
Exercices 2023

I) ENS MP-MPI
Exercice 1 Soient S et T des ensembles finis non vides et f une application de S dans T . On pose X =

{
(x, y) ∈ S2, f(x) = f(y)

}
.

Montrer que |X| ≥ max

(
|S|2
|T | ,

(⌈
|S|
|T |

])2

+ |S| −
⌈
|S|
|T |

])
.

Démonstration. Pour le terme de gauche, il s’agit de montrer que
∑

y n
2
y ≥

(∑
y ny

)2∑
y 1 , c’est Cauchy-Schwarz.

Pour le terme de droite, c’est un principe des tiroirs, puis compter pour 1 les éléments qui ne sont pas dans le tiroir.

Exercice 2 Soient n ∈ N∗ et (x1, . . . , xn) ∈ Rn. Montrer qu’il existe m ∈ Z et S un sous-ensemble non vide de 1, n tels que∣∣m−
∑

i∈S xi
∣∣ ≤ 1

n+1 .

Démonstration. S sera un sous-ensemble d’entiers consécutifs : considérer les sommes partielles S0, . . . , Sn.

Exercice 3 Soit n un entier premier > 1. Montrer que −1 est un carré modulo n si et seulement si n est somme de deux carrés
d’entiers.

Démonstration. Si p est somme de deux carrés d’entiers, p ≡ 1[4], et a est un carré si et seulement si a
p−1
2 ≡ 1[p].

Réciproquement, si n | m2 + 1, dur, dur. ! !

Exercice 4 1. Calculer
∑
d|n

φ(d) où φ est l’indicatrice d’Euler.

2. Calculer
∑
d|n

µ(d) où µ est la fonction de Möbius définie par µ(1) = 1, µ(p) = −1, µ
(
pk
)
= 0 pour k ≥ 2 si p est un nombre

premier et µ(nm) = µ(n)µ(m) si n ∧m = 1. On pose F : x ∈ R+ 7→
∣∣∣{p

q ∈ [0, 1]; q ≤ x
}∣∣∣.

3. Montrer que F (x) =
x→+∞

3
π2x

2 +O(x lnx).

Démonstration. 1.
∑

d|n φ(d) = n

2.
∑

d|n µ(d) = 0, ou 1 pour n = 1.

3. Par inversion de Möbius, on a φ(d) =
∑
d′|d

µ
(

d
d′

)
d′.

Exercice 5 Soient p, q deux nombres premiers distincts. On note vp(n) la valuation p-adique d’un entier n. On pose, pour m ∈
N∗, N(m) = (1− q)

(
1− q2

)
. . . (1− qm). Trouver une constante c > 0 telle que, pour tout m ∈ N∗, vp(N(m)) ≤ cm ln(m).

Démonstration. Relier à 423 (LTE).
On a vp(an − bn) = vp(a− b) + vp(n) (pour p ̸= 2).
Donc vp(N(m)) =

∑m
k=1 vp(1− q) + vp(m!), plus formule de Legendre.

Exercice 6 Si X est un ensemble fini, on note X∗ =
⊔

k∈N X
k, c : (X∗)

2 → X∗ la concaténation et ℓ : X∗ → N la longueur. Soient
A et B deux ensembles finis et φ : A∗ → B∗ telle que, pour tous a, a′ ∈ A,φ (c (a, a′)) = c (φ(a), φ (a′)).

1. On pose A = {a, b, c, d} et B = {0, 1}. Étudier l’injectivité des applications définies sur les lettres de A puis étendues sur A∗

par φ : A → B∗ telles que φ(a) = 0, φ(b) = 01, φ(c) = 10, φ(d) = 10011, et ψ : A → B∗ telle que ψ(a) = 01, ψ(b) =
10, ψ(c) = 11, ψ(d) = 00.

2. Montrer que, si φ est injective, alors
∑

a∈A |B|−ℓ(φ(a)) ≤ 1.

Démonstration. 1. La première est non injective : 0100110 peut être lu de deux façons.
La seconde l’est.

2. On note CN le nombre de choix possibles, de mots, dont la longueur totale N .
On doit avoir CN ≤ |B|N . Mais CN vérifie une relation de récurrence : CN =

∑
a∈A CN−ℓ(a.

Donc les racines de cette récurrence doivent être ≤ |B|, ce qui implique qu’en |B| la valeur est négative, d’où le résultat.

Exercice 7 1. Soit n ∈ N∗. Montrer que la transposition (1 2) et le cycle
(
1 2 · · · n

)
engendrent le groupe symétrique Sn.

2. La transposition (1 3) et le cycle (1 2 3 4) engendrent-ils S4 ?
3. Soient n ∈ N∗ et 1 ≤ a < b ≤ n tels que τ = (ab) et σ =

(
1 2 · · · n

)
engendrent Sn. Montrer que b − a et n sont

premiers entre eux.
4. Montrer la réciproque de la propriété précédente.

Démonstration. 1.
2. Non.
3. Si p | b− a ∧ n, alors σ(a)− σ(b) ≡ a− b[p].
4. Facile de se ramener à un cycle (uu+ 1)
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Exercice 8 Soit G un groupe fini. Si X et Y sont des parties non vides de G, on pose X−1 =
{
x−1, x ∈ X

}
et XY = {xy, (x, y) ∈

X × Y }. Dans la suite, X désigne une partie non vide de G.

1. On suppose que |XX| < 2|X|. Montrer que XX−1 = X−1X .
2. On suppose que

∣∣XX−1
∣∣ < 3

2 |X|. Montrer que X−1X est un sous-groupe de G.

Démonstration.

Exercice 9 Soit p un nombre premier. On admet qu’il existe un anneau commutatif A dans lequel p2.1A = 0A et il existe un élément
inversible x tel que :

• tout élément de A s’écrive P (x)x−k pour un P ∈ Z[X] et un k ∈ N ;
• pour deux polynômes P,Q dans Z[X] et deux entiers naturels k, l, l’égalité P (x)x−k = Q(x)x−l équivaut à ce que XkQ et
X lP aient même réduit modulo p2 (autrement dit, tous les coefficients de XkQ−X lP sont des multiples de p2).

