Exercices 2023

I) ENS MP-MPI
Exercice 1 Soient S et T des ensembles finis non vides et f une application de S dans 7. On pose X = {(z,y) € S?, f(z) = f(y) }.

Montrer que | X | > max (»‘;2”([;})2+|3| - [;}>

2
Démonstration. Pour le terme de gauche, il s’agit de montrer que Zy nfl > (%7:5), c’est Cauchy-Schwarz.
Pour le terme de droite, c’est un principe des tiroirs, puis compter pour 1 les éléments qui ne sont pas dans le tiroir. O
Exercice 2 Soient n € N* et (z1,...,z,) € R™ Montrer qu’il existe m € Z et S un sous-ensemble non vide de 1,n tels que
1
Im = Yies il <
Démonstration. S sera un sous-ensemble d’entiers consécutifs : considérer les sommes partielles Sy, . .., Sy,. O

Exercice 3 Soit n un entier premier > 1. Montrer que —1 est un carré modulo n si et seulement si 7 est somme de deux carrés
d’entiers.

. . p . . ) . p_1
Démonstration. Si p est somme de deux carrés d’entiers, p = 1[4], et a est un carré si et seulement sia 2 = 1[p].

Réciproquement, si nn | m? + 1, dur, dur.!! O

Exercice4 1. Calculer > ¢(d) ot ¢ est 'indicatrice d’Euler.
d|n

2. Calculer Y~ 1u(d) ol pu est la fonction de Mébius définie par (1) = 1, u(p) = —1, u (p*) = 0 pour k > 2 si p est un nombre
d|n

premier et p(nm) = p(n)p(m)sin Am =1.Onpose F: x € Ry — Hg €1[0,1];¢ < m}‘
3. Montrer que F(z) = 32?4+ O(zInw).
r—+00
Démonstration. 1. 32, ¢(d) =n
2. X g #(d) = 0,0ulpourn =1
3. Par inversion de Mobius, ona p(d) = > pu(%)d'. O
d'ld

Exercice 5 Soient p, g deux nombres premiers distincts. On note v,(n) la valuation p-adique d’un entier n. On pose, pour m €
N*,N(m)=(1-¢) (1 —¢?)...(1 —¢™). Trouver une constante ¢ > 0 telle que, pour tout m € N*, v, (N (m)) < cmIn(m).
Démonstration. Relier a 423 (LTE).

Onavp(a™ —b") = vp(a — b) + vp(n) (pour p # 2).

Donc v,(N(m)) = > 1t vp(1 — q) + vp(m!), plus formule de Legendre. O

Exercice 6 Si X est un ensemble fini, on note X* = [ |, .\ XF c: (X*)2 — X* la concaténation et £: X* — N la longueur. Soient
A et B deux ensembles finis et p: A* — B* telle que, pour tous a,a’ € A, ¢ (c(a,a’)) = c(p(a), ¢ (a’)).

1. Onpose A = {a,b,c,d} et B = {0, 1}. Etudier I'injectivité des applications définies sur les lettres de A puis étendues sur A*
par p: A — B* telles que p(a) = 0,¢(b) = 01, p(c) = 10,¢(d) = 10011, et 3p: A — B* telle que ¢(a) = 01,¢(b) =
10,(c) = 11, %(d) = 00.

2. Montrer que, si ¢ est injective, alors ) , |B|_Z(“’(a)) <1.

Démonstration. 1. La premieére est non injective : 0100110 peut étre lu de deux facons.
La seconde I'est.
2. On note Cy le nombre de choix possibles, de mots, dont la longueur totale N.
On doit avoir Cy < |B|". Mais Cy vérifie une relation de récurrence : Cy = > aca CN—t(a-
Donc les racines de cette récurrence doivent étre < |B|, ce qui implique qu’en | B| la valeur est négative, d’ou le résultat. ]

Exercice 7 1. Soitn € N*. Montrer que la transposition (1 2) et le cycle ( 12 - n ) engendrent le groupe symétrique S,,.
2. La transposition (1 3) et le cycle (123 4) engendrent-ils Sy ?

3. Soientn € N*etl < a < b < ntelsquer = (ab) et o = ( 1 2 -+ n ) engendrent S,,. Montrer que b — a et n sont
premiers entre eux.

4. Montrer la réciproque de la propriété précédente.
Démonstration. 1.
2. Non.
3. Sip|b—aAmn,alorso(a) —o(b) = a — b[p].
4. Facile de se ramener 4 un cycle (uu + 1) O



Exercice 8 Soit G un groupe fini. Si X et Y sont des parties non vides de G, on pose X ~1 = {x’l, T e X} et XY = {zy, (z,y) €
X x Y}. Dans la suite, X désigne une partie non vide de G.

1. On suppose que | X X| < 2| X|. Montrer que XX ! = X1 X.
2. On suppose que |XX71| < %\X| Montrer que X~ X est un sous-groupe de G.

Démonstration. O

Exercice 9 Soit p un nombre premier. On admet qu’il existe un anneau commutatif A dans lequel p?.14 = 04 et il existe un élément
inversible x tel que :
. tout élément de A s’écrive P(z)x~* pourun P € Z[X] etun k € N;
« pour deux polynémes P, Q dans Z[X] et deux entiers naturels &, [, 'égalité P(x)z=* = Q(z)z~" équivaut a ce que X*Q et
X!P aient méme réduit modulo p? (autrement dit, tous les coefficients de X*@Q — X' P sont des multiples de p?).

k

1. Soient P € Z[X] et k € N. Caractériser I'inversibilité¢ de P(x)z~* dans A.
2. Montrer que le groupe multiplicatif $A*$ne posséde pas de partie génératrice finie.

