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I) ENS MP xens

1) Algèbre

Exercice 1 [ENS L 2025 # 1] Soit n ∈ N∗. Un chemin auto-évitant de longueur n de Z2 est une suite injective de points a0, . . . , an de
Z2 telle que a0 = (0, 0) et, pour tout i, ∥ai+1ai∥ = 1 pour la norme euclidienne canonique de R2. On note An le nombre de chemins
auto-évitants de longueur n.

1. Montrer que, pour tous m,n ∈ N∗, Am+n ⩽ AmAn.
2. Montrer qu’il existe ε > 0 tel que, pour n assez grand, (2 + ε)n ⩽ An ⩽ (3 − ε)n.
3. Montrer que

(
n
√
An
)

converge.
Exercice 2 [ENS SR 2025 # 2] Un sous-ensemble non vide S de Z est dit direct si, pour x, y, s, t ∈ S, la condition x + y = s + t
implique que {x, y} = {s, t}.

1. Les ensembles {1, 3, 6} et {1, 3, 6, 10, 15} sont-ils directs ?
2. Trouvez un ensemble infini direct.
3. Montrer qu’il existe B > 0 telle que pour tout n ∈ N∗, pour tout ensemble direct S inclus dans [[0, n]], on ait |S| ≤ Bn1/2,
4. Montrer qu’il existe A > 0 telle que pour tout n ∈ N∗ il existe un ensemble direct S inclus dans [[0, n]] tel que An1/3 ≤ |S|.

Indication : On pourra rajouter des éléments un à un à un ensemble de [[0, n]].
5. Existe-t-il un ensemble S direct inclus dans N tel que S + S = N?
6. Existe-t-il un ensemble S direct inclus dans Z tel que N soit inclus dans S+S?
7. Existe-t-il un ensemble S direct inclus dans Z tel que S + S = Z?

Exercice 3 [ENS L 2025 # 3] Soit (un) définie par u0 = 4, u1 = u2 = 0, u3 = 3 et ∀n ∈ N, un+4 = un + un+1. Montrer que, pour
tout nombre premier p, p divise up.
Exercice 4 [ENS SR 2025 # 4] On considère la suite (Fn)n≥0 définie par F0 = 0, F1 = 1 et Fn+2 = Fn+1 + Fn pour tout n ≥ 0.

1. Exprimer Fn en fonction de n.
2. Montrer que Fp+q = FpFq+1 + Fp−1Fq pour tout (p, q) ∈ N∗ × N.
3. Calculer Fm ∧ Fn pour tous m,n ≥ 0.

Exercice 5 [ENS L 2025 # 5] On note dn le nombre de diviseurs de n ∈ N∗. Montrer que dn = O(nε) pour tout ε > 0.
Exercice 6 [ENS PLSR 2025 # 6] 1. Montrer qu’il existe une infinité de nombres premiers p tels que p ≡ 3 [4].
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2. Soient p un nombre premier et n ≥ 2. Soit k = (np)p−1
np−1 .

a) Montrer que k ≡ 1[p].
b) Soit d ∈ N∗. Montrer que si d divise k alors d ≡ 1[p].

3. Soit p un nombre premier. Montrer qu’il existe une infinité de nombres premiers congrus à 1 modulo p.
Exercice 7 [ENS SR 2025 # 7] 1. Quels sont les éléments inversibles de Z/nZ?

2. Soit n ≥ 3. On considère sa décomposition en facteurs premiers : n = pα1
1 . . . pαr

r où les pi sont premiers distincts et supérieurs
à 3, les αi dans N∗.
On admet que, pour tout i, (Z/pαi

i Z)× est cyclique.
Montrer que la proportion d’éléments d’ordre pair dans (Z/nZ)× est supérieure ou égale à 1 − 1

2r .
3. Déterminer le nombre de solutions de x2 = 1 dans Z/nZ.
4. Caractériser les éléments x ∈ (Z/nZ)× d’ordre r = 2ℓ pair tel que xℓ ̸= −1.

Exercice 8 [ENS PLSR 2025 # 8] Soient p un nombre premier impair, α ∈ N∗, q = pα et f : (Z/qZ)2 → Z/qZ une fonction. Une
partie D de Z/qZ est dite f -génératrice si : ∀y ∈ Z/qZ, ∃n ≥ 2,∃d1, . . . , dn ∈ D, y = f(. . . f(f(d1, d2), d3), . . . dn).

1. On considère le cas où f : (x, y) 7→ x− y. Déterminer les parties f -génératrices de cardinal minimal et calculer leur nombre.
2. E Dans la suite de l’exercice, on considère le cas où f : (x, y) 7→ xy.
3. Montrer qu’il n’existe pas de partie f -génératrice de cardinal 1.
4. On admet que le groupe (Z/qZ)× est cyclique. Montrer qu’il existe une partie f -génératrice de cardinal 2.
5. Caractériser les parties f -génératrices de cardinal 2.

Exercice 9 [ENS L 2025 # 9] Dénombrer les morphismes de (Z/4Z,+) dans le groupe des automorphismes de (Z/13Z,+).
Exercice 10 [ENS P 2025 # 10] Soit A un anneau tel que tout élément de a ∈ A est nilpotent ou idempotent, c’est-à-dire tel que
a2 = a.

1. Montrer que tout élément de A est idempotent.
2. Montrer que A est commutatif.
3. On suppose que A est fini. Montrer qu’il existe n ∈ N∗ tel que A soit isomorphe à (Z/2Z)n.

Exercice 11 [ENS PLSR 2025 # 11] On note Z[i
√

2] =
{
a+ ib

√
2; (a, b) ∈ Z2}.

1. Rappeler la démonstration du fait que les idéaux de Z sont principaux.
2. Montrer que Z[i

√
2] est un sous-anneau de C dont les idéaux sont principaux.

3. Déterminer les inversibles de Z[i
√

2].
4. Trouver les (x, y) ∈ Z2 tels que x2 + 2 = y3.

Exercice 12 [ENS PLSR 2025 # 12] Soit (A,+) un groupe abélien. On dit qu’il est sans torsion lorsque n · x ̸= 0 pour tout n ∈ N∗ et
tout $x ∈ A \ \0\$. Un ordre de groupe sur (A,+) est une relation d’ordre totale ≤ sur l’ensemble A telle que ∀(x, y, z) ∈ A3, x ≤
y ⇒ x+ z ≤ y + z.

1. Montrer que si (A,+) possède un ordre de groupe alors il est sans torsion.
2. Montrer que (Zn,+) possède un ordre de groupe pour tout n ∈ N∗.
3. Soit n ∈ N∗. Montrer que tout sous-groupe de Zn est isomorphe à Zm pour un m ∈ [0, n].

Exercice 13 [ENS PLSR 2025 # 13] Soit r ∈ N∗, r ≥ 2.
1. Montrer que, pour tout n ∈ N, il existe une unique suite presque nulle (ak,r(n))k≥0 telle que n =

∑∞
k=0 ak,r(n)rk avec,

∀k ∈ N, ak,r(n) ∈ [[0, r − 1]].
2. Montrer que (ak,r(n))n≥1 est périodique et trouver sa période.
3. Montrer que (ak,r(nn))n≥1 est périodique à partir d’un certain rang.

Exercice 14 [ENS PLSR 2025 # 14] On pose S = {(x, y, z) ∈ N∗3 : x ≤ y ≤ z, x2 + y2 + z2 = 3xyz}.
1. Déterminer les éléments de S vérifiant x = y ou y = z.
2. Montrer qu’une infinité d’éléments de S vérifient x = 1.
3. On pose f : (x, y, z) 7→ (y, z, 3yz − x) et g : (x, y, z) 7→ (x, z, 3xz − y).

Montrer S est l’ensemble des images de (1, 1, 1) par toutes les composées de f et g.
Exercice 15 [ENS PLSR 2025 # 15] 1. Soit A un anneau commutatif. Rappeler la définition d’un idéal de A.

2. Un idéal I de A dit maximal si A est le seul idéal J de A tel que I ⊊ J ⊂ A.
Montrer qu’un idéal maximal de A ne contient pas d’élément inversible.

3. On pose U = F({0, 1},R). Donner les idéaux maximaux de U .
4. On pose V = C0([0, 1],R). Donner les idéaux maximaux de V .

Exercice 16 [ENS PLSR 2025 # 16] Soit A un anneau commutatif.
Pour n ∈ N∗, on note Σn(A) = {c2

1 + · · · + c2
n, (c1, . . . , cn) ∈ An}.

1. Montrer que Σ2(A) est stable par multiplication.
2. Est-ce que Σ3(A) est stable par multiplication quel que soit l’anneau A envisagé?
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3. On suppose que A est un corps de caractéristique différente de 2 et que n est une puissance de 2. Soient c1, . . . , cn dans A et
s =

∑n
k=1 c

2
k . Montrer qu’il existe une matrice M ∈ Mn(A) dont la première ligne est (c1 · · · cn) et qui vérifie MMT =

MTM = sIn.
4. En déduire que Σ2n(A) est stable par multiplication.

Exercice 17 [ENS SR 2025 # 17] Soit (A,+,×) un anneau intègre (donc commutatif). On suppose que A est euclidien, c’est-à-dire
qu’il existe une fonction t : A \ {0} → N vérifiant les deux conditions suivantes :

• ∀(a, b) ∈ A× (A \ {0}), ∃(q, r) ∈ A2, a = bq + r et (r = 0 ou t(r) < t(b)).
• ∀(a, b) ∈ A \ (A \ {0})2, t(ab) ≥ t(a).
• Montrer que Z et R[X] sont euclidiens, tout comme n’importe quel corps K.
• Montrer que tout idéal de A est principal.
• On suppose que t(1A) = 0. Montrer que les éléments inversibles de A sont les u ∈ A \ {0} tels que t(u)=0.
• E On suppose dans toute la suite de l’exercice que dans l’hypothèse (i) il y a en plus unicité du couple (q,r) solution.
• Montrer que t(a+ b) ≤ max(t(a), t(b)) quels que soient a ∈ A \ {0} et b ∈ A \ {0} tels que a+ b ̸= 0.
• Montrer que A× ∪ {0} est un sous-corps de A.
• Montrer que A est un corps ou est isomorphe à K[X] pour un corps K.

Exercice 18 [ENS PLSR 2025 # 18] Soit p un nombre premier. On note Zp l’ensemble des suites (xn)n≥1 telles que, pour tout n ∈ N∗,
xn appartienne à l’anneau Z/pnZ et que xn soit l’image de xn+1 par l’unique morphisme d’anneaux de Z/pn+1Z dans Z/pnZ.

1. Montrer que l’addition et la multiplication coordonnée par coordonnée font de Zp un anneau contenant un sous-anneau iso-
morphe à Z.

2. Montrer que Zp est intègre.
3. Déterminer les inversibles de Zp.
4. Soit P ∈ Z[X]. On suppose qu’il existe x ∈ Z tel que p divise P (x) et que p ne divise pas P ′(x). Montrer que P admet une

racine y dans Zp telle que y1 = x̄ dans Z/pZ.
Exercice 19 [ENS P 2025 # 19] On considère P = Xn − a1X

n−1 + a2X
n−2 + · · · + (−1)nan ∈ R[X], scindé sur R et de racines

réelles x1, . . . , xn. Montrer que, pour tout 1 ≤ k ≤ n,
∣∣xk − a1

n

∣∣ ⩽ n−1
n

√
a2

1 − 2n
n−1a2.

Exercice 20 [ENS 2025 # 20] Soient f, g ∈ Q[X] tels que f(Q) = g(Q). Montrer que deg f = deg g.
Exercice 21 [ENS 2025 # 21] Soient n,m ∈ N∗ avec m < n. Soit Pn,m l’ensemble des polynômes complexes de degré n dont 0 est
racine d’ordre m et dont les autres racines sont de module ≥ 1. Déterminer inf{|z| ; z ∈ C∗, ∃P ∈ Pn,m, P ′(z) = 0}.
Exercice 22 [ENS SR 2025 # 22] Soit I = {P ∈ C[X] : ∀n ∈ Z, P (n) ∈ Z}. On pose H0 = 1 et, pour n ∈ N∗, Hn =
X(X−1)···(X−n+1)

n! . Pour P ∈ C[X], on pose ∆(P ) = P (X + 1) − P (X) et Dn(P ) = ∆n(P )(0).

1. Montrer que (Hn)n≥0 est une base de C[X].
2. Montrer que, pour tout n,Hn ∈ I .
3. Montrer que, pour tout n ∈ N∗, ∆(Hn) = Hn−1. d) Montrer que I ⊂ Q[X].
4. Montrer que I = {

∑n
i=0 aiHi ; n ∈ N, (a0, . . . , an) ∈ Zn}.

5. Soient P1, P2 ∈ I tels que, pour tout n ∈ Z, P1(n) soit premier avec P2(n). Montrer qu’il

existe U1, U2 ∈ I tels que U1P1 + U2P2 = 1.

Exercice 23 [ENS PLSR 2025 # 23] Soit H =
(

2 1
1 1

)
. On note CH = {M ∈ GL2(Z), MH = HM}.

1. Montrer que CH est un sous-groupe infini de GL2(Z).
2. Montrer que CH = Z[H] ∩ GL2(Z), où Z[H] = {xI + yH, (x, y) ∈ Z2}.
3. Montrer que CH est isomorphe à (Z/2Z) × Z et en donner un système de générateurs.

Exercice 24 [ENS L 2025 # 24] Soient A et B dans Mn(R) telles que AB = BA. Soit k ∈ N∗. Déterminer le signe de det (Ak +Bk).
Exercice 25 [ENS SR 2025 # 25] Soient f ∈ C∞(R,R+∗) et x0, . . . , xn−1 des réels > 0. On souhaite montrer que :

det
(
dj

dxj
(f(x)xi)

)
0⩽i,j<n

= f(x)
∑

0⩽i<n
(xi−i)

f ′(x)
n(n−1)

2
∏

0⩽i<j<n
(xj − xi).

1. a) Soit (pj)0≤j<n une famille de polynômes de R[X] telle que, pour tout j, pj est de degré j et de coefficient dominant dj .
Montrer que det(pj(xi))0≤i,j<n = d0 × · · · × dn−1

∏
(xj − xi).

b) Montrer que, pour tout x ∈ R et tout j ∈ N, il existe pj ∈ R[X] de degré j et de coefficient dominant f ′(x)j tel que :
∀z ∈ R, d

j

dxj (f(x)z) = f(x)z−jpj(z).
c) Démontrer le résultat annoncé. Que dire dans des cas particuliers ?

2. Soit f : x 7→
∑+∞
n=0 anx

n la somme d’une série entière de rayon de convergence non nul.
Pour tous i, j ∈ N∗, on note ci,j le coefficient en xj de f i. Calculer det((ci,j)1≤i,j≤n).
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Exercice 26 [ENS L 2025 # 26] SoitA ∈ GL3(R). Montrer queA est semblable àA−1 si et seulement s’il existeB,C ∈ M3(R) telles
que A = BC,B2 = C2 = I3.
Exercice 27 [ENS P 2025 # 27] Soit n ≥ 2. On note Rn l’ensemble des matrices M de GLn(C) telles que MM appartient à C∗In.
On définit une relation d’équivalence ∼ sur Mn(C) en posant A ∼ B s’il existe M ∈ GLn(C) et λ ∈ C∗ tels que A = λMBM−1.
Justifier que ∼ induit une relation d’équivalence sur Rn. Déterminer les classes d’équivalence sur Rn.
Exercice 28 [ENS P 2025 # 28] On note Gn l’ensemble des sous-espaces vectoriels de Rn. Soit Φ : Gn → Rn R une application telle
que ∀V,W ∈ Gn, Φ(V ∩W ) + Φ(V +W ) ⩽ Φ(V ) + Φ(W )
et Φ({0}) ≥ 0. Montrer qu’il existe un unique V0 ∈ Gn de dimension maximale tel que infV ∈Gn\{(0)}

Φ(V )
dimV = Φ(V̂0)

dimV0
.

Exercice 29 [ENS PLSR 2025 # 29] Soient G un groupe admettant une partie génératrice finie et H un groupe fini.
1. Montrer que l’ensemble E des morphismes de groupes de G vers H est fini.

b) Soit ψ un endomorphisme surjectif du groupe G. Montrer que Ker(ψ) ⊂
⋂

Ker(φ).
1. On pose G = {M ∈ M2(Z), det(M) = 1}.

a) Montrer que G est un groupe multiplicatif.

b) Montrer que G est engendré par S =
(

1 1
0 1

)
, T =

(
1 0
1 1

)
et U =

(
0 1

−1 0

)
.

c) Montrer que tout endomorphisme surjectif du groupe G est bijectif.
Exercice 30 [ENS PLSR 2025 # 30] Soit A ∈ M2(Z) telle que det(A) = 1 et tr(A) = γ > 2. Pour k ∈ Z et U ∈ M2,1(Z), on pose

(k, U) =
(
Ak U
0 1

)
.

1. Montrer que l’ensemble GA = {(k, U); k ∈ Z, U ∈ M2,1(Z)} est un groupe pour la loi de multiplication matricielle. Est-il
abélien?

2. Montrer l’existence d’un morphisme injectif de groupes de GA dans le groupe

S =


et 0 x

0 e−t y
0 0 1

 , (t, x, y) ∈ R3

 .

1. Soit DA le sous-groupe de GA engendré par les éléments ghg−1h−1 où (g, h) ∈ G2
A. Montrer que DA = {(0, (I2 −A)U), U ∈

M2,1(Z)}.

Exercice 31 [ENS L 2025 # 31] 1. Soient r ∈ N∗ et (F1, . . . , Fr) ∈ C(X)r . On pose Mr = (F (i−1)
j )1≤i,j≤r ∈ Mr(C(X)).

Montrer que la famille (F1, . . . , Fr) est liée si et seulement si la matrice Mr

n’est pas inversible.
1. Soient n ∈ N∗ et A = (Ai,j)1≤i,j≤n ∈ Mn(C(X)).

Pour p ∈ N, on note A(p) = (A(p)
i,j ) la matrice des dérivées pèmes des coefficients de A.

Montrer que les matrices A(p) pour p ∈ N commutent deux à deux si et seulement s’il existe r ∈ N∗, (F1, . . . , Fr) ∈ (C(X))r et des
matrices C1, . . . , Cr ∈ Mn(C) commutant deux à deux telles que A = F1C1 + · · · + FrCr .

Exercice 32 [ENS SR 2025 # 32] Soit S =

(0) 1
. . .

1 (0)

 ∈ Mn(R).

1. Justifier la diagonalisabilité de S et donner ses valeurs propres.
2. Donner une base orthonormale de vecteurs propres de S.
3. Caractériser les sous-espaces de Rn stables par S.
4. Soient ω = exp(2iπ/n) et A =

(
ωjk
√
n

)
1≤j,k≤n

∈ Mn(C). Calculer les puissances

de A. En déduire que A est diagonalisable.

1. On suppose n impair. Déterminer les valeurs propres de A et leurs multiplicités.
Exercice 33 [ENS SR 2025 # 33] 1. Soit M ∈ Mn(C) admettant n valeurs propres distinctes. Montrer que si N ∈ Mn(C) est

suffisamment proche de M , alors N admet n valeurs propres distinctes.

2. SoientA =
(

0 1
0 0

)
etB ∈ M2(C). À quelle condition la matriceA+ εB admet-elle deux valeurs propres distinctes pour tout

ε > 0 assez petit ?
3. Même question en demandant que A+ εB soit diagonalisable pour tout ε > 0 assez petit.

Exercice 34 [ENS L 2025 # 34] Soient K un corps et A ∈ M2(K). On suppose que χA est irréductible et qu’il existe B ∈ GL2(K)
telle que B−1AB commute avec A, mais que B ne commute pas avec A. Montrer que B2 est scalaire.
Exercice 35 [ENS L 2025 # 35] Soient A, B dans Mn(C) telles que rg(ABBA) = 1. Montrer que A et B sont cotrigonalisables.
Exercice 36 [ENS PLSR 2025 # 36] Soient A,B ∈ M2(R) telles que rg(A) = rg(B) = 1 et ImA = ImB.
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1. Montrer qu’il existe P,Q ∈ GL2(R) telles que A = P

(
1 0
0 0

)
Q et B = P

(
α β
0 0

)
Q.