1. Soient P ∈ Z[X] et k ∈ N. Caractériser l’inversibilité de P (x)x−k dans A.
2. Montrer que le groupe multiplicatif $A×$ne possède pas de partie génératrice finie.

Démonstration.

Exercice 10 Soit f ∈ Z[X]. On pose Sq =
∑

0≤a<q
a∧q=1

∑q−1
n=0 e

2iπaf(n)
q pour tout q ∈ N∗. Montrer que, si q∧ q′ = 1, alors Sqq′ = SqSq′ .

Démonstration.

Exercice 11 On dit qu’un ensemble X ⊂ C est intégrable si : ∀(x, y) ∈ X2, |x− y| ∈ N. Montrer que, pour tout n ∈ N, il existe un
ensemble intégrable X composé de n points tous sur un même cercle.

Démonstration.

Exercice 12 Soit n = 2m + 1 ≥ 1 un entier impair. Expliciter un polynôme Pm de degré 2m tel que ∀x ∈ R \ Z, sin(nx) =
(sinx)nPm(cotanx).

1. Donner une expression simplifiée de
∑m

k=1 cotan
2
(
kπ
n

)
.

2. Donner une expression simplifiée de
∑m

k=1
1

sin2( kπ
n )

.

3. En déduire que
∑+∞

k=1
1
k2 = π2

6 .

Démonstration.

Exercice 13 Soit P ∈ R[X] de degré n ≥ 1.

1. On suppose P scindé sur R. Montrer que ∀x ∈ R, nP (x)P
′′
(x) ≤ (n− 1)P ′(x)2.

2. Donner un polynôme ne vérifiant pas le résultat de la question précédente, puis un polynôme non scindé le vérifiant.

Démonstration.

Exercice 14 Montrer que, pour tout n ∈ N, il existe (a0, . . . , an) ∈ (R+∗)
n+1 tel que, pour tout (ε0, . . . , εn) ∈ {−1, 1}n+1, le

polynôme P (X) =
∑n

k=0 εkakX
k est scindé sur R.

Démonstration.

Exercice 15 Deux polynômes P,Q ∈ R[X] sont entrelacées si

• −P et Q sont scindés à racines simples sur R,
• P et Q n’ont aucune racine réelle commune,
• entre deux racines consécutives de P (respectivement Q) il y a une unique racine de Q (respectivement P ).

Soient P,Q ∈ R[X]. Montrer que si, pour tout λ, µ ∈ R∗, λP + µQ est scindé à racines simples sur R, alors P et Q sont entrelacés.

Démonstration.

Exercice 16 Soit P ∈ C[X] de degré n > 0 tel que P (0) = 0 et P ′(0) = 1. On note Dr le disque complexe ouvert de centre 0 et de
rayon r. Montrer que D1/n ⊂ P (D1).

Démonstration. X +X2Q(X)− zi = 0 avec |zi| < 1
n admet toujours une racine, < 1.

Vient des relations coefficients-racines.

Exercice 17 On considère φ :
(
R4

)2 → M4(R) qui à (u, v) associe la matrice dont le coefficient en (i, j) vaut
∣∣∣∣ ui vi
uj vj

∣∣∣∣.
1. Que peut-on dire si φ(u, v) = φ (u′, v′) ̸= 0?
2. Que dire de la réciproque?
3. Montrer que A s’écrit comme φ(u, v) avec (u, v) libre si et seulement si A ∈ A4(R), det(A) = 0 et A ̸= 0.
4. Décrire l’image et le noyau d’une telle matrice.

Démonstration.
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Exercice 18 Soient a, b,m, p des entiers naturels tels que a2 + b2 − pm = −1. On pose A =

(
p a+ ib

a− ib m

)
. Montrer qu’il

existe B ∈ GL2(Q(i)) telle que A = B∗B où B∗ = B̄T . Même question avec B dans GL2(Z[i]).

Démonstration.

Exercice 19 Soient n ∈ N∗, φ1, . . . , φn des formes linéaires non nulles sur R2. Pour g ∈ SL2(R), soit fg : (x1, . . . , xn) ∈
(
R2

)n 7→
φ1 (g (x1))× · · · × φn (g (xn)), application de

(
R2

)n
dans R. Montrer l’équivalence entre les propositions suivantes :

• il existe une suite (gk)k≥1 d’éléments de SL2(R) telle que, pour tous vecteurs x1, . . . , xn de R2, fgk (x1, . . . , xn) −→
k→+∞

0,

• il existe une droite vectorielle L telle que |{i, L ⊂ Ker (φi)}| > n
2 .

Démonstration.

Exercice 20 SoitG l’ensemble des matrices de GL2(Z) de la forme
(
a b
c d

)
, où ad− bc = 1 et a ≡ d ≡ 1− c ≡ 1 mod 3. Montrer

que G est le sous-groupe de GL2(Z) engendré par les matrices
(

1 1
0 1

)
et

(
1 0
3 1

)
Démonstration.

Exercice 21 SoientA etB deux matrices de GL2(R). On suppose queABA−1B−1 commute avecA etB. Montrer queBA = ±AB.

Démonstration.

Exercice 22 SoientE un K-espace vectoriel non nul de dimension finie, f ∈ L(E) nilpotent d’indicem,x ∈ E tel que fm−1(x) ̸= 0.

1. Montrer que la famille
(
fk(x)

)
0≤k≤m−1

est libre. On note V le sous-espace de E engendré par cette famille.

2. Soit φ ∈ E∗ telle que φ
(
fm−1(x)

)
̸= 0,W le sous-espace de E∗ engendré par (φ◦ f i

)
0≤i≤m−1

,W⊥ l’ensemble des y ∈ E

tels que ∀ψ ∈W⊥, ψ(y) = 0. Montrer que W⊥ est un supplémentaire de V dans E stable par f .
3. Montrer qu’il existe une base de E dans laquelle la matrice de f soit diagonale par blocs, les blocs diagonaux étant de la forme
Jk avec k ∈ N∗, où Jk ∈ Mk(K) est une matrice dont tous les coefficients sont nuls en dehors de ceux de la sur-diagonale qui
sont égaux à 1.

Démonstration.

