∈ E 7→ tr(M).

1. Déterminer le rang de f . En déduire que E = Ker(f) ⊕ Vect(In).

1. On définit g : M ∈ E 7→ M + tr(M)In. Montrer que g est diagonalisable.

1. Soit J ∈ E de trace nulle. On définit h : M ∈ E 7→ M + tr(M)J . Le polynôme caractéristique de h est-il scindé? L’endomor-
phisme h est-il diagonalisable?

Exercice 1494 [CCINP # 1470] Soit X ∈ Mn,1(R). On pose A = XXT .
1. Déterminer le rang et le spectre de A.

1. Exprimer χA(λ) en fonction de λ et X .

1. Montrer que det(In +XXT ) = 1 +XTX .
Exercice 1495 [IMT # 1471] Soient f et g dans L(C2) tels que f ◦g = g ◦f . On suppose que f n’est pas une homothétie.- a) Montrer
que les sous-espaces propres de f sont stables par q.

1. On suppose f diagonalisable. Montrer que g est diagonalisable et qu’il existe (α, β) ∈ C2 tel que g = α id +βf .

149



Exercice 1496 [IMT # 1472] Soit f ∈ L(R3) tel que f3 + f2 + f = 0. On suppose que f n’admet aucun polynôme annulateur non
nul de degré inférieur ou égal à 2.

1. L’endomorphisme f est-il diagonalisable?

1. Montrer que rg(f) = 2.

1. Montrer que Im(f) ⊂ Ker(f2 + f + id) puis que R3 = Ker(f) ⊕ Ker(f2 + f + id).

1. Soit x non nul dans Ker(f2 + f + id). Montrer que la famille (x, f(x)) est libre.

1. Montrer qu’il existe une base de R3 dans laquelle f a pour matrice

0 0 0
0 0 −1
0 1 −1

.

Exercice 1497 [IMT # 1473] On considère A =

−1 4 0
0 1 0
1 0 3

.

1. Déterminer le spectre de A. Montrer que A est semblable à une matrice diagonale D que l’on explicitera.

1. Montrer que toute matrice commutant avec D est une matrice diagonale.

1. Soit P (X) = X7 +X + 1. Identifier les matrices M telles que P(M) = A.

Exercice 1498 [CCINP # 1474] Soient A =

 3 −3 6
1 −1 2

−1 1 −2

 ∈ M3(R) et a ∈ L(R3) canoniquement associé à A.

1. Montrer que Im(a) ⊂ ker(a).

1. Déterminer une base de Im(a) et ker(a).

1. Montrer que A est semblable à

0 0 0
1 0 0
0 0 0

.

Exercice 1499 [CCINP # 1475] Soit α ∈ C∗. On pose A = (αi+j−2)1≤i,j≤n.
1. Si α ∈ R, montrer que A est diagonalisable.

1. Déterminer le rang et le spectre de A.

1. Pour quelles valeurs de α ∈ C∗, la matrice A est-elle diagonalisable?

Exercice 1500 [CCINP # 1476] 1. Soient a, b ∈ R etA =
(

0 a
b 0

)
∈ M2(R). Donner une condition nécessaire et suffisante pour

que A soit diagonalisable.

1. Soient (e1, . . . , e2p) la base canonique de R2p, α1, . . . , α2p ∈ R et f ∈ L(R2p) dont la matrice dans cette base est A =
(ai,j)1≤i,j≤2p où ai,2p+1−i = αi, les autres coefficients étant nuls.

• i) Représenter la matrice A.

• ii) Montrer que le sous-espace Ei = Vect(ei, e2p+1−i) est stable par f .- iii) Montrer que f est diagonalisable si et seulement si
tous les induits fEi

sont diagonalisables.

• iv) En déduire une condition nécessaire et suffisante pour que A soit diagonalisable.

1. Que peut-on dire en dimension impaire?
Exercice 1501 [CCINP # 1477] Soit f : M ∈ Mn(R) 7→ MMT .

1. Montrer que f est un endomorphisme de Mn(R).

1. Déterminer son noyau et sa dimension ; est-il inversible ?

1. Montrer que f est diagonalisable et déterminer ses sous-espaces propres.

1. Montrer que dimSn(R) = n(n+1)
2 .

Exercice 1502 [CCINP # 1478] Soit n ∈ N∗. On considère A et B dans Mn(C) telles que AB = BA et on pose M =
(
A B
0 A

)
.

1. Si U, V ∈ Mn(C) sont semblables et si R ∈ C[X], montrer que R(U) et R(V) sont
semblables. b) Soit P ∈ C[Y ] Exprimer P(M) an fonction de P(A) P’(A) at P(A)

1. Soit P ∈ C[X]. Exprimer P(M) en fonction de P(A), P’(A) et B.

1. On suppose B nulle et A diagonalisable. Montrer que M est diagonalisable. d) Si λ ∈ C n’est pas valeur propre de A, justifier
que A− λIn est inversible.
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1. On suppose M diagonalisable. Montrer que B est nulle et A diagonalisable.
Exercice 1503 [IMT # 1479] Soient A,B ∈ Mn(R) telles que AB BA = A. Soit f : X ∈ Mn(R) 7→ XBBX .

1. Montrer que f est un endomorphisme de Mn(R). b) Montrer que ∀k ∈ N∗, f(Ak) = kAk .

1. En déduire que A est nilpotente.
Exercice 1504 [CCINP # 1480] Soit E = {A ∈ Sn(R), A3 + 4A2 + 5A = 0}.

1. Soit A ∈ E . Est-ce que A est diagonalisable? Justifier.

1. Quelle relation peut-on écrire entre les racines d’un polynôme annulateur de A et ses valeurs propres?

1. Déterminer l’ensemble des matrices de E .
Exercice 1505 [CCINP # 1481] Soient n ∈ N∗ et A ∈ Mn(R).

1. On suppose A32A2 +A2In = 0. Montrer que A est inversible et exprimer son inverse en fonction de A.

1. On suppose A2 +A+ 2In = 0. Montrer que n est pair. c) On suppose A3 +A2 + 2A = 0. Montrer que rg(A) est pair.

1. On suppose A + A + 2A = 0. Monther que Ig(A) est pair.
Exercice 1506 [CCINP # 1482] Soient n ∈ N∗ et A ∈ Mn(R) telle que A3A2 + AIn = 0. a) Soit P un polynôme annulateur de A.
Quel est le lien entre les racines de P et les valeurs propres de A? b) Déterminer det(A).

1. Montrer que tr(A) ∈ N.
Exercice 1507 [ENSEA # 1483] Trouver les matrices M ∈ M3(R) qui vérifient tr(M) = 3 et M5 = M2.
Exercice 1508 [CCINP # 1484] Soit M ∈ Mn(R) vérifiant (P) : M3 − 4M = 0 et Tr(M) = 0.

1. Montrer que les valeurs propres de M sont racines de X3 − 4X .

1. Caractériser les matrices vérifiant (P).
Exercice 1509 [CCINP # 1485] 1. Soit A ∈ Mn(R). Que peut-on dire de det(A) s’il existe B ∈ Mn(R) telle que B2 = A?

1. Soient a ∈ R et A =

2 + a 2 1 + a
3 − a 3 3 − a
−2 −2 −1

. Calculer det(A). En déduire une condition

pour qu’il existe B ∈ Mn(R) telle que B2

1. Désormais a ≥ 0. Déterminer les éléments propres deA puis donner une matrice P inversible et une matriceD diagonale telles
que A = PDP−1.

1. Désormais a ̸= 1 et a ̸= 3. Montrer que, si M est telle que M2 = D alors MD = DM. Déterminer les matrices M telles que
M2 = D. En déduire les matrices B telles que B2 = A.

Exercice 1510 [IMT # 1486] Soient A,B ∈ Mn(R) avec A symétrique et les valeurs propres de A positives ou nulles. On suppose
que AB + BA = 0.

1. Montrer que, pour tout α valeur propre de A, et pour tout vecteur propre X associé à α, on a ABX = 0.

1. En déduire que AB = BA = 0.
Exercice 1511 [nil # 1487] Soient E un K-espace vectoriel de dimension finie et u ∈ L(E). Soit P un polynôme annulateur de u.
On suppose que 0 est une racine simple de P .