2. Pour P,Q ∈ GL2(R), on pose ΨP,Q : M 7→ PMQ. On pose τ : M 7→ MT . Soit Ψ ∈ L(M2(R)) qui conserve le rang. Montrer
qu’il existe P,Q ∈ GL2(R) telles que Ψ = ΨP,Q ou Ψ = ΨP,Q ◦ τ .

Exercice 37 [ENS PLSR 2025 # 37] Soient n, k ∈ N∗, M =
(
A C
0 B

)
avec A ∈ Mn(C), B ∈ Mk(C), C ∈ C Mn,k(C). Montrer

que M est diagonalisable si et seulement si A et B sont diagonalisables et il existe X ∈ Mn,k(C) telle que C = AX - XB.
Exercice 38 [ENS PLSR 2025 # 38] Soit K un sous-corps de C. On dit qu’une matriceM = (mi,j)1⩽i,j⩽n de Mn(K) est de Bourdaud
si χM =

∏
(X −mi,i).

1. Montrer qu’une matrice de Mn(K) est semblable sur K à une matrice de Bourdaud si et
seulement si elle est trigonalisable sur K .

1. Montrer qu’une matrice de Sn(R) est de Bourdaud si et seulement si elle est diagonale.
2. Est-il vrai que toute matrice de Bourdaud de Mn(C) est diagonalisable?
3. On dit que A est normale si ATA = AAT . Déterminer les matrices réelles normales et de Bourdaud.

Exercice 39 [ENS SR 2025 # 39] Soient n, k ∈ N∗, M =
(
A C
0 B

)
avec A ∈ Mn(R), B ∈ Mk(R), C ∈ Mn,k(R). On pose

eM =
(
M1 φA,B(C)
M2 M2

)
.

1. Déterminer M1,M2,M3.
2. Montrer que φA,B est linéaire.
3. Montrer que, si A et B sont diagonalisables, alors φA,B l’est aussi, et préciser son spectre.
4. Soit f : R2 → R telle que f(x, y) = exey

xy si x ̸= y, et f(x, x) = ex. Montrer que fest de classe C∞.
5. On suppose que φA,B est diagonalisable et que toutes ses valeurs propres sont distinctes. Montrer que A et B sont diagonali-

sables.
Exercice 40 [ENS SR 2025 # 40] Si A,B ∈ Mn(C), on pose [A, B] = AB BA. Soit A = {M ∈ M2(C), tr(M) = 0}.

1. Montrer que A est un sous-espace vectoriel de M2(C) stable par [,].

2. Calculer les [A,B] pour les A,B ∈ {X,Y,H} où X =
(

0 1
0 0

)
, Y =

(
0 0
1 0

)
et

H =
(

1 0
0 −1

)
.

1. Soit ρ : A → Mn(C) linéaire telle que, pour tous A,B ∈ A, ρ([A,B]) = [ρ(A), ρ(B)]. Montrer que ρ(H) admet une valeur
propre α.

Montrer que ρ(X)(Eα(ρ(H))) ⊂ Ker(ρ(H) − (α+ 2)In).
Montrer que ρ(Y ) (Eα(ρ(H))) ⊂ Ker (ρ(H)(α2)In).

1. On suppose que, si V est un sous-espace de Cn stable par tous les ρ(A), pour A ∈ A,
alors V = Cn ou V = {0}. Déterminer les ρ possibles.
Exercice 41 [ENS U 2025 # 41] Soient k un corps de caractéristique nulle, E un k-espace vectoriel de dimension finie et u ∈ L(E).
On écrit πu =

∏
i P

ni
i , le polynôme minimal de u, où les Pi sont irréductibles

distincts et les ni dans N∗. On pose f = P1 × · · · × Pr . On définit une suite en posant u0 = u

et, pour n ∈ N, un+1 = unf(un)f ′(un)−1.
1. Montrer que (un) est bien définie.
2. Montrer que (un) est stationnaire de valeur ultime d ∈ L(E) où d est un polynôme en u, u-d est nilpotent et d est annulé par f .

Exercice 42 [ENS L 2025 # 42] Déterminer le cardinal minimal p d’un sous-groupe G de GL2(C) tel que Vect(G) = M2(C). Si G1
et G2 conviennent et sont de cardinal p, sont-ils conjugués?
Exercice 43 [ENS L 2025 # 43] On dit que la propriété MT (n,K) est vraie si, pour tout couple (A, B) de matrices de Mn(K) telles
que, pour tout λ ∈ K, A+ λB soit diagonalisable, A et B commutent.

1. Montrer que, si A et B sont dans Mn(K), diagonalisables et commutent, alors, pour tout λ ∈ K, A+ λB est diagonalisable.
2. On suppose que n ≥ 2. La propriété MT (n,R) est-elle vraie?
3. Montrer que MT (2,C) est vraie.
4. On suppose que n ≥ 2. La propriété MT (n,F2) est-elle vraie?
5. Soit p ≥ 3 un nombre premier. La propriété MT (2,Fp) est-elle vraie?

Exercice 44 [ENS L 2025 # 44] Quelle est l’image de l’application f : M ∈ M2(C) 7→
∑+∞
n=0

(−1)n

(2n+1)!M
2n+1 ?

Exercice 45 [ENS SR 2025 # 45] 1. Soient A,B ∈ Mn(C) telles que AB = BA. Justifier que eA+B = eAeB .
2. Soient A ∈ Mn(C) et P ∈ GLn(C). Montrer que ePAP−1 = PeAP−1.
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3. Pour A ∈ Mn(C) convenable, on pose logA =
∑+∞
k=1

(−1)k−1

k (AIn)k . Pour quelles
matrices logA est-il défini ? Montrer les égalités exp(logA) = A et log(expA) = A. Pour chaque égalité, déterminer les matrices A
qui la satisfont.

1. Montrer que, si A,B ∈ Mn(C),
(
e

A
k e

B
k

)k
−→
k→+∞

eA+B .

Exercice 46 [ENS PLSR 2025 # 46] Soient (an)n≥0 ∈ CN et f : z 7→
∑+∞
n=0 anz

n de rayon de convergence égal à +∞.
1. Pour M ∈ Mn(C), justifier la définition de f∗(M) =

∑+∞
k=0 akM

k .
2. Montrer que f∗ est continue.

c ) On suppose que f est surjective. Montrer que f induit une surjection de l’ensemble des matrices diagonalisables sur lui-même.
1. On suppose que, pour tout λ ∈ C, il existe z ∈ C tel que f(z) = λ et f ′(z) ̸= 0. Montrer que f∗ est une surjection de Mn(C)

sur lui-même.
Exercice 47 [ENS L 2025 # 47] Soit d ∈ N∗. On munit Rd de sa structure euclidienne canonique. Déterminer les n ∈ N∗ pour
lesquels il existe un ensemble Fn ⊂ Rd de cardinal n tel que, pour toute partie G de Fn, il existe ω ∈ Rd \ {0} et b ∈ R tels que
G = {x ∈ Fn, ⟨ω, x⟩ + b > 0}.

Exercice 48 [ENS P 2025 # 48] Pour ω ∈ R, on pose R(ω) =
(

0 −ω
ω 0

)
. Soit φ : R → On(R) un morphisme de groupes continu.

Montrer qu’il existe ω1, . . . , ωr ∈ R et P ∈ On(R) tel que, pour tout t ∈ R,

φ(t) = P


etR(ω1) 0 · · · 0

0
. . . . . .

...
...

. . . etR(ωr) 0
0 · · · 0 Ir−2r

 .

Exercice 49 [ENS L 2025 # 49] Soient u et v deux endomorphismes autoadjoints positifs d’un espace euclidien. Montrer que v ◦u est
diagonalisable.
Exercice 50 [ENS P 2025 # 50] Déterminer l’ensemble des symétries linéaires sur Sn(R) qui fixent un hyperplan et stabilisent
l’ensemble S++

n (R).
Exercice 51 [ENS P 2025 # 51] Soit H = (Hi,j)1≤i,j≤n ∈ S++

n (R). On suppose que, pour tous i ̸= j,Hi,j ≤ 0. Si (i, j) ∈ [[1, n]]2, on
dit que i et j sont connectés s’il existem ∈ N∗, k1, . . . , km ∈ [[1, n]] tels que k1 = i, km = j et, pour tout ℓ ∈ [[1,m−1]],Hkℓ,kℓ+1 ̸= 0.
Montrer que i et j sont connectés si et seulement si H−1

i,j > 0, où H−1
i,j est le coefficient d’indice (i,j) de H−1.

Exercice 52 [ENS PLSR 2025 # 52] On considère n ∈ N∗ et (A,B) ∈ A2n(R)2. On pose C = AB et on s’intéresse aux valeurs propres
réelles de C .

1. Donner un exemple de n, A et B tels que χC n’admette aucune racine réelle.
2. On suppose A inversible. On note φ : (C2n)2 → C définie par φ(X,Y ) = XTA−1Y . Montrer que les sous-espaces caractéris-

tiques Fλ(C) de C sont deux à deux φ -orthogonaux, i.e. pour tous λ et µ distinctes dans SpC , ∀(X,Y ) ∈ Fλ(C) × Fµ(C),
φ(X,Y ) = 0.

3. Que peut-on en déduire?
Exercice 53 [ENS PLSR 2025 # 53] On munit R3 de sa structure canonique d’espace euclidien orienté, et on note B sa base canonique.

1. Montrer que, pour tout u ∈ R3, il existe un unique endomorphisme zu de R3 tel que ∀(x, y) ∈ (R3)2, detB(u, x, y) = ⟨zu(x), y⟩,
et montrer qu’alors zu = −zu.

2. Soient u ∈ R3 unitaire et θ ∈ R. On munit le plan {u}⊥ de l’orientation dont les bases directes sont les bases (x,y) de {u}⊥

telles que (x,y,u) soit une base directe de R3. On note ru,θ la rotation de R3 fixant u et induisant sur {u}⊥ la rotation d’angle de
mesure θ. On note enfin pu la projection orthogonale sur Ru. Exprimer tr(ru,θ) en fonction de θ, et montrer que ru,θ = (cos θ).
id +(1 − cos θ). pu + (sin θ). zu.

3. Soient u,v des vecteurs unitaires de R3. On pose τ = arccos (⟨u, v⟩). Soit (φ,ψ) ∈ R2. Justifier que ru,φ ◦ rv,ψ est une ro-
tation, et montrer qu’elle s’écrit rw,θ pour un vecteur unitaire w et un réel θ vérifiant | cos(θ/2)| = | cos(φ/2) cos(ψ/2) −
cos(τ) sin(φ/2) sin(ψ/2)|.

Exercice 54 [ENS PLSR 2025 # 54] 1. Soient A,B ∈ Mn(R), diagonalisables et telles que AB = BA. Montrer qu’il existe P ∈
GLn(R) telle que PAP−1 et PBP−1 soient diagonales.

2. Montrer que l’application Φ : (S,O) ∈ S++
n (R)×On(R) 7→ SO ∈ GLn(R) est bien définie et bijective, et que Φ−1 est continue.

3. Soit M ∈ GLn(R). Montrer qu’il existe une unique suite de matrices (Mk)k∈N telle que M0 = M et ∀k ∈ N, Mk+1 =
Mk

2 (In + (MT
k Mk)−1), et étudier sa convergence.

Exercice 55 [ENS PLSR 2025 # 55] On pose V = {1, 2, . . . , n} et F = P2(V ) l’ensemble des paires de V . Soient E ⊂ F et
ni = |{j ∈ V, {i, j} ∈ E}| pour i ∈ V . On définit la matrice L = (ℓi,j) ∈ Mn(R) par ℓi,j = ni si i=j,-1 si {i, j} ∈ E et 0 sinon. On
note λ1 ⩽ · · · ⩽ λn les valeurs propres (avec multiplicité) de L.

1. Montrer que λ1 = 0.
2. Montrer que λ2 = minX∈{(1,...,1)}⊥\{0}

XTLX
XTX

.
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3. Pour S ⊂ V , on note ∂S = {{i, j}, {i, j} ∈ E avec i ∈ S et j /∈ S}.
Montrer que λ2

2 ⩽ min S⊂V
0<|S|⩽n

2

|∂S|
|S| .

Exercice 56 [ENS P 2025 # 56] Pour A,B ∈ Sn(R) on note A ≥ B lorsque A − B ∈ S+
n (R). Si A ∈ S++

n (R), on écrit A =
P Diag(λ1, . . . , λn)P−1 avec P ∈ On(R) et les λi > 0, et on pose, pour r ∈ R, Ar = P Diag(λr1, . . . , λrn)P−1 ; cette définition ne
dépend pas de l’écriture de A sous la forme précédente.

1. Montrer que M 7→ M−1 est décroissante sur S++
n (R).

2. Est-ce que M 7→ M2 est croissante sur S++
n (R)?

3. Montrer que M 7→ Mr est convexe sur S++
n (R) lorsque r ∈ [−1, 0]. Ceci signifie que, pour tous A,B ∈ S++

n (R) et tout
t ∈ [0, 1[, (tA+ (1 − t)B)r ⩽ tAr + (1 − t)Br .

Exercice 57 [ENS PLSR 2025 # 57] On dit d’une norme N sur Md(R) qu’elle est invariante orthogonalement lorsque ∀M ∈
Md(R), ∀(P,Q) ∈ Od(R)2, N (M) = N (PMQ).

1. Donner un exemple d’une telle norme.
2. Soit A ∈ Md(R), montrer qu’il existe (P,Q) ∈ Od(R)2 tel que A = PDQ où D = Diag(σ1, . . . , σr, 0, . . . , 0) avec ∀i ∈

[1, r], σi > 0.
3. On se donne une norme N invariante orthogonalement sur Md(R).

On note T (A) = sup{∥AX∥, ∥X∥ = 1} où ∥∥ désigne la norme euclidienne canonique. Montrer qu’il existe α > 0 tel que ∀A ∈
Md(R), rg(A) = 1 ⇒ T (A) = αN (A).
Exercice 58 [ENS SR 2025 # 58] On munit Rn de sa structure euclidienne canonique et Mn(R) de la norme d’opérateur qui lui est
subordonnée.

1. Soit A ∈ Sn(R).
• Que dire des valeurs propres et des espaces propres de A?

On note λ1, . . . , λr les valeurs propres distinctes de A.
• Soient x ∈ Rn \ {0}, α ∈ R et y = Axαx. Montrer que min1⩽i⩽r |λiα| ⩽ ∥y∥

∥x∥ .

1. Soient A ∈ Mn(R) diagonalisable, P ∈ GLn(R) telle que P−1AP soit diagonale, λ1, . . . , λr les valeurs propres distinctes de
A. Soient enfin B ∈ Mn(R) et α une valeur propre de A + B. Montrer que min1≤i≤r |λiα| ≤ ||P ||op||P−1||op||B||op.

Exercice 59 [ENS nil 2025 # 59] Soient S ∈ S++
n (R) et A ∈ An(R). Montrer que SA est diagonalisable sur C.

Exercice 60 [ENS P 2025 # 60] Soit n ∈ N∗. On appelle forme quadratique sur Rn toute application q : Rn → R telle qu’il existe
(ai,j)1⩽i,j⩽n ∈ Mn(R) telle que q(x) =

∑
1⩽i,j⩽n ai,jxixj pour tout x =

∑
1⩽i,j⩽n ai,jxixj (x1, . . . , xn) ∈ Rn. Soit G un sous-

groupe fini deGLn(R) tels que {0} et Rn sont les seuls sous-espaces de Rn stables par tous les éléments deG. Montrer que les formes
quadratiques invariantes par G constituent une droite vectorielle.
Exercice 61 [ENS SR 2025 # 61] Soit n ≥ 2. On munit Rn de sa structure euclidienne canonique. Soit H ∈ Sn(R). On pose ∇H :
(x, y) ∈ (Rn)2 7→ xTHy et QH : x ∈ Rn 7→ xTHx.

1. Soit H ∈ Sn(R). Exprimer la norme d’opérateur de H à l’aide de QH .
2. Soient m,n ∈ N∗. On munit Rn et Rm de leur structure euclidienne canonique. Si A ∈ Mm,n(R), comment déterminer la

norme d’opérateur de A pour ces normes?
3. Soient J , K deux ensembles finis non vides, (aj,k)(j,k)∈J×K ∈ (R+)J×K . On suppose qu’il existe C1 et C2 tels que : ∀j ∈
J,
∑
k∈K aj,k ⩽ C1 et ∀k ∈ K,

∑
j∈J aj,k ⩽ C2. On

ordonne J et K et on note A la matrice des aj,k . Montrer que ||A||op ⩽
√
C1C2.

1. Pour n ∈ N∗, J = K = [1, n], on pose, pour 1 ⩽ j, k ⩽ n, anj,k = 1
(j−k)2 si j ̸= k, et anj,k = 0 sinon. On note enfin

An =
(
anj,k

)
1⩽j,k⩽n

∈ Mn(R). Déterminer la limite de (∥An∥op)n≥1.

Exercice 62 [ENS PLSR 2025 # 62] L’espace Rn est muni de sa norme euclidienne canonique et Mn(R) de la norme subordonnée
notée ∥∥op. Si M ∈ GLn(R), on définit le conditionnement de M comme le réel cond (M) = ||M ||op||M−1||op.

1. Calculer cond(M) dans le cas où M est symétrique définie positive.
2. Montrer que, pour toute matrice M ∈ GLn(R), cond(M) ≥ 1 et cond(MT ) = cond(M).
3. Que dire des matrices M ∈ GLn(R) telles que cond(M) = 1?
4. Pour A et B dans S++

n , montrer que Cond(A+B) ≤ max(Cond(A), Cond(B)).
Exercice 63 [ENS SR 2025 # 63] On note E l’ensemble des matrices de S+

n (R) de rang 1.
1. Soit A ∈ Mn(R). Montrer que A ∈ E si et seulement s’il existe U ∈ Mn,1(R) tel que

A = UUT . Soit a ∈ C0(R+, E).
1. Montrer l’équivalence entre les deux assertions suivantes :

(α) il existe u : R+ → Mn,1(R) continue telle que ∀t ∈ R+, a(t) = u(t)u(t)T ; (β) il existe z : R+ → Mn,1(R) continue telle que
∀t ∈ R+, z(t)Ta(t)z(t) > 0.
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1. Soient 0 ≤ b ≤ c. On suppose qu’il existe (i, j) ∈ [1, n]2 avec i ̸= j tel que, pour tout t ∈ [b, c], ai,i(t) > 0 et aj,j(t) > 0.
Montrer qu’il existe z : [b, c] → Mn,1(R) continue telle que ∀t ∈ [b, c], z(t)Ta(t)z(t) > 0 et, en outre, z(b) = ei, z(c) = ±ei
(les ek sont les

vecteurs de la base canonique).
1. En considérant l’ensemble des d ≥ 0 tels qu’existe z : [0, d] → Mn,1(R) continue vérifiant ∀t ∈ [0, d], z(t)Ta(t)z(t) > 0 et
z(d) = ±ei, montrer que a vérifie la propriété (α).

Exercice 64 [ENS SR 2025 # 64] Soient n ≥ 2, a : [0, 1] → S+
n (R) continue et A =

∫ 1
0 a(t)dt.

1. Montrer que A appartient à S+
n (R).

2. Donner une condition nécessaire et suffisante pour que A=0. Exprimer Ker(A).
3. Montrer que M =

(
1

1+i+j

)
1⩽i,j⩽n

est dans S++
n (R).

4. On suppose a à valeurs dans l’ensemble des matrices de projecteurs orthogonaux. Donner une condition pour que A soit une
matrice de projecteur orthogonal.

5. Soit Γ : x ∈ R+∗ 7→
∫ +∞

0 e−ttx−1dt. Soient 0 < α < β.

Montrer que
(

Γ(2α) Γ(α+ β)
Γ(α+ β) Γ(2β)

)
est dans S++

2 (R).