Exercice 23 Soient r ∈ N∗, d1, . . . , dr des entiers supérieurs ou égaux à 2 tels que d1 |d2| . . . | dr . Déterminer le plus petit n ∈ N∗

tel que GLn(C) contienne un sous-groupe isomorphe à Z/d1Z × · · · × Z/drZ.

Démonstration.

Exercice 24 SoientE un espace vectoriel réel de dimension finie, h1 et h2 deux éléments de L(E). On suppose qu’il existe une norme
sur E pour laquelle h1 et h2 sont des isométries et que [h1, h2] = h1h2h1

−1h2
−1 commute avec h1 et h2. Montrer que l’espace des

vecteurs de E fixes par h1 et h2 admet un supplémentaire dans E stable par h1 et h2.

Démonstration.

Exercice 25 Soient (E, ⟨⟩,)unespaceeuclidien,m ∈ N∗, u1, . . . , um, v1, . . . , vm des vecteurs de E tels que, pour tout (i, j) ∈
1,m2, ⟨ui, vj⟩ = δi,j . On note p le projecteur orthogonal deE sur Vect (u1, . . . , um). Montrer que ∀x ∈ E,

∑n
i=1 ⟨ui, x⟩ ⟨x, p (vi)⟩ =

∥p(x)∥2.

Démonstration.

Exercice 26 Soient (E, ⟨⟩,)unespaceeuclidien,m ∈ N∗, u, u1, . . . , um des vecteurs de E. Montrer que u ∈ R+u1 + · · ·+ R+um si
et seulement si pour tout x ∈ E, {x ∈ E;∀i ∈ 1,m, ⟨ui, x⟩ ≤ 0} ⊂ {x ∈ E; ⟨u, x⟩ ≤ 0}.

Démonstration.

Exercice 27 Soient A ∈ On(R) et M une matrice de réflexion dans On+1(R). On pose A′ = M

(
1 0
0 A

)
. Calculer χA′(1) en

fonction de la première colonne de M et de χA.

Démonstration.

Exercice 28 SoientA,B deux matrices de On(R) qui n’ont pas -1 pour valeur propre et telles queAB n’ait pas 1 pour valeur propre.
Montrer que (A− In) (BA− In)

−1
(B − In) est antisymétrique.

Démonstration.

Exercice 29 Soit A ∈ Sn(R). On note λ1 ≤ · · · ≤ λn les valeurs propres de A non nécessairement distinctes. Montrer que ∀k ∈[
1, n,

∑k
i=1 λi ≤

∑k
i=1 ai,i ≤

∑k
i=1 λn+1−i .

Démonstration.
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Exercice 30 1. Soient A ∈ S++
n (R) et B ∈ S+

n (R) Montrer que AB est diagonalisable à valeurs propres positives ou nulles.
2. Soient A,B ∈ S++

n (R). On pose fA,B : X ∈ S++
n (R) 7→ Tr(AX) + Tr

(
BX−1

)
. Montrer que fA,B admet un minimum µA,B

atteint en une unique matrice MA,B . Expliciter µA,B et MA,B .

Démonstration.

Exercice 31 Pour M ∈ Sn(R), on note λ1(M) ≤ · · · ≤ λn(M) le spectre ordonné de M .

1. On considère A,B ∈ Sn(R) telles que A+B ∈ S−−
n (R). Montrer que, si i+ j < n+ 2 alors λi(A) + λj(B) < 0.

2. Généraliser à A1, . . . , Ad ∈ Sn(R) telles que A1 + · · ·+Ad ∈ S−−
n (R). telle que B = PTAP .

Démonstration.

Exercice 32 1. Soient A,B ∈ S++
n . Montrer qu’il existe P ∈ GLn(R) telle que B = PTAP .

2. Soit f une fonction de R+∗ dans R. Proposer une définition naturelle de f(A) si A ∈ S++
n (R).

3. Pour A et B dans S++
n (R), on pose d(A,B) =

∥∥∥ln(√A−1B
√
A−1

)∥∥∥. Justifier la définition, et montrer que d est une distance

surS++
n (R).

4. Soient P ∈ GLn(R), A,B ∈ S++
n (R). Montrer que d

(
PTAP,PTBP

)
= d(A,B).

Démonstration.

Exercice 33 On note ∥·∥ la norme d’opérateur sur Mn(C) associée à la norme X 7→
√
X̄TX .

1. Soient A,B dans Sn(R). Montrer que
∥∥eiA − eiB

∥∥ ≤ ∥A−B∥.
2. Démontrer le même résultat sous l’hypothèse que A et B sont deux matrices de Mn(C) telles que ĀT = A et B̄T = B.

Démonstration.

Exercice 34 Peut-on écrire ]0,1[ comme réunion dénombrable disjointe de segments d’intérieurs non vides?

Démonstration. Non. Par l’absurde, on fait de la dichotomie, entre des segments, dont la distance tend vers 0, alors la limite n’appartient
à aucun segment.

Exercice 35 Pour tout réel x dans [0,1[, on note 0, x1x2x3 . . . le développement décimal propre de x. On pose, pour tout n ∈
N∗, Sn(x) =

∑n
i=1 xi. Soit a un réel tel que 0 < a < 9. On définit Pn = {x ∈ [0,1[;Sn(x) ≤ na} et P =

⋂
n∈N∗ Pn. Montrer que P

est compact, non vide, d’intérieur vide et sans point isolé.

Démonstration.

Exercice 36 Soit d ≥ 1. On note P l’ensemble des polynômes unitaires de degré d de R[X].

1. On poseA = {(P, x) ∈ P×R;P (x) = 0} et P ′(x) ̸= 0}. Déterminer les composantes connexes par arcs deA dans Rd[X]×R.
2. On pose B = {P ∈ P;∀x ∈ R, P (x) ̸= 0 ou P ′(x) ̸= 0}. Déterminer les composantes connexes par arcs de B dans Rd[X].

Démonstration.

Exercice 37 Soient (Mk)k≥1 une suite de matrices de Mn(C) semblables les unes aux autres, \|\| une norme sur Mn(C). On suppose

que ∥Mk∥ → +∞. Montrer qu’il existe une matrice N ∈ Mn(C) nilpotente et une extractrice φ : N → N telles que Mφ(k)

∥Mφ(k)∥ → N .

Démonstration.