Démonstration. 0
_ 2imaf(n)
Exercice 10 Soit f € Z[X].On pose S; = Yo<a<q S.%_t e i pourtout g € N*. Montrer que, si g A ¢’ = 1, alors Syyr = SyS,.
ang=1
Démonstration. O

Exercice 11 On dit qu'un ensemble X C C est intégrable si: V(z,y) € X2, |z — y| € N. Montrer que, pour tout n € N, il existe un
ensemble intégrable X composé de n points tous sur un méme cercle.

Démonstration. ]

Exercice 12 Soit n = 2m + 1 > 1 un entier impair. Expliciter un polynéme P,,, de degré 2m tel que Vz € R\ Z,sin(nx)
(sinz)™ Py, (cotan x).
kTr)

1. Donner une expression simplifiée de Y, cotan? (7 .

2. Donner une expression simplifiée de } ;" @

, . 2
3. En déduire que 3, ===

Démonstration. ]

Exercice 13 Soit P € R[X] de degrén > 1.

1. On suppose P scindé sur R. Montrer que Vz: € R,nP(z)P" () < (n — 1)P'(x)2.

2. Donner un polyndme ne vérifiant pas le résultat de la question précédente, puis un polynéme non scindé le vérifiant.
Démonstration. O
Exercice 14 Montrer que, pour tout n € N, il existe (ag,...,a,) € (R"’*)n—ir1 tel que, pour tout (gg,...,e,) € {—1,1}""1, le
polyndme P(X) = Y"}'_, exar X" est scindé sur R.

Démonstration. O

Exercice 15 Deux polynomes P, Q € R[X] sont entrelacées si

« —P et () sont scindés a racines simples sur R,

« P et Q n’ont aucune racine réelle commune,

« entre deux racines consécutives de P (respectivement ()) il y a une unique racine de @ (respectivement P).
Soient P, Q € R[X]. Montrer que si, pour tout A\, i € R*, AP + u() est scindé a racines simples sur R, alors P et ) sont entrelacés.
Démonstration. O

Exercice 16 Soit P € C[X] de degré n > 0 tel que P(0) = 0 et P’(0) = 1. On note D, le disque complexe ouvert de centre 0 et de
rayon r. Montrer que Dy, C P (D).

Démonstration. X + X?Q(X) — z; = 0 avec |z;| < + admet toujours une racine, < 1.
Vient des relations coefficients-racines. O

Exercice 17 On considére ¢ : (R4)2 — M4 (R) qui a (u, v) associe la matrice dont le coefficient en (4, j) vaut

1. Que peut-on dire si p(u,v) = ¢ (u',v') #07?
2. Que dire de la réciproque ?
3. Montrer que A s’écrit comme @ (u, v) avec (u, v) libre si et seulement si A € A4(R), det(A) = 0et A # 0.

4. Décrire 'image et le noyau d’une telle matrice.

Démonstration. O



P a+1b

a—ib  m ) Montrer qu’il

Exercice 18 Soient a, b, m, p des entiers naturels tels que a® + b?> — pm = —1. On pose A = (

existe B € GLo(Q(7)) telle que A = B*B ot B* = BT. Méme question avec B dans GLo(Z[i]).

Démonstration. O
Exercice 19 Soientn € N*, ¢1,. .., ¢, des formes linéaires non nulles sur R?. Pour g € SLo(R), soit f, : (z1,...,2,) € (Rz)n —
©1(g(x1)) X -+ X o (g (x,)), application de (R2)n dans R. Montrer ’équivalence entre les propositions suivantes :
« il existe une suite (g ),~, d’éléments de SLo(R) telle que, pour tous vecteurs z1, ..., =, de R?, fo, (z1,...,2y) o 0,
= ——+0o0

« il existe une droite vectorielle L telle que {7, L C Ker (y;)}| > 5.

Démonstration. O

Exercice 20 Soit G 'ensemble des matrices de GL3(Z) de la forme Z Ic)l ,ouad—bc=1eta=d=1-c=1mod 3. Montrer
, . 11 10

que G est le sous-groupe de GL2(Z) engendré par les matrices 01 et 31

Démonstration. O

Exercice 21 Soient A et B deux matrices de GL2(R). On suppose que ABA~!B~! commute avec A et B. Montrer que BA = +AB.

Démonstration. O

Exercice 22 Soient £ un K-espace vectoriel non nul de dimension finie, f € £(E) nilpotent d’indice m, x € E tel que f™1(z) # 0.
1. Montrer que la famille ( rx (x)) est libre. On note V' le sous-espace de E engendré par cette famille.

W+ Iensemble des y € F

0<k<m—1
2. Soit ¢ € E* telle que ¢ (f™ *(x)) # 0, W le sous-espace de E* engendré par (yo f")0<i<m71 ,
tels que Vip € W, 1(y) = 0. Montrer que W+ est un supplémentaire de V dans E stable par f.

3. Montrer qu’il existe une base de E' dans laquelle la matrice de f soit diagonale par blocs, les blocs diagonaux étant de la forme
Ji avec k € N*, ou Ji, € My (K) est une matrice dont tous les coefficients sont nuls en dehors de ceux de la sur-diagonale qui
sont égaux a 1.