1. En déduire que ln(Γ) est convexe
Exercice 65 [ENS P 2025 # 65] Soit (On)n≥0 une suite d’ouverts non majorés de R+∗. Montrer qu’il existe x ∈ R+∗ tels que, pour
tout n ∈ N, l’ensemble On ∩ Nx soit infini.
Exercice 66 [ENS L 2025 # 66] Soit E un ensemble non vide. Soit d : E2 → R vérifiant, pour tous x, y, z ∈ E :

• d(x, y) = d(y, x),
• d(x, y) = 0 ⇔ x = y,
• d(x, y) ⩽ max(d(x, z), d(z, y)).

Ainsi d est une distance sur E. Pour x ∈ E et r ∈ R+, on note B(x, r) = {y ∈ E, d(x, y) ≤ r} la boule fermée de centre x et de
rayon r. On suppose que, pour tout x ∈ E et tous r, r’ vérifiant 0 < r < r’, on a B(x, r) ⊊ B(x, r′). Enfin, on suppose qu’il existe une
suite d’éléments de E dense dans (E,d). Montrer qu’il existe une suite (zn)n≥0 d’éléments de E et une suite (rn)n≥0 d’éléments de
R+∗ telles que : ∀n ∈ N, B(zn+1, rn+1) ⊂ B(zn, rn) et

⋂
n∈N B(zn, rn) = ∅.

Exercice 67 [ENS PLSR 2025 # 67] On note E l’ensemble des fonctions lipschitziennes 1-périodiques de R dans R.
1. Pour α ∈]0, 1] et f ∈ E, on pose

||f ||α = sup
x∈R

|f(x)| + sup
x̸=y

|f(x) − f(y)|
|x− y|α

.

Démontrer que ∥∥α est une norme sur E.

1. On note F = E ∩ C1(R,R). Démontrer que F est un fermé de E pour la norme ∥ · ∥1.
Exercice 68 [ENS P 2025 # 68] SoientE l’espace des suites réelles (xn)n≥0 nulles à partir d’un certain rang, et T ∈ L(E). On suppose
T continu pour la norme ∥ ∥1 et pour la norme ∥ ∥∞. Montrer que T est continu pour la norme ∥ ∥2.
Exercice 69 [ENS SR 2025 # 69] Soit E = C0([0, 1],R).

1. La forme linéaire φ : f 7→ f(0) est-elle continue pour ∥ · ∥∞ ? pour ∥ · ∥1 ? Dans chaque cas calculer l’adhérence de Kerφ.
2. Soit φ : f 7→

∫ 1
0 f(x) cos(2πx)dx. Montrer que φ est continue pour ∥ · ∥1 et calculer sa norme subordonnée.

Exercice 70 [ENS L 2025 # 70] Soit E = C0([0, 1],R).

Si a = (an)n≥0 ∈ [0, 1]N, on pose, pour f, g ∈ E, ⟨f, g⟩a =
+∞∑
n=0

f(an) g(an)
2n .

1. Donner une condition nécessaire et suffisante pour que ⟨ , ⟩a soit un produit scalaire sur E. On note alors ∥ ∥a la norme
associée.

2. Si a, b ∈ [0, 1]N vérifient les hypothèses de a), donner une condition nécessaire et suffisante pour que ∥∥a et ∥∥b soient équiva-
lentes.

Exercice 71 [ENS nil 2025 # 71] Soient n ≥ 2 et f ∈ C0(Rn,R) telle que, pour tout x ∈ R, f−1({x}) est compact.
1. Montrer que f admet un extremum global.

Exercice 72 [ENS P 2025 # 72] Soient (E, ⟨, ⟩) un espace préhilbertien de dimension infinie et K une partie bornée de E dont la
frontière est compacte. Montrer que K est d’intérieur vide dans E.
Peut-on généraliser le résultat à n’importe quel espace vectoriel normé de dimension infinie?
Exercice 73 [ENS P 2025 # 73] Pour x,y réels et ε > 0, on dit que x ≈ε y s’il existe k ∈ Z tel que |x-y-k|<
ε. Soient λ1, λ2 deux réels non nuls. Montrer que λ1

λ2
/∈ Q si et seulement si, pour tout (a1, a2) ∈ [0, 1]2 et tout ε > 0, il existe x ∈ R

tel que xλ1 ≈ε a1 et xλ2 ≈ε a2.
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Exercice 74 [ENS P 2025 # 74] Soient E un espace vectoriel normé de dimension finie n ≥ 2 et C une partie non vide, convexe et
bornée de E. Montrer que la frontière de C est connexe par arcs.
Exercice 75 [ENS PLSR 2025 # 75] Soient E un espace vectoriel normé et f : E → E une application telle que f(0) = 0 et ∀x, y ∈
E, ||f(x)f(y)|| = ||xy||.
On pose, pour x, y ∈ E, ||f(x) - f(y)|| = ||x - y||.

∥∥∥ f(x)+f(y)
2 − f

(
x+y

2
)∥∥∥.

1. Montrer que ∀x, y ∈ E, df(x, y) ≤ 1
2 ∥xy∥.

2. Montrer que f est linéaire si et seulement si df est identiquement nulle.
3. Trouver une fonction vérifiant les propriétés de la fonction f , non linéaire et non surjective.

a) On suppose que f est surjective. Montrer que f est linéaire.
Exercice 76 [ENS P 2025 # 76] On munit E = C0([0, 1],R) des normes ∥∥2 et ∥∥∞. Soit (nk)k≥0 une suite strictement croissante
d’entiers naturels. Soit F = Vect(x 7→ xnk , k ≥ 0). À quelle condition F est-il dense dansE pour la norme ∥∥2 ? pour la norme ∥∥∞ ?
Exercice 77 [ENS L 2025 # 77] Soit f ∈ C0(R,R). On note D = {ℓ2−k + 2−k[0, 1]; (k, ℓ) ∈ Z2}. Pour tout intervalle I de D, on note
log(I) la longueur de I et on pose MI(f) = 1

log(I)
∫
I
f . On pose ||f || = sup

{
1

log(I)
∫

Γ |fMI(f)| ; I ∈ D
}

.

1. On suppose ||f|| finie. Soit m ∈ N∗, (I, J) ∈ D2 avec I ⊂ J tels que log(J) = 2m log(I). Démontrer que |MI(f)MI(f)| ≤
2m||f ||

2m log(I). Démontrer que |MI(f)MJ(f)| ≤ 2m||f ||.
1. On suppose que ||f|| = 1 et M[0,1](f) = 0.

On note Fk = {I ∈ D : I ⊂ [0, 1],MI(f) > 5k et I maximal pour cette propriété}. On pose Ωk =
⋃
I∈Fk

I et et log(Ωk) =∑
I∈Fk

log(FI).
Montrer que, pour k ≥ 1, log(Ωk) ⩽ 1

3 log(Ωk−1).
Exercice 78 [ENS PLSR 2025 # 78] On munit les espaces ℓ1

Z(R) et ℓ2
Z(R) de leurs normes usuelles ∥ · ∥1 et ∥ · ∥2. On pose H ={

u ∈ RZ ;
∑
n∈Z u

2
n(1 + n2) < +∞

}
.

1. Définir un produit scalaire sur H . Écrire l’inégalité de Cauchy-Schwarz.
2. Quelles inclusions a-t-on entre ℓ1

Z(R), ℓ2
Z(R) et H? Montrer que ces inclusions sont continues (i.e. les injections canoniques sont

continues).
3. Soit u ∈ RZ. Montrer que u ∈ H si et seulement si l’application µu : H → H définie par ∀v ∈ H, µu(v) = u∗v avec (u∗v)n =∑n

i=1 uivi est bien définie et continue.
Exercice 79 [ENS P 2025 # 79] On note ℓ1 l’ensemble des suites sommables de RN. On munit ℓ1 de la norme définie, pour u = (un)n≥0,
par ||u||1 =

∑+∞
n=0 |un|. Soient (uk)k∈N une suite d’éléments de ℓ1 et u ∈ ℓ1. Montrer l’équivalence entre :

• la suite (uk)k∈N converge vers u pour la norme ∥∥1,
• pour toute suite (φn)n∈N bornée,

∑+∞
n=0 φnu

k
n −→
k→+∞

∑+∞
n=0 φnun.

Exercice 80 [ENS L 2025 # 80] On note S = {z ∈ C, |z| = 1} et Γ = {γ ∈ C0([0, 1], S) ; γ(0) = γ(1) = 1}.
1. Soit γ ∈ Γ, montrer qu’il existe θ : [0, 1] → R continue telle que ∀t, γ(t) = ei2πθ(t).
2. On prend γ0, γ1 ∈ Γ. On note F la propriété : « il existe h ∈ C([0, 1]2, S) tel que ∀x ∈ [0, 1], h(x, ·) ∈ Γ, h(0, ·) = γ0 et
h(1, ·) = γ1 ». On pose γ0 = 1 et γ1 : t 7→ e2iπt. Montrer que γ0 et γ1 ne vérifient pas F .

3. On note D le disque fermé unité de C. Existe-t-il f ∈ C0(D,S) telle que f |S = id?
Exercice 81 [ENS PLSR 2025 # 81] 1. Soit f ∈ C2(R,R) telle qu’il existe x∗ ∈ R vérifiant f(x∗) = 0 et f ′(x∗) ̸= 0.
On définit par récurrence une suite (xk) avec x0 ∈ R et xk+1 = xk

f(xk)
f ′(xk) . Montrer qu’il existe ε > 0 tel que, pour x0 ∈ [x∗ε, x∗ + ε],

la suite (xk) est bien définie et converge vers x∗.
1. Avec f : x 7→ ex1, quelles sont les valeurs de x0 ∈ R pour lesquelles la suite (xk)

précédente est stationnaire? c) On revient au cas général et on suppose f” > 0 et f’ ne s’annule pas sur R. Pour quelles valeurs de
x0 ∈ R la suite (xk) est-elle stationnaire?
Exercice 82 [ENS L 2025 # 82] Soit f ∈ C0([a, b], [a, b]). On suppose dans les questions a) et b) que f n’a pas de point de période 2,
c’est-à-dire que ∀x ∈ [a, b], f(x) ̸= x ⇒ (f ◦ f)(x) ̸= x.

1. Soit c ∈ [a, b] tel que f(c) > c. Montrer que pour tout k ∈ N∗, fk(c) > c.
2. Soit x0 ∈ [a, b], on pose pour tout n, xn+1 = f(xn). Démontrer que la suite (xn)

converge.
1. Démontrer que la suite (xn) converge pour tout choix de x0 si et seulement si f n’a pas de point de période 2.

Exercice 83 [ENS PLSR 2025 # 83] 1. Déterminer la nature des séries
∑ sinn

n ,
∑ sin2 n

n ,
∑ | sinn|

n .
2. Soit x ∈ R \ Q et Q ∈ N∗. Montrer qu’il existe p ∈ Z et q ∈ [1, Q] tels que |qxp| ⩽ 1

Q .

En déduire qu’il existe une infinité de couples (p,q) de Z × N∗ tels que
∣∣∣xpq ∣∣∣ ⩽ 1

q2 .

1. On admet que π est irrationnel. Déterminer la nature de la série
∑ 1

n sin(n) .

9



Exercice 84 [ENS P 2025 # 84] Soit (an) une suite de réels décroissante de limite nulle. Pour P ⊂ N, on note A(P ) =
∑
n∈P an. On

suppose A(N) = A∞ ∈ R. Montrer que

{A(P ), P ∈ P(N)} = [0, A∞] si et seulement si ∀n ∈ N, an ⩽
+∞∑

k=n+1
ak.

Exercice 85 [ENS L 2025 # 85] 1. Pour quels réels s la somme
∑
n,m∈N∗

|n−m|s

nm(n2−m2)2 est-elle finie?

b) Pour n = (n1, n2) ∈ Z2, on note |n| =
√
n2

1 + n2
2.

Pour quels réels s la somme
∑

(n,m)∈(Z2\{0})2
|n−m|s

|n||m|(1+(|n|−|m|)2) est-elle finie?
Exercice 86 [ENS PLSR 2025 # 86] On note S l’ensemble des suites croissantes à termes dans N \ {0, 1}.

1. Pour a ∈ S, montrer que φ(a) =
∑+∞
k=0

(∏n
k=0

1
ak

)
appartient à ]0,1].

2. Montrer que φ définit une bijection de S sur ]0,1].
3. Donner une condition nécessaire et suffisante sur a ∈ S pour que φ(a) ∈ Q.

Exercice 87 [ENS L 2025 # 87] Soit f : N → R+∗ décroissante de limite nulle. Soit φ : N → N croissante. On suppose que, pour tout
α ∈ R+∗, il existe une unique suite (ni)i∈N telle que α =

∑+∞
i=0 f(ni) et, pour tout i ∈ N, ni+1 ≥ φ(ni). Montrer que φ(0) = 0 et,

pour tout n ∈ N∗, f(n− 1) =
∑+∞
i=0 f

(
φi(n)

)
, où φi désigne l’itérée i-ème de φ pour la composition des applications.

Exercice 88 [ENS P 2025 # 88] Soit f : R → R. Montrer l’équivalence entre les conditions suivantes :
• f(x) = O(x) ;
•
∑
r ̸=els f(an) converge absolument pour toute série

∑
r ̸=els an absolument convergente à termes

•
∑
f(an) converge pour toute série

∑
an absolument convergente à termes réels.

Exercice 89 [ENS P 2025 # 89] Soit f : R → R telle que
∑
f(an) converge pour toute série convergente

∑
an à termes réels. Montrer

qu’il existe un réel λ tel que f(x) = λx pour x voisin de 0.
Exercice 90 [ENS SR 2025 # 90] 1. Soient a, b ∈ R avec a < b et f : [a, b] → [a, b].

a) Si f est continue, montrer que f possède un point fixe.
b) Si f est croissante, montrer que f possède un point fixe.

2. Soit f : R → R monotone. Montrer que l’ensemble dis(f) des points de discontinuité de f est au plus dénombrable.
3. Construire f : R → R monotone dont l’ensemble des points de discontinuité est Q.

Exercice 91 [ENS P 2025 # 91] Trouver les f : [0, 1] → R continues telles que ∀x ∈ [0, 1], f(x) =
∑+∞
n=0

f(xn)
2n .

Exercice 92 [ENS PLSR 2025 # 92] Soit f une fonction de R dans R ∪ {+∞} non identiquement égale à +∞. Pour y ∈ R, on pose
f∗(y) = sup{xy − f(x);x ∈ R}.

1. Montrer que {x ∈ R, f∗(x) < +∞} est un intervalle (éventuellement vide) sur lequel f∗ est convexe.
2. Montrer que, si f est dérivable et convexe sur R, alors f = f .
3. On suppose que f est de classe C2 sur R, que f”> 0 sur R et que f(x)

|x| −→
|x|→+∞

+∞. Montrer que f∗ est dérivable sur R et que :

∀(x, y) ∈ R2, y = f ′(x) ⇔ x = (f∗)′(y).

Exercice 93 [ENS SR 2025 # 93] Pour f : [0, 1] → R, on pose Bn(f)(x) =
∑n
k=0 f

(
k
n

)(
n
k

)
xk(1 − x)n−k .

1. Calculer Bn(u1) et Bn(u2) où un : x 7→ xn.

b) Montrer que, pour tout x ∈ [0, 1],
∑n
k=0

∣∣x kn ∣∣ (nk)xk(1 − x)n−k ≤
√

x(1−x)
n .

1. En déduire que si f est M -lipschitzienne, alors |Bn(f)(x)f(x)| ≤ M
2

√
n

pour tout x.
Exercice 94 [ENS L 2025 # 94] Trouver toutes les fonctions f : R → R telles que :

• f est croissante, à valeurs dans [0, 1], f est continue à droite,
• f(x) −−−−−→

x→−∞
0, f(x) −−−−−→

x→+∞
1, ∀k ∈ N∗, ∃bk ∈ R, ∀x ∈ R, f(x)k = f(x+ bk).

Exercice 95 [ENS PLSR 2025 # 95] 1. Soient a, b ∈ R avec |b| < π.
Montrer qu’il existe z ∈ C tel que z + ez = a+ ib.

1. Montrer que l’application z 7→ zez est surjective de C sur C.
Exercice 96 [ENS P 2025 # 96] Soient σ > 0 et f : R → R une fonction continue telle que : ∀x, y ∈ R, |f(x) + f(y) − f(x+ y)| ≤ σ.
Montrer que f est la somme d’une fonction linéaire ℓ : R → R et d’une fonction bornée par σ.
Exercice 97 [ENS L 2025 # 97] Une partie E de [0, 1] est dite négligeable si, pour tout ε > 0, il existe une suite (In)n≥0 d’intervalles
de [0,1] dont la réunion contient X et dont la somme des longueurs est majorée par ε. Soit f une fonction dérivable de [0,1] dans
R. On suppose qu’il existe une partie négligeable E de [0,1] telle que, pour tout x ∈ [0, 1] \ E, on ait f ′(x) ≥ 0. Montrer que f est
croissante.
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Exercice 98 [ENS P 2025 # 98] Soient n ∈ N∗, (Pk)k∈[[1,n]]]] et (Qk)k∈[[1,n]] deux familles de polynômes réels, f la fonction de P dens
P telle que, pour tout x ∈ P, f(x) =

∑n
n=1 Pn(x)eQk(x). Montrer que si

fonction de R dans R telle que, pour tout x ∈ R, f(x) =
∑
k=1 Pk(x) eQk(x). Montrer que, si f n’est pas identiquement nulle, alors f

ne possède qu’un nombre fini de zéros.
Exercice 99 [ENS P 2025 # 99] Soit n un entier impair supérieur ou égal à 3. Déterminer les fonctions continues f de [0,1] dans R
telles que, pour tout k ∈ [1, n− 1],

∫ 1
0 (f(x1/k))n−k dx = k

n .
Exercice 100 [ENS P 2025 # 100] Soit (ak)k≥1 une suite décroissante de réels positifs telle que, pour tout k ∈ N∗, kak ≤ (k+1)ak+1.
Montrer que

∫ π
0 max1≤k≤n

(
ak

| sin(kx)|
x

)
dx =

∑n
k=1

ak

k +O(1).

Exercice 101 [ENS PLSR 2025 # 101] Soit f : R → R de classe C1. On pose, pour n ∈ N∗, Sn = 1
n

∑n−1
i=0 f

(
k
n

)
.

1. Quelle est la limite de (Sn)n∈N∗ ? Déterminer la vitesse de convergence.

b. On suppose désormais f 1-périodique et de classe C2. Montrer qu’il existe C ∈ R tel que : ∀n ≥ 1,
∣∣∣Sn −

∫ 1
0 f(t) dt

∣∣∣ ≤ C
n2 .

c. On suppose désormais f 1-périodique et de classe C3. Montrer qu’il existe C ∈ R tel que : ∀n ≥ 1,
∣∣∣Sn −

∫ 1
0 f(t) dt

∣∣∣ ≤ C
n3 .

d. Que dire si f est 1-périodique et de classe C∞ ?
Exercice 102 [ENS P 2025 # 102] Soient (a, b) ∈ R2 tel que a < b, f une fonction continue de [a, b] × [−1, 1] dans R. Pour λ ∈ R, soit
I(λ) =

∫ b
a
f(t, sin(λt)) dt. Montrer que I(λ) admet une limite que l’on déterminera lorsque λ tend vers +∞.

Exercice 103 [ENS SR 2025 # 103] Soient N ∈ N∗ et (x1, . . . , xN ) ∈ CN . Pour y ∈ R, on note e(y) = e2iπy .
Soit f : t ∈ R 7→

∑N
n=1 xne(nt). Soient R ∈ N∗ et (t1, . . . , tR) ∈ RR.

1. a) Montrer que
∑R
r=1 |f(tr)|2 ≤ NR

∑N
k=1 |xk|2.

b) Étudier le cas d’égalité dans l’inégalité précédente.
2. Pour t ∈ R, on pose ∆(t) = infn∈Z |n− t|. On suppose les ti distincts. Soit δ > 0 tel que
δ ≤ min1≤i̸=j≤R ∆(ti − tj). Montrer que

∑R
r=1 |f(tr)|2 ≤ (2Nπ + δ−1)

∑N
r=1 |xk|2.Ind. On pourra montrer que, pour une

fonction g de classe C1 sur R, pour a ∈ R et h > 0,

|g(a)| ≤ 1
2h

∫ a+h

a−h
|g(t)|dt+ 1

2

∫ a+h

a−h
|g′(t)|dt

.
Exercice 104 [ENS PLSR 2025 # 104] On note E l’ensemble des fonctions 1-périodiques et de classe C∞ de R dans
C. Soit f ∈ E. Pour n ∈ Z, on pose cn(f) =

∫ 1
0 e

−2inπtf(t)dt.
1. Montrer que (cn(f))n∈Z est sommable.
2. On suppose que f(0)=0. Montrer qu’il existe g ∈ E telle que ∀t ∈ R, f(t) = g(t) (e2iπt − 1).