Exercice 38 Soit A ∈ Mn(C) dont toutes les valeurs propres sont de module < 1. Montrer qu’il existe une norme \|\| sur Cn telle
que, pour la norme d’opérateur associée, on ait ∥A∥ < 1.

Démonstration.

Exercice 39 Soient A ∈ Mn(R), de lignes L1, . . . , Ln, et ε ∈ R+∗. On suppose que, pour tout i ∈ 1, n, ∥Li∥2 = 1 et la distance
euclidienne canonique de Li au sous-espace engendré par les Lj , pour j ̸= i, est supérieure ou égale à ε. Montrer que A est inversible
et que sup

{∥∥A−1x
∥∥
2
;x ∈ Rn, ∥x∥1 = 1

}
≤ 1

ε .

Démonstration.

Exercice 40 Soient (an) et (bn) deux suites réelles de limite 1 et (un) une suite réelle strictement positive telle que, pour tout
n, un+2 = an+1un+1 + bn+1un. On pose, pour n ∈ N, vn = un+1

un
et wn = ln(un)

n . Montrer que les suites (vn) et (wn) convergent.

Démonstration.
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Exercice 41 1. Si n ≥ 2 est un entier, montrer que
∑n

k=2 ⌊logk(n)⌋ =
∑n

j=2⌊ j
√
n⌋.

2. Donner un équivalent lorsque n tend vers +∞ de
∑n

k=2 ⌊logk(n)⌋.

Démonstration.

Exercice 42 On considère une suite a ∈ {2, 3}N∗
telle que a1 = 2 et, pour tout n ≥ 1, le nombre de 3 apparaissant dans la suite a

entre la n-ième occurrence de 2 et la (n+ 1)-ième occurrence de 2 soit égal à an. Montrer qu’il existe un unique irrationnel α tel que
les indices n ≥ 1 tels que an = 2 soient exactement les entiers de la forme ⌊mα⌋+ 1 pour un m ∈ N.

Démonstration.

Exercice 43 Une suite réelle (xn) est dite équirépartie modulo 1 si elle vérifie, pour tout entier k ∈ Z∗, limN→+∞
1
N

∑N
n=1 e

2ikπxn =
0.

1. Soit α ∈ R \ Q. Montrer que la suite (nα) est équirépartie modulo 1.
2. Soit (xn) ∈ RN∗

. On suppose que pour tout h ∈ N∗, la suite (xn+h − xn)n∈N∗ est équirépartie ; on veut montrer que (xn) est
équirépartie modulo 1.

(a) Soit (an) une suite de complexes de module≤ 1. Montrer, pour tousN,H ∈ N∗ :
∣∣∣ 1
N

∑N
n=1 an

∣∣∣ ≤ ∣∣∣ 1
H

∑H−1
h=0

1
N

∑N
n=1 an+h

∣∣∣+
2H
N .

(b) Montrer que
∣∣∣ 1
H

∑H−1
h=0

1
N

∑N
n=1 an+h

∣∣∣ ≤ √
1
N

∑N
n=1

∣∣∣∑H−1
h=0

an+h

H

∣∣∣2.

(c) Conclure.
3. Soit P ∈ R[X] non constant et de coefficient dominant irrationnel. Montrer que (P (n))n≥1 est équirépartie modulo 1.
4. Soit (xn)n≥1 une suite réelle équirépartie modulo 1, et f : R → C une fonction continue 1-périodique. Montrer que 1

n

∑n
k=1 f (xk) −→

n→+∞∫ 1

0
f .

5. On reprend les hypothèses de la question c). Montrer que la distance de P (Z) à Z est nulle.

Démonstration.

Exercice 44 Montrer la convergence et calculer
∑+∞

k=1
(−1)k

k

⌊
ln(k)
ln(2)

⌋
.

Démonstration.

Exercice 45 On note ℓ2(R) l’ensemble des suites réelles de carré sommable indexées par N. On se donne une suite presque nulle
v ∈ R(N) ainsi qu’une suite (uk)k d’éléments de ℓ2(R) (l’élément uk est donc noté (uk,i)i∈N

)
. On suppose que, pour tout entier p ≥ 2,

la suite de terme général wk =
∑+∞

n=0 (uk,n)
p converge vers

∑+∞
n=0 (vn)

p. Montrer que infσ∈S(N)

∑+∞
n=0

(
uk,σ(n) − vn

)2 −→
k→+∞

0.

Démonstration.

Exercice 46 Soit f la fonction de R dans R nulle sur R \ Q et telle que f
(

p
q

)
= 1

q si p ∈ Z et q ∈ N∗ sont premiers entre eux. Quels
sont les points de continuité de f ?

Démonstration.

Exercice 47 Soient I un intervalle ouvert, f : I → R dérivable et [a, b] ⊂ I avec a < b. On suppose que f ′(a) = f ′(b). Montrer qu’il
existe c ∈] a, b[ tel que la tangente au graphe de f en c passe par le point (a, f(a)).

Démonstration.

Exercice 48 Déterminer les applications f de R dans R telles que, pour tout entier n ≥ 2, fn (puissance) soit polynomiale.

Démonstration.

Exercice 49 Soit P ∈ C[X] ne s’annulant pas sur U.

1. Montrer que le nombre de racines deP de module strictement inférieur à 1 comptées avec multiplicité n’est autre que 1
2π

∫ π

−π

eitP ′(eit)
P (eit) dt.

2. Soit Q ∈ C[X] ne s’annulant pas sur U et tel que ∀z ∈ U, |P (z) −Q(z)| < |Q(z)|. Montrer que P et Q ont même nombre de
racines de module strictement inférieurs à 1 comptées avec multiplicité.

Démonstration.

Exercice 50 Soit f : R+ → R une fonction continue et presque périodique c’est-à-dire telle que, pour tout ϵ > 0, il existe T > 0 tel
que : ∀x ∈ R+,∀n ∈ N, |f(x+ nT )− f(x)| ≤ ϵ. Soit f : R+ → R continue et presque périodique.

1. Montrer que f est uniformément continue sur R+.

2. Montrer que t 7→ 1
t

∫ t

0
f possède une limite quand t→ +∞.