Démonstration. O

Exercice 23 Soient r € N*,d1, ..., d, des entiers supérieurs ou égaux a 2 tels que dy |dz| ... | d;. Déterminer le plus petit n € N*
tel que GL,,(C) contienne un sous-groupe isomorphe a Z/d1Z x --- x Z/d,Z.

Démonstration. O
Exercice 24 Soient E un espace vectoriel réel de dimension finie, i1 et hy deux éléments de L(F). On suppose qu’il existe une norme

sur E pour laquelle hy et hs sont des isométries et que [h1, ho] = hihs h1~1ho~! commute avec hy et ho. Montrer que lespace des
vecteurs de F fixes par h et ho admet un supplémentaire dans F stable par h; et ho.

Démonstration. O

Exercice 25 Soient (E, (),)unespaceeuclidien,m € N*, ui, ..., Up,v1,..., 0y, des vecteurs de E tels que, pour tout (i,j) €

1,m?, (u;,v;) = &; ;. On note p le projecteur orthogonal de E sur Vect (uy, ..., uy,). Montrer que Vo € E,> """ | (u;, z) (x,p (v;)) =
2

Ip()[".

Démonstration. O

Exercice 26 Soient (E, (),)unespaceeuclidien, m € N*,u,uy,. .., u,, des vecteurs de F. Montrer que u € RTu; + - -+ + RTu,, si

et seulement si pour tout x € E, {x € E;Vi € 1,m, (u;,z) <0} C {z € E;{u,z) <0}.

Démonstration. O
Exercice 27 Soient A € O,(R) et M une matrice de réflexion dans O,11(R). On pose A’ = M < (1) ?4 > Calculer x 4/(1) en
fonction de la premiére colonne de M et de x 4.

Démonstration. O

Exercice 28 Soient A, B deux matrices de O,,(R) qui n’ont pas -1 pour valeur propre et telles que AB n’ait pas 1 pour valeur propre.
Montrer que (A — I,) (BA — I,) " (B — I,,) est antisymétrique.

Démonstration. O
Exercice 29 Soit A € S,,(R). On note A\; < --- < X, les valeurs propres de A non nécessairement distinctes. Montrer que Vk €
[Ln, Zﬁ;l A < Zﬁ;l ;5 < 25:1 Ant1—i-

Démonstration. O



Exercice 30 1. Soient A € S,/ 7(R) et B € S,/ (R) Montrer que AB est diagonalisable a valeurs propres positives ou nulles.
2. Soient A, B € S T(R). On pose fa, 5 : X € ST (R) — Tr(AX) + Tr (BX ). Montrer que f4, 3 admet un minimum p4 5
atteint en une unique matrice M4 p. Expliciter 14 g et M4 B.

Démonstration. O

Exercice 31 Pour M € S,,(R), onnote A\; (M) < --- < A\, (M) le spectre ordonné de M.
1. On considére A, B € S, (R) telles que A+ B € S, ~ (R). Montrer que, si i + j < n+ 2 alors \;(4) + A;(B) < 0.
2. Généraliser a Ay,..., Ay € S,(R) telles que Ay +--- + Ay € S, ~(R). telle que B = PTAP.

Démonstration. O

Exercice 32 1. Soient A, B € ;. Montrer qu’il existe P € GL,,(R) telle que B = PTAP.
2. Soit f une fonction de R** dans R. Proposer une définition naturelle de f(A) si A € ;7T (R).

3. Pour A et B dans S;" " (R), on pose d(A, B) = Hln (\/ A-1Bv A—l) H . Justifier la définition, et montrer que d est une distance
sur ST (R).
4. Soient P € GL,(R), 4, B € S (R). Montrer que d (PT AP, PTBP) = d(A, B).

Démonstration. O

Exercice 33 On note ||-|| la norme d’opérateur sur M,, (C) associée & la norme X — v X7 X.
1. Soient A, B dans S,,(R). Montrer que ||¢* — ¢’ < ||A — B
2. Démontrer le méme résultat sous I’hypothése que A et B sont deux matrices de M,,(C) telles que AT = A et BT = B.

Démonstration. O

Exercice 34 Peut-on écrire |0,1[ comme réunion dénombrable disjointe de segments d’intérieurs non vides?

Démonstration. Non. Par ’absurde, on fait de la dichotomie, entre des segments, dont la distance tend vers 0, alors la limite n’appartient
a aucun segment. O

Exercice 35 Pour tout réel  dans [0,1], on note 0, z1z2x3 ... le développement décimal propre de x. On pose, pour tout n €
N*, S, (z) = > | ;. Soit @ un réel tel que 0 < a < 9. On définit P, = {z € [0,1[; S,,(z) < na} et P =) P,,. Montrer que P
est compact, non vide, d’intérieur vide et sans point isolé.

neN*

Démonstration. ]

Exercice 36 Soit d > 1. On note P I’ensemble des polyndmes unitaires de degré d de R[X].

1. Onpose A = {(P,z) € P xR; P(x) = 0} et P'(x) # 0}. Déterminer les composantes connexes par arcs de A dans R4[X] X R.
2. Onpose B = {P € P;Vz € R, P(z) # 0 ou P'(x) # 0}. Déterminer les composantes connexes par arcs de B dans R4[X].