Exercice 105 [ENS P 2025 # 105] Soient a,b> 0 et m ∈ Z. Calculer Im(a, b) =
∫ +∞
a

e−ax− b
xxm− 1

2 dx.

Exercice 106 [ENS L 2025 # 106] Soit n ≥ 2. Déterminer l’ensemble des matrices A ∈ Mn(C) telles que l’intégrale
∫ +∞

−∞ et
2Adt

converge.
Exercice 107 [ENS PLSR 2025 # 107] Soit f : R → R lipschitzienne. On suppose qu’il existe R > 0 tel que, pour tout x ∈ R \ [−R,R],
f(x) = 0.

1. Montrer que ε 7→
∫ −ε

−ε
f(x)
x dx+

∫ +∞
−ε

f(x)
x dx admet une limite en 0+.

On note vp
(∫ +∞

−∞
f(x)
x dx

)
cette limite.

1. On note Tf : x 7→
∫ x

−∞ f(y) ln |yx|dy +
∫ +∞
x

f(y) ln |yx|dy. Justifier que Tf est bien définie sur R.
2. On suppose f de classe C1. Montrer que Tf est dérivable sur R et que :

∀x ∈ R, (Tf )′(x) = vp
(∫ +∞

−y

f(y + x)
y

dy

)
.
Exercice 108 [ENS SR 2025 # 108] 1. Pour (p, k) ∈ N2, montrer la convergence de Ip,k =

∫ 1
0
∫ 1

0
ykxp

1xy dx dy et l’exprimer sous
forme de la somme d’une série numérique.

2. On note dn = ppcm(1, . . . , n) pour n ∈ N∗. Montrer que Ip,k ∈ 1
d2

p
Z si p > k, et Ip,p ∈ ζ(2) + 1

d2 Z.

3. On pose Pn = 1
n!D

n(Xn(1X)n). Montrer que Pn est à coefficients entiers.
4. Montrer que In =

∫ 1
0
∫ 1

0
(1−y)nPn(x)

1−xy dxdy converge, et en donner une expression simplifiée.- e) Montrer que In ∈ 1
d2 (Z +

ζ(2)Z).
Exercice 109 [ENS L 2025 # 109] Déterminer les segments S de R non réduits à un point tels que l’ensemble des fonctions polyno-
miales à coefficients dans Z de S dans R soit dense dans (C0(S,R), ∥∥∞).
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Exercice 110 [ENS L 2025 # 110] On note E l’ensemble des fonctions croissantes de R dans R ayant pour limites respectives 0 et 1
en −∞ et +∞. Soient F,G,H ∈ E, avec G et H continues.
On suppose qu’il existe quatre suites réelles a,b,c,d telles que (x 7→ F (anx+ bn))n et (x 7→ F (cnx+ dn))n convergent simplement
sur R, respectivement vers G et H . Montrer qu’il existe deux réels λ > 0 et µ tels que ∀x ∈ R, H(x) = G(λx+ µ).
Exercice 111 [ENS L 2025 # 111] Soit (fn)n∈N une suite de fonctions de [0,1] dans ]0,1], convergeant simplement vers une fonction
f .

1. Pour n ≥ 2, on pose tn = 1
lnn

∑n
i=1

fi

i . Montrer que la suite (tn) converge simplement
vers f .

1. On suppose que f0 est à valeurs strictement positives et que, pour tout n ≥ 1, la fonction
fn est dérivable, croissante et que f ′

n ≥ nfn

σn
, où σn =

∑n−1
i=0 fi. On suppose également que supσn(1/2) < +∞. Montrer que, pour

tout x ∈ [0, 1/2[, il existe Cx > 0 tel que, pour tout n ≥ 1 n assez grand, fn(x) ≤ e−Cxn.
1. On enlève l’hypothèse sur σn(1/2). Montrer qu’il existe x0 ∈ [0, 1] tel que :

(i) ∀x < x0, ∃Cx > 0, ∃n0 ∈ N∗, ∀n ≥ n0, fn(x) ≤ e−Cxn; (ii) ∀x > x0, f(x) ≥ x− x0.
Exercice 112 [ENS P 2025 # 112] Soit f : x 7→

∑+∞
n=1

1
n sin

(
x

4n

)
.

1. Montrer que limx→+∞(inf{f(t), t ≥ x}) = 0.
2. Montrer que 0 < limx→+∞

(
sup

{
|f(t)|

ln(ln t) , t ≥ x
})

< +∞.

Exercice 113 [ENS L 2025 # 113] Soit (λn) une suite de réels > 0 telle que ∀n ∈ N, 2λn ≤ λn+1 ≤ 3λn. Montrer que :

∀α > 0, ∃(c1, c2) ∈ (R+∗)2, ∀t ∈ [1/2, 1[, c1

(1 − t)α ≤
+∞∑
n=1

λαnt
λn ≤ c2

(1 − t)α
.
Exercice 114 [ENS SR 2025 # 114] On pose : ∀x > 0, η(x) =

∑+∞
n=0

(−1)n−1

nx .
1. Montrer que η est de classe C∞ sur ]1,+∞[. Étudier sa limite en +∞.
2. Montrer que η est de classe C∞ sur ]0,+∞[.
3. Calculer η(1).
4. Montrer que : ∀z ∈ C, |ez1| ≤ e|z|1.
5. Montrer que η(z) est bien définie pour tout z ∈ C vérifiant Re z > 0.

Exercice 115 [ENS P 2025 # 115] 1. Montrer que, pour tout n ∈ N, il existe un unique Ln ∈ R[X] tel que Ln(1) = 1 et (1 −
X2)L′′

n − 2XL′
n + n(n+ 1)Ln = 0.

2. Montrer que ∀x ∈ [−1, 1], ∀z ∈] − 1, 1[, 1√
1−2xz+z2 =

∑+∞
n=1 Ln(x)zn.

Exercice 116 [ENS PLSR 2025 # 116] Soient f, g ∈ C0([0, 1],R) telles que f(1)=g(1)=1 et, pour tout x ∈ [0, 1[, |f(x)| < 1. On suppose
qu’il existe C> 0 et M ∈ N∗ tels que 1 − f(1 − x) ∼

x→0+
Cx1/M . Pour n ∈ N, on pose un =

∫ 1
0 g(x)f(x)ndx.

1. Déterminer un équivalent de un.
2. Montrer l’existence de C’ tel que : ∀n ∈ N∗,

∣∣∣un+1
un

1
∣∣∣ ≤ C′

n .

Exercice 117 [ENS SR 2025 # 117] Soit f : x 7→
∫ +∞

0 cos
(
t3

3 + tx
)
dt.

1. Montrer la définition de f sur R+

2. Soit x ≥ 0. Montrer que Re
[∫ +∞

0 exp
(
i
(

(t+iε)3

3 + (t+ iε)x
))

dt
]

−−−−→
ε→0+

f(x).

Exercice 118 [ENS SR 2025 # 118] On note E l’ensemble des fonctions continues et de carré intégrable de R+∗ dans C .

1. On convient que
√

+∞ = +∞

. Pour f continue de R+∗ dans C, montrer que√∫ +∞

0
|f |2 = sup

{∫ +∞

0
|fg| ; g ∈ E tel que

∫ +∞

0
|g|2 = 1

}
.

1. Soit f ∈ E. Montrer que Φ : x ∈ R+∗ 7→
∫ +∞

0
f(t)
t+xdt appartient à E.

Exercice 119 [ENS P 2025 # 119] Soient K ∈ C0([0, 1]2,R) telle que ||K||∞ < 1 et f ∈ C0([0, 1],R). Étudier l’exis- tence et l’unicité
de g ∈ C0([0, 1],R) telle que ∀x ∈ [0, 1], g(x)

∫ 1
R K(x, t)g(t) dt = f(x).

Exercice 120 [ENS L 2025 # 120] Soient α, θ ∈]0, 1[. Pour f : [1,+∞[→ [0, 1] continue, on pose ∥f∥α = sups→∞ sα|f(s)| et
Fα = {f ∈ C0([1,+∞[, [0, 1]), ∥f∥α < +∞}.

1. Pour f ∈ Fα, on pose T (f) : s ≥ 1 7→ 1 −
(
1 − 1

s

)θ + θ(s− 1)θ
∫ +∞

−∞ (s+ t− 1)−θ−1f(t)dt.
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Montrer que T est une application lipschitzienne de Fα dans Fα (pour ∥ · ∥α).- b) On admet que, pour tout α ∈]0, 1 − θ[, T possède
un unique point fixe fα ∈ Fα. Montrer que fα ne dépend pas de α ; on le note f0. Montrer que

∫ +∞
t

t−θf0(t)dt = +∞.
Exercice 121 [ENS PLSR 2025 # 121] 1. Expliciter le terme général d’une suite (an)n≥0 vérifiant la relation de ré-
currence nan+1 = (n+ 1)an pour tout n.

1. Résoudre x(x-1)y” + 3xy’ + y = 0 sur ]-1,1[.
Exercice 122 [ENS PLSR 2025 # 122] Résoudre x2y′′ + xy′ + (x21/4)y = 0 sur ]0, 1[.
Exercice 123 [ENS P 2025 # 123] Soient (a, b) ∈ R2 avec a < b, ψ ∈ C2([a, b],R+∗) croissante. Soit y ∈ C2([a, b],R) non nulle et
vérifiant y′′ +ψ(x)y = 0. Montrer que les points où |y| admet un extremum local forment une suite finie (a1, . . . , an) (éventuellement
vide) et que la suite des valeurs (|y(a1)|, . . . , |y(an)|) est décroissante.
Exercice 124 [ENS PLSR 2025 # 124] Soit f ∈ C2(R,C).

1. On suppose que f ′′ + f ′ + f −−→
+∞

0. Montrer que f −−→
+∞

0.

2. Soit P = a0 + a1X + a2X
2 ∈ C[X] unitaire de degré 1 ou 2 et à racines simples dans C.

On pose ∂P f =
∑∞
k=0 akf

(k). Donner une condition nécessaire et suffisante surP pour que, quelle que soit f ∈ C2(R,C), ∂P f −−→
+∞

0
implique f −−→

+∞
0.

1. Soit a, b, c ∈ R. Trouver une condition nécessaire et suffisante pour que
$$∀ (x,y,z) ∈ C1(R,C)3, \ x′ + ax+ by + cz

+∞−−→ 0\ y’ + bx + cy + az +∞−−→ 0\ z’ + cx + ay + bz +∞−−→ 0 . =⇒ \ x
+∞−−→ 0\ y +∞−−→ 0\ z +∞−−→ 0 $.$.

Exercice 125 [ENS SR 2025 # 125] Soient I un intervalle de R et A : I → M2(R) continue. On regarde l’équation (1) : X’(t) = A(t)
X(t).

1. Décrire l’ensemble des solutions de (1).
2. On suppose qu’il existe P ∈ GL2(R) et D : I → M2(R) à valeurs dans l’ensemble des matrices diagonales telles que, pour

tout t ∈ R, A(t) = P−1D(t)P .
Trouver une condition sur D pour que les solutions de (1) aient une limite quand t → +∞.
Exercice 126 [ENS P 2025 # 126] Soit n ≥ 2. Soit A : R+ → Mn(R) continue. On considère les solutions de l’équation différentielle
() : x’(t) = A(t)x(t).

1. On suppose qu’il existe P ∈ GLn(R) et D : R+ → Mn(R) continue et à valeurs dans l’ensemble des matrices diagonales à
coefficients dans ]−∞,−1] telles que, pour tout t,A(t) = PD(t)P−1. Les solutions de () ont-elles toutes pour limite 0 en +∞?

2. On suppose qu’il existe P : R+ → GLn(R) continue et D ∈ Mn(R) diagonale à coefficients dans ] − ∞,−1] telles que, pour
tout t, A(t) = P (t)DP−1(t). Les solutions de () ont-elles toutes pour limite 0 en +∞?

Exercice 127 [ENS PLSR 2025 # 127] On fixe un intervalle non trivial I .- a) Soient a et b deux fonctions continues de I dans R. Soit
f une solution non nulle sur I de y” + ay’ + by = 0. Montrer que les zéros de f sont isolés : pour tout zéro t0 de f il existe un δ > 0
tel que f n’ait pas de zéro dans |t0δ, t0 + δ| \ {t0}.

1. Soient p1, p2 deux fonctions continues de I dans R telles que ∀t ∈ I , p1(t) ≥ p2(t). Soient f, g ∈ C2(I,R) \ {0} telles que
f ′′ + p1f = 0 et g′′ + p2g = 0. Soient t1 < t2 deux zéros de f entre lesquels f n’admet aucun autre zéro. Montrer qu’il existe
un zéro de g dans [t1, t2], ainsi que dans [t1, t2].

2. Soient p,q deux fonctions continues de [0,1] dans R telles que ∀t ∈ [0, 1], q(t) > 0. Pour λ ∈ R, on note fλ la solution sur [0,1]
de l’équation différentielle y′′ + (p(t) + λq(t))y = 0 avec la condition initiale fλ(0) = 0 et f ′

λ(0) = 1. On note Nλ le nombre
de zéros de fλ. Montrer que λ 7→ Nλ est croissante et déterminer ses limites en −∞ et +∞.

3. On admet que (x, λ) ∈ [0, 1] × R 7→ fλ(x) est continue. Montrer que l’ensemble
{λ ∈ R, fλ(1) = 0} est l’ensemble des termes d’une suite réelle strictement croissante.

1. Montrer que (λ, x) 7→ fλ(x) est continue sur R × [0, 1].
Exercice 128 [ENS PLSR 2025 # 128] Soit µ ∈ R+. On considère (Eµ) : y′′µ(1 − y2)y′ + y = 0.

1. Résoudre (E0).
2. Soientx0 etx1 deux fonctions bornées et de classe C∞ de R+ dans R, etω1 ∈ R. On suppose qu’il existe des fonctionsω : R+ → R

et ε : R × R → R deux fois dérivables par rapport à la seconde variable telles que :
• ω(µ) = 1 + ω1µ+ o(µ);
• il existe C : R+ → R+ croissante telle que ∀k ∈ {0, 1, 2}, ∀(τ, µ) ∈ R+ × R, |(∂2)kε(τ, µ)| ≤ C(τ)µ2;
• pour x : (τ, µ) ∈ R+ × R 7→ x0(τ) + µx1(τ) + ε(τ, µ), la fonction t 7→ x(ω(µ)t, µ) est solution de (Eµ) sur R+ pour µ

voisin de 0.
Calculer alors ω1 et donner une expression explicite de x0 et x1 en fonction de quelques constantes inconnues.

Exercice 129 [ENS L 2025 # 129] Soit A une application continue de R dans Mn(C) et X une application de classe C1 de R dans
Mn(C) telles que, pour tout t ∈ R, X’(t) = A(t)X(t) X(t)A(t). Montrer que, pour tout t ∈ R, X(t) est semblable à X(0).
Exercice 130 [ENS SR 2025 # 130] Soit f : R2 → R telle que f(x, y) = exey

xy si x ̸= y et f(x, x) = ex. Montrer que f est de classe
C∞.
Exercice 131 [ENS P 2025 # 131] Soient d ∈ N∗ et f : Rd → R de classe C2. Soit L ≥ ℓ > 0 des réels. On suppose qu’en tout point
de Rd la hessienne de f a son spectre inclus dans [ℓ, L]. Soit τ ∈]0, 2/L[ ainsi qu’une suite u à termes dans Rd vérifiant la relation de
récurrence ∀n ∈ N, un+1 = un − τ∇f(un). Montrer que u converge.
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Exercice 132 [ENS PLSR 2025 # 132] Soient d ∈ N∗ et f : Rd → R de classe C1. On suppose que f tend vers +∞ en ∞, que ∇f
est lipschitzienne et que les points critiques de f sont isolés dans Rd. Montrer qu’il existe un réel τ > 0 tel que, quel que soit le choix
de a ∈ Rd, la suite définie par $x0 = a$et $∀ n ∈ N, \ xn+1 = xn - τ ∇ f(xn)$ soit convergente. On commencera par le cas où d=1 et
f : x 7→ x2

2 .
Exercice 133 [ENS L 2025 # 133] Soit G un sous-groupe fermé de GLn(R).
On pose L = {A ∈ Mn(R); ∀t ∈ R, etA ∈ G}.

1. Montrer que L est un sous-espace vectoriel de Mn(R). Ind. Considérer
(
etA/ketB/k

)k .
2. Montrer que ∀(A,B) ∈ L2, ABBA ∈ L.
3. Que peut-on dire de L pour G = SLn(R)?

Exercice 134 [ENS PLSR 2025 # 134] Soit n ≥ 2 un entier. Une application f de classe C2 définie sur un ouvert O de Rn, à valeurs
dans Rn vérifie la propriété P si, pour tout x ∈ O, dfx est composée d’une homothétie et d’une isométrie vectorielle.

1. On suppose que n=2 et que f vérifie P . On note f = (f1, f2). Montrer que f1 et f2 sont harmoniques, c’est-à-dire que ∆f1 = 0
et ∆f2 = 0.

2. Montrer que le résultat de la question a) est faux si n ≥ 3. On pourra considérer l’application f : x ∈ Rn \ {0} 7→ x
∥x∥2 .

Exercice 135 [ENS P 2025 # 135] Soit f : R2 → R de classe C2. On dit que f est harmonique si ∂2f
∂x2 + ∂2f

∂y2 = 0. On dit que f
est homogène de degré λ ≥ 0 si, pour tous x, y ∈ R et tout t ∈ R+, f(tx, ty) = tλf(x, y). Soit λ ≥ 0. Déterminer les fonctions
harmoniques et homogènes de degré λ.

2) Géométrie

Exercice 136 [ENS L 2025 # 136] Montrer qu’il n’existe aucun triangle rectangle dont les longueurs des côtés sont dans N∗ et dont
l’aire est un carré parfait non nul.
Exercice 137 [ENS MP 2025 # 137] $ $ [P] Soient a, b, c, d dans R+∗. Quelle est l’aire maximale d’un quadrilatère dont les côtés
successifs ont pour longueurs a, b, c, d ?
Exercice 138 [ENS PLSR 2025 # 138] 1. Quelle est l’aire maximale possible pour un rectangle de périmètre 1?

2. On considère un entier n ≥ 3 et une liste strictement croissante (θ1, . . . , θn) à termes dans [0, 2π]. Déterminer la valeur
maximale possible pour le périmètre du polygone de sommets eiθ1 , . . . , eiθn (dans cet ordre).

3. Soit z1, . . . , zn des nombres complexes. On convient que z0 = zn. On définit l’aire algé-
brique du polygone z1 · · · zn comme 1

2
∑n−1
k=0(Re(zk) Im(zk+1)−Im(zk) Re(zk+1)). On fixe un réel p> 0. Parmi les listes (z1, . . . , zn) ∈

Cn telles que le périmètre de z1 · · · zn soit égal à p, déterminer celles qui maximisent l’aire algébrique du polygone associé.

3) Probabilités

Exercice 139 [ENS PLSR 2025 # 139] 1. Calculer la variance d’une variable de Poisson.
2. Soient a ∈ N∗ et p un nombre premier. Calculer E(Xp modulo p) où X ∼ P(a).

Exercice 140 [ENS SR 2025 # 140] Soient p ∈ [0, 1] et (Xn)n≥0 une suite i.i.d. de variables aléatoires suivant la loi Bernoulli de

paramètre p. On pose S0 = 1 et, pour n ≥ 0, Sn+1 =
{

3Sn + 1 si Xn = 1
Sn

2 si Xn = 0 .