Démonstration.
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Exercice 51 Soit Λ : N → R telle que Λ(n) = ln(p) sin = pk avec p premier et k ∈ N∗, et Λ(n) = 0 sinon. On note P l’ensemble
des nombres premiers.

1. Montrer que, pour tout n ∈ N∗,
∑

d|n Λ(d) = ln(n).

2. Montrer que, pour tout s > 1,
(∑

n∈N∗
Λ(n)
ns

) (∑
n∈N∗

1
ns

)
=

∑
n∈N∗

ln(n)
ns .

3. Montrer que, pour tout s > 1,
∑

p∈P
ln(p)
ps =

s→1+

1
s−1 +O(1).

4. Montrer que, pour tout s > 1,
∑

p∈P
1
ps =

s→1+
ln
(

1
s−1

)
+O(1). Qu’en déduire?

Démonstration.

Exercice 52 Soient f : R+ → R de classe C1, décroissante de limite nulle en +∞ et g : x 7→
∑+∞

n=0(−1)nf(nx). Quelle est la limite
de g en 0+ ?

Démonstration.

Exercice 53 SoientR ∈ R+∗, f et g deux fonctions développables en série entière sur ]−R,R[ telles que∀x ∈]−R,R
[
,
∫ x

0
f(t)g(x− t) dt = 0 .

Montrer que l’une au moins des deux fonctions f et g est identiquement nulle sur ]−R,R[.

Démonstration.

Exercice 54 Existe-t-il une partie A de N telle que
∑

n∈A
xn

n! ∼
x→+∞

e
√
x ? Montrer que {a ∈ U;∃b ∈ C, z 7→ az + b ∈ G} est fini.

Démonstration.

Exercice 55 Soit (a, b) ∈ R × R− tel que ∀x ∈ [0, 1], 1 + ax+ bx2 ≥ 0.

1. Si a ∈ R+, montrer que n
∫ 1

0

(
1 + ax+ bx2

)n
dx −→

n→+∞
+∞.

2. Si a ∈ R−∗, montrer que n
∫ 1

0

(
1 + ax+ bx2

)n
dx −→

n→+∞
− 1

a .

Démonstration.

Exercice 56 Soit, pour x ∈ R+, f(x) =
∫ π

0
dt√

e2x cos2(t)+e−2x sin2(t)
. Montrer qu’il existe (a, b) ∈ (R+)

2 tel que ∀x ∈ R+, f(x) ≤

(ax+ b)e−x.

Démonstration.

Exercice 57 Soit I un (vrai) intervalle de R. Si r ∈ N∗ et f1, . . . , fr ∈ Cr−1(I,R), on poseWr (f1, . . . , fr) = det

((
f
(i−1)
j

)
1≤i,j≤r

)
.

Soient r ∈ N∗, f1, . . . , fr ∈ Cr−1(I,R).

1. Soit g ∈ Cr−1(I,R). Montrer que Wr (gf1, . . . , gfr) = grWr (f1, . . . , fr).
2. On suppose que, pour tout k ∈ 1, r,Wk (f1, . . . , fk) ne s’annule pas. Montrer que, pour tout (a1, . . . , ar) ∈ Rr non nul, la

fonction a1f1 + · · ·+ arfr s’annule au plus (r − 1) fois sur I .
3. On suppose queWr (f1, . . . , fr) est identiquement nul sur I et queWr−1 (f1, . . . , fr−1) ne s’annule pas. Montrer que (f1, . . . , fr)

est liée.

Démonstration.

Exercice 58 Soient f une application différentiable convexe de Rn dans R, L ∈ R+∗.

1. Montrer que ∀(x, y) ∈ Rn × Rn, ⟨∇f(y)−∇f(x), y − x⟩ ≥ 0.
2. On suppose que l’application ∇f est L-lipschitzienne.

Montrer que ∀(x, y) ∈ Rn×Rn, ⟨∇f(y)−∇f(x), y−x⟩ ≥ 1
L∥∇f(x)−∇f(y)∥2. unité fermée de cet espace. Soient f une application

de Rn dans Rn de classe C1 et telle que, pour tout (u, v) ∈ B2, ∥−f(0) + v − dfu(v)∥ ≤ 1
2 . Montrer que f s’annule exactement une

fois sur B.

Démonstration.

Exercice 59 Soit G un groupe d’isométries affines de R2 tel que, pour tout point x, il existe g ∈ G tel que g(x) ̸= x. Montrer que G
contient une translation autre que l’identité de R2.

Démonstration.

Exercice 60 Soit S le groupe (pour la composition) des applications de C dans C de la forme z 7→ az + b avec a ∈ U et b ∈ C. Soit
G un sous-groupe de S vérifiant les conditions suivantes :

• si g ∈ G, g(0) est nul ou de module supérieur ou égal à 1 ;
• l’ensemble des b ∈ C tels que z 7→ z + b appartienne à G contient deux éléments R linéairement indépendants.

Montrer que l’ensemble {a ∈ U | ∃b ∈ C, z 7→ az + b ∈ G} est fini.

Démonstration.
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Exercice 61 Soient m ≥ 1 et r ≥ 1 deux entiers. On munit l’ensemble des morphismes de groupes de (Z/mZ)r dans Z/mZ de la loi
uniforme. Donner une expression simple de la probabilité de l’événement «le morphisme φ est surjectif».

Démonstration.

Exercice 62 Soit X une variable aléatoire à valeurs dans N telle que E(X) = 1, E
(
X2

)
= 2 et E

(
X3

)
= 5. Quelle est la valeur

minimale de P(X = 0)?

Démonstration.

Exercice 63 Dans tout l’exercice, les variables aléatoires considérées sont supposées réelles, discrètes et à loi de support fini. Pour
deux telles variables X et Y , on note X ≤c Y pour signifier que E(f(X)) ≤ E(f(Y )) pour toute fonction convexe f : R → R.

1. Soient X une variable aléatoire vérifiant les conditions de l’exercice et f : R → R convexe. Montrer que f(E(X)) ≤ E(f(X)).
2. Donner un exemple de couple (X,Y ) pour lequel X ≤c Y mais X ̸= Y .
3. Montrer que si X ≤c Y alors E(X) = E(Y ) et V(X) ≤ V(Y ).
4. Montrer que X ≤c Y si et seulement si E(X) = E(Y ) et

∀a ∈ R,
∫ +∞

a

P(X ≥ x) dx ≤
∫ +∞

a

P(Y ≥ x) dx.