Démonstration. O

Exercice 37 Soient (M},), -, une suite de matrices de M,,(C) semblables les unes aux autres, \|\| une norme sur M,, (C). On suppose

s . . . M,
que ||My]| = 4o0. Montrer qu’il existe une matrice N € M,,(C) nilpotente et une extractrice ¢ : N — N telles que ”M“’(” I — N.
@ (k)

Démonstration. O

Exercice 38 Soit A € M,,(C) dont toutes les valeurs propres sont de module < 1. Montrer qu’il existe une norme \|\| sur C" telle
que, pour la norme d’opérateur associée, on ait || A|| < 1.

Démonstration. O
Exercice 39 Soient A € M,,(R), de lignes L1,..., L,, et ¢ € R**. On suppose que, pour tout i € 1,n,||L;||, = 1 et la distance

euclidienne canonique de L; au sous-espace engendré par les L;, pour j # 4, est supérieure ou égale a €. Montrer que A est inversible
- 1
et que sup{HA 1:EH2 sz R [|z]lp =1} < =

Démonstration. O

Exercice 40 Soient (a,) et (b,) deux suites réelles de limite 1 et (u,) une suite réelle strictement positive telle que, pour tout

u In(w,)
— .

Ny Upt2 = Gpt1Unt1 + Ont1ty. On pose, pour n € N, v, = ;—:1 et w,, = Montrer que les suites (v,,) et (w,,) convergent.

Démonstration. O



Exercice 41 1. Sin > 2 est un entier, montrer que Y ', [log,(n)| = >7_, | ¥/n].

2. Donner un équivalent lorsque n tend vers +oo de >, _, |logy(n)].
Démonstration. O
Exercice 42 On considére une suite a € {2, 3}N* telle que a; = 2 et, pour tout n > 1, le nombre de 3 apparaissant dans la suite a

entre la n-iéme occurrence de 2 et la (n + 1)-iéme occurrence de 2 soit égal & a,,. Montrer qu’il existe un unique irrationnel « tel que
les indices n > 1 tels que a,, = 2 soient exactement les entiers de la forme |ma| + 1 pour un m € N.

Démonstration. O
Exercice 43 Une suite réelle (z,,) est dite équirépartie modulo 1 si elle vérifie, pour tout entier k € Z*, limpy_, 4 % ZnN:1 e2ihmTn —
0.
1. Soit @ € R\ Q. Montrer que la suite (na) est équirépartie modulo 1.
2. Soit (z,,) € RN". On suppose que pour tout h € N*, la suite (Tptn — Tn),cn~ est équirépartie; on veut montrer que (z,) est
équirépartie modulo 1.
(a) Soit (a,,) une suite de complexes de module < 1. Montrer, pour tous N, H € N* : ‘% ZnN:1 an| < ’% Zth_Ol = 71:[:1 Apyh |+
2H
-
2
1 ~H-11 N 1 N H—=1 apyn
(b) Montrer que |7 > 1 — % Don—1 an+h’ < \/N 2 on=1 ‘Zh:o i
(c) Conclure.
3. Soit P € R[X] non constant et de coefficient dominant irrationnel. Montrer que (P(n)),>1 est équirépartie modulo 1.
4. Soit (), - une suite réelle équirépartie modulo 1, et f : R — C une fonction continue 1-périodique. Montrer que £ 3" | f () -
= n—
1
Jo I
5. On reprend les hypotheses de la question ¢). Montrer que la distance de P(Z) a Z est nulle.
Démonstration. O
k
Exercice 44 Montrer la convergence et calculer Zz:i % “ﬁgg” .
Démonstration. O

Exercice 45 On note ¢?(R) I'ensemble des suites réelles de carré sommable indexées par N. On se donne une suite presque nulle
v € RN ainsi qu’une suite (uy), d’éléments de £2(R) (I'élément uy, est donc noté (Uk,i);cn)- On suppose que, pour tout entier p > 2,

—+o0

. 2
720 (k)" converge vers Z:i% (vn)”. Montrer que inf,ce(n) Z::EJ (Wko(n) — Vn) — 0.

la suite de terme général wy, = >
Démonstration. O
Exercice 46 Soit f la fonction de R dans R nulle sur R \ Q et telle que f (%) = % sip € Z et ¢ € N* sont premiers entre eux. Quels
sont les points de continuité de f?

Démonstration. O
Exercice 47 Soient I un intervalle ouvert, f: I — R dérivable et [a, b] C I avec a < b. On suppose que f'(a) = f'(b). Montrer qu’il
existe ¢ €] a, b| tel que la tangente au graphe de f en c passe par le point (a, f(a)).

Démonstration. O

Exercice 48 Déterminer les applications f de R dans R telles que, pour tout entier n > 2, f™ (puissance) soit polynomiale.

Démonstration. O

Exercice 49 Soit P € C[X] ne s’annulant pas sur U.

/. N . R TIITO) “p(et
1. Montrer que le nombre de racines de P de module strictement inférieur a 1 comptées avec multiplicité n’est autre que ﬁ I ep# d
-7 P(e)

2. Soit @ € C[X] ne s’annulant pas sur U et tel que Vz € U, |P(2) — Q(2)| < |Q(z)|. Montrer que P et () ont méme nombre de
racines de module strictement inférieurs a 1 comptées avec multiplicité.

Démonstration. 0
Exercice 50 Soit f: R — R une fonction continue et presque périodique c’est-a-dire telle que, pour tout € > 0, il existe 7' > 0 tel
que:Vz € RT,Vn € N, |f(z +nT) — f(x)| < e Soit f: RT — R continue et presque périodique.