1. Caractériser la condition sur P à l’aide de ses coefficients.

1. Montrer que le noyau de u et celui de u2 sont égaux.

1. Démontrer que, si u est nilpotent, alors u est nul.
Exercice 1512 [CCINP # 1488] Soient E un K-espace vectoriel de dimension n ∈ N∗, e = (e1, . . . , en) une base de E, v ∈ E \ {0}
et f ∈ L(E) tel que f(e1) = · · · = f(en) = v. Déterminer le rang de f et son éventuelle diagonalisablilité.
Exercice 1513 [IMT # 1489] Soient n ∈ N∗ et A ∈ Mn(R) diagonalisable. Montrer que (Tr(A))2 ≤ rg(A) Tr(A2).
Exercice 1514 [CCINP # 1490] Soient E un C -espace vectoriel et U ∈ L(E).

1. On suppose que U est diagonalisable. Montrer que U2 est diagonalisable.

1. Montrer que la réciproque est fausse en donnant un contre-exemple.

1. Soit λ ∈ C∗. Montrer que : ker(U2 − λ2 id) = ker(U − λ id) ⊕ ker(U + λ id).

1. Montrer que siU est un automorphisme alors la réciproque de la question a) est vraie, c’est-à-dire queU2 diagonalisable implique
U diagonalisable.

1. Montrer que, si U est diagonalisable, alors, pour tout polynôme Q, Q(U) est diagonalisable.
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1. On suppose qu’il existe Q dans C[X] tel que Q(U) est diagonalisable et que Q’(U) est bijectif. Montrer que U est diagonalisable.
Exercice 1515 [CCINP # 1491] Soit u ∈ L(E) avec E un espace vectoriel sur un corps K de dimension n, vérifiant u3 = u2, u ̸= id,
u2 ̸= u et u2 ̸= 0.

1. Montrer que Sp(u) ⊂ {0, 1}.

1. Montrer qu’il existe un vecteur x ∈ E, x ̸= 0, tel que u(x) = 0. Que peut-on en déduire?

1. Montrer de même que 1 est une valeur propre de u.

1. Montrer que E = ker(u2) ⊕ Im(u2) et que Im(u2) = ker(u IdE). e) Soient p = dim(ker(u id)), r = dim(ker(u)) et q = n p r.
Montrer qu’il existe

une base de E dans laquelle la matrice de u est de la forme

Ip 0 0
0 0 A
0 0 0

 où A une matrice quelconque.

Exercice 1516 [CCINP # 1492] Soient A ∈ Mn(C) et Φ : M ∈ Mn(C) 7→ AM ∈ Mn(C).
1. Vérifier que Φ est un endomorphisme de Mn(C).

1. Montrer que, pour tout k ∈ N et pour tout M ∈ Mn(C), Φk(M) = AkM . c) Montrer que P ∈ C[X] annule A si et seulement
s’il annule Φ.

1. En déduire que A est diagonalisable si et seulement si Φ l’est.

1. Montrer que A et Φ ont le même spectre (on s’intéressera aux colonnes de M).

1. On supposeA diagonalisable et on note (X1, . . . , Xn) une base de vecteurs propres de A. Exprimer une base de vecteurs propres
de Φ en fonction de X1, . . . , Xn.

Exercice 1517 [CCINP # 1493] Soit E un K -espace vectoriel.
1. Soit (u, v) ∈ L(E)2. Soit λ ∈ K∗. Montrer que si λ est valeur propre de u ◦ v alors λ est valeur propre de v ◦ u.

1. Montrer que le résultat est vrai pour λ = 0 en dimension finie.

1. On se place dans E = R[X] et on considère u, v ∈ L(E) tels que ∀P ∈ E, ∀x ∈ R,

u(P )(x) =
∫ x

0
P (t) dt

et v(P )(x) = P ′(x). Déterminer u◦v, v ◦u. Montrer que 0 est valeur propre de l’un de ces deux endomorphismes mais pas de l’autre.
Exercice 1518 [CCINP # 1494] Soit φ l’application qui à P ∈ R3[X] associe le reste de la division euclidienne de X2P par X4 − 1.

1. Prouver que φ est un endomorphisme de R3[X].

1. Donner la matrice A de φ dans la base canonique de R3[X]. La matrice A est-elle diagonalisable? Ind. On pourra calculer A2.

1. Donner le spectre de φ.

1. Donner les sous-espaces propres de φ.

1. La matrice A est-elle inversible ? Si oui, donnez son inverse.

1. L’endomorphisme φ est-il un automorphisme de R3[X]? g) Que représente la matrice A géométriquement?

Exercice 1519 [CCINP # 1495] Soient A ∈ Mn(R) et M =
(
A A
0 A

)
∈ M2n(R).

1. Soient A,B ∈ Mn(R) deux matrices semblables et P ∈ R[X]. Montrer que P(A) et P(B) sont semblables.

1. Calculer Mk pour k ∈ N∗.- c) Exprimer P(M) en fonction de A, P(A), P’(A).

1. En déduire que si M est diagonalisable alors A l’est aussi.

1. Démontrer que si M est diagonalisable alors A est nulle.
Exercice 1520 [CCINP # 1496] Soit A ∈ Mn(R) telle que A25A+ 6In = 0.

1. Citer deux conditions nécessaires et suffisantes pour qu’une matrice carrée réelle soit diagonalisable.

1. Montrer que A est diagonalisable et que Sp(A) ⊂ {2, 3}. On notera D une matrice diagonale associée.

1. Soit f : M ∈ Mn(R) 7→ DMMD. Montrer que f est un endomorphisme et que f est diagonalisable. Ind. Écrire M et D sous
forme de matrices par blocs.

Exercice 1521 [IMT # 1497] Soit A ∈ Mn(R). On suppose que Ak −→
k→+∞

B.

1. Montrer que B2 = B.
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1. On suppose A diagonalisable sur R avec p valeurs propres distinctes. En utilisant une division euclidienne, montrer que, pour
tout k ∈ N, Ak ∈ Rp−1[A].

1. En déduire que B ∈ Rp−1[A].

1. Caractériser géométriquement B à l’aide des sous-espaces propres de A.
Exercice 1522 [CCINP # 1498] 1. Énoncer l’inégalité de Cauchy-Schwarz.

1. Soit (x1, . . . , xn) ∈ (R+∗)n tel que
∑n
i=1 xi = 1. Montrer que

∑n
i=1

1
xi

≥ n2.

Exercice 1523 [IMT # 1499] Soit E = Rn[X] muni de ⟨P,Q⟩ =
∑n
k=0 akbk , où les ak (resp. bk ) sont les coefficients de P (resp. de

Q). On admet qu’il s’agit bien d’un produit scalaire sur E.
1. Soit H = {P ∈ E,P (1) = 0}. Montrer que H est un sous-espace vectoriel de E et en donner la dimension.

1. Déterminer la distance de X à H .

1. On prend n=3. Donner une base orthonormée de H .
Exercice 1524 [CCINP # 1500] SoientE un espace euclidien de dimension n et (e1, . . . , en) une famille quelconque deE. On suppose
que pour tout x ∈ E, ∥x∥2 =

∑n
i=1⟨x, ei⟩2.

Montrer que (e1, . . . , en) est une base orthonormée de E.
Exercice 1525 [IMT # 1501] Pour P,Q ∈ R2[X], on pose φ(P,Q) = P (0)Q(0) + P ′(1)Q′(1) + P ′′(2)Q′′(2).

1. Montrer qu’il s’agit d’un produit scalaire.

1. Déterminer une base orthonormée de R2[X].

1. Calculer d(X2 +X2,R1[X]).
Exercice 1526 [CCINP # 1502] 1. Énoncer l’inégalité de Cauchy-Schwarz ainsi que le cas d’égalité.

1. Montrer que : ∀(x, y) ∈ R2, ∀t ∈ R, |x+ty|√
x2+y2

⩽
√

1 + t2.

1. Montrer que sup(x,y)∈R2\{(0,0)}
|x+ty|√
x2+u2 =

√
1 + t2.

Exercice 1527 [ENSEA # 1503] 1. Montrer que l’application ⟨A,B⟩ = Tr
(
ATB

)
définit un produit scalaire sur l’espace vectoriel

Mn(R).

1. Soit M = E1,2 + E2,3. Déterminer la projection orthogonale de M sur le sous-espace vectoriel Sn(R).
Exercice 1528 [CCINP # 1504] Soit E l’ensemble des fonctions continues sur [-1,1]. Pour toutes fonctions f et g dans E, on pose
⟨f, g⟩ =

∫ 1
−1 f(t)g(t)dt.

1. Montrer que ⟨ , ⟩ est un produit scalaire sur E. Dans la suite, on munit E de ce produit

scalaire. b) Soit F = {f ∈ E : ∀x ∈ [0, 1], f(x) = 0} et G = {g ∈ E : ∀x ∈ [−1, 0], g(x) = 0}.
Montrer que F et G sont des sous-espaces de E orthogonaux et en somme directe. c) Sont-ils supplémentaires dans E?