Démonstration.

Exercice 64 On fixe N ∈ N∗. On choisit de façon équiprobable u1 ∈ 1, N , puis u2 ∈ 1, u1 − 1, et ainsi de suite jusqu’à arriver à
uℓ = 1 avec nécessairement ℓ ≤ N . On note EN = {uj , 1 ≤ j ≤ ℓ}.

1. Calculer P (k ∈ EN ) pour 1 ≤ k ≤ N .
2. Calculer P (2 ∈ EN | 3 /∈ EN ).
3. Calculer E (|EN |) et V (|EN |).

Démonstration.

Exercice 65 Soient E un ensemble fini, V : E → P(E) une fonction de E vers les parties de E et f : E → R une fonction. Un point
a ∈ E est un minimum local si f(a) ≤ f(b) pour tout b ∈ V (a). Soit M un entier tel queM ≥

√
|E|. Soient b1, . . . , bM des variables

aléatoires indépendantes et uniformément distribuées dans E. Soit k tel que f (bk) = min1≤i≤M f (bi). Soit (un)n≥0 une suite de E
telle que u0 = bk et, pour tout n ≥ 0 :

• si un est un minimum local, alors un+1 = un ;
• sinon un+1 ∈ V (un) et f (un+1) < f (un).

Montrer que uM est un minimum local avec probabilité au moins 1/2.

Démonstration.

Exercice 66 Soient d ∈ N∗ et n ≥ 3. On pose G = (Z/nZ)d et S = {±ei, 1 ≤ i ≤ d}, où ei désigne l’élément de G dont toutes
les coordonnées sont nulles sauf la i-ème, égale à 1. Soient enfin f : G → R une fonction quelconque et X une variable aléatoire
uniformément distribuée sur G.
Montrer que E(|f(X)−E(f(X))|) ≤ nd

2 maxs∈S E(|f(X)− f(X + s)|).
Démonstration.

II) Écoles Normales Supérieures - PC
Exercice 67 SoitA une partie de cardinaln de R. On poseB = A+A = {a+ a′, a, a′ ∈ A}. Montrer que 2n−1 ≤ card(B) ≤ n(n+1)

2 .
Généraliser à B = kA = A+A+ · · ·+A(k fois).

Démonstration.

Exercice 68 Soient P1, P2, P3, P4 ∈ R[X]. Montrer qu’il n’existe aucun voisinage ouvert de 0 sur lequel on ait simultanément i)
∀x < 0, P1(x) < P2(x) < P3(x) < P4(x) ii) ∀x > 0, P2(x) < P4(x) < P1(x) < P3(x).

Démonstration.

Exercice 69 Soit (Xn)n∈N∗ une suite i.i.d. de variables aléatoires à valeurs dans N. On suppose que P (X1 = 0)P (X1 = 1) ̸= 0. On

pose, pour n ∈ N, Sn = X1 + · · ·+Xn. Montrer que $P
(
4.$divise Sn) −→

n→+∞
1
4 .

Démonstration.
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III) École Polytechnique - MP - MPI
Exercice 70 1. Montrer que l’équation a2 − 2b2 = 1 admet une infinité de solutions (a, b) ∈ N2. 277∗ ⋆ a éterminer l’ensemble

des solutions.
2. Que dire de l’ensemble des solutions de a2 − 2b2 = −1?

Démonstration.

Exercice 71 Soit G un groupe fini de neutre 1. Soit φ un automorphisme de G sans point fixe c’est-à-dire tel que : ∀x ∈ G,φ(x) =
x⇒ x = 1. On note n l’ordre de φ ; c’est le plus petit entier n ∈ N∗ tel que φn = id.

1. Montrer que ∀x ∈ G, xφ(x)φ2(x) · · ·φn−1(x) = 1.
2. Si n = 2, que peut-on dire du groupe G? Donner un exemple.
3. Si n = 3, montrer que, pour tout x ∈ G, x et φ(x) commutent.

Démonstration. 1. Cet élément est fixé par φ.
2. On a xφ(x) = 1, donc φ(x) = x−1. Cela implique que G est commutatif, et qu’aucun élément n’est inverse de lui-même, donc
G commutatif, de cardinal impair.

3. Écrire xφ(x)φ2(x) = 1, φ(x)φ2(x)x = 1 et φ2(x)φ(x)x = 1.

Exercice 72 Soit p un nombre premier. On suppose que, pour toute Fp-algèbre A, il existe un endomorphisme uA de A de sorte que,
pour tout couple (A,B) de Fp-algèbres et tout morphisme τ de Fp-algèbres de A dans B, on ait τ ◦ uA = uB ◦ τ . Que dire des uA ?

Démonstration. Pour tout isomorphisme τ : A→, uA commute avec τ .

Exercice 73 SoientE un R-espace vectoriel de dimension finie, p, u ∈ L(E). On suppose que p est un projecteur et que pu+up = u.
Montrer que tr(u) = 0.

Démonstration. On a u(Ker p) ⊂ Im p et u(Im p) ⊂ Ker p.

Exercice 74 Soient p et q deux projecteurs orthogonaux dans un espace euclidien E.

1. Montrer que p ◦ q ◦ p est diagonalisable.
2. Montrer que E = Im p+Ker q + (Im q ∩Ker p).
3. Montrer que p ◦ q est diagonalisable.
4. Montrer que le spectre de p ◦ q est inclus dans [0, 1].

Démonstration.

Exercice 75 Soit α ∈ R+∗. On note S2 =
{
x ∈ R3, ∥x∥ = 1

}
où \|\| désigne la norme euclidienne canonique. Montrer l’équivalence

entre les propositions suivantes.

• α = 2.
• ∀n ≥ 1,∀ (a1, . . . , an, b1, . . . , bn, c1, . . . , cn) ∈

(
S2

)3n
,∃p ∈ S2 tel que

n∑
i=1

∥p− ai∥α =

n∑
i=1

∥p− bi∥α =

n∑
i=1

∥p− ci∥α

Démonstration.

Exercice 76 Soit t1, . . . , tn des réels.