1. Étudier les cas p=0 et p=1. On supposera que 0 dans toute la suite de l’exercice.
2. Donner une formule de récurrence vérifiée par la suite (E(Sn))n≥0, et étudier son comportement quand n → +∞.
3. Montrer que P((Sn)n≥0 est bornée) = 0.

Exercice 141 [ENS SR 2025 # 141] Soit (Xn)n≥1 une suite de variables aléatoires i.i.d. telles que E(X4
1 ) < +∞. On pose Tn =

1
n

∑n
i=1 Xi pour tout n ≥ 1. Montrer que la suite (Tn)n≥0 converge presque sûrement vers E(X1).

Exercice 142 [ENS L 2025 # 142] Soit (Xn)n≥1 (resp. (Yn)n≥1) une suite de variables aléatoires i.i.d à valeurs dans N. On note
T = inf{n ≥ 2 ; Xn /∈ {X1, . . . , Xn−1}} et S = inf{n ≥ 2 ; Yn /∈ {Y1, . . . , Yn−1}}. On suppose que T ∼ S. Que peut-on dire du
lien entre les suites (Xn) et (Yn)?
Exercice 143 [ENS P 2025 # 143] Soit P l’ensemble des nombres premiers et β > 1. Soit (Yp)p∈P une suite de variables aléatoires
indépendantes à valeurs dans N vérifiant P(Yp = k) = (1p−β)p−kβ pour k ∈ N et p ∈ P . On pose Z =

∑
n∈P Yp ln p etX = expZ .

1. Donner la loi de X .
2. En déduire que

∑+∞
i=1

µ(n)
nβ = 1

ζ(β) où µ est la fonction de Möbius.

Exercice 144 [ENS L 2025 # 144] Montrer qu’il existe C > 0 tel que pour tout n ≥ 1 et tout (ai,j)1≤i,j≤n ∈ {±1}n2 , il existe
(xi)1≤i≤n et (yi)1≤i≤n dans {±1}n tels que

∑
1≤i≤n ai,jxiyj ≥ Cn3/2.

Exercice 145 [ENS MP 2025 # 145] Soient θ ∈]0, 1[ et X une variable aléatoire à valeurs dans R+ telle que P(X > 0) > 0. Montrer
que P(X ≥ θE(X)) ≥ (1−θ)2E(X)2

E(X2) .
Exercice 146 [ENS P 2025 # 146] Soit n ∈ N avec n ≥ 2. Soit En = {e1, . . . , en} un ensemble de cardinal n. Soient σ1, . . . , σn des
variables aléatoires indépendantes suivant la loi uniforme sur Sn. Si i, j ∈ [1, n], on pose eiej = eσi(j). Montrer que la probabilité
que (E, ) soit un groupe, sachant que admet un neutre, tend vers 0 quand n tend vers l’infini.
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Exercice 147 [ENS L 2025 # 147] Soient d ∈ N∗ et (e1, . . . , ed) la base canonique de Zd. Soit (Xn)n≥0 une suite de variables aléatoires
indépendantes telles que P(Xn = ei) = P(Xn = −ei) = 1

2d
pour 1 ≤ i ≤ d. On pose Sn =

∑n
i=1 Xk et S0 = 0. Soit T = inf{n > 0, Sn = 0} et pd = P(T < +∞). On admet que pd < 1 pour

d ≥ 3. Montrer que pd → 0 lorsque d → +∞.
Exercice 148 [ENS P 2025 # 148] Soient p ∈]0, 1/2[ et (Xn)n≥1 une suite i.i.d. de variables aléatoires telle que P(Xn = 1) =
1−P(Xn = −1) = p. Pour n ∈ N∗, on note Sn = X1 + · · ·+Xn. Montrer 1’existence de c, C1, C2 > 0 tels que ∀u ≥ 0, C1e

−cu ≤
P
(
supn≥1 Sn ≥ u

)
≤ C2e

−cu.
Exercice 149 [ENS PLSR 2025 # 149] 1. Soit X une variable aléatoire réelle et s > 0 tel que E(esX) soit finie. Démontrer que

∀a > 0, P(X ≥ a) ≤ e−saE(esX).
2. Soit (Xi)i≥1 une suite de variable aléatoires i.i.d. à valeurs dans [0, 1].

On pose Sn =
∑n
i=1 Xi. Démontrer que ∀t > 0, P(|Sn − E(Sn)| ≥ t) ≤ 2e−t2/(2n).

Exercice 150 [ENS PLSR 2025 # 150] Soit (E,P(E)) un espace probabilisable avec E dénombrable.

1. Rappeler la définition d’une probabilité sur cet espace.
2. Pour A et B probabilités sur cet espace, on pose d(A,B) = maxS⊂E A(S)B(S).

Montrer que d(A,B) = 1
2
∑
x |A({x}) −B({x})|.

c. Soient X et Y deux variables aléatoires discrètes à valeurs dans E de lois respectives A et B. Montrer que P (X ̸= Y ) ≥ d(A,B).
d. Les deux lois A et B étant fixées, montrer qu’on peut construire X et Y de façon à assurer l’égalité dans l’inégalité précédente.
Exercice 151 [ENS PLSR 2025 # 151] Soient X et Y deux variables aléatoires définies sur un même espace probabilisé (Ω,A,P) et à
valeurs dans [0, n]. On pose pk = P(X = k) et qk = P(Y = k) pour tout k ∈ [[0, n, et d(p, q) = maxS⊂0,n]]P(X ∈ S) − P(Y ∈ S).

1. Montrer que d(p, q) ≥ 0. Que dire si d(p,q) = 0?
2. Soit φ : R → R une fonction convexe. Comparer E(φ(X)) et φ(E(X)).
3. On suppose de plus qu’il existe au moins deux éléments k de [0,n] tels que pk > 0. On suppose de plus que φ strictement

convexe, c’est-à-dire telle que ∀(x, y) ∈ R2, ∀t ∈
]0, 1[ x ̸= y ⇒ φ((1 − t)x+ ty) ≤ (1 − t)φ(x) + tφ(y). Montrer que E(φ(X)) > φ(E(X)).

1. On suppose que : ∀k ∈ [[0, n]], pk > 0 et qk > 0. On pose H(p, q) =
∑n
k=0 pk ln

(
pk

qk

)
.

Montrer que H(p, q) ≥ 0. Que dire si H(p,q) = 0?
Exercice 152 [ENS L 2025 # 152] On considère r0 = 0 et (ri)i∈N∗ ∈ [0, 1]N∗ . Pour (i, j) ∈ N∗ ×N, on pose pi,j = ri si j = i+1, 1−ri
si j = i - 1 et 0 sinon.On admet l’existence d’une famille de variables aléatoires (Xi

k)(i,k)∈N∗×N telles que

• Xi0
0 = i0 p.s. pour tout i0 ∈ N∗,

• P
(⋂n

i=1(Xik
k = ik−1)

)
=
∏n
i=1 pik−1,ik pour tout (i0, . . . , ik) ∈ N∗k+1.

On pose, pour $i,j∈N*,$ τ ij = inf{k ∈ 0,+∞, Xi
k = j} ∈ N ∪ {+∞}.

Soit b ∈ N. Calculer, pour i ∈ [0, b], p̂i = P(τ i0 < τ ib) en fonction des γk =
∏k
i=1

1−ri

ri
.

Exercice 153 [ENS PLSR 2025 # 153] Soient (Xk)k∈N∗ une suite de variables de Rademacher indépendantes et X0 = k ∈ Z
(constante). On pose, pour tout n ∈ N, Sn = X0 + · · · +Xn.

1. Déterminer l’espérance et la variance de Sn.
2. Soient m ∈ N∗ et k1, . . . , km ∈ Z. Que dire de la loi de (Sn)n≥m conditionnée par (S1 = k1, . . . , Sm = km)?
3. Soient k,N ∈ N∗ avec N ≥ k. On considère que la marche aléatoire s’arrête dès que Sn = 0 ou Sn = N . On admet que l’arrêt

est presque sûr. Déterminer la probabilité pk que la marche s’arrête sur 0 en partant de k.
4. Déterminer le temps moyen d’arrêt (en 0 ou N cette fois) en partant de k.

Exercice 154 [ENS P 2025 # 154] On considère n variables aléatoires de Rademacher indépendantes (εi)1≤i≤n. Montrer que, pour
tout réel p > 0, il existe (cp, Cp) ∈ (R+∗)2 indépendant de n ∈ N∗ tel que,
pour tout

(z1, . . . zn) ∈ Cn

, cp
(∑n

i=1 |zi|2
) 1

2 ≤
(
E |
∑n
i=1 εizi|

p) 1
p ≤ Cp

(∑n
i=1 |zi|2

) 1
2 .

Exercice 155 [ENS L 2025 # 155] Soit (Xn)n≥0 une suite de variables aléatoires indépendantes à valeurs dans Z telles que ∀n ∈
N, ∀k ∈ N, P(Xn = k) = P(Xn = −k) = ce−|k| où c est à déterminer. Déterminer la loi du rayon de convergence de la série
entière aléatoire

∑
Xnz

n.
Exercice 156 [ENS P 2025 # 156] Soit (pn)n≥1 une suite d’éléments de [0,1]. Pour n ∈ N∗, on note Gn le graphe aléatoire Gn,pn

d’Erdös-Renyi, c’est-à-dire un graphe aléatoire de sommets [1,n] et une famille (X{i,j}){i,j}∈P2([1,n]) de variables de Bernoulli i.i.d.
de paramètre pn, avec X{i,j} = 1 si et seulement s’il existe une arête reliant i et j. On note In le nombre de sommets isolés deGn.

1. Soit ε ∈]0, 1[. On suppose que, pour tout n ∈ N∗, pn ≥ (1 + ε) ln(n)
n . Montrer que P(In ≥ 1) −−−−−→

n→+∞
0.

2. Soit ε ∈]0, 1[. On suppose que, pour tout n ∈ N∗, pn ≤ (1 − ε) ln(n)
n . Montrer que P(In ≥ 1) −→

n→+∞
1.
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Exercice 157 [ENS L 2025 # 157] Montrer qu’il existe un réel c> 0 vérifiant la condition suivante : quel que soit n ∈ N∗, quelle que
soit S partie non vide de Un, il existe un entier naturel p ≤ cn

|S| ainsi
qu’une p-liste (z1, . . . , zp) d’éléments de Un telle que |

⋃p
k=1 zkS| ≥ n

2 ·
Exercice 158 [ENS PLSR 2025 # 158] Soit p ∈ [0, 1/2]. On fixe une suite (Xn)n≥1 de variables aléatoires i.i.d. à valeurs dans {−1, 0, 1}
et telles que P (X1 = 1) = P (X1 = −1) = p et P (X1 = 0) = p

valeurs dans
{−1, 0, 1}

et telles que P(X1 = 1) = P(X1 = −1) = p et P(X1 = 1) = 1 − 2p. Pour b ∈ Z, a ∈ ZN∗ et n ∈ N∗, on pose P (b, a, n) =
P (
∑n
k=1 akXk = b).

1. On suppose a = (2< sup> k-1< /sup> )< sub> kN< /sub> . Calculer P(0, a, n) pour tout n N .
a) On suppose p = 1/4 et a = (1)< sub> kN< /sub> . Calculer P(0, a, n) pour tout n N .
b) Déterminer les valeurs de p pour lesquelles b → P(b, a, n) est maximale en 0 pour tout a ∈ ZN∗ .

Exercice 159 [ENS PLSR 2025 # 159] Soit n ≥ 3. Une alpiniste dispose de n lieux possibles pour planter sa tente, lieux numérotés de
1 à n. Elle peut visiter chacun de ces lieux successivement, à partir du numéro 1, et doit décider si elle y plante sa tente. Lorsqu’elle
visite le lieu k, elle peut savoir si elle préfère ce lieu à tous les lieux précédemment visités, mais ne sait pas si elle le préfère aux lieux
non encore visités. Une fois un lieu visité, si l’alpiniste a refusé d’y installer sa tente elle ne pourra plus revenir sur ce lieu. L’alpiniste
a pour objectif de maximiser la probabilité d’avoir choisi celui des n lieux qui a sa préférence parmi les n lieux.

1. Déterminer une stratégie optimale pour l’alpiniste lorsque n=3.
2. On fixe un k ∈ [0, n− 1]. L’alpiniste suit la stratégie décrite ci-après : elle visite automatiquement les k+1 premiers lieux ; étant

donné ℓ ∈ [k+1, n−1], si l’alpiniste visite le -ième lieu alors elle l’écarte si et seulement s’il n’a pas sa préférence parmi tous les
lieux déjà visités. Déterminer la probabilité pn,k pour que l’alpiniste s’installe sur le lieu ayant sa préférence parmi les n lieux.

3. On fixe un kn maximisant pn,k lorsque k parcourt [0, n-1]. Étudier le comportement asymptotique de kn quand n tend vers
+∞.

Exercice 160 [ENS L 2025 # 160] Soit (Xn)n≥1 une suite i.i.d. de variables aléatoires réelles discrètes. Pour t ∈ R et n ∈ N∗, on consi-
dère la variable aléatoire fn(t) = 1

n |{k ∈ [1, n], Xk ≤ t}|. Montrer qu’il existe une fonction f : R → R telle que P (supt∈R |fn(t) − f(t)| > ε) −→
n→+∞

0 pour tout réel ε > 0.
Exercice 161 [ENS L 2025 # 161] Pour deux variables aléatoires réelles bornéesX et Y, sur des espaces probabilisés a priori distincts,
on note X ≤c Y pour signifier que E(f(X)) ≤ E(f(Y )) pour toute fonction convexe f : R → R. On se donne, sur un espace
probabilisé, deux suites (M,X1, X2, . . . ) et (N,Y1, Y2, . . . ) de variables aléatoires indépendantes bornées vérifiant les conditions
suivantes :

• les Xn, où n ∈ N∗, sont identiquement distribuées et positives ;
• les Yn, où n ∈ N∗, sont identiquement distribuées et positives ;
• M et N sont à valeurs dans N :
• M ≼c N et X1 ≼c Y1.

On pose S =
∑M
k=1 Xk et T =

∑N
k=1 Yk . Montrer que S ≼c T .

Exercice 162 [ENS L 2025 # 162] Soient E une partie bornée et au plus dénombrable de R+, et L et L′ deux lois de probabilité sur
E. Déterminer, en fonction de ces lois, la plus petite constante KL,L′ telle que, pour tout couple (X,Y) de variables aléatoires réelles à
valeurs dans E telles que X ∼ L et Y ∼ L′, on ait l’inégalité E(XY ) ≤ KL,L′ .
Exercice 163 [ENS SR 2025 # 163] On munit Rn de sa structure euclidienne canonique. SoitX = (X1, . . . , Xn)T un vecteur aléatoire
tel que E

(
∥X∥2) < +∞. On note C(X) = (Cov(Xi, Xj))1≤i,j≤n la matrice de covariance.

1. Que dire de C(X) si les Xi sont indépendantes?
2. Soient v ∈ Rn et Y = ⟨v,X⟩. Exprimer V(Y ) en fonction de C(X).
3. On suppose les Xi centrées. Soient A ∈ Mn(R) et Z = AX. Exprimer E(∥Z∥2) en fonction de C(X).
4. Caractériser les A ∈ Mn(R) pour lesquelles il existe un vecteur aléatoire X tel que A = C(X).
5. Soit H un hyperplan de Rn.

Montrer que P (X ∈ H) = 1 si et seulement si H⊥ ⊂ Ker(C(X)).
Exercice 164 [ENS SR 2025 # 164] Soit α > 0. On considère l’équation différentielle () : (y′ = −x, x′ = α2y) avec (x, y) : R → R2.

1. Si (x0, y0) ∈ R2 est fixé, justifier l’existence et l’unicité d’une solution de () vérifiant x(0) = x0 et y(0) = y0. Pour cette solution,
on pose I(t) = y2(t) et J(t) = α2x2(t).

2. Montrer que les applications T 7→ 1
T

∫ T
0 I(t)dt et T 7→ 1

T

∫ T
0 J(t)dt admettent une

limite finie en +∞.
1. Soit N ∈ N∗. On considère deux variables aléatoires x0, y0 indépendantes à valeurs dans 1

NZ telles que, pour tout k ∈ Z,
P
(
x0 = k

N

)
= P

(
y0 = k

N

)
= γN exp

(
−(k/N)2).

a) Justifier l’existence de γN ∈ R+ pour lequel ces conditions définissent la loi des deux variables aléatoires.
b) On fixe t et on considère, pour N ∈ N∗, la variable aléatoire fN (t) = I(t) + J(t) (les fonctions I et J sont associées aux

variables aléatoires x0 et y0). Montrer que E
(
e−fN (t)) possède une limite quand N → +∞.
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II) ENS PSI autre

1) Algèbre

Exercice 165 [ENS PSI 2025 # 165] 1. Soit A = (ai,j)1≤i,j≤n ∈ Mn(R) telle que ∀i, j ∈ [1, n], ai,i = 2, ai,j = −1 si |i − j| =
1, ai,j = 0 si |i− j| ≥ 2.

a) Montrer que, pour tout x ∈ Rn, Ax ≥ 0 ⇒ x ≥ 0 où ≥ 0 signifie que toutes les coordonnées sont positives ou nulles.
b) En déduire que A est inversible.

2. Soit A ∈ Mn(R) telle que ∀i ∈ [[1, n]], |ai,i| >
∑
i̸=i |ai,j |.

a) Montrer que A est inversible.
b) Soit E et F les matrices de taille n définies par ei,j = ai,j si j ≥ i, ei,j = 0 si j < i et fi,j = −ai,j si j < i, fi,j = 0 si
j ≥ i. Montrer que, si (u, v) ∈ (Rn)2 vérifie Ev = Fu, alors ||v||∞ ≤ ||u||∞.

c) Montrer qu’il existe k ∈]0, 1[ tel que ∀u, v ∈ Rn, Ev = Fu ⇒ ||v||∞ ≤ k||u||∞.
d) Soient b ∈ Rn, x0 ∈ Rn et (xk) la suite définie par ∀k ∈ N, Exk+1 = Fxk + b. Montrer que la suite (xk) est bien définie

et que la suite (xk) converge. Déterminer sa limite.

Exercice 166 [ENS PSI 2025 # 166] Soit f :
(
a b
c d

)
∈ M2(R) 7→

(
c a
d b

)
. Spectre de f ? Diagonalisabilité sur R? sur C?

Exercice 167 [ENS PSI 2025 # 167] 1. Soit λ ∈ C. La suite (λk)k∈N peut-elle être dense dans C?

2. Soit A =
(

2 3
0 1/2

)
.

a) Pour X ∈ C2, la suite
(
AkX

)
k∈N

peut-elle être dense dans C2 ?
b) Soient A ∈ Mm(C), X ∈ Cm. La suite (AkX)k∈N peut-elle être dense dans Cm ?

3. Soit A ∈ Mm(R) qui n’admet pas de valeur propre réelle.
a) Montrer qu’il existe P ∈ GLm(R), a > 0, θ ∈ R tels que :

A = P


a cos θ −a sin θ ∗ · · · ∗
a sin θ a cos θ ∗ · · · ∗

0 0 ∗ · · · ∗
...

...
...

...
0 0 ∗ · · · ∗

P−1

.
b) Soient A ∈ Mm(R), X ∈ Rm. La suite (AkX)k∈N peut-elle être dense dans Rm ?

Exercice 168 [ENS PSI 2025 # 168] On dit que P = (pi,j) ∈ Mn(R) est une matrice de permutation s’il existe une permutation σ de
l’ensemble [[1, n]] telle que ∀(i, j) ∈ [[1, n]]2, pi,j = δi,σ(j). On dit que H ∈ Mn(R) est une H-matrice si tous ses coefficients valent
±1 et si ses colonnes forment une famille orthogonale pour le produit scalaire canonique.

1. Soit P une matrice de permutation. Montrer que P est orthogonale et que PT est une matrice de permutation.
2. Soit M ∈ Mn({−1, 1}).Montrer que M est une H-matrice si et seulement si MTM = nIn.
c. Soient D ∈ Mn({−1, 1}) une matrice diagonale, M une H-matrice de taille n, et P une matrice de permutation de taille n.
Montrer que DM, MT , MD et PM sont des H-matrices. On suppose dans les dernières questions qu’il existe une H-matrice de
taille n ≥ 3.
d. Montrer qu’il existe une H-matrice S = (si,j) ∈ Mn(R) n’ayant que des 1 en première ligne.