1. Montrer que f est uniformément continue sur R™.

2. Montrer que t — % fot f posséde une limite quand ¢ — 4o0.

Démonstration. O



Exercice 51 Soit A : N — R telle que A(n) = In(p)sin = p* avec p premier et k € N*, et A(n) = 0 sinon. On note P I'ensemble
des nombres premiers.

1. Montrer que, pour tout n € N*, 3, A(d) = In(n).
A 1
2. Montrer que, pour tout s > 1, (ZnEN* 75?)) (Ynens =) = P nen- r;ff)

3. Montrer que, pour tout s > 1,3 lr;(f) =, 5 +0(1).
5—

4. Montrer que, pour tout s > 1,%° » # = In (Sil) + O(1). Qu'en déduire?
s—1

Démonstration. ]

Exercice 52 Soient f: Rt — R de classe C, décroissante de limite nulle en +o00 et g: 2 — > (—1)" f(nx). Quelle est la limite
degen0t?

Démonstration. O
Exercice 53 Soient R € R**, f et g deux fonctions développables en série entiére sur|— R, R| telles que Vo €]—R, R [, [, f(t)g(x — t) dt =

Montrer que I'une au moins des deux fonctions f et g est identiquement nulle sur | — R, R].

Démonstration. O

n

Exercice 54 Existe-t-il une partie A de N telle que ) 4 ";—, ~ eV®? Montrer que {a € U;3b € C, 2 — az + b € G} est fini.

r—+00

Démonstration. O

Exercice 55 Soit (a,b) € R x R™ tel que Vz € [0,1],1 + az + bz? > 0.

1. Sia € R, montrer que n fol (1+ax+b2?)"dz — +oo.

n——+oo
2. Sia € R™*, montrer que nfol (1 +ax + bxz)n dx —+> —%.
n——+0oo
Démonstration. O
Exercice 56 Soit, pour z € R, f(z) = [ NC= cosr-’(t)dj»e’2m — Montrer qu’il existe (a,b) € (R+)2 tel que Vo € RT, f(z) <
(ax +b)e ™.
Démonstration. U

Exercice 57 Soit I un (vrai) intervallede R.Sir~ € N*et f1,..., f, € C""Y(I,R),onpose W,. (fi,..., fr) = det <<f](i—1)> . )
1<i,5<r

Soient r € N*, f1,..., f, € C""1(I,R).
1. Soit g € C"~1(I,R). Montrer que W, (9f1,..-,9fr) = ¢ We (f1,-.., fr).

2. On suppose que, pour tout k € 1,7, Wy, (f1,..., fi) ne s’annule pas. Montrer que, pour tout (aj,...,a,) € R” non nul, la
fonction a; f1 + - - - + a, f, s’annule au plus (r — 1) fois sur I.

3. Onsuppose que W,. (f1,..., f.) estidentiquement nul sur I et que W,._1 (f1, ..., fr—1) ne s’annule pas. Montrer que (f1, ..., f;)
est liée.

Démonstration. O

Exercice 58 Soient f une application différentiable convexe de R dans R, . € R™*.
1. Montrer que V(z,y) € R" x R", (Vf(y) — Vf(x),y —z) > 0.
2. On suppose que application V f est L-lipschitzienne.

Montrer que ¥(z,y) € R" xR" (Vf(y) =V f(z),y—z) > +||Vf(x)— Vf(y)|?. unité fermée de cet espace. Soient f une application
de R™ dans R" de classe C"' et telle que, pour tout (u,v) € B2, ||—f(0) + v — df,(v)|| < 5. Montrer que f s’annule exactement une
fois sur B.

Démonstration. O
Exercice 59 Soit G’ un groupe d’isométries affines de R? tel que, pour tout point , il existe g € G tel que g(z) # x. Montrer que G
contient une translation autre que I'identité de R?.

Démonstration. O

Exercice 60 Soit S le groupe (pour la composition) des applications de C dans C de la forme z — az +baveca € Uetb € C. Soit
G un sous-groupe de S vérifiant les conditions suivantes :

« sig € G, g(0) est nul ou de module supérieur ou égal & 1;
+ Tensemble des b € C tels que z — z + b appartienne a G contient deux éléments R linéairement indépendants.
Montrer que 'ensemble {a € U | 3b € C, z +— az + b € G} est fini.

Démonstration. O



Exercice 61 Soientm > 1 etr > 1 deux entiers. On munit ’ensemble des morphismes de groupes de (Z/mZ)" dans Z/mZ de la loi
uniforme. Donner une expression simple de la probabilité de I'événement «le morphisme ¢ est surjectif».

Démonstration. O
Exercice 62 Soit X une variable aléatoire & valeurs dans N telle que E(X) = 1, E (X 2) =2etE (X 3) = 5. Quelle est la valeur
minimale de P(X = 0)?

Démonstration. O

Exercice 63 Dans tout 'exercice, les variables aléatoires considérées sont supposées réelles, discrétes et a loi de support fini. Pour
deux telles variables X et Y, on note X <. Y pour signifier que E(f(X)) < E(f(Y")) pour toute fonction convexe f: R — R.

1. Soient X une variable aléatoire vérifiant les conditions de I'exercice et f: R — R convexe. Montrer que f(E(X)) < E(f(X)).
2. Donner un exemple de couple (X,Y") pour lequel X <. Y mais X # Y.