1. Montrer que G ⊂ F⊥.

1. Le but de cette question est de montrer que G = F⊥. Soit q ∈ F⊥.

1. On définit fn ∈ E par la fonction nulle sur [0,1], g(0) sur [-1,-1/n] et affine sur [-1/n, 0]. Calculer ⟨fn, g⟩ puis montrer que
g(0)

∫ 0
−1 g(x)dx = 0.

ii) En considérant la fonction nulle sur [0,1] et égale à x 7→ g(x)g(0) sur [-1,0], montrer que g ∈ G.
Exercice 1529 [IMT # 1505] Soient (E, ⟨, ⟩) un espace euclidien, u un vecteur non nul deE etH = Vect(u)⊥. On note p le projecteur
orthogonal sur H et s la symétrie orthogonale par rapport à H .

1. Montrer ∀x ∈ E, p(x) = x ⟨x,u⟩
∥u∥2 u.

1. Montrer ∀x ∈ E, s(x) = x2 ⟨x,u⟩
∥u∥2 u.

1. On se place dans R3 muni de sa structure euclidienne canonique. Soit H = {(x, y, z) ∈ R3, x − y + z = 0}. Écrire la matrice
dans la base canonique de la symétrie orthogonale s par rapport à H .

Exercice 1530 [Navale # 1506] Soient E un espace euclidien et f ∈ L(E). On dit que f est une similitude vectorielle s’il existe
v ∈ O(E) et λ ∈]0,+∞[ tels que f = λv.

1. Montrer que, si f est une similitude vectorielle, alors f conserve l’orthogonalité.
Soit g ∈ L(E) tel que g conserve l’orthogonalité.

1. Si a, b ∈ E sont unitaires, calculer ⟨a+ b, ab⟩.

1. Montrer que q est une similitude vectorielle. Conclure.
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Exercice 1531 [IMT # 1507] On munit Rn euclidien de sa structure euclidienne canonique. Soit M ∈ GLn(R) telle que MT = M3.
On pose N = M4.- a) Montrer que N est symétrique.

1. Montrer que, pour tout X dans E, on a ⟨NX,X⟩ ≥ 0.
1. Montrer que N3 = N .
1. En déduire que M est orthogonale.
1. Pour n=2, déterminer toutes les matrices M qui vérifient l’équation initiale.

Exercice 1532 [IMT # 1508] Soient (E, ⟨ , ⟩) un espace euclidien, p et q deux projecteurs orthogonaux. Soient f = p ◦ q ◦ p et
g = q ◦ p ◦ q. a) Montrez que f et q sont des endomorphismes auto-adjoints

1. Montrez que f et g sont des endomorphismes auto-adjoints.b) Montrer que f et g sont positifs.
c ) Montrer que f et g ont les mêmes valeurs propres non nulles.

1. Montrer que ker(f) = ker(q ◦ p) et que ker(g) = ker(p ◦ q). e) Démontrer que f = g si et seulement si p et q commutent.
Exercice 1533 [ENSEA # 1509] On se place dans R3 munit de sa structure euclidienne orientée canonique.
Soient n⃗ un vecteur unitaire et θ un angle. a) Montrer que la rotation Φ d’axe orienté Vect(n⃗) et d’angle θ est définie par :

∀u⃗ ∈ R3, Φ(u⃗) = cos(θ)u⃗+ (1 − cos(θ)) ⟨u⃗, n⃗⟩ n⃗+ sin(θ)(n⃗ ∧ u⃗).

1. Donner la matrice de Φ dans la base canonique pour θ = π
3 et n⃗ = 1√

3

1
1
1

.

Exercice 1534 [IMT # 1510] Soient A ∈ Mn(R) et B = A+AT . On suppose qu’il existe k ∈ N∗ tel que Bk = 0. Montrer que A est
antisymétrique.
Exercice 1535 [IMT # 1511] Soient E un espace euclidien et f ∈ L(E) tel que ∀x ∈ E, ⟨f(x), x⟩ = 0. a) Montrer que E =
Ker(f) ⊕ Im(f) et Ker(f) ⊥ Im(f). On pourra considérer la quantité

1. On note g l’endomorphisme induit par f sur Im(f). Montrer que g ∈ GL(Im(f)). c) Montrer que, pour tout λ ∈ R∗, g−λ id ∈
GL(Im(f)).

Exercice 1536 [IMT # 1512] 1. Montrer que, si A ∈ Mn(R) alors S = AAT est symétrique positive.
1. Si S ∈ Sn(R), montrer qu’il existe A ∈ Mn(R) telle que S = AAT .

Exercice 1537 [IMT # 1513] Soient (E, ⟨, ⟩) un espace euclidien et u ∈ L(E). Soient les trois propositions suivantes : i) u ∈ O(E),
ii) u2 = − id, iii) ∀x ∈ E2, ⟨u(x), x⟩ = 0. Montrer si l’on suppose deux propositions vraies, alors la troisième est vraie.
Exercice 1538 [CCINP # 1514] Soit M ∈ M2(R) telle que MTM = MMT et M2 + 2I2 = 0.

1. Justifier que MTM est diagonalisable.
1. Déterminer les valeurs propres de MTM .
1. Montrer que 1√

2M ∈ O2(R).

1. Déterminer l’ensemble des matrices vérifiant les hypothèses.
Exercice 1539 [IMT # 1515] Soient A ∈ Mn(K) et u : M ∈ Mn(K) 7→ MTr(M)A.- a) Montrer que u est un endomorphisme.

1. Déterminer les valeurs propres et sous-espaces propres de u. L’endomorphisme u est-il diagonalisable?
1. On prend A = In et K = R. Montrer que u est autoadjoint pour le produit scalaire canonique de Mn(R). Répondre d’une autre

manière à la question b).
Exercice 1540 [Navale # 1516] Soient (E, ⟨, ⟩) un espace euclidien et u, v ∈ O(E).

1. On suppose que u + v = 2 id. Montrer que u = v = id.
1. On suppose qu’il existe m ∈ L(E) telle que umu−1 + vmv−1 = 2m. Que dire de u, vet m?

Exercice 1541 [CCINP # 1517] Soient n ≥ 3 et A =


1 2 · · · n
2 0 · · · 0
...

...
...

n 0 · · · 0

 ∈ Mn(R).

1. Déterminer le rang de A. En déduire la dimension de ker(A). La matrice A est-elle diagonalisable? En déduire la dimension du
sous-espace propre associé à la valeur propre nulle.

1. Montrer que ∀X ∈ Rn, XTAX ⩽ maxλ∈Sp(A)(λ)XTX .
1. Montrer qu’il y a égalité dans l’inégalité précédente si et seulement siX est nul ou est un vecteur propre associé à la plus grande

des valeurs propres.
1. Montrer que les valeurs propres de A sont 0, λ et 1λ, où λ désigne la plus grande valeur propre de A.

Exercice 1542 [IMT # 1518] Soient (E, ⟨, ⟩) un espace euclidien, (e1, . . . , en) une base orthonormée de E.
1. Soit f ∈ L(E). Montrer que tr(f) =

∑n
k=1⟨f(ek), ek⟩.

1. Soient f, g ∈ S+(E). Montrer que 0 ≤ tr(f ◦ g) ≤ tr(f) tr(g). c) Soit f ∈ S++(E). Déterminer les g ∈ S+(E) tels que
tr(f ◦ g) = tr(f) tr(g).
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2) Analyse

Exercice 1543 [CCINP # 1519] Soit E = C2([0, 1],R). Si f ∈ E, on pose N0(f) =
∫ 1

0 |f(t)|dt,

N1(f) =
∣∣∣∣∫ 1

0
f(t) dt

∣∣∣∣+
∫ 1

0
|f ′(t)| dt et

N2(f) =
∣∣∣∣∫ 1

0
f(t) dt

∣∣∣∣+
∣∣∣∣∫ 1

0
f ′(t) dt

∣∣∣∣+
∣∣∣∣∫ 1

0
f ′′(t) dt

∣∣∣∣ .
1. Soit f : x 7→ sin(2πx). Calculer N0(f), N1(f) et N2(f).

1. Montrer que N1 est une norme. Est-ce que N2 est une norme?

1. Montrer que, pour toute f ∈ E, il existe c ∈ [0, 1] tel que f(c) =
∫∞

−∞ f(t)dt.