3. Montrer que ∀i, j ∈ [[2, n]] avec i ̸= j, on a
∑n
k=1(si,k + 1)(sj,k + 1) = n.

4. En déduire que n est un multiple de 4. On écrit n=4k avec k ∈ N∗.
g) Montrer qu’il existe une H-matrice de taille n dont les trois premières lignes sont présentées en quatre blocs de taille k de la forme
suivante :

(

Exercice 169 [ENS PSI 2025 # 169] Le produit scalaire canonique de Rn est noté ⟨x, y⟩ = xT y. Soit A ∈ Mn(R).

1. Montrer qu’il existe un unique (A+, A−) ∈ Sn(R) ×An(R) tel que A = A+ +A−.
2. Montrer que pour tout x ∈ Rn, ⟨Ax, x⟩ = ⟨A+x, x⟩.

On note λ1, . . . , λℓ les valeurs propres de A+ et E1, . . . , Eℓ les sous-espaces propres associés. On suppose de plus que A et A+

commutent.

1. Montrer que ∀x ∈ Ei, Ax ∈ Ei et A−x ∈ Ei.
2. Soient µ ∈ Sp(A) et Fµ le sous-espace propre associé. Montrer qu’il existe j tel que µ = λj et Fµ ⊂ Ej .
3. Soit i ∈ [1, ℓ]. On suppose dim(Ei) = 1. Montrer que λi ∈ Sp(A) et Ei ⊂ Ker(A−).
4. Montrer que si A est diagonalisable alors A est symétrique.

Exercice 170 [ENS PSI 2025 # 170] Soit A ∈ Mn(R). Soit u : M ∈ Mn(R) 7→ AMAT .
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1. On suppose A diagonalisable.
a) Montrer que u est diagonalisable.
b) Montrer que tr(u) = [tr(A)]2.
c) Montrer que Sn(R) est stable par u. On note uS l’endomorphisme induit par u sur

Sn(R)

. Montrer que tr(uS) = 1
2 (tr(A2) + [tr(A)]2).

1. On suppose désormais que Ãm = In pour un entier m ≥ 1.
a) Montrer que A est diagonalisable sur C.
b) Montrer qu’il existe des entiers r,s tels que r+2s ≤ n et des entiers k1 ≤ · · · ≤ ks tels que tr(A) = r+2

∑s
s=1 cos

( 2kiπ
m

)
.

c) Montrer que {Ak, k ∈ N} est fini.
d) On pose N = Card({Ak, k ∈ N}). Montrer que tr(u) = 1

N

∑N
i=1 tr(Ak).

Exercice 171 [# 171] 1. Soit f : R → R une fonction k-lipschitzienne, avec k ≥ 0.
a) Montrer que f est continue.
b) On suppose k < 1. Montrer que f admet un unique point fixe.
c) Donner un exemple de fonction 1-lipschitzienne de R dans R qui n’a pas de point fixe.

2. On considère E = Rd muni d’une norme N . Soit f : Rd → Rd une fonction 1lipschitzienne. Soit Ω l’ensemble des vecteurs x
de E tels que la suite (fn(x))n∈N est bornée. Montrer que Ω = ∅ ou Ω = E.

3. On suppose E = C et f(z) = az + b. Donner une condition nécessaire et suffisante pour que f soit 1-lipschitzienne. En supposant
cette condition réalisée, donner une condition nécessaire et suffisante pour que Ω = E.

Exercice 172 [ENS PSI 2025 # 172] Soit (E, ∥ ∥) un R -espace vectoriel normé de dimension 2 muni d’une base (e1, e2) vérifiant la
propriété () : ∀(λ1, λ2) ∈ R2, ||λ1e1 + λ2e2|| = |||λ1||e1 + ||λ2||e2||.

1. Rappeler la définition d’un espace euclidien.
2. Donner un exemple d’espace vectoriel normé et d’une base où la propriété () est vérifiée.
3. Donner un exemple d’espace vectoriel normé et d’une base où la propriété () n’est pas vérifiée.
4. On veut montrer le résultat () : pour tout (α1, α2, β1, β2) ∈ R4, si |α1| ≤ |β1| et |α2| ≤ |β2| alors ||α1e1 + α2e2|| ≤ ||β1e1 +
β2e2||. On fixe λ ∈ R et on définit la fonction f(µ) = ∥µe1 + λe2∥.

• Montrer que f
(
µ+µ′

2

)
≤ 1

2f(µ) + 1
2f(µ′) pour tout (µ, µ′) ∈ R2.

• En déduire que f est convexe.
• Montrer que f est une fonction croissante sur R+. iv) En déduire la validité de l’implication ().

Exercice 173 [ENS PSI 2025 # 173] Nature, suivant α ∈ R, de la série
∑

(−1)n nα

n2α+(−1)n .

Exercice 174 [ENS PSI 2025 # 174] Pour n ∈ N∗, on pose Hn =
∑n
i=1

1
k et Sn =

∑n
i=1
∑n
j=1

pq
p+q .

1. Montrer que (Hn ln(n+ 1)) converge. On note sa limite γ.
2. Déterminer un équivalent de Sn.
3. Donner un développement asymptotique à deux termes de Sn.

Exercice 175 [ENS PSI 2025 # 175] Soit E = C∞(R,R). Si f ∈ E, on note D(f) l’application x ∈ R 7→ f(x+ 1)f(x).
1. Montrer que D induit un endomorphisme de Rn[X] (on identifie un polynôme et la fonction polynomiale associée). Quel est

son noyau? son image?
2. Soient f ∈ E, n ∈ N∗ et x > 0.

Montrer qu’il existe c ∈]x, x+ n[ tel que Dn(f)(x) = f (n)(c).
1. Soit λ ∈ R. On suppose : ∀n ∈ N∗, nλ ∈ N. Montrer que λ ∈ N.

Exercice 176 [ENS PSI 2025 # 176] Soit G l’ensemble des fonctions de R dans R de la forme

x 7→ a0 +
+∞∑
k=1

(ak cos(2kπx) + bk sin(2kπx))

avec (an) et (bn) sommables. Soit F l’ensemble des f ∈ C0(R,R) 1-périodiques.

1. Si f ∈ G, montrer que les ak et bk sont uniquement déterminés par f .

Si a ∈ R est fixé, on pose, pour f ∈ F , T (f) : x 7→ f(x+ a)f(x).
1. Si a ∈ Z, que vaut T? c) Si a ∈ Q, décrire Ker(T).
2. Si a =

√
2, décrire Ker(T).

3. Oue vaut Im(T |G) pour a =
√

2?
Exercice 177 [ENS PSI 2025 # 177] Soit f : I → R convexe, où I est un intervalle de R de longueur non nulle.
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1. Soit t ∈ I . Pour tout x ∈ I \ {t}, on pose ∆t(x) = f(x)f(t)
xt .

a) Montrer que ∆t est croissante sur I \ {t}.
b) Justifier l’existence de f ′(t+) = limx→t+ ∆t(x). iii) On pose at : x 7→ f(t) + f ′(t+)(x − t). Montrer que f(x) =

supt∈I at(x).
2. On dit que f est log-convexe lorsque f > 0 sur I et ln ◦f convexe

a) Montrer que si f est log-convexe, alors elle est convexe.
b) Soit f ∈ C2(R,R+∗). Montrer que f est log-convexe si et seulement si, pour tout α ∈ R, x 7→ eαxf(x) est convexe. iii)

Montrer que la somme de deux fonctions log-convexes est log-convexe.
3. On pose Γ : x 7→

∫ +∞
1 tx−1e−tdt.

a) Justifier que Γ est définie, de classe C2, et strictement positive sur R+∗.
b) Montrer que Γ est log-convexe.
c) Soient n ∈ N∗ et x ∈ R+∗. Montrer : Γ(x+ n) = Γ(x)

∏n−1
k=0(x+ k) et Γ(n+ 1) = n!.

d) Montrer que ln(n) ≤ 1
x ln

(
Γ(n+1+x)

Γ(n+1)

)
≤ ln(n+ 1).

Exercice 178 [ENS PSI 2025 # 178] 1. Soit une fonction f ∈ C0(R+,R) décroissante, positive, et intégrable sur R+. Montrer que
f(x) = o(1/x) quand x → +∞.

2. Montrer qu’il existe une fonction g : R+ → R continue, positive et intégrable qui n’est pas négligeable devant 1/x en +∞.
Exercice 179 [ENS PSI 2025 # 179] Soit f : R+ → R continue, strictement décroissante et intégrable sur R+. On pose, pour n ∈ N∗,
fn : x ∈ R+ 7→ f(xn).

1. Montrer que ∀x ∈ R+, f(x) > 0 et que limx→∞ f = 0.
2. Soit a ∈ [0, 1[. Montrer que (fn) converge uniformément sur [0,a]. Cette suite est-elle uniformément convergente sur [0, 1] ?
3. Soit b ∈]1,+∞[. Mêmes questions pour les intervalles [b,+∞[ et ]1,+∞[.
4. Soit a ∈ R+. La suite de terme général un =

∫ +∞
−∞ fn(t)dt est-elle convergente?

Exercice 180 [ENS PSI 2025 # 180] Soient (a, b) ∈ R2 avec a < b et I = [a,b]. Soit f : I → I continue. La notation fn désigne
f ◦ f ◦ · · · ◦ f (n fois).
On suppose qu’il existe ω ∈ I tel que ∀x ∈ I , fn(x) → ω quand n → +∞.

1. Montrer que, pour tout k ∈ N∗, ω est l’unique point fixe de fk .
2. Montrer que f(I) ̸= I .
3. Montrer que ∩n≥1f

n(I) = {ω}.
4. Montrer que la suite (fn) converge uniformément vers la fonction constante égale à ω.

Exercice 181 [ENS PSI 2025 # 181] Pour n ≥ 1, on note bn le nombre de partitions d’un ensemble de cardinal n.
On pose

b0 = 1

et B : x 7→
∑+∞
n=0

bn

n! x
n.

réflexive (∀x ∈ E, x ∼ x),

1. Montrer que bn est le nombre de relations d’équivalence sur un ensemble de cardinal n. Cette notion étant hors-programme,
nous en donnons la définition. Une relation ~ sur l’en-

semble E est dite d’équivalence lorsque c’est une relation : symétrique (∀(x, y) ∈ E2, x ∼ y ⇒ y ∼ x), - transitive (∀(x, y, z) ∈
E3, x ∼ y et y ∼ z ⇒ x ∼ z).

1. Calculer b0, b1, b2.
2. Montrer que, pour tout n ∈ N, bn+1 =

∑n
k=1

(
n
k

)
bk .

3. Montrer que B est dérivable sur un intervalle ouvert non vide, en déduire une équation différentielle vérifiée par B puis la
résoudre.

4. Montrer que, pour tout n ∈ N, bn = 1
e

∑+∞
k=0

kn

k! .

Exercice 182 [ENS PSI 2025 # 182] 1. Calculer
∫ 1

0 − ln(1−t)
t dt. On donne

∑+∞
n=0

1
n2 = π2

6 .
2. Soient x ∈ [0, 1] et a, b ∈ R avec 0 < a < b. Montrer que l’équation yayb = xaxb d’inconnue y admet deux solutions, sauf pour

une valeur x0 de x que l’on déterminera.
3. Soit f : [0, 1] → R définie par f(x0) = x0 et, pour x ̸= x0, f(x) est l’unique solution différente de x de l’équation ya − yb =
xa − xb. Montrer que f est décroissante et continue.

4. Soit x ∈]0, 1[. Montrer que l’équation xb−a = 1−ta
1−tb admet une unique solution t ∈

]0,1[. On la note g(x).
1. Calculer I =

∫ 1
0 − ln(f(x))

x dx. On utilisera le changement de variable t = g(x).
Exercice 183 [ENS PSI 2025 # 183] Soient A ∈ Mn(R) symétrique définie positive, B ∈ Mm,n(R), v ∈ Rn. Soit J : x ∈ Rn 7→
1
2 ⟨Ax, x⟩⟨v, x⟩.

1. Calculer le gradient de J et montrer que ∀x, h ∈ Rn, J(x+ h) − J(x) = ⟨∇J(x), h⟩ + 1
2 ⟨Ah, h⟩.
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2. Montrer que les propositions suivantes sont équivalentes :
• il existe x ∈ Ker(B) tel que ∀z ∈ Ker(B), J(z) ≥ J(x) ;
• il existe x ∈ Ker(B) tel que ∇J(x) ∈ Ker(B)⊥ ;

• le système (S) :
{
Ax+BT y = v

Bx = 0
3. Montrer que si Ker(B) = {0} alors (S) admet au moins une solution.
4. Montrer que (S) admet au plus une solution si et seulement si Ker(BT ) = {0}.
5. Montrer qu’il existe α > 0, β ≥ 0 tels que ∀x ∈ Rn, J(x) ≥ α||x||2β||x||.
6. En déduire que (S) admet au moins une solution.

Exercice 184 [ENS PSI 2025 # 184] Soit (E, ⟨, ⟩) un espace préhilbertien.
1. a) Montrer que la fonction x 7→ ||x|| est de classe C1 sur E \ {0}. Calculer sa différentielle.

b) Soient H un sous-espace vectoriel de E et a ∈ E.
Soit x ∈ H tel que ||x− a|| = infy∈H ||y − a||. Montrer que x− a ∈ H⊥.

1. a) Soient a, b ∈ E et φ : x ∈ E 7→ ||xa|| + ||xb||. Calculer la différentielle de φ là où elle existe, et déterminer les points où
celle-ci s’annule.

b) ) Déterminer les extrema de φ sur E.
2. Soit ρ : (x, y) ∈ R2 7→

√
(1 − x)2 + y2 +

√
x2 + (1 − y)2. Déterminer les extrema de ρ.

3. Soient A, B et C trois points du plan formant un triangle aigu. Soit Ψ : M 7→ AM +BM + CM .
a) Montrer que Ψ admet un minimum en un point O tel que, pour tout couple (M,N) ∈ {A,B,C}2 de points distincts,

l’angle non orienté (−−→
OM,

−−→
ON) vaut 2π

3 .
b) Que se passe-t-il si A, B et C forment un triangle équilatéral ?
c) Que peut-on conclure dans le cas général ?

2) Probabilités

Exercice 185 [ENS PSI 2025 # 185] 1. Soient N boules rouges et M boules noires dans une urne. Combien y a-t-il de suites de
tirages successifs sans remise d’une boule jusqu’à vider l’urne?

On considère désormais une urne contenant n> 2 boules rouges et 2N-n> 2 boules noires. On effectue des tirages successifs sans
remises de deux boules à la fois jusqu’à vider l’urne. On note X le nombre de tirages ayant donné deux boules rouges.

1. On suppose n > N . Déterminer P (X ≥ 1).
2. Majorer X .

On suppose n pair et on note A l’événement « les n
2 premiers tirages sont constitués de deux boules rouges » et B l’événement « les

n
2 − 1 premiers tirages sont constitués de deux boules rouges et les deux tirages suivants d’une boule rouge et d’une boule noire ».
Sont-ils équiprobables?

1. Soit un entier k < N . Déterminer P(X = k).
2. Déterminer E(X).
3. On suppose que n = ⌊λN⌋ avec λ < 1. Montrer que E(X) ∼ λ2

4 N .

Exercice 186 [ENS PSI 2025 # 186] 1. Soit E = C0([0, 1],R). Pour p ∈ N∗ et f ∈ E, on note ||f ||p =
(∫ 1

0 |f |p
)1/p

.

• Montrer que ∥∥2 et ∥∥4 sont des normes sur E.
• Montrer que ∥ · ∥4 ≥ ∥ · ∥2.
• Soit (fn)n∈N∗ la suite de fonctions définies par $∀ x∈[0,1/2n],\ fn(x)=0,$

∀x ∈ [1/n, 1], fn(x) = x−1/4 et fn est affine sur [1/2n, 1/n]. Comparer ||fn||2 et ||fn||4. Qu’en déduit-on?

2. Soit (Xn)n≥1 une suite i.i.d. de variables aléatoires suivant la loi uniforme sur {−1, 1}.
Pour

a = (an)n≥1 ∈ RN∗
, n ≥ 1

et p ≥ 2, on note Nn,p(a) =
(
E
(
|
∑n
k=1 akXk|p

))1/p.
• Calculer Nn,2(a).
• Calculer N4

n,4(a) en fonction de Nn,2(a).
Exercice 187 [ENS PSI 2025 # 187] Soit Sn l’ensemble des permutations de [1, n], que l’on munit de la probabilité uniforme.

1. Pour k, ℓ ∈ [1, n] avec k ̸= ℓ, on note τk,ℓ ∈ Sn la transposition définie par τk,ℓ(k) = ℓ, τk,ℓ(ℓ) = k et ∀j ∈ [1, n] \
{k, ℓ}, τk,ℓ(j) = j.

• Pour σ ∈ Sn, expliciter σ ◦ τk,ℓ ◦ σ−1.
• Déterminer tous les σ ∈ Sn tels que ∀α ∈ Sn, σ ◦ α = α ◦ σ.

2. Pour σ ∈ Sn, on note Zσ = {α ∈ Sn, σ ◦ α = α ◦ σ}.
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• Montrer que Zσ est stable par composition et passage à l’inverse.
• Pour σ ̸= id, montrer que 2|Zσ| ≤ |Sn|.

3. On tire indépendamment et avec remise deux éléments σ et τ de Sn.
• Montrer que ∀n ≥ 3, pn = P(σ ◦ τ = τ ◦ σ) ≤ 7

12 .
• Déterminer p3.

4. Pour σ ∈ Sn, on note Cσ = {α ◦ σ ◦ α−1, α ∈ Sn}.
• Montrer que ∀σ ∈ Sn, |Cσ| = n!

|Zσ| .
• Montrer que ∀σ, τ ∈ Sn, Cσ = Cτ ou Cσ ∩ Cτ = ∅.

Exercice 188 [ENS PSI 2025 # 188] Soit n ≥ 2. On se place dans N2 et on considère le rectangle [0, n]×[0, 2]. On appelle recouvrement
de [0, n] × [0, 2] tout ensemble fini formé de rectangles translatés de [0, 1] × [0, 2] (rectangles verticaux) et de [0, 2] × [0, 1] (rectangles
horizontaux) qui recouvrent [0, n] × [0, 2] sans que leurs intérieurs ne se chevauchent.
On note un le nombre de recouvrements de [0, n] × [0, 2]. On munit l’ensemble des recouvrements de [0, n] × [0, 2] de la probabilité
uniforme.

1. Calculer u1, u2, u3. Montrer que, pour tout n ∈ N∗, un+2 = un+1 + un. En déduire une expression de un.
2. On note P1,n la probabilité qu’il y ait un rectangle vertical tout à gauche.

Calculer P1,n et montrer que (P1,n) admet une limite L.
c. On note Vn le nombre de rectangles verticaux. Calculer E(Vn).Ind. On pourra écrire Vn =

∑n
i=1 Ui,n où Ui,n est l’indicatrice de

l’événement : « il y a un
rectangle vertical en position i ».
d. Montrer que E(Vn)

n −−−−−→
n→+∞

L.

Ind. Découper la somme entre [1,
√
n], [

√
n, n−

√
n] et [n−

√
n, n].

1. On note Vi,j,n l’événement : « il y a un rectangle vertical en i et en j ». Calculer E(Vi,j,n).
2. Calculer V (Vn), puis en donner un équivalent quand n → +∞.

Exercice 189 [ENS PSI 2025 # 189] Soient m,n ∈ N∗. Soit Am,n = {a1, . . . , am, b1, . . . , bn} où les ai, bj sont des éléments distincts.
Soit Hm,n l’ensemble des bijections f de Am,n sur [[1,m+ n]] telles que, pour tout (i, j) ∈ [[1,m]], i < j implique f(ai) < f(aj) et,
pour tout (i, j) ∈ [[1, n]]2, i < j implique f(bi) < f(bj).