1. Montrer que la matrice A = (titj)1≤i,j≤n est dans S+
n (R).

2. On suppose 0 ≤ t1 ≤ · · · ≤ tn. Montrer que la matrice B = (min (ti, tj))1≤i,j≤n est dans S+
n (R).

3. On suppose 0 ≤ t1 ≤ · · · ≤ tn ≤ 1. Montrer que M = B −A ∈ S+
n (R).

Démonstration. 1. XTAX = ()
∑
tixi)

2

2.
∫ (∑

xi1ti

)2
3. Il s’agit de montrer que

∫ 1

0

(∑
xi1ti

)2 ≥ (
∑
tixi)

2, c’est-à-dire
∫
h2 ≥

( ∫
h
)2

, car l’intégrale est sur [0, 1].

Exercice 77 Soit K ⊂ R2 un convexe fermé non vide.

1. On suppose K borné. Montrer que K s’écrit comme intersection de carrés fermés.
2. On suppose K non borné et K ̸= R2. Donner des exemples de tels convexes. Montrer que si K contient deux droites, celles-ci

sont parallèles.
3. On suppose toujours K non borné. Montrer que K contient une demi-droite.

Démonstration. 1. Si x ̸∈ K , on peut trouver une droite séparant x de K , donc un carré contenant K et non x.
2. Si K contient deux droites non parallèles, K = R2. La partie au dessus du graphe de x 7→ ex.
3. Fixer y ∈ K , et une suite (xn) ∈ K qui tend vers ∞, et prendre une valeur d’adhérence des segments [y, xn].
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Exercice 78 On dit qu’une famille $
(
Dt)t ∈ Rˆ+$dedisquesfermsdeR2 vérifie (P) sipour tous s, t ∈ R+ distincts, Ds et Dt ont des centres distincts, pour tous s, t ∈ R+ tels que s < t,Ds ⊂ Dt .Existe-t-il une telle famille ? Soit A : R+ → R2 une fonction C1 et injective. Existe-t-il une famille (Dt)t∈R+ vérifiant (P) telle que, pour tout t ∈ R+, A(t) soit le centre de Dt ? Le résultat subsiste-t-il si A est seulement supposée continue?

••1.2.3. Démonstration. 1. Cercles de centre (x, 0), de rayon x.
2. Prendre Dt de rayon la longueur de la courbe de A(0) à A(t).
3. Prendre une fonction non réglée.

Exercice 79 Soient a, b, c des entiers naturels non nuls. Montrer qu’il existe un n ∈ N∗ tel que
√
n4 + an2 + bn+ c /∈ N.

Démonstration. Dérivée discrète.

Exercice 80 Soient (an) et (bn), deux suites réelles positives telles que la série de terme général bn converge, que la série de terme
général nan diverge et que

∑+∞
n=0 an = 1.

1. Montrer qu’il existe une unique suite (un) telle que, ∀n ∈ N, un = bn +
∑n

k=0 ukan−k .
2. Montrer que (un) est bornée.
3. Montrer que, si (un) converge, alors sa limite est 0.

Démonstration. Cf une année précédente.

Exercice 81 Soit f ∈ C0 (R+,R+), strictement croissante et bijective. Montrer que les séries
∑

1
f(n) et

∑ f−1(n)
n2 sont de même

nature.

Démonstration. La série
∑

1
f(n) a la même nature que

∫
1
f . On peut raccorder f de manière C1, puis on pose u = f(t) :∫ +∞

0

1

f(t)
dt =

∫ +∞

0

1

uf ′(f−1(u))
du,

puis IPP.

Exercice 82 Que dire d’une fonction f : R → R continue, 1-périodique et
√
2-périodique?

Démonstration.

Exercice 83 Soit f : x ∈ R 7→ e
x2

2

∫ +∞
x

e−
t2

2 dt.

1. Montrer que f(x) < 1
x pour tout x > 0.

2. Montrer que f(x) >
√
x2+4−x

2 pour tout x > 0.
3. Donner un développement limité à quatre termes de f(x) quand x→ +∞.

Démonstration.

Exercice 84 Soient u, v ∈ R. Pour r ∈ R+ \ {|u|, |v|}, calculer Ir(u, v) =
∫ 2π

0
dθ

(u−reiθ)(v−reiθ)
.

Démonstration.

Exercice 85 Soit P = a1X + · · ·+ adX
d ∈ Z[X] avec a1 impair.

1. Montrer l’existence d’une suite réelle (bk)k≥0 telle que : ∀x ∈ R, exp(P (x)) =
∑+∞

k=0 bkx
k .

2. Montrer que les bk sont tous non nuls.

Démonstration.

Exercice 86 Soient p ∈ [0, 1/2], (Xn)n≥1 i.i.d. telle que P (Xn = −1) = P (Xn = 1) = p et P (Xn = 0) = 1 − 2p. On cherche p
tel que : ∀n ∈ N∗,∀a1, . . . , an, b ∈ Z,P (

∑n
i=1 aiXi = 0) ≥ P (

∑n
i=1 aiXi = b).

1. Montrer que p ≤ 1/3, puis que p < 1/3 et enfin que p ≤ 1/4.
2. Si X une variable aléatoire à valeurs dans Z, on pose ΦX : θ 7→ E

(
eiXθ

)
. Exprimer P(X = k) en fonction de ΦX .

3. En déduire que p ≤ 1/4 est une condition suffisante.

Démonstration.

Exercice 87 Soient n ≥ 1 et A,B,C des variables aléatoires indépendantes uniformément distribuées sur {0, 1}n.

1. Pour n ≥ 2, calculer la probabilité pn que ABC soit un triangle équilatéral.
2. Déterminer un équivalent de pn.

Démonstration.
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IV) École Polytechnique - PSI
Exercice 88 Soit (a, b) ∈ R2 avec a < b. Montrer qu’il existe (n,m) ∈ N2 tel que

√
n−

√
m ∈] a, b[.

Démonstration.

Exercice 89 Soit $f :
[
0,+∞

[
→

[
0,+∞

[
. . . .$declasseC1 et strictement croissante. On suppose que limx→+∞ f(x) = +∞. Mon-

trer que
∑

1
f(n) converge si et seulement si

∑ f−1(n)
n2 converge.

Démonstration.