1. Montrer que ∀f ∈ E,N1(f) ⩽ N0(f). Existe-t-il une fonction f non identiquement nulle telle que N1(f) = N0(f)?- e)
Existe-t-il C ≥ 0 tel que ∀f ∈ E,N0(f) ≤ CN1(f)?

Exercice 1544 [IMT # 1520] Soient E un espace préhilbertien réel, F un sous-espace de E. On suppose que l’adhérence de F est
égale à E. Soient v ∈ E \ F⊥ unitaire et G = {v}⊥.

1. Soient (x, y) ∈ F 2 et z = ⟨x, v⟩y⟨y, v⟩x. Montrer que z ∈ F ∩G.

1. Montrer que tout élément de G est limite d’une suite d’éléments de F ∩G.
Exercice 1545 [IMT # 1521] Soit (E, ⟨, ⟩) un espace euclidien. On fixe k ∈ [0, 1[, et on considère l’ensemble : F = {f ∈ L(E); ∀x ∈
E, ||f(x)|| ≤ k||x||}.

1. Déterminer l’ensemble F lorsque k=0.

1. Vérifier que l’application identité id n’appartient pas à F .

1. Montrer que F n’est pas un sous-espace vectoriel de L(E).

1. Montrer qu’il existe une norme sur L(E) telle que F est une boule fermée pour cette norme.
Exercice 1546 [IMT # 1522] Soient E et F deux R -espaces vectoriels normés et f : E → F .

1. Montrer que les deux assertions suivantes sont équivalentes :

• i) f est continue en a ∈ E,

• ii) pour toute suite (xn) telle que xn → a, on a f(xn) → f(a).

On suppose ici que E = F = R et que f : R → R est continue. On suppose de plus que ∀a, b ∈ Q, a < b ⇒ f(a) < f(b).
∀a, b ∈ Q, a < b ⇒ f(a) < f(b). b) Montrer que f est croissante sur R.

1. Montrer que f est strictement croissante sur R.
Exercice 1547 [IMT # 1523] 1. Pour n ∈ N∗, montrer que l’équation xn + x

√
n1 = 0 possède une unique solution dans [0, 1],

que l’on note xn.

1. Déterminer la limite de (xn)n∈N∗ .

1. Que dire de la nature de la série de terme général xn ?
Exercice 1548 [IMT # 1524] Pour n ≥ 2, soit fn : x 7→ nx3 + n2x2.

1. Pour n ≥ 2, montrer que l’équation fn(x) = 0 possède une unique solution dans ]0,1[. On la note un.

1. Déterminer les variations de (un)n∈N. Montrer que (un)n∈N admet une limite ℓ et la déterminer.

1. Déterminer un équivalent de unℓ lorsque n tend vers +∞.
Exercice 1549 [ENSEA # 1525] 1. Pour n ∈ N∗, montrer que l’équation xe

√
x =

√
n admet une unique solution xn ∈ R+.

1. Déterminer la limite de la suite (xn).

1. Déterminer un équivalent de xn quand n tend vers +∞.

Exercice 1550 [IMT # 1526] Déterminer la nature de la série de terme général (−1)n

√
n+(−1)n .

Exercice 1551 [Navale # 1527] On pose, pour n ∈ N, Un =
∫ π

4
0 tan(t)ndt.- a) Donner une relation entre Un+2 et Un.

1. Donner un équivalent de Un en +∞.

1. Étudier la série de terme général (−1)nUn.

1. Montrer la convergence de la série
∑+∞
k=0

(−1)k

2k+1 et calculer sa somme.

Exercice 1552 [CCINP # 1528] Soit α > 1. Pour n ∈ N, on pose Rn(α) =
∑+∞
k=−1

1
kα .
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1. Montrer que limn→+∞ Rn(α) = 0.

1. Montrer que Rn(α) ∼
n→+∞

1
(α1)α1

n
.

Exercice 1553 [IMT # 1529] 1. Montrer que : ∀x > −1, ∀k ∈ N, (1 + x)k ≥ 1 + kx. b) Pour n ∈ N∗, on pose xn =∑n
k=0

1
k

(
1 − 1

n

)k . Donner un encadrement de xn.

1. i) Montrer que la série
∑+∞
n=0

(
1
n

∫ t
t
dt
t

)
converge.

• ii) En déduire un équivalent de xn lorsque n → ∞.
Exercice 1554 [IMT # 1530] Étudier la nature de la série de terme général un = sin

(
π

√
n2 + 1

)
.

Exercice 1555 [IMT # 1531] Étudier la nature de la série de terme général un = e
(
1 + 1

n

)n.

Exercice 1556 [IMT # 1532] Étudier la nature de la série de terme général un = (−1)n

n+(−1)n .

Exercice 1557 [CCINP # 1533] Étudier la nature de la série de terme général un = (−1)n sin(ln(n))
n .

Exercice 1558 [CCINP # 1534] Soit (un)n∈N définie par u0 ∈ [0, π/2] et, pour n ∈ N un+1 = sin(un).
1. Montrer que (un)n∈N converge et déterminer sa limite.

1. Montrer que
∑
u3
n converge. c) Montrer que (u−2

n+1 − u−2
n ) converge.

1. Donner un équivalent de un.
Exercice 1559 [CCINP # 1535] 1. Énoncer le critère spécial des séries alternées.

1. Pour n ∈ N∗, on pose un = cos
(
πn2 ln

(
1 + 1

n

))
.

Montrer que un = (−1)nπ
3n +O

( 1
n2

)
.

1. En déduire la nature de la série
∑
un.

Exercice 1560 [IMT # 1536] Déterminer la nature de l’intégrale
∫ +∞

0

(
e

sin x√
x − 1

)
dx.

Exercice 1561 [ENSEA # 1537] Étudier, en fonction des paramètres réels α et β, l’intégrabilité sur [2,+∞[ de x 7→ eβx

xα ln(x) .

Exercice 1562 [CCINP # 1538] On pose I =
∫ +∞

0
sin3(t)
t2 dt.

1. Justifier la convergence de I .

1. Montrer ∀t ∈ R, sin3(t) = 3
4 sin(t) 1

4 sin(3t).

1. Montrer que
∫ +∞

0
sin3(t)
t2 dt = 3

4 limx→0+
∫ 3x
x

sin(t)
t2 dt.

1. Soit g : t ∈ R∗ 7→ sin(t)t
t2 . Montrer que g est prolongeable par continuité en 0.

1. Calculer I .
Exercice 1563 [CCINP # 1539] 1. Établir pour n ∈ N l’existence de In =

∫ +∞
n

e−t2dt.

1. Déterminer la nature des séries
∑
In et

∑
nIn.

Exercice 1564 [nil # 1540] Soit f : x ≥ 0 7→
∫ +∞

−π ln
(
t2+2
t2+1

)
dt.

1. Justifier l’existence et la continuité de f sur R+.

1. Montrer que f est dérivable sur ]0,+∞[ et calculer f’.

1. Que peut-on dire de f’ en 0?

Exercice 1565 [Navale # 1541] Pour n ∈ N∗, on pose fn : x ∈]0, 1[ 7→
∑n
k=1

xk

k

∫ n
1
xt

t dt. Étudier la convergence de la suite (fn)n≥1.

Exercice 1566 [ENSEA # 1542] Pour n ∈ N∗, soit fn : x ∈ [0, 1] 7→ n2x2

1⊥n3x3 .
1. Étudier la convergence simple et uniforme sur [0, 1] de la suite (fn). b) Étudier la convergence simple et uniforme sur [0, 1] de

(f ′
n).

Exercice 1567 [nil # 1543] Pour n ∈ N et x ∈ R, on pose fn(x) = nx2

1+nx si x ≥ 0 et fn(x) = nx3

1+nx2 si x < 0.
1. Montrer que (fn) converge uniformément sur R vers une fonction que l’on précisera.

1. Montrer que les fn sont dérivables sur R et étudier la convergence de (f ′
n).

Exercice 1568 [CCINP # 1544] Pour n ∈ N∗, soit fn : x ∈ R+∗ 7→ 1
sh(nx) .

1. Donner le domaine de définition de f =
∑∞
n=0 fn.

1. Donner le domaine de continuité de f .

1. Déterminer les variations de f .
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1. Démontrer l’existence de x0 > 0, tel que : ∀x ≥ x0, ∀n ≥ 2, fn(x) ≤ 3e−nx.

1. Montrer que f(x) ∼ 1
sinh(x) quand x tend vers +∞.

Exercice 1569 [IMT # 1545] Soit f : x 7→
∑+∞
n=0

e(2n+1)x

(2n+1)2 .
1. Déterminer l’ensemble de définition de f .