1. Calculer le cardinal de Hm,n.

Soit fm,n suivant la loi uniforme sur Hm,n.
1. Calculer P(fm,n(am) = i).
2. Pour c, k ∈ N∗, montrer que P(fcn,n(acn) = (c+ 1)n− k) admet une limite quand n tend vers +∞.
3. Calculer P (f2m,n(am) = i).
4. Soit t ≥ 0. donner un équivalent de P(f2n,2n(an) = 2n+ ⌊t

√
n⌋). Ind. Commencer avec t = 0 et utiliser l’équivalent de Stirling

lorsque t → +∞.
Exercice 190 [ENS PSI 2025 # 190] Soit I un intervalle de R.

1. Soit (λ1, . . . , λn) ∈ [0, 1]n tel que λ1 + · · · + λn = 1. Soit f : I → R convexe.
• Montrer que, pour tout (x1, . . . , xn) ∈ In, on a f (

∑n
i=1 λixi) ≤

∑n
i=1 λif(xi).

• On suppose f de classe C2 sur I avec f” > 0. Montrer que, si les λi sont dans ]0,1[ et les xi sont distincts, l’inégalité du i)
est stricte.

2. Soient Ω un ensemble fini, P1 et P2 des probabilités sur Ω. On pose

TV (P1,P2) = sup
A∈P(Ω)

|P1(A) − P2(A)| et N1(P1,P2) =
∑
ω∈Ω

|P1({ω}) − P2({ω})|

.

• Montrer que TV (P1,P2) = 1
2N1(P1,P2)

• Montrer que TV (P1,P2) =
∑
ω∈Ω max(P1({ω}),P2({ω}))1

• Montrer que

1 − TV 2(P1,P2) ≥

(∑
ω∈Ω

√
P1({ω})P2({ω})

)2

.

3. On garde les hypothèse de la question b) et on suppose que, pour tout ω ∈ Ω, la condition P2({ω}) = 0 implique P1({ω}) = 0.
On pose D(P1,P2) =

∑
ω∈Ω P1({ω}) ln

(
P1({ω})
P2({ω})

)
avec la convention 0 ln 0 = 0.

• Montrer que D(P1,P2) ≥ 0

• Montrer que
(∑

ω∈Ω
√

P1({ω})P2({ω})
)2

≥ e−D(P1,P2).
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• Conclure.
Exercice 191 [ENS PSI 2025 # 191] Soient n ≥ 2 et p ∈ {1, . . . , n}. Soit A ∈ Mn,p(R) telle que ATA est inversible. On pose
P = A(ATA)−1AT .
On considère des variables aléatoires i.i.d. (zk)1≤k≤n d’espérance nulle et ayant un moment d’ordre 4. On pose σ =

√
V(z1) et

Z = (z1 . . . zn)T .
On considère une matrice colonneX0 ∈ Mp,1(R). On pose Y = AX0+Z etX = (ATA)−1ATY . On pose enfin T = ||A(X−X0)||2,
où || || est la norme euclidienne usuelle sur Mp,1(R).

1. Montrer que rg(A) = p.
2. Montrer que P est un projecteur orthogonal de rang p. Déterminer son image et son noyau.
3. Montrer que T = ZTPZ .
4. On note Pi,j les coefficients de P . On pose T1 =

∑n
i=1 Pi,iz

2
i et T2 = 2

∑
1≤i<j≤n Pi,jzizj .

Exprimer E(T1), E(T2) et E(T1T2) en fonction de σ et p.

1. Déterminer E(T 2
1 ) et E(T 2

2 ).
2. En déduire l’espérance et la variance de T .

Exercice 192 [ENS PSI 2025 # 192] Soit Y une variable aléatoire. On dit que Y est k-divisible (k ∈ N∗) s’il existe un vecteur aléatoire
(X1, . . . , Xk) où les Xi sont i.i.d. tel que Y ∼ (X1 + · · · +Xn). On dit que Y est infiniment divisible si elle est k-divisible pour tout
k ∈ N∗.

1. Soient X et Y deux variables aléatoires indépendante suivant les lois de Poisson de paramètres respectifs λ et ν. Donner la loi
de X+Y. En déduire que si Y ∼ P(λ) alors Y est infiniment divisible.

2. Soit Y une variable aléatoire. On suppose qu’il existe A> 0 tel que P(Y ∈ [−A,A]) = 1 et que Y est k-divisible pour un certain
k ∈ N∗. On a donc Y ∼ (X1 + · · · +Xk) où les Xi sont i.i.d.

• Montrer que, pour tout i, P (Xi ∈ [−A/k,A/k]) = 1.
• Montrer que, pour tout i ∈ [1, k], V(Xi) ≤

(
A
k

)2. En déduire une majoration de V(Y ).
• Que peut-on dire si la variable aléatoire Y vérifie P(Y ∈ [−A,A]) = 1 et qu’elle est infiniment divisible ?

3. Soient p ∈]0, 1[ et Y une variable aléatoire suivant B(λ). Si k ≥ 2, montrer que Y n’est pas k divisible.
4. Soient p ∈]0, 1[, n ∈ N∗ et Y une variable aléatoire suivant B(n, p). Pour quelles valeurs de k ∈ N∗ la variable aléatoire Y

est-elle k-divisible ?
Exercice 193 [ENS PSI 2025 # 193] On dit que le spectre d’une matrice est simple lorsque toutes les valeurs propres de la matrice

sont simples. Soit n ∈ N. Posons M =
(
A b
bT c

)
∈ Mn+1(R), avec A ∈ Mn(R), b ∈ Rn considéré comme un vecteur colonne et

c ∈ R.L’objectif des deux premières questions est d’établir une démonstration de la proposition suivante : si le spectre de M n’est pas
simple, alors b est orthogonal à un des vecteurs propres Soit λ une valeur propre non simple de M .

1. Montrer que l’on dispose de v ∈ Rn, un vecteur propre de M , associé à la valeur propre λ, tel que vn+1 = 0.
2. Montrer que λ est aussi valeur propre de A et conclure.

Notons

N =


2 0 0 X1
0 1 X5 X2
0 X5 −1 X3
X1 X2 X3 X4

 ∈ M4(R)

où les Xi sont des variables aléatoires indé-

1. On note B l’événement : « le spectre de N est simple ». Montrer que P (B) ≥ 3p32p4.
Exercice 194 [ENS PSI 2025 # 194] Soit (Xn)n≥1 une suite i.i.d. de variables aléatoires suivant la loi uniforme sur {−1, 1}.
Pour

n ∈ N∗

, soient Sn =
∑n
k=1 Xk et Yn =

∑n
k=1

Xk

kα où α > 3/4.

1. • Pour (i, j, k, ℓ) ∈ [1, n]4, calculer E(XiXjXkXℓ).
• En déduire E(S4

n).
• Soit (xk)k≥1 une suite de réels > 0 et Bn,p =

⋃
k∈[[n,n+p]] (|Sk| ≥ xk).

Montrer que

P(Bn,p) ≤ 3
∑

k∈[n,n+p]

k2

x4
k

.

2. • Exprimer Yn en fonction des Sk .
• Montrer que (Yn) converge presque sûrement.
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Exercice 195 [ENS PSI 2025 # 195] 1. Soit f ∈ C1(R+∗,R) convexe.
• Soit t0 ∈ R+∗. Montrer qu’il existe g affine telle que ∀t ∈ R+∗ : f(t) ≥ g(t) et f(t0) = g(t0).
• Soit Z une variable aléatoire réelle telle que Z et f(Z) sont d’espérance finie. Montrer que f(E(Z)) ≤ E(f(Z)).

2. PourX variable aléatoire réelle et t ∈ R, on pose si possible ΨX(t) = ln(E(etX)). Calculer ΨX lorsqueX suit la loi de Poisson
de paramètre λ.

3. Pour X variable aléatoire discrète réelle et θ ∈ R, on pose ΦX(θ) = supt∈R+(tθΨX(t)).
• Montrer que ΦX est positive et convexe sur son ensemble de définition.
• Montrer que ΦX est définie en µ = E(X) et que ΦX(µ) = 0.
• Montrer que ΦX est décroissante pour θ < µ et croissante pour θ > µ.

4. On suppose que X ∼ P(λ).
• Calculer ΦX .
• Donner un majorant de P (X ≥ 2λ).

III) ENS PC autre

Exercice 196 [ENS PC 2025 # 196] Pour n ∈ N∗, calculer le module de
∑n−1
k=0 exp

(
2iπk2

n

)
.

Exercice 197 [ENS PC 2025 # 197] Soit A = (ai,j)1≤i,j≤n ∈ Mn(R). Montrer : tr(A2) ≤
∑

1≤i,j≤n a
2
i,j . Cas d’égalité ?

Exercice 198 [ENS PC 2025 # 198] Soient

D =


α1 0 · · · 0

0
. . . . . .

...
...

. . . . . . 0
0 · · · 0 α



et F =


0 · · · 0 1
0 · · · 0 0
...

...
...

0 · · · 0 0

 ∈ Mn(R).

Pour k ∈ N, calculer (D + F )k

Exercice 199 [ENS PC 2025 # 199] Soit φ ∈ L(Mn(R),R) telle que : ∀(A,B) ∈ Mn(R)2, φ(AB) = φ(BA). Montrer qu’il existe
β ∈ R tel que φ = β tr.
Exercice 200 [ENS PC 2025 # 200] Soit (A1, . . . , An) ∈ Mn(R)n. Existe-t-il nécessairement (ε1, . . . , εn) ∈ {−1, 1}n tel que :
tr
(

(
∑n
i=1 εiAi)

2
)

≥
∑n
i=1 tr

(
A2
i

)
?

Exercice 201 [ENS PC 2025 # 201] Soit R : K[X] → K[X] définie par R(0) = 0 et, pour tout polynôme P ∈ K[X] de degré n,R(P ) =
XnP

( 1
Y

)
.

1. L’application R est-elle linéaire? bijective?
2. Trouver tous les polynômes P tels que R(P’) = R(P)’.

Exercice 202 [ENS PC 2025 # 202] Soient M et N ∈ M2(C) telle que M2 = N2 = 0 et MN + NM = I2. Montrer qu’il existe
P ∈ GL2(C) telle que M = PE1,2P

−1 et N = PE2,1P
−1.

Exercice 203 [ENS PC 2025 # 203] Soit (A1, . . . , Am) ∈ GLn(R)m tel que, ∀(i, j) ∈ [1,m]2, AiAj ∈ {A1, . . . , Am}. Montrer que
| det(Aj)| = 1 pour tout j ∈ [1,m].
Exercice 204 [ENS PC 2025 # 204] Soit N ∈ Mn(R) nilpotente. On pose fN : t 7→

∑+∞
k=0 t

kNk .

1. Montrer que fN est bien définie sur R.
2. Montrer que si fN s’annule alors N = 0.

Exercice 205 [ENS PC 2025 # 205] Soient A,B ∈ S2(R) et C ∈ M2(R). On note, pour X,Y ∈ M2(R), [X, Y] = XY - YX. Montrer
que [[A,B]2, C] = 0.
Exercice 206 [ENS PC 2025 # 206] Soit A ∈ Mn(R). On note E = {AM,M ∈ Mn(R)}. Déterminer la dimension de E.

Exercice 207 [ENS PC 2025 # 207] 1. Soient A, B, C des espaces vectoriels. On note A f1−→ B
f2−→ C lorsque f1 ∈ L(A,B), f2 ∈

L(B,C) et Im(f1) = Ker(f2). Que peut-on dire si A = {0}? si C = {0}?b) Soient A, B, C , D, E, F des espaces vectoriels.
On suppose que

où h1 et h3 sont des isomorphismes et où h2 ◦ f1 = g1 ◦ h1 et h3 ◦ f2 = g2 ◦ h2. Montrer que h2 est un isomorphisme.
Exercice 208 [ENS PC 2025 # 208] Soit n ∈ N∗. Montrer qu’il existe k ∈ N∗ et P1, . . . , Pk des éléments de R[X] qui ne sont pas des
monômes tels que ∀A ∈ GLn(R), ∃i ∈ [1, k], Pi(A) ∈ GLn(R).
Exercice 209 [ENS PC 2025 # 209] SoientA etB ∈ Mn(R), avec rgA = p et rgB = q. Déterminer les valeurs possibles de rg(AB).
Exercice 210 [ENS PC 2025 # 210] Soit (A,B) ∈ Mn(R)2 sans valeur propre complexe commune. Montrer que Φ : M 7→ AM−MB
est un automorphisme de Mn(R).
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Exercice 211 [ENS PC 2025 # 211] On munit Rn de sa structure euclidienne canonique. Soient A ∈ Mn,p(R) avec n > p > rg(A)
et b ∈ Rn. Déterminer les x ∈ Rp tels que ||Axb|| = miny∈Rp ||Ayb||.
Exercice 212 [ENS PC 2025 # 212] Soient E un espace euclidien et p, q ∈ L(E) deux projecteurs orthogonaux qui commutent.
Montrer que p ◦ q est un projecteur orthogonal.

Exercice 213 [ENS PC 2025 # 213] Soient A ∈ Sn(R), a ∈ R et x ∈ Rn. On pose M =
(
A x
xT a

)
.

On note λ1 ≤ · · · ≤ λn les valeurs propres de A et µ1 ≤ · · · ≤ µn ≤ µn+1 les valeurs propres de M . Montrer que µ1 ≤ λ1 ≤ · · · ≤
µn ≤ λn ≤ µn+1.
Exercice 214 [ENS PC 2025 # 214] Soit n ∈ N∗. Lorsque (A,B) ∈ Sn(R)2, on noteA ≤ B siB−A ∈ S+

n (R). On pose Φ : A 7→ ATA
définie sur Mn(R). Montrer que Φ est convexe, c’est-à-dire : ∀(A,B) ∈ Mn(R)2, ∀λ ∈ [0, 1], Φ ((1 − λ)A+ λB) ≤ (1 −λ)Φ(A) +
λΦ(B).

1) Analyse

Exercice 215 [ENS PC 2025 # 215] Caractériser les matricesM ∈ M2(R) pour lesquelles il existeX ∈ R2 tel que limn→+∞ ∥MnX∥ =
+∞.
Exercice 216 [ENS PC 2025 # 216] Soit d ∈ N∗. Pour toutes matrices A et B dans Md(R) on définit [A,B] = AB BA. Soient A et B
dans Md(R). Soit (Fn)n∈N la suite de matrices définie par F0 = B et, pour tout p ∈ N, Fp+1 = [A,Fp].

1. Montrer que, pour tout n ≥ 0, il existe des réels c0,n, c1,n, . . . , cn,n tels que

Fn =
n∑
i=0

ci,nA
n−iBAi

.b) Soit A ∈ Sd(R). Donner une condition nécessaire et suffisante portant sur A pour que la suite (Fn) tende vers la matrice nulle, et
ce quelle que soit la matrice B à partir de laquelle la suite (Fn) a été construite.
Exercice 217 [ENS PC 2025 # 217] Soit γ ∈]0, 1]. Soit (xn)n≥1 ∈ (R+)N telle que ∀n ∈ N, xn+1 ≤ xn + x1−γ

n . Montrer qu’il existe
d> 0 tel que, pour tout n ∈ N, xn ≤ dn1/γ .
Exercice 218 [ENS PC 2025 # 218] Soient (xn) et (yn) deux suites réelles.

1. On pose : ∀n ∈ N, yn = xn+1 − xn. Si yn → 0, la suite (xn) converge-t-elle nécessairement?
2. On pose : ∀n ∈ N, yn = xn+1 − 1

2xn. Montrer que, si yn → 0, alors xn → 0.
Exercice 219 [ENS PC 2025 # 219] Soient α ∈ R et (xn,N )(n,N)∈N2 une suite double réelle.
On suppose que, pour toutN ∈ N, limn→+∞ xn,N = α. Montrer qu’il existe (Nn)n∈N ∈ NN croissante telle que limn→+∞ xn,Nn = α.
Exercice 220 [ENS PC 2025 # 220] Soit (un) ∈ (R+∗)N telle que

∑
un diverge.

1. Montrer que
∑ un

(u1+···+un)2 converge.

1. Montrer que
∑ un

u1+···+un
diverge.

c. Soit (xn) ∈ (R+∗)N. On suppose, que pour toute (yn) ∈ (R+∗)N, la convergence de
∑
y2
n implique celle de

∑
xnyn. Montrer

que
∑
x2
n converge.

Exercice 221 [ENS PC 2025 # 221] Soient a > 0 et f ∈ C0([0,+∞[ ,R) telle que ∀x ∈ R, |f(x) − 1| < 1
1+x2 .

Montrer qu’il existe g ∈ C0([0,+∞[ R) telle que ∀x ∈ R, f(x) = g(x)g(x+ a).
Exercice 222 [ENS PC 2025 # 222] 1. Déterminer les fonctions f : R+∗ → R continues telles que, pour tous x, y ∈ R+∗, f(xy) =

f(x) + f(y).
2. Déterminer les fonctions f : R+∗ → R continues telles que, pour tous x, y ∈ R+∗, f(xy) = f(x) f(y).

Exercice 223 [ENS PC 2025 # 223] Soit f ∈ C2(R,R+) telle que f” est bornée sur R. Montrer qu’il existe C ∈ R tel que, pour tout
x ∈ R, (f ′(x))2 ≤ Cf(x).

Exercice 224 [ENS PC 2025 # 224] Soit f ∈ C2(R,R). On suppose que f , f’ et f” sont bornées sur R. Montrer que limε→0 supx∈R

∣∣∣ f(x+ε)−f(x)
ε − f ′(x)

∣∣∣ =
0.
Exercice 225 [ENS PC 2025 # 225] Soit f ∈ C0(R,R) qui tend vers 0 en −∞ et en +∞ et telle que la famille de fonctions (f, x 7→
f(x+ 1), x 7→ f(x+ 2)) est liée. Que dire de f ?
Exercice 226 [ENS PC 2025 # 227] Soient

a, b ∈ R

avec a < b et f ∈ C1(R,R+) intégrable.
On suppose the

a, b ∈ R

avec a < b ∈ f ∈ C (R,Rn) integrable.
On suppose que :

∀x ∈ [a, b], f ′(x) ≥ 1

. Peut-on avoir
∫

R f = (b−a)2

2 ?
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Exercice 227 [ENS PC 2025 # 228] Trouver toutes les

f ∈ C0([0, 1],R+∗)

telles que
∫ 1

0 f =
∫ 1

0
1
f = 1.

Exercice 228 [ENS PC 2025 # 229] Soient
a < b

deux réels.
1. Soit φ ∈ C2([a, b]),R) telle que |φ′| ≥ 1 et φ′′ > 0.
2. Soit

φ ∈ C2([a, b]),R

) telle que |φ′| ≥ 1 et φ′′ > 0. Montrer que, pour tout λ > 0,
∣∣∣∫ ba cos(λφ(x)) dx

∣∣∣ ≤ 4
λ .

b. Montrer que, pour tout
φ ∈ C2([a, b],R)

et pour tout α > 0, si |φ′| ≥ α et φ′′ > 0 alors ∣∣∣∣∣
∫ b

a

cos(λφ(x)) dx

∣∣∣∣∣ ≤ 4
αλ

. c. Soit φ ∈ C2([a, b],R) telle que φ′′ ≥ 1.
Montrer que, pour tout

λ > 0

,
∣∣∣∫ ba cos(λφ(x))dx

∣∣∣ ≤ 8√
λ

.
d. Soit

φ ∈ Ck([a, b],R)

, où k ∈ N∗, telle que φ(k) ≥ 1.

Trouver C > 0 et α > 0 tels que ∀λ > 0,

∣∣∣∣∣
∫ b

a

cos(λφ(x))dx

∣∣∣∣∣ ≤ C

λα

.
Exercice 229 [ENS PC 2025 # 230] Soit E un sous-espace vectoriel de dimension 4 de C0(R,R). On note L∞(R,R) l’espace des
fonctions bornées et L2(R,R) l’espace des fonctions de carré intégrable.
l’espace des fonctions bornées et

L2(R,R)

l’espace des fonctions de carré intégrable.
1. On suppose qu’il existe un sous espace vectoriel G de E constitué de fonctions bornées

sur
R+

tel que E = Vect(x 7→ ex) + Vect(x 7→ e−x) +G et que la seule fonction dans G qui soit de carré intégrable sur R+ est la fonction
nulle. Montrer que E ∩ L2(R,R) = {0}.