3. Montrer que si X <. Y alors E(X) =E(Y) et V(X) < V(Y).

4. Montrer que X <. Y siet seulement si E(X) = E(Y) et

400 —+oo
VaER,/ P(Xz:v)dxg/ P(Y > z)da.
Démonstration. ]

Exercice 64 On fixe N € N*. On choisit de fagon équiprobable u; € 1, N, puis us € 1,u; — 1, et ainsi de suite jusqu’a arriver a
ug = 1 avec nécessairement £ < N. Onnote Ey = {u;,1 < j < {}.

1. Calculer P (k € Ex)pour 1 <k < N.

2. Calculer P (2 € Ex | 3 ¢ EN).

3. Calculer E (|En|) et V (|[En]).

Démonstration. O

Exercice 65 Soient F un ensemble fini, V : E — P(F) une fonction de F vers les parties de E et f: F — R une fonction. Un point
a € E est un minimum local si f(a) < f(b) pour toutb € V(a). Soit M un entier tel que M > \/|E|. Soient by, ..., bys des variables
aléatoires indépendantes et uniformément distribuées dans E. Soit k tel que f (by) = mini<;<ps f (b;). Soit (uy,),, une suite de 2
telle que ug = by, et, pour toutn > 0:

« siuy, est un minimum local, alors u,4+1 = Uy ;

o sinon up11 € V (uy) et f (unt1) < f (un).
Montrer que s est un minimum local avec probabilité au moins 1/2.
Démonstration. O
Exercice 66 Soient d € N* et n > 3. On pose G = (Z/nZ)% et S = {+e;,1 <i < d}, ol ¢; désigne I'élément de G dont toutes

les coordonnées sont nulles sauf la i-éme, égale a 1. Soient enfin f: G — R une fonction quelconque et X une variable aléatoire
uniformément distribuée sur G.

Montrer que E(|f(X) — E(f(X))]) < % max,es B(f(X) — F(X + 5))).

Démonstration. O

II) Ecoles Normales Supérieures - PC

Exercice 67 Soit A une partie de cardinal nde R.Onpose B = A+ A = {a+ d’,a,a’ € A}. Montrer que 2n—1 < card(B) < "(n2+1).
Généralisera B=kA=A+ A+ .-+ A(k fois).

Démonstration. O

Exercice 68 Soient Py, Py, P3, Py € R[X]. Montrer qu’il n’existe aucun voisinage ouvert de 0 sur lequel on ait simultanément i)
Vo < 0,P(x) < Po(z) < P3(x) < Py(z) i) Vo > 0, Po(z) < Py(z) < Pi(z) < Ps(x).

Démonstration. O
Exercice 69 Soit (X,,), .- une suite i.i.d. de variables aléatoires a valeurs dans N. On suppose que P (X; = 0) P (X; = 1) # 0. On
pose,pour n € N, S, = X7 + --- + X,,. Montrer que $P (4.$divise Sp) —> %.

n—-+oo

Démonstration. O



III) Ecole Polytechnique - MP - MPI

Exercice 70 1. Montrer que I'équation a? — 2b? = 1 admet une infinité de solutions (a,b) € N2. 277* x a éterminer I'ensemble
des solutions.

2. Que dire de 'ensemble des solutions de a? — 2b% = —17?

Démonstration. O

Exercice 71 Soit G un groupe fini de neutre 1. Soit ¢ un automorphisme de G sans point fixe c’est-a-dire tel que : Vo € G, p(x) =
x = = = 1. On note n 'ordre de ¢; c’est le plus petit entier n € N* tel que ¢ = id.

1. Montrer que Yz € G, zp(z)p?(x) - " 1(z) = 1.

2. Sin = 2, que peut-on dire du groupe G'? Donner un exemple.

3. Sin = 3, montrer que, pour tout z € G, x et () commutent.
Démonstration. 1. Cet élément est fixé par .

2. Onazp(z) = 1, donc ¢(z) = x 1. Cela implique que G est commutatif, et qu'aucun élément n’est inverse de lui-méme, donc
G commutatif, de cardinal impair.

3. Ecrire 2o (2)p?(2) = 1, p(x)@?(x)r = 1 et p?(2)p(x)r = 1. O
Exercice 72 Soit p un nombre premier. On suppose que, pour toute F,-algébre A, il existe un endomorphisme u4 de A de sorte que,
pour tout couple (A, B) de F,-algébres et tout morphisme 7 de Fp-algébres de A dans B, on ait 7 o ug = up o 7. Que dire des u4 ?
Démonstration. Pour tout isomorphisme 7: A —, u4 commute avec 7. O
Exercice 73 Soient F un R-espace vectoriel de dimension finie, p, u € L£(E). On suppose que p est un projecteur et que pu +up = wu.
Montrer que tr(u) = 0.

Démonstration. On a u(Kerp) C Imp et u(Imp) C Ker p. O

Exercice 74 Soient p et g deux projecteurs orthogonaux dans un espace euclidien E.

1. Montrer que p o q o p est diagonalisable.

2. Montrer que F = Imp + Ker ¢ + (Im g N Ker p).

3. Montrer que p o q est diagonalisable.

4. Montrer que le spectre de p o ¢ est inclus dans [0, 1].

Démonstration. ]

Exercice 75 Soit @ € R™*. Onnote 5? = {z € R?, ||z|| = 1} ot \|\| désigne la norme euclidienne canonique. Montrer I'équivalence
entre les propositions suivantes.

e a=2.
e Vn>1,Y(a1,...,an,b1,...,bp,c1,...,¢y) € (Sz)gn,ﬂpesz tel que

n n n
Dolp—ail®=>"lp=bll* =" llp—cill®
i=1 i=1 i=1

Démonstration. O

Exercice 76 Soittq,...,t, desréels.