1. Montrer que f est de classe C2 sur son domaine de définition.

1. En déduire une expression de f sur son domaine de définition.

Exercice 1570 [Navale # 1546] Soit S : x 7→
∑+∞
n=1

cos(nx)
2n .

1. Déterminer le domaine de définition de S.

1. Donner une expression de S à l’aide des fonctions usuelles.

Exercice 1571 [CCINP # 1547] Pour n ∈ N∗, soit un : x 7→ ln(1+n2x2)
n2 ln(1+n) . Soit S =

∑+∞
n=1 un.

1. Déterminer le domaine de définition D de S.

1. Montrer que S est continue sur D.

1. Montrer que la série
∑
u′
n converge uniformément sur D. On s’aidera d’une comparaison série-intégrale.

1. Montrer que S est de classe C1 sur D.
Exercice 1572 [CCINP # 1548] Soient a>0 et φ une fonction continue sur I=[-a,a]. On suppose qu’il existe un réel c ≥ 0 tel que
∀x ∈ I, |φ(x)| ⩽ c|x|. On cherche l’ensemble des fonctions f continues sur I telles que f(0)=0 et ∀x ∈ I, f(x) − f(x/2) = φ(x).

1. Montrer que S : x 7→
∑+∞
n=0 φ(x/2n) est définie et continue sur I .

1. Montrer que S est l’unique solution du problème.

1. On suppose que φ est de classe C1 sur I . Montrer que S est dérivable sur I .
Exercice 1573 [IMT # 1549] Pour n ∈ N on note zn = (1 + i)n.

1. Calculer le module et un argument de zn.

1. Montrer que la fonction x 7→ ex cos(x) est développable en série entière sur R.

1. En notant ex cos(x) =
∑+∞
n=0

an

n! x
n, montrer que, pour tout n ∈ N, an ∈ N.

Exercice 1574 [CCINP # 1550] Soit
∑
anz

n une série entière de rayon R. On note R’ le rayon de la série
entière

∑
bnz

n, où ∀n ∈ N, bn = an

1+|an| . a) Montrer que R′ ≥ max(1, R).
1. Si R’ > 1, montrer que R’ = R. c) Montrer que R′ = max(1, R).

Exercice 1575 [IMT # 1551] Soit u1 ∈ R et, pour tout n ≥ 1, un+1 = 1
ne

−un . a) Donner la nature de la suite (un)n∈N.
1. Déterminer le rayon de convergence de la série entière

∑
unx

n.

1. Sur quel ensemble la somme de cette série entière est-elle définie?

Exercice 1576 [CCINP # 1552] Soit, pour n ∈ N, an =
∫ 1

0

(
1+t2

2

)n
. Soit f : x 7→

∑+∞
n=0 anx

n.

1. Montrer que la suite (an)n∈N est convergente et déterminer sa limite

1. Montrer que
∑

(−1)nan converge

1. Montrer que, pour tout n, an ≥ 1
2n+1 .

1. En déduire le rayon de convergence R de f . e) Montrer que, pour tout n, (2n+ 2)an+1 = 1 + (n+ 1)an.

1. Montrer que f est solution d’une équation différentielle que l’on déterminera.
Exercice 1577 [CCINP # 1553] Soit (an) définie par a0 = a1 = 1 et ∀n ∈ N, an+2 = an+1 + an

n+2 . a) Montrer que (an) est
strictement positive.

1. Étudier sa monotonie.

1. Montrer que la série
∑

(an+1an) diverge. Quelle est la limite de (an)?

1. Quel est le rayon de convergence de la série entière S : x 7→
∑+∞
n=0 anx

n ?

1. Montrer que S est solution de (x-1)y’ + (x+1)y = 0. En déduire S.

1. Montrer que an =
∑n
k=0

(−1)k

k! (n− k + 1).

1. Déterminer un équivalent de an en +∞.

Exercice 1578 [CCINP # 1554] Pour tout n ∈ N∗, on pose In =
∫ +∞

0
sin(nx)
1+n4r3 dx.
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1. Justifier l’existence de In.

1. Montrer que In = 1
n5/3 Jn, où Jn =

∫ +∞
−1

n1/3 sin(n−1/3t)
1+t3 dt.

1. Montrer que la suite (Jn) admet pour limiteK =
∫ +∞

0
t

1+t3 dt. En déduire la limite de la suite (In).d) À l’aide d’un changement
de variable, montrer que

K =
∫ +∞

0
dt

1+t3 .

1. Montrer que 2K =
∫ +∞

0
1+t
1+t3 dt = 4π

3
√

3 .

J0 1 + t3 3
√

3 f) En déduire un équivalent de In lorsque n → +∞.
Exercice 1579 [IMT # 1555] Soient α ∈ R et n ∈ N. On pose Jn =

∫ π/2
−π cos(t)n sin(t)αdt.

1. Étudier l’existence de Jn.

1. On suppose α ≥ 2 et on pose g : t 7→ sin(t)α

1 cos(t) . Montrer que
∫ π

2
0 g(t)dt existe.

1. On pose Kn =
∫ π

2
0 g(t) cos(t)ndt. En rappelant les hypothèses du théorème utilisé, donner la limite de (Kn).

Exercice 1580 [IMT # 1556] 1. Soit n ∈ N. Montrer que l’intégrale
∫ +∞

0
dt

1+t2+tne−t converge. b) Existence et calcul de la limite
de (un) où un =

∫ +∞
0

dt
1+t2+tne−t .

Exercice 1581 [Navale # 1557] Pour n ∈ N, on pose In =
∫ +∞

0
xn

1+xn+2 dx. Montrer que In est défini pour tout n et déterminer la
limite de (In).

Exercice 1582 [IMT # 1558] On pose, pour n ∈ N∗, Un =
∫ +∞

0
n sin( x

n )
x(1+x2) dx.

1. Montrer que, pour tout n ∈ N∗, l’intégrale Un est bien définie.

1. Étudier la convergence de la suite (Un)n≥1.

Exercice 1583 [Navale # 1559] Prouver la convergence de l’intégrale I =
∫ +∞

0
t

sinh t dt et en donner une valeur explicite.

Exercice 1584 [IMT # 1560] Pour tout n ∈ N, on pose In =
∫ +∞
a

xne−xdx.
1. Existence et calcul de In.

1. Montrer
∫ +∞

0 cos(
√
x)e−xdx =

∑+∞
n=0(−1)n n!

(2n)! .

Exercice 1585 [CCINP # 1561] On note I l’intégrale
∫ 1

0
ln(t2) ln(1−t2)

t2 dt.
1. Montrer que I est bien définie.

1. Montrer que t 7→ ln(1 − t2) est développable en série entière ; préciser le développement et son rayon.- c) Pour n ∈ N∗, on pose
fn : t 7→ − 2

n t
2n−2 ln(t). Montrer :

∫ 1
0 fn(t)dt = 2

n(2n−1)2 .

1. Montrer que
∑+∞
n=0

∫ 1
0 fn(t)dt =

∫ 1
0
∑+∞
n=0 fn(t)dt. En déduire I =

∑+∞
n=0

2
n(2n−1)2 .

• e) Déterminer a, b, c ∈ R tels que ∀n ∈ N∗, 1
n(2n−1)2 = a

n + b
2n−1 + c

(2n−1)2 .

1. Montrer que
∑+∞
n=1

(
1
n

2
2n−1

)
= 2

∑+∞
n=1

(−1)n

n .

Exercice 1586 [CCINP # 1562] Soit a ∈ R+∗.

1. On admet que
∑+∞
n=0

1
n2 = π2

6 . Montrer que I = −4 ln(2) + π2

2 .

1. Montrer que l’intégrale suivante est définie :
∫ 1

0
1

1+ta dt.

1. Montrer que l’intégrale suivante est définie et calculer sa valeur :
∫ 1

0 t
nadt. c) On souhaite montrer que

∫ 1
0

1
1+ta dt =

∑+∞
n=0

(−1)n

na+1 .

• i) Est-il possible de le montrer grâce à une intégration terme à terme en montrant la conver-

gence uniforme? ii) Est-il possible de le montrer grâce à une intégration terme à terme en montrant la convergence de la série des
intégrales ?

1. Que se passe-t-il pour a = 1 et a = 2?
Exercice 1587 [CCINP # 1563] Soit f : x ∈]0, 1[ 7→ ln(x)

x−1 . On pose I =
∫ 1

−1 f(x)dx.
1. Montrer que f est prolongeable par continuité en 1.