V) École Polytechnique - ESPCI - PC
Exercice 90 Montrer que, pour tout n ∈ N∗, il existe m ∈ N∗ et ε1, . . . , εm ∈ {−1, 1} tels que n =

∑m
k=1 εkk

2.

Démonstration.

Exercice 91 Existe-t-il une suite (ak)k∈N de réels non nuls telle que, pour tout n ∈ N, le polynôme Pn =
∑n

k=0 akX
k soit scindé à

racines simples dans [0, 1]?

Démonstration.

Exercice 92 Caractériser les matrices M ∈ Mn(C) qui sont somme de deux matrices diagonalisables de rang 1.

Démonstration.

Exercice 93 Soit a ∈ R. On suppose que (n{an!})n∈N converge où on note {x} = x− ⌊x⌋ pour x ∈ R. Montrer que a ∈ Q + eN.

Démonstration.

Exercice 94 Soit (un) une suite bornée. Montrer qu’il y a équivalence entre : (i) 1
n

∑
k<n |uk| → 0, (ii) il existe A ⊂ N tel que

1
n |A ∩ [0, n− 1]| −→

n→+∞
0 et limn/∈A un = 0.

Démonstration.

Exercice 95 Soit f : R → R continue. Montrer que les propositions suivantes sont équivalentes :

• f est croissante,
• pour tout intervalle I ⊂ R ouvert, pour toute φ ∈ C∞(I,R), pour tout x0 ∈ I , si f − φ admet un minimum local en x0, alors
φ′ (x0) ≥ 0.

Démonstration.

Exercice 96 On pose, pour k ∈ N avec k ≥ 2, ζ(k) =
∑+∞

n=1
1
nk .

1. Montrer que, pour tout $x ∈]-1,1
[
.$, ona

∫ 1

0
1−tx

1−t dt =
∑+∞

k=1(−1)k+1ζ(k + 1)xk .

2. En déduire la valeur de S =
∑+∞

k=1(ζ(2k)− ζ(2k + 1)).

Démonstration.

VI) Mines - Ponts - MP - MPI
Exercice 97 Déterminer tous les couples (m,n) ∈ N2 vérifiant : 3m = 8 + n2.

Démonstration.

Exercice 98 Soit P ∈ R[X] unitaire de degré n. Montrer qu’il existe k ∈ 0, n tel que |P (k)| ≥ n!
2n .

Démonstration.

Exercice 99 Soit P ∈ C[X].

1. À quelle condition P réalise-t-il une surjection de C sur C?
2. À quelle condition P réalise-t-il une surjection de R sur R?
3. À quelle condition P réalise-t-il une surjection de Q sur Q?

Démonstration.

Exercice 100 Soit n ∈ N∗. Calculer det ((i ∧ j)1≤i,j≤n). Ind. On rappelle que, pour N ∈ N∗, N =
∑

d|N φ(d) où φ est l’indicatrice
d’Euler.

Démonstration.

Exercice 101 Soient (E, ⟨⟩,)unespaceeuclidiendedimensionn, v1, . . . , vn+2 des vecteurs de E. Montrer qu’on ne peut avoir : ∀i ̸=
j, ⟨vi, vj⟩ < 0.

Démonstration.
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Exercice 102 Soient E un espace euclidien, A une partie de E et B =
{
⟨x, y⟩; (x, y) ∈ A2

}
. Montrer que A est fini si et seulement

si B est fini.

Démonstration.

Exercice 103 Soient n ≥ 2 et f : Rn → R continue telle que, pour tout a ∈ R, f−1({a}) est compact. Montrer que f admet un
extremum global. Que se passe-t-il si n = 1?

Démonstration.

Exercice 104 Pour n ∈ N∗, on pose $Dn= \d ∈ N; d | n.$et
√

n
2 ≤ d ≤

√
2n

}
et dn = |Dn|.

1. La suite (dn)n≥1 est-elle convergente?
2. La suite (dn)n≥1 est-elle bornée?

Démonstration.

Exercice 105 Soit (un)n≥0 une suite décroissante de réels positifs. On pose, pour n ∈ N, vn = 1
1+n2un

. Montrer que si
∑
vn converge,

alors
∑
un diverge.

Démonstration.

Exercice 106 Soit f ∈ C2([0, 1],R) telle que f(0) = f(1) = 0. Montrer que 120
(∫ 1

0
f
)2

≤
∫ 1

0

(
f

′′
)2

.

Démonstration.

Exercice 107 Soit f : Rn → Rn différentiable telle que : i) pour tout x ∈ Rn, df(x) est injective ; ii) ∥f(x)∥ −→
∥x∥→+∞

+∞. Soient

a ∈ Rn et g : x ∈ Rn 7→ ∥f(x)− a∥2.

1. Calculer dg.
2. Montrer que g admet un minimum.
3. En déduire que f est surjective.

Démonstration.

VII) Mines - Ponts - PSI
Exercice 108 Soient E un R espace vectoriel de dimension finie, u ∈ L(E) nilpotent, F est sousespace vectoriel de E tel que
u(F ) ⊂ F . On suppose que E = F + Im(u). Montrer que E = F .

Démonstration.

VIII) Centrale - MP - MPI
Exercice 109 On admet le théorème suivant : Pour S une série entière de rayon de convergence infini dont la somme ne s’annule pas
sur C, il existe une série entière L de rayon de convergence infini telle que ∀z ∈ C, exp(L(z)) = S(z).

1. (a) Rappeler tous les modes de convergence d’une série entière sur son disque ouvert de convergence.

(b) SoientF (z) =
∑+∞

n=0 anz
n de rayon de convergence infini etG(z) = Re(F (z)). Pourn ∈ N∗, montrer que

∫ 2π

0
F
(
reit

)
dt =

2πanR
n, puis que

∫ 2π

0
G
(
Reit

)
e−int dt = πanR

n et
∫ 2π

0
G
(
Reit

)
dt = 2πRe (a0).

2. Montrer que, s’il existe p et q réels strictement positifs tels que ∀z ∈ C, |G(z)| ≤ p|z|+ q, alors F est un polynôme de degré au
plus 1.

3. Montrer que l’application z 7→ z exp(z) est une surjection de C sur lui-même.

Démonstration.
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