1. Montrer que la matrice A = (t;t;),; ,,, est dans St(R).

2. On suppose 0 < t; < --- < t,,. Montrer que la matrice B = (min (t;,;)), ; ;<,, est dans St(R).
3. Onsuppose 0 < ¢y < --- <t, < 1. Montrerque M = B — A € §; (R).
Démonstration. 1. XTAX = () t;x;)?
2. [ (Exilti)Q
3. 1l s’agit de montrer que fol (> xilti)Q > (3 tiw;)?% cest-a-dire [ h? > (fh)2, car 'intégrale est sur [0, 1]. O

Exercice 77 Soit X C R? un convexe fermé non vide.

1. On suppose K borné. Montrer que K s’écrit comme intersection de carrés fermés.

2. On suppose K non borné et K # R2. Donner des exemples de tels convexes. Montrer que si K contient deux droites, celles-ci
sont paralléles.

3. On suppose toujours K non borné. Montrer que K contient une demi-droite.

Démonstration. 1. Siz ¢ K, on peut trouver une droite séparant = de K, donc un carré contenant K et non z.
2. Si K contient deux droites non paralléles, K = R?. La partie au dessus du graphe de x + e”.
3. Fixer y € K, et une suite (x,,) € K qui tend vers oo, et prendre une valeur d’adhérence des segments [y, 2, ]. O



Exercice 78 On dit qu'une famille $ (D

e R»+$dedisquesfermsdeR2 vérifie (P) sipour tous s, t € R distincts, D et D ont des centres distincts, pour tous s, t € R tels ¢
. Démonstration. 1. Cercles de centre (x,0), de rayon x.
2. Prendre D, de rayon la longueur de la courbe de A(0) a A(%).

3. Prendre une fonction non réglée. O

Exercice 79 Soient a, b, c des entiers naturels non nuls. Montrer qu’il existe un n € N* tel que vn* + an2? +bn +c ¢ N.

Démonstration. Dérivée discreéte. O

Exercice 80 Soient (a,) et (b, ), deux suites réelles positives telles que la série de terme général b,, converge, que la série de terme
général na,, diverge et que Z:i% an = 1.

1. Montrer qu’il existe une unique suite (u,,) telle que, V. € N, u,, = by, + > _ Uk@n—k-

2. Montrer que (u,,) est bornée.

3. Montrer que, si (u,,) converge, alors sa limite est 0.

Démonstration. Cf une année précédente. O

)

5 sont de méme

Exercice 81 Soit f € C°(RT,R™T), strictement croissante et bijective. Montrer que les séries > ﬁ ety
nature.

Démonstration. La série Y ﬁ a la méme nature que [ % On peut raccorder f de maniére C', puis on pose u = f(t) :

+oo 1 +oo 1
L mwe=] ™

puis IPP. O

Exercice 82 Que dire d’une fonction f: R — R continue, 1-périodique et v/2-périodique ?
Démonstration. O

+2

. . 22 oo _ 2
Exercice 83 Soit f: z € R ez [ e 7 dt.
1. Montrer que f(z) < X pour tout z > 0.

2. Montrer que f(z) > 7”’%54*“’ pour tout > 0.

3. Donner un développement limité a quatre termes de f(x) quand z — +o0.

Démonstration. O

}, calculer I,.(u,v) = [T 49

Exercice 84 Soient u,v € R.Pour 7 € R™ \ {|ul, |v 0 Tu—rc®)(v—rci?)"

Démonstration. O

Exercice 85 Soit P = a; X + --- + a4 X% € Z[X] avec a; impair.

1. Montrer 'existence d’une suite réelle (by,) ., telle que : Vx € R, exp(P(z)) = 3320 by
2. Montrer que les by sont tous non nuls.
Démonstration. O

Exercice 86 Soient p € [0,1/2],(X},), >, iid. telle que P (X,, = —-1) = P(X,, =1) = pet P (X,, = 0) = 1 — 2p. On cherche p
tel que : Vn € N* Vaq,...,an,b € Z,P(Z?:l a;X;=0)>P (3, a;X; =b).

1. Montrer que p < 1/3, puis que p < 1/3 et enfin que p < 1/4.

2. Si X une variable aléatoire & valeurs dans Z, on pose ®x : § — E (eixe). Exprimer P(X = k) en fonction de @ x.

3. En déduire que p < 1/4 est une condition suffisante.

Démonstration. O

Exercice 87 Soientn > 1 et A, B, C des variables aléatoires indépendantes uniformément distribuées sur {0, 1}".
1. Pour n > 2, calculer la probabilité p,, que ABC soit un triangle équilatéral.
2. Déterminer un équivalent de p,,.

Démonstration. O



IV) Ecole Polytechnique - PSI
Exercice 88 Soit (a,b) € R? avec a < b. Montrer qu’il existe (n,m) € N? tel que \/n — v/m €] a,b].

Démonstration. O

Exercice 89 Soit $f: [0, +o00 [—> [07 400 [ ...$declasseC! et strictement croissante. On suppose que lim,_, y o, f(2) = +00. Mon-

1
! nzgn) converge.

trer que > ﬁ converge si et seulement si )

Démonstration. O
V) Ecole Polytechnique - ESPCI - PC

Exercice 90 Montrer que, pour tout n € N*, il existe m € N* etey,...,&,, € {—1,1} telsque n = > -, ek?.