1. Soit g : t 7→ f(1 − t). Montrer que g est développable en série entière en 0 ; préciser le

iii) Est-il possible de le montrer en montrant que l’intégrale du reste tend vers 0?
rayon de convergence. c) Calculer I en admettant que

∑+∞
n=1

1
n2 = π2

6 .
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Exercice 1588 [IMT # 1564] On note f : t 7→ 1
t ln

(
1−t
1+t

)
.

1. Montrer l’existence de I =
∫ 1

0 f(t)dt.

1. Exprimer f sous la forme d’une série et calculer I , en sachant que
∑n
i=1

1
n2 = π2

6 .

Exercice 1589 [CCINP # 1565] Soient k ∈ N et n ∈ N∗. On pose : Ik,n =
∫ +∞
a

tke−ntdt et an = In,n.- a) Déterminer la limite de(
1 − 1

n

)n lorsque n → +∞.
1. Montrer que l’intégrale Ik,n est bien définie.

1. Calculer explicitement Ik,n en fonction de k et de n. d) Déterminer le rayon de convergence de la série entière
∑
anx

n.

1. Étudier la nature de la série
∑
ane

n.

1. Étudier la nature de la série
∑

(−1)nanen.

1. Montrer que, pour tout x ∈] −R,R[,
∑+∞
n=0 anx

n =
∫ +∞

0
tx
ettxdt.

Exercice 1590 [IMT # 1566] Soit f : x 7→
∫ +∞

0
arctan(xt)

1+t2 dt.
1. Déterminer le domaine de définition D de f . Montrer que f est de classe C1 sur D et exprimer f’ sans symbole d’intégrale.

1. En déduire la valeur de
∫ +∞

0
ln x
r21 dx.

Exercice 1591 [IMT # 1567] Soit f : x ∈ R+∗ 7→
∫ +∞

0
ln(t)
r2+t2 dt.

1. Montrer que f est bien définie.

1. Montrer que f est continue.

1. Montrer que f(1) = 0.

1. Donner une expression explicite de f .

Exercice 1592 [IMT # 1568] Soit g : x ∈ R+∗ 7→
∫ +∞

0 ext sin(t)2

t dt.
1. Montrer que q est bien définie

1. Trouver la limite de g en +∞. Ind. Montrer : ∀t ∈ R+, sin(t)2 ≤ t2.

1. Montrer que q est de classe C1 sur R+∗.

1. Calculer g’(x) pour x > 0 et trouver g.

Exercice 1593 [CCINP # 1569] Le but est de calculer l’intégrale A =
∫ +∞

−∞ e−u2
du. On pose ψ : x ∈ R+ 7→

∫ +∞
0

e−x(1+t2)

1+t2 dt.
1. Montrer que ψ est définie et continue sur R+.

1. Montrer que ψ est de classe C1 sur R+∗.

1. Calculer ψ(0) et déterminer la limite de ψ en +∞. d) Montrer que, pour tout x > 0, ψ′(x) = −A e−x
√
x

.

1. Montrer que
∫ +∞

−∞ ψ′(x)dx = −2A2. En déduire la valeur de A.

Exercice 1594 [IMT # 1570] Soit F : x ∈] − 1,+∞[ 7→
∫ +∞

0
(e−t−e−2t)e−xt

t dt.

1. Montrer que F est bien définie sur ] − 1,+∞[.

1. Montrer que F est de classe C1 sur ] − 1,+∞[ et calculer F’.

1. Montrer que F admet une limite en +∞ et la donner.

Exercice 1595 [Saint-Cyr # 1571] Soit f : x 7→
∫ +∞

1
1

1+tx dt

1. Calculer F(x) pour tout x > -1.

1. Déterminer l’ensemble de définition Df de f .

1. Montrer que f est continue puis de classe C1 sur Df .

1. Conjecturer à l’aide de Python la valeur de f(2). Prouver cette conjecture.

1. Étudier la monotonie de la fonction f sur son domaine. e) Calculer les limites de f en 1+ et en +∞.
Exercice 1596 [IMT # 1572] Soit F : x 7→

∫ π
0 sin(x sin(t))dt.

1. Montrer que F est de classe C1 sur R.

1. En déduire la limite de x 7→ F (x)
x lorsque x tend vers 0.
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Exercice 1597 [CCINP # 1573] Soient f : x 7→
∫ +∞

0 e−ttxdt et g : x 7→
∫ x

0 ln(f(t))dt. a) Montrer que f est définie et continue sur
R+.

1. Trouver une relation entre f(x) et f(x-1). c) Montrer que g est dérivable et calculer g’.

1. Nature de la série
∑ (−1)n

a(n) ?

Exercice 1598 [IMT # 1574] Soit f : x ∈ R 7→
∫ +∞

0
cos(xt)
(1+t2)2 dt.

1. Montrer que f est bien définie. La fonction f est-elle paire? continue?

1. Montrer que f est de classe C∞.

1. Démontrer : ∀x ∈ R, f ′(x) = x
2
∫ +∞

0
cos(xt)
1+t2 dt. d) Déterminer une équation différentielle linéaire du second ordre satisfaite par

f .
Exercice 1599 [CCINP # 1575] Soit f : x 7→

∫ +∞
0

dt
tx(1+t) .

1. Déterminer le domaine de définition D de f .

1. Montrer que f est continue sur D.

1. Pour tout x ∈ D, montrer que 1x ∈ D et que f(1 x) = f(x). d) Soit h : x 7→
∫ 1
a
tx−1

1+t dt.

1. Montrer que h est continue sur ]0,+∞[.- ii) Pour tout x ∈ D, prouver f(x) = h(1 − x) + 1
xh(1 + x).

iii) Donner un équivalent de f en chaque borne de D.
Exercice 1600 [IMT # 1576] Soit f : x 7→

∫ +∞
0

dt
1+etx+e−t

1. Déterminer le domaine de définition D de f .

1. Montrer que f est continue sur D.c) Donner des équivalents de f aux bornes de D.
Exercice 1601 [IMT # 1577] Trouver les f ∈ C0(R,R) vérifiant ∀x ∈ R, f(x)

∫ x
0 f(t)dt = 1.

Exercice 1602 [CCINP # 1578] Soit (E) l’équation différentielle : y′2xy = (−2x1)ex.
1. Soit l’équation différentielle homogène y’ + a(x)y = 0, où a est une fonction continue sur

R. Montrer que l’ensemble des solutions est {x 7→ λe−A(x), λ ∈ R}, où A est une primitive de a.
1. Résoudre l’équation (E).

Exercice 1603 [CCINP # 1579] Soit (E) l’équation différentielle (x2 + x)y′′ + (3x+ 1)y′ + y = 0.
1. Déterminer une solution de (E) développable en série entière au voisinageqde 0.

1. En déduire que la fonction f : x 7→ 1
1+x est solution de E.

1. Trouver une autre solution de (E) indépendante de la première à l’aide du changement d’inconnue y(x) = u(x)
1+x .

Exercice 1604 [ENSEA # 1580] On considère l’équation différentielle x2y′(x) + y(x) = x. Soit h : x ∈ R+∗ 7→
∫ x
a

1
t e

−1/tdt.
1. Montrer que h est bien définie.

1. Montrer que l’ensemble des solutions de (E) sur R+∗ est {x 7→ λe
x
2 + h(x)ex, λ ∈ R}.

1. Montrer que, pour tout x > 0, h(x) = xe− 1
x

∫∞
0

e−u

1+uxdu. Ind. Effectuer le change-

ment de variable t = x
1+ux .

1. En déduire un équivalent de h en 0+.

Exercice 1605 [CCINP # 1581] Soit A =
(

−1 −4
1 3

)
.

1. La matrice A est-elle diagonalisable?

1. Trigonaliser explicitement A.

1. Résoudre le système différentiel
{
x′ = −x4y + sh(t)
y′ = x+ 3y + tet.

Exercice 1606 [IMT # 1582] 1. Soit a ∈ R. Résoudre x” + ax = 0.b) Résoudre
x′′ = 2y + z

y′′ = 2x− z

z′′ = x+ y

Exercice 1607 [CCINP # 1583] Soit f : (x, y) 7→ xey + yex.
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1. Montrer que f n’admet pas d’extremum.

1. Qu’est-ce qu’un point critique? Quel est le rapport entre point critique et extremum?

1. Montrer que, si (x, y) est un point critique de f , alors y + ey
1
y = 0.

1. Prouver que f admet un unique point critique (x0, y0) ∈ Z2.
Exercice 1608 [IMT # 1584] Soit T = {(x, y) ∈ R2 : x ≥ 0, y ≥ 0, 1 − x− y ≥ 0}. Soit f : (x, y) ∈ T 7→ xy

√
1 − x− y.

1. Montrer que f admet un minimum et un maximum sur T .

1. Déterminer ces extrema.
Exercice 1609 [IMT # 1585] Trouver les plans tangents à la surface d’équation x2 + y2 + z2 + 4x+ 6y− 2z = 1, qui sont parallèles
au plan d’équation x + y + z = 0.

3) Probabilités

Exercice 1610 [IMT # 1586] Soit p ∈ [0, 1]. On lance une pièce, dont la probabilité de tomber sur pile est p. SoitX la variable aléatoire
qui compte le premier instant où on obtient pile, Y celle qui compte le second.

1. Donner la loi de X et celle du couple (X,Y).

1. En déduire la loi de Y.

1. On note Z = 1
V−1 . Donner E(Z).

Exercice 1611 [CCINP # 1587] On lance une pièce équilibrée, les lancers sont supposés indépendants. On note Y le nombre de lancers
nécessaires pour obtenir le premier pile et X le nombre de lancers nécessaires pour obtenir la séquence pile-face pour la première
fois.

1. Déterminer la loi de Y et son espérance.

1. Déterminer la loi conjointe de (X,Y).

1. En déduire la loi de X .

1. Calculer pour x ∈] − 1, 1[,
∑+∞
n=0 n(n− 1)xn−2.

1. Calculer l’espérance et la variance de X .
Exercice 1612 [CCINP # 1588] On lance un dé à 6 faces, équilibré, un certain nombre de fois. On note Xi la valeur du i-ème lancer.

1. Déterminer la probabilité que X1 ̸= X2.

1. Quelle est la probabilité que, pour tout i dans N, Xi = X1 ?

1. On note N = inf{i ∈ N, Xi ̸= X1}. Déterminer la loi de N .
Exercice 1613 [IMT # 1589] On note, pour tout n ≥ 1, pn = αλn la probabilité qu’une famille ait exactement n enfants, où 0 < λ < 1
et (1 + α)λ < 1. La probabilité d’avoir un garçon est q = 1 - p, où p ∈]0, 1[ est la probabilité d’avoir une fille.

1. Calculer la probabilité qu’une famille n’ait aucun enfant.

1. Soit x ∈] − 1, 1[. Calculer
∑+∞
k=0

(
n
k

)
xn.

1. Calculer la probabilité qu’une famille ait exactement k garçons.

1. Calculer la probabilité qu’une famille ait au moins deux garçons, sachant qu’elle en a au moins un.
Exercice 1614 [nil # 1590] Une entreprise vend deux produits, notés A et B. Les commandes sont passées par téléphone, chaque
appel étant indépendant des précédents. La probabilité qu’à un appel le produit A (resp. B) soit commandé est 2/10 (resp. 8/10). On
note XA (resp. XB ) la variable aléatoire donnant le nombre d’appels consécutifs nécessaires pour obtenir une première commande
du produit A (resp. B). On note L la variable aléatoire donnant la longueur de la première « ligne d’appels », c’est-à-dire le nombre
d’appels consécutifs qui commandent un même produit à partir du premier appel. Par exemple, si la suite d’appels est AAABAABB,
alors XA = 1, XB = 4 et L = 3.

1. Déterminer la loi de XA, donner une expression de P(XA = n) pour n ∈ N∗. Justifier que XA admet une espérance et une
variance, et les calculer.

1. Même question pour la variable XB .

1. Déterminer P (XA = n+ 1, L = n).

1. En séparant les cas selon la nature du (n+1)-ième appel, calculer P(L = n), et vérifier que P(L = n) = 0.8 P(XA = n) +
0.2 P(XB = n).

1. Justifier que la variable L admet une espérance, et la calculer.

1. Les variables XA et XB sont-elles indépendantes?
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1. Les variables XA et L sont-elles indépendantes?
Exercice 1615 [CCINP # 1591] On considère une urne contenant b ≥ 2 boules rouges et v ≥ 2 boules vertes.
À chaque tirage, on prélève une boule avec remise, avec une probabilité de p ∈ [0, 1].
On effectue une suite infinie de tirages indépendants.

1. Soit X1 le rang d’apparition de la première boule verte. Déterminer la loi de X1 ainsi que son espérance.

1. Soit X2 le rang d’apparition de la deuxième boule verte. Déterminer la loi de X2 ainsi que son espérance.
Exercice 1616 [Navale # 1592] Un conciergeqpossède n clés et souhaite ouvrir une porte. On suppose qu’une seule clé du trousseau
permet de l’ouvrir.

1. À chaque essai infructueux, il écarte la clé utilisée. Quel est le nombre moyen de tentatives avant qu’il arrive à ouvrir la porte?

1. Même question, en supposant qu’à chaque tentative il remet la clé utilisée avec les autres.
Exercice 1617 [IMT # 1593] Soient X et Y des variables aléatoires indépendantes de lois respectives G(p) et G(q), où p, q ∈]0, 1[.

1. Déterminer P(Y > k) pour tout k ∈ N.- b) Déterminer P(Y > X).
Exercice 1618 [IMT # 1594] Soient X et Y deux variables aléatoires indépendantes sur un même espace probabilisé. On suppose
que X ∼ P(λ) et Y ∼ P(µ).

1. Montrer que Z = X + Y suit une loi de Poisson dont on déterminera le paramètre.

1. Montrer que la loi de X sachant (Z = n) est binomiale et déterminer ses paramètres.
Exercice 1619 [CCINP # 1595] SoientX , Y deux variables aléatoires indépendantes suivant la loi géométrique de paramètre p ∈]0, 1[.
On note Z = min(X,Y ).

1. Donner la loi de X , son espérance et sa variance.

1. Calculer P(X > 2).

1. Soit n ∈ N∗. Calculer P(X > n).

1. Calculer P(Z > n).
Exercice 1620 [CCINP # 1596] Soient λ > 0 et p ∈]0, 1[. Soient X une variable aléatoire suivant la loi de Poisson de paramètre λ et
Y telle que, pour tout n ∈ N, la loi de Y sachant (X = n) est la loi binomiale de paramètres n et p.

1. Déterminer la loi conjointe du couple (X, Y).

1. Déterminer la loi de Y.c) Les variables aléatoires X et Y sont-elles indépendantes?

1. Déterminer la loi de Z = X Y.
Exercice 1621 [CCINP # 1597] Soit (X,Y) un couple de variables aléatoires à valeurs dans N2. On suppose que ∀k, n ∈ N2, P(X =
k, Y = n) =

(
n
k

) 1
2n p(1 − p)n où p ∈ [0, 1] est fixé.

1. Déterminer la loi de Y.

1. Donner le développement en série entière de x 7→ 1
1−x .

Montrer que :
∑+∞
n=0

(
n
k

)
xn−k = 1

(1−x)k+1 .

1. En déduire la loi de X .

1. Les variables X et Y sont-elles indépendantes?
Exercice 1622 [Navale # 1598] Soient (X, Y) un couple de variables aléatoires, avec X à valeurs dans {1, 2},
Y à valeurs dans N et ∀i ∈ {1, 2}, ∀k ∈ N,P(X = i, Y = k) = qk

2i .

1. Déterminer la valeur de q.

1. Déterminer les lois marginales de X et de Y.

1. Déterminer l’espérance de Y.
Exercice 1623 [IMT # 1599] Si X est une variable aléatoire à valeurs dans N, on appelle taux d′arrêt de X la suite (xn)n∈N définie
par ∀n ∈ N, xn = P(X = n |X ≥ n).

1. Soit Y de loi donnée par ∀n ∈ N∗, P(Y = n) = 1
n(n+1) . Vérifier qu’il s’agit bien d’une distribution de probabilités sur N∗, puis

déterminer le taux d’arrêt de Y.- b) Si (xn)n∈N est le taux d’arrêt de X , montrer que ∀n ∈ N,P(X ≥ n) =
∏n−1
n=1(1 − xk).

1. On suppose que X est de taux d’arrêt constant. Déterminer la loi de X et son espérance.
Exercice 1624 [IMT # 1600] Soient X1, X2 des variables aléatoires indépendantes suivant la loi binomiale B(n, p). Soit M =(
X1 1
0 X2

)
.

1. En utilisant deux manière d’écrire (1 +X)2n, montrer que
∑n
k=1

(
n
k

)2 =
(2n
n

)
.
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1. Quelle est la probabilité que M soit diagonalisable?
Exercice 1625 [IMT # 1601] Soient p ∈ [0, 1] et λ > 0. Soient X ,Y,Z trois variables aléatoires indépendent

dantes telles que X ∼ G(p), Y ∼ G(p), Z ∼ P(λ). Soit Mn =



X 0 · · · 0 Y

0 Z
. . . 0 0

...
. . . . . . . . .