Démonstration. O

Exercice 91 Existe-t-il une suite (a,), .y de réels non nuls telle que, pour tout n € N, le polynéme P,, = >, ax X" soit scindé a
racines simples dans [0, 1] ?

Démonstration. O

Exercice 92 Caractériser les matrices M € M,,(C) qui sont somme de deux matrices diagonalisables de rang 1.

Démonstration. O

Exercice 93 Soit a € R. On suppose que (n{an!}),cn converge ot on note {z} = = — |z pour x € R. Montrer que a € Q + eN.

Démonstration. ]

Exercice 94 Soit (u,) une suite bornée. Montrer qu’il y a équivalence entre : (i) = >, _, |ug| — 0, (ii) il existe A C N tel que
LIAN[0,n—1]] — Oetlim,gsu, =0.
n——+oo

Démonstration. O

Exercice 95 Soit f: R — R continue. Montrer que les propositions suivantes sont équivalentes :

« f est croissante,
« pour tout intervalle I C R ouvert, pour toute ¢ € C*(I,R), pour tout zy € I, si f — ¢ admet un minimum local en z, alors

¢ (z9) > 0.
Démonstration. O
Exercice 96 On pose, pour k € N avec k > 2,((k) = ::2 L

0 1—¢
2. En déduire la valeur de S = Y% (C(2k) — ¢(2k + 1)).

1. Montrer que, pour tout $x €]-1,1 [.$, ona [} =L 4t = SIS (1)K + 1)k

Démonstration. O

VI) Mines - Ponts - MP - MPI

Exercice 97 Déterminer tous les couples (m,n) € N? vérifiant : 3™ = 8 + n2,

Démonstration. O

Exercice 98 Soit P € R[X] unitaire de degré n. Montrer qu'il existe k € 0, n tel que |P(k)| > 2.

Démonstration. O

Exercice 99 Soit P € C[X].

1. A quelle condition P réalise-t-il une surjection de C sur C?
2. A quelle condition P réalise-t-il une surjection de R sur R?
3. A quelle condition P réalise-t-il une surjection de Q sur Q?

Démonstration. O

Exercice 100 Soit n € N*. Calculer det (i A j)1<i,j<n). Ind. On rappelle que, pour N € N*, N = >~ \ ¢o(d) ol ¢ est I'indicatrice
d’Euler.

Démonstration. [
Exercice 101 Soient (F, (),)unespaceeuclidiendedimensionn, vy, ..., v, 2 des vecteurs de E. Montrer qu’on ne peut avoir : Vi #
.j7 <via Uj> <0.

Démonstration. O
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Exercice 102 Soient E un espace euclidien, A une partie de E et B = {(z,y); (x,y) € A%}. Montrer que A est fini si et seulement
si B est fini.

Démonstration. ]

Exercice 103 Soient n > 2 et f: R® — R continue telle que, pour tout a € R, f~*({a}) est compact. Montrer que f admet un
extremum global. Que se passe-t-il sin =17

Démonstration. O

Exercice 104 Pour n € N*, on pose $D,=\d € N; d | n.$et \/g <d< \/2n} etd, = |D,|.
1. La suite (dy,),,~, est-elle convergente?
2. La suite (d,,),,~ est-elle bornée?

Démonstration. O

Exercice 105 Soit (u,,),,~ une suite décroissante de réels positifs. On pose, pourn € N, v,, =
alors Y u,, diverge.

1 .
Trn7a - Montrer que si ) _ v, converge,

Démonstration. O

1,2 1/ 2
Exercice 106 Soit f € C2([0, 1], R) telle que f(0) = f(1) = 0. Montrer que 120 (fo f) </ (f ) :

Démonstration. O
Exercice 107 Soit f: R® — R™ différentiable telle que : i) pour tout x € R™, df (x) est injective; ii) || f(x)|| | H—> +00. Soient
z||—+o0

a€RYetg: x € R" — ||f(z) —al®

1. Calculer dg.

2. Montrer que g admet un minimum.

3. En déduire que f est surjective.
Démonstration. O

VII) Mines - Ponts - PSI
Exercice 108 Soient E un R espace vectoriel de dimension finie, v € L(FE) nilpotent, F' est sousespace vectoriel de F tel que

u(F) C F.On suppose que E = F' + Im(u). Montrer que £ = F.

Démonstration. O

VIII) Centrale - MP - MPI

Exercice 109 On admet le théoréme suivant : Pour S une série entiére de rayon de convergence infini dont la somme ne s’annule pas
sur C, il existe une série entiére L de rayon de convergence infini telle que Vz € C,exp(L(z)) = S(2).

1. (a) Rappeler tous les modes de convergence d’une série entiére sur son disque ouvert de convergence.
(b) Soient F'(z2) = Z;Z% an 2" derayon de convergence infini et G(z) = Re(F(2)).Pourn € N*, montrer que fOM F (re') dt
2man, R", puis que fo% G (Re') em™t dt = ma, R™ et fo% G (Re™) dt = 27 Re (ao).
2. Montrer que, s’il existe p et ¢ réels strictement positifs tels que Vz € C, |G(z)| < p|z| + g, alors F est un polyndome de degré au
plus 1.

3. Montrer que l'application z — z exp(z) est une surjection de C sur lui-méme.

Démonstration. O
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