...

0 0
. . . Z 0

Y 0 · · · 0 X


.

Déterminer la probabilité que Mn soit dans S++
n (R).

Exercice 1626 [IMT # 1602] On considère la suite (Pn)n∈N définie par :P0 = 1, P1 = X et, pour tout n dans N, Pn+2 = 1
2 (XPn+1+

Pn).
1. Montrer que P̄n définit une fonction génératrice d’une variable aléatoire Xn.

1. Exprimer E(Xn) en fonction de n. c) Déterminer la variance de Xn.
Exercice 1627 [Navale # 1603] Soit X une variable aléatoire telle que ∀k ∈ N∗, P(X = k) = k−1

2k .
1. Vérifier par le calcul que

∑+∞
k=1 P(X = k) = 1.

1. Donner la fonction génératrice de X . Quel est son rayon de convergence? c) La variable X admet-elle une espérance finie? Si
oui, que vaut-elle ?

Exercice 1628 [CCINP # 1604] Soient r ∈ N∗ et x ∈ R avec |x| < 1.
1. Donner le développement en série entière de 1

1−x puis celui de 1
(1−x)r .

1. Soit p ∈]0, 1[. On pose q=p-1 et ∀k ∈ N∗, pk =
(
k+r−1
k

)
prqk . Montrer que

P(X = k) = pk définit une probabilité.
1. Calculer la fonction génératrice de X .

1. En déduire l’espérance et la variance de X .
Exercice 1629 [IMT # 1605] Soient λ ∈]0, 1[ et k ∈ N.a) Montrer que la série

∑
n≥k

(
n
k

)
(1−λ)n−k converge et déterminer sa somme.

Ind. Utiliser la série entière
∑
n>0 x

n.

1. Soit Xk une variable aléatoire telle que P(Xk = n) =
(
n
k

)
(1 − λ)n−kλk+1 si n ∈ N avec n ≥ k.

• i) Déterminer la fonction génératrice de Xk ; en préciser le rayon de convergence.

• ii) Montrer que Xk est d’espérance finie et la calculer.
Exercice 1630 [IMT # 1606] 1. Calculer la fonction génératrice, puis l’espérance, d’une variable aléatoire suivant la loi U({0, . . . , n}).

1. Peut-on trouver deux variables aléatoires X1 et X2 à valeurs entières, indépendantes et de même loi telles que X1 + X2 ∼
U({0, . . . , n})?

Ind. Par indépendance de X1 et X2, on a GX1+X2 = GX1GX2 .

XVI) Autres Écoles - PC

1) Algèbre

Exercice 1631 [CCINP # 1607] Soit P = (X + 1)7 −X7 − 1. Montrer que j est racine de P et déterminer sa multiplicité. Factoriser
P dans C[X].
Exercice 1632 [CCINP # 1608] Soit A ∈ M2(R). Soit f : M ∈ M2(R) 7→ AM . Vérifier que f est linéaire. Montrer que f est
bijective si et seulement si A est inversible. Montrer que f est diagonalisable si et seulement si A est diagonalisable
Exercice 1633 [CCINP # 1609] Soit A ∈ M4(C) telle que rg(A) = 2 et A2 = 0.

Montrer que Im(A) = Ker(A) et que A est semblable à
(
J2 0
0 J2

)
où J2 =

(
0 1
0 0

)
.

Exercice 1634 [CCINP # 1610] On admet que l’on définit une norme sur Mn(C) en posant, pour A ∈

Mn(C), ∥A∥ = max


n∑
j=1

|ai,j |, i ∈ [[1, n]]

 . On pose ρ(A) = max{|λ|, λ ∈ Sp(A)}.

1. Soit A =
(

1 1 + i
0 eiθ

)
avec θ ∈ R. Calculer ∥A∥ et ρ(A).

1. Soient A,B ∈ Mn(C). Montrer que ||AB|| ≤ ||A|| × ||B||.
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1. Soient λ ∈ Sp(A) et X = (x1 · · ·xn)T un vecteur propre associé.
Montrer que, pour tout i ∈ [1, n], |λ||xi| ⩽

∑n
i=1 |ai,j ||xi|. En déduire que ρ(A) ⩽ ||A||.

1. On suppose A diagonalisable. Montrer que limp→+∞ Ap = 0 si et seulement si ρ(A) < 1.
Exercice 1635 [CCINP # 1611] Soit n ≥ 2. Une matrice M ∈ Mn(R) est dite orthodiagonalisable (resp. orthotrigonalisable) s’il
existe une matrice orthogonale P telle que PTMP est diagonale
(resp. triangulaire supérieure). Soit A ∈ Mn(R).

1. Montrer que si A est orthodiagonalisable, alors A est diagonalisable.
1. i) Montrer que A est orthodiagonalisable si et seulement si A est symétrique. ii) Donner un exemple de matrice de Mn(R)

diagonalisable et non symétrique.
1. Soit M ∈ Mn(R) inversible. On note (u1, . . . , un) le système de ses vecteurs colonnes. On munit Mn,1(R) de son produit

scalaire usuel.
• i) Montrer qu’il existe une base orthonormée (v1, . . . , vn) telle que

∀j ∈ {1, . . . , n}, uj =
J∑
i=1

⟨uj , vi⟩vi.

ii) Montrer qu’il existe Q orthogonale et R triangulaire supérieure telles que M = QR.
1. Soit A ∈ Mn(R). Montrer que A est orthotrigonalisable si et seulement si A est trigonalisable.
1. Que dire d’une matrice antisymétrique et trigonalisable?

2) Analyse

Exercice 1636 [CCINP # 1612] Soit λ ∈ [−1, 1]. On note Sλ l’ensemble des fonctions f : R → R dérivables telles que ∀x ∈ R, f ′(x) =
f(λx).

1. Montrer que Sλ est un sous-espace vectoriel de l’ensemble des fonctions dérivables de R dans R.
1. i) Déterminer S1.
• ii) Montrer que, si f ∈ S0, alors f est affine. Déterminer S0.

1. Soit φ : x 7→
∑+∞
n=1

1
n!λ

n(n−1)/2xn. Montrer que φ est bien définie sur R et que φ ∈ Sλ.

1. Soit f ∈ Sλ. Montrer que f est de classe C∞ sur R et que : ∀n ∈ N, ∀x ∈ R, f (n)(x) = λn(n−1)/2f(λnx).
1. Soit f ∈ Sλ telle que f(0) = 0. Montrer que f est la fonction nulle.
1. Déterminer Sλ.

Exercice 1637 [CCINP # 1613] Montrer que lima→0
∫ 3a

−u
cos(u)
u du = ln(3).

Exercice 1638 [CCINP # 1614] Pour n ∈ N∗ et x ∈ R+, on pose fn(x) = 1
n+n2x et gn(x) = xfn(x).

Pour
x ∈ R+∗

, on pose f(x) =
∑+∞
n=0 fn(x).

1. Vérifier que f est bien définie sur R+∗.
1. Étudier la monotonie et la continuité de f sur R+∗.
1. Montrer que f(x) −−−−−→

x→+∞
0.

1. Montrer que la série
∑
gn converge normalement sur R+.- e) Montrer qu’il existe une constanteA > 0 telle que f(x) ∼ A

x→+∞
A
x .

1. Trouver un équivalent de f(x) lorsque x → 0+.
Exercice 1639 [nil # 1615] Soit F : x ∈ R+∗ 7→

∫ +∞
0

ln(t)
x+t2 dt.

1. Montrer que F est bien définie.
1. Calculer F(x) à l’aide du changement de variable

√
xu = t.

3) Probabilités

Exercice 1640 [CCINP # 1616] On lance indéfiniment une pièce équilibrée. Soit X le temps d’attente du premier pile. Soit Y une
variable aléatoire telle que, pour tout n ∈ N∗, la loi de Y sachant (X = n) est la loi uniforme sur l’ensemble {1, 2, . . . , n}.

1. Rappeler la loi de X et son espérance. b) Déterminer P(X = n, Y = k) pour tous k, n ∈ N∗. Les variables X et Y sont-elles
indépendantes? c) Montrer que, pour tout k ∈ N∗, P(Y = k) =

∑+∞
k=0

1
n2k .

1. Rappeler le développement en série entière de x 7→ ln(1 − x). Calculer P(Y = 1).

1. Montrer que, pour tout k ∈ N∗, P(Y = k) =
∫ 1/2

0
tk−1

1−t dt.
1. Calculer E(Y ).
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