1. On suppose que E vérifie les hypothèses de la question a) et qu’on dispose de deux sousespaces F1 et F2 de E tels que dim
F1 = dimF2 = 2, que toutes les fonctions de F1 sont bornées sur R−, et que la seule fonction de F2 bornée sur R− est la
fonction nulle. Montrer que dim(E ∩ L∞(R,R)) = 1.

Exercice 230 [ENS PC 2025 # 231] On définit (fn)n∈N par :

∀x ∈ R, f0(x) = e−x et ∀n ∈ N,∀x ∈ R, fn+1(x) =
∫ +∞

−1

fn(t+ 1)
1 + t2

et dt

.

1. Montrer que (fn)n∈N est bien définie.
2. Montrer que

∑
fn converge sur un intervalle [x0,+∞[, où x0 est judicieusement choisi.

Exercice 231 [ENS PC 2025 # 232] 1. Soient f une fonction développable en série entière sur R et J une partie finie
On suppose que f (i)(0) = 0 si i /∈ J et f (i)(1) = 0 si i ∈ J . Que dire de f ?

1. La propriété est-elle encore vérifiée si J est une partie infinie de N?
Exercice 232 [ENS PC 2025 # 233] Pour a > 0, on pose f(a) =

∫ +∞
0

dx√
1+x2

√
1+a2x2

1. Justifier la définition de f(a).
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2. Montrer que f(a) = O
( ln a
a

)
.

Exercice 233 [ENS PC 2025 # 234] Montrer que ∀t ∈ R,
∫ +∞

−∞ cos(tx) exp(−x2)dx =
√
π exp

(
− 1

4x
2).

Exercice 234 [ENS PC 2025 # 235] Pour n ∈ N, donner un équivalent de An(t) =
∫ 1

0 sin2(xt)xn−2 dx lorsque t → +∞.
Exercice 235 [ENS PC 2025 # 236] Soit h ∈ C0([0, 1],R) telle que h(0) = h(1) = 0 et f : x ∈ R 7→ h(x)1[0,1](x). Soit g : y ∈ R 7→∫ 1
a

|x− y|f(x)dx.
1. Montrer que g est deux fois dérivable et que ∀x ∈ R, g′′(x) = 2f(x).
2. Déterminer une condition nécessaire et suffisante pour que q soit bornée.

Exercice 236 [ENS PC 2025 # 237] Soit h ∈ C1(R,R) telle que ∀x ∈ R, |h(x)| ≤ 1
1+|x| et |h′(x)| ≤ 1

1+|x|2 . Montrer la convergence
de
∫ +∞

−∞
∫ +∞

−∞ φ(x, y) dx dy où φ(x, y) = h(x)−h(y)
x−y si x ̸= y, et

Exercice 237 [ENS PC 2025 # 238] Soit, pour
x ∈ R

, f(x) =
∫ +∞

0 e−y cos(xy) dy.

1. Calculer explicitement f .
2. Montrer que, pour tout k ∈ N, la dérivée k-ième de f est bornée par k !.
3. En quels points x y a-t-il égalité entre k ! et |f (k)(x)|?

Exercice 238 [ENS PC 2025 # 239] 1. Donner les solutions de l’équation différentielle : x′′x = cos(2t).
2. Soient c> 0 et f : R → R une fonction continue telle que f(t)=0 pour tout t vérifiant |t| ≥ c.

Montrer qu’il existe une unique solution de l’équation différentielle x” x = f(t) vérifiant limt→±∞ x(t) = 0.
φ(x, y) = h′(x) sinon.

2) Géométrie

Exercice 239 [ENS PC 2025 # 240] Soit f : x ∈ R 7→ ax2 + bx+ c, avec (a, b, c) ∈ R3 et a > 0. On pose E = {(x, y) ∈ R2, y ≥ f(x)}
et C = {(x, f(x)) : x ∈ R}. Soient v un vecteur non nul du plan, X ∈ E et ∆ = {X + λv : λ ∈ R}. Montrer que ∆ ∩ C est non vide.
Exercice 240 [ENS PC 2025 # 241] 1. Soit ABC un « vrai » triangle tel que ABC soit aigu (et non droit).Montrer que : AC2 <

AB2 +BC2.
2. Soient e1, e2 et e3 des vecteurs non nuls orthogonaux de R3. On pose : d1 = {te1; t > 0}, d2 = {te2; t > 0}, d3 = {te3; t > 0}.

Montrer que tout triangle A1A2A3, où Ai ∈ di, est aigu, c’est-à-dire que ses trois angles sont aigus.

3) Probabilités

Exercice 241 [ENS PC 2025 # 242] Deux joueurs de tennis sont de même niveau. Ils disputent un match. Quelle est la probabilité que
le match se termine par un tie-break?
Exercice 242 [ENS PC 2025 # 243] On lance n fois une pièce avec une probabilité p d’obtenir face. On poseAn : « on n’obtient jamais
deux faces de suite ». Donner un équivalent de P(An).
Exercice 243 [ENS PC 2025 # 244] On considère une urne contenant initialement n+1 boules : n blanches et une rouge. On tire une
par une des boules dans l’urne. Si on tire la boule rouge, on s’arrête, sinon on a une chance sur deux de remette la boule et continuer,
une chance sur deux de s’arrêter. On pose Xn le nombre de boules tirées lorsque l’on s’arrête. Donner E(Xn).
Exercice 244 [ENS PC 2025 # 245] Soit N une variable aléatoire suivant la loi de Poisson de paramètre λ > 0. On lance N fois une
pièce équilibrée. Quelle est la probabilité qu’on obtienne un nombre pair de face?
Exercice 245 [ENS PC 2025 # 246] Soit Sn l’ensemble des permutations de [1, n] muni de la probabilité uniforme.

1. Donner la loi de la variable aléatoire K qui donne la taille du cycle contenant 1.
2. Déterminer l’espérance et la variance du nombre N de cycles.

Exercice 246 [ENS PC 2025 # 247] Soit σ une permutation aléatoire de [1, 2n] suivant la loi uniforme.
On pose

Y =
n−1∑
i=0

|σ(2i) − σ(2i+ 1)|

. Calculer E(Y ).
Exercice 247 [ENS PC 2025 # 248] Soient Y, Z deux variables aléatoires à valeurs dans [0, n]. Montrer que si, pour tous P,Q ∈ R[X]
de degré n,E(P (Y )|Q(Z)) = E(P (Y ))|E(Q(Z)), alors Y et Z sont indépendantes.
Exercice 248 [ENS PC 2025 # 249] Soit d ∈ N∗. SoientA0, . . . , Ad des variables aléatoires indépendantes. On suppose que, pour tout
k ∈ N∗,Ak suit la loi géométrique de paramètre 1/(k+1). On noteP =

∑a
k=0 AkX

k et R la variable aléatoire la loi telle que, conditionnellement à un tirage donné de (A0, . . . , An), toute racine z de P de multiplicité mz soit atteinte avec probabilité mz/d.
Calculer E(R).
Exercice 249 [ENS PC 2025 # 250] Soit a > 0. Soit f une fonction de classe C2 sur R telle que f ′′ ≥ 2a. Soit X une variable aléatoire
à valeurs réelles et admettant une variance. Montrer que E(f(X))f(E(X)) ≥ aV(X).
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Exercice 250 [ENS PC 2025 # 251] Un mobile se déplace sur l’axe des réels. Soit ε > 0. Son mouvement est décrit par une fonction
x dérivable sur tous les intervalles [n, n+1] et y vérifiant x′(t) = εx(t), admettant en chaque n ∈ N∗ une limite finie à gauche x(n−)
et une limite finie à droite x(n+), et telle que x(0) = 0.
Soit T ∈ N. À chaque instant t = n ∈ [0, T ], on lance une pièce équilibrée. Si on fait Pile x(n+) = x(n−) + n, si on fait Face
x(n+) = x(n−) − n, avec la convention x(0−) = 0. Montrer qu’il existe ε > 0 assez grand tel que, pour tout T ∈ N, x reste de signe
constant sur [0, T].
Exercice 251 [ENS PC 2025 # 252] Soient n ∈ N∗ et X ∼ U([[1, n]]2). On note X = (X1, X2). On pose Y0 = 0 et, pour k ∈
[0, n− 1], Yk+1(ω) = Yk(ω) + 2 si X1(ω) ≤ k et X2(ω) ≥ YX1(ω), et Yk+1(ω) = 0 Yk(ω) + 1 sinon.

1. Justifier que Yk est bien définie pour 0 ≤ k ≤ n.
2. Déterminer la limite de

(
E(Yn)
n

)
.

Exercice 252 [ENS PC 2025 # 253] Soient n et d dans N∗. On note [−n, n]d l’ensemble des vecteurs de Rd dont les composantes sont
des entiers compris entre -n et n. Soit X une variable aléatoire suivant la loi uniforme sur [−n, n]d.

1. Déterminer E(∥X∥1) et en trouver un équivalent lorsque n → +∞.
2. Déterminer E(∥X∥∞) et en trouver un équivalent lorsque n → +∞.

Exercice 253 [ENS PC 2025 # 254] Soient d ∈ N∗ et (X1, . . . , Xn) une suite de variables aléatoires i.i.d. à valeurs dans [1,d].
On note pk = P(X1 = k). Soit Nk la variable aléatoire égale au nombre de fois que la valeur k est obtenue. Donner la matrice
(Cov(Ni, Nj))1≤i,j≤n et préciser son rang.
Exercice 254 [ENS PC 2025 # 255] 1. Soit X une variable aléatoire suivant la loi uniforme sur {−1, 1}.
Montrer que, pour tout γ ∈ R, E

(
eγX

)
≤ eγ

2/2.
Soit (Xn)n≥1 une suite i.i.d. de variables aléatoires suivant la loi uniforme sur {−1, 1}. Soient (cn)n≥1 ∈ RN∗ . Pour N ∈ N∗, on pose
YN = c1X1 + · · · + cNXN .

1. Montrer que, pour tout t > 0, E(etYN ) ≤ et
2(c2

1+···+c2
N )/2.

c) Soit λ > 0. Montrer que P(|YN | > λ) ≤ 2e
− λ2

2(c2
1+···+c2

N
) .

d) Montrer que N10 P(|X1 + · · · +XN | > N3/4) −→
N→+∞

0.

IV) X MP xens

1) Algèbre

Exercice 255 [X MP 2025 # 256] Pour quels entiers n ∈ N∗ le nombre réel cos
( 2π
n

)
est-il rationnel ?

Exercice 256 [X MP 2025 # 257] On étudie l’équation x2 + y2 = N(1 + xy) d’inconnue (x, y) ∈ Z2, où N ∈ N.
1. Traiter les cas x = y, N = 0, N = 1.- b) On suppose N ≥ 2 et on se donne (x,y) solution avec x ̸= y. Montrer qu’on peut se

ramener à x > y ≥ 0. Montrer qu’il existe z ∈ Z tel que (y, z) soit solution et tel que y > z.
En déduire que N est un carré parfait.

1. On considère maintenant l’équation x2 + y2 = −N(1 + xy) dans Z2. En adaptant la méthode précédente, trouver tous les
couples solutions.

Exercice 257 [X MP 2025 # 258] Soient a ∈ N avec a ≥ 2 et P = X2 + X + a. On suppose que, pour tout n ∈ [0, a − 1], P(n) est
premier. Soit k ∈ [1, a− 2].

1. Montrer que si k+1 est un carré alors P(a+k) n’est pas premier.
2. Montrer que si P(a+k) n’est pas premier alors k+1 est un carré.

Exercice 258 [X MP 2025 # 259] 1. Soit f : R → R de classe C1 et 1-périodique. On suppose qu’il existe a ∈ R \ Q et y ∈ R tels
que : ∀x ∈ R,∀n ∈ N,

∑n
k=0 f(x+ ka) ≤

∑n
k=0 f(y + ka). Montrer que f est constante.

2. Soient p un nombre premier et n ∈ N∗. Déterminer la valuation p-adique de n !.

3. Soient m, k ∈ N∗. Montrer que
∏m

j=1 (2jk
jk )∏m

j=1 (2j
j ) ∈ N.

Exercice 259 [X MP 2025 # 260] Soit n ∈ N∗. Pour une partie I de [1, n], on appelle composante de I tout sous-ensemble maximal
de I formé d’entiers consécutifs. On note c(I) le nombre de composantes de I .

1. Une permutation σ ∈ Sn est dite i-adaptée lorsque, pour tout i ∈ I , les entiers σ(i) et σ(i+ 1) sont consécutifs. Dénombrer les
permutations I-adaptées en fonction de |I| et c(I).

2. Soient c ∈ N∗ et p ∈ [1, n]. Dénombrer les parties I de [1, n] telles que |I| = p et c(I) = c.
Exercice 260 [X MP 2025 # 261] Soient (an)n≥0 et (bn)n≥0 deux suites d’entiers relatifs. On dit que les deux séries entières∑+∞
n=0

an

n! z
n et

∑+∞
n=0

bn

n! z
n sont congrues modulo m si an ≡ bn mod m pour tout n ≥ 0. On note alors

∑+∞
n=0

an

n! z
n ≡

∑+∞
n=0

bn

n! z
n

mod m.
1. Soit p un nombre premier. Montrer que (ez − 1)p−1 ≡

∑+∞
n=0 − zn(p−1)

(n(p−1))! mod p.
2. Soit m > 4 un entier non premier.

Montrer que m divise (m-1) !, et que (ez − 1)m−1 ≡ 0 mod m.
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Exercice 261 [X MP 2025 # 262] Soit G un groupe. Un sous-groupe H de G est dit maximal lorsque H ̸= G et aucun sous-groupe
de G n’est compris strictement entre H et G. Soit n ≥ 2.

1. Montrer que {σ ∈ Sn, ε(σ) = 1} est un sous-groupe maximal de Sn.
2. Soit k ∈ [1, n]. Montrer que {σ ∈ Sn, σ(k) = k} est un sous-groupe maximal de Sn.
3. On suppose que G est fini, et on se donne un sous-groupe H de G tel que |G|

|H| soit un nombre premier. Montrer que H est
maximal.

Exercice 262 [X MP 2025 # 263] Soit φ un morphisme de groupes de ZN dans Z nul sur l’ensemble Z(N) des suites presque nulles.
Montrer que φ est nul.
Exercice 263 [X MP 2025 # 264] On pose

α = 12 + 5i
13

.

1. Montrer que α n’est pas une racine de l’unité.
2. Le nombre α est-il racine d’un polynôme unitaire à coefficients dans Q? dans Z?
3. Soit α ∈ C tel que α soit racine d’un polynôme unitaire à coefficients entiers dont toutes les racines complexes sont de module

1. Montrer que α est racine de l’unité.
Exercice 264 [X MP 2025 # 265] 1. Soient P,Q ∈ C[X] premiers entre eux, z ∈ C une racine de A = P 2 +Q2. Est-ce que z est

racine de B = P ′2 +Q′2 ? Que dire si z est racine multiple de A?
a) Montrer que, si P ∈ R[X], P s’écrit U2 + V 2 avec U et V dans R[X] si et seulement si

∀x ∈ R, P (x) ≥ 0.
1. Montrer que tout P ∈ C[X] s’écrit U2 + V 2 avec U et V dans C[X] si et seulement s c) Montrer que tout P ∈ C[X] s’écrit
U2 + V 2 avec U et V dans C[X].

2. Est-ce que tout polynôme P ∈ C[X] peut s’écrire U3 + V 3 avec U et V dans C[X]? Ind. Montrera que le plus petit facteur
premier p de P(a+k) est supérieur ou égal à a, puis que P(a+k-p)=p.

Exercice 265 [X MP 2025 # 266] On admet le résultat suivant. Soient c ∈ C, U un voisinage de c dans C, f : U → C développable
en série entière au voisinage de c et telle que f(z) = O((z − c)k). Alors il existe r > 0 et z1, . . . , z2k ∈ U distincts tels que :
∀i ∈ [1, 2k], f(zi) ∈ R et |c− zi| = r.

1. Soient A,B ∈ R[X] \ {0}. On suppose que les polynômes non nuls de Vect(A,B) sont scindés dans R[X]. Montrer qu’entre
deux racines de A (au sens large) se trouve au moins une racine de B.

2. Démontrer le résultat admis.
Exercice 266 [X MP 2025 # 267] Soient F ∈ R(X), A = {x ∈ Q, F (x) ∈ Q} et A′ = {x ∈ Z, F (x) ∈ Z}.

1. On suppose A infini. Montrer que F ∈ Q(X).
2. On suppose A’ infini. Que peut-on dire de F?

Exercice 267 [X MP 2025 # 268] Soit f =
∑n
k=0 ckX

k un polynôme de degré n à coefficients entiers et dont toutes les racines
complexes appartiennent à Q∗. On pose H = max(|c0|, . . . , |cn|).

1. Montrer que pour le complexe i on a |f(i)|2 ≤ H2
(
n2

2 + n+ 1
)

.
2. Montrer que |f(i)|< sup> 2< /sup> 2< sup> n< /sup> .

a) En déduire que si n 10 alors n 5 log< sub> 2< /sub> (H).
Exercice 268 [X MP 2025 # 269] Soient A,B ∈ Mn(R) de rang 1 telles que Tr(A) = Tr(B). Montrer que A et B sont semblables.
Exercice 269 [X MP 2025 # 270] Soient A et B appartenant à Mn(R), on note k = dim Ker(AB). Quelles sont les valeurs possibles
pour la dimension de Ker(BA)?
Exercice 270 [X MP 2025 # 271] Soient n ∈ N∗ et Cn = {−1, 1}n. On pose H = {f ∈ L(Rn), f(Cn) = Cn}.Montrer que H est un
groupe pour la loi de composition et déterminer son cardinal.
Exercice 271 [X MP 2025 # 272] Soient X,Y ∈ M2(K) où K est un sous-corps de C. Montrer que la matrice A = XY + Y X −
tr(X)Y − tr(Y )X + (tr(X) tr(Y ) − tr(XY ))I2 est nulle.
Exercice 272 [X MP 2025 # 273] Soient n ∈ N∗, P et Q dans C[X] tels que P soit scindé à racines simples, degP = n et degQ ≤ n.
On admet qu’il existe une matrice B = (bi,j)0≤i,j≤n−1 telle que, pour tout (x, y) ∈ C2 avec x ̸= y, on ait

P (x)Q(y) − P (y)Q(x)
x− y

=
∑

0≤i,j≤n−1
bi,jx

iyj

.
Montrer que dim Ker B = |{z ∈ C, P (z) = Q(z) = 0}|.
Exercice 273 [X MP 2025 # 274] Soit E un K-espace vectoriel de dimension n ≥ 2. Soit u et v dans L(E), c = u ◦ v − v ◦ u, on
suppose rg c = 1.

1. Montrer qu’il existe une base de E dans laquelle la matrice de c est égale à En−1,n.
2. Montrer que pour tout k ∈ N, uk(Im c) ⊂ Ker c.
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3. Montrer que χu n’est pas irréductible dans K[X].
4. Soit u ∈ L(E), F un sous-espace vectoriel de E non trivial tel que u(F ) ⊂ F . Montrer que χu n’est pas irréductible dans K[X].

Étudier la réciproque.
Exercice 274 [X MP 2025 # 275] On fixe un entier n ≥ 1 et, pour k ∈ [1, n], on note Rk l’ensemble des matrices de rang k de Mn(R).

1. Montrer que R1 = {XY T , (X,Y ) ∈ (Rn \ {0})2}.
2. Montrer que R2 est l’ensemble des matrices de la forme X1Y

T
1 + X2Y

T
2 avec (X1, X2) et (Y1, Y2) couples libres de vecteurs

de Rn.
3. Soit M ∈ R1. Décrire l’ensemble des couples (X,Y ) ∈ (Rn)2 tels que M = XY T .
4. Soit φ ∈ L(Mn(R)) conservant le rang.

Soient X1, X2, Y0 dans Rn \ {0} et P1, P2, Q1, Q2 dans Rn tels que φ(X1Y
T

0 ) = P1Q
T
1 et φ(X2Y

T
0 ) = P2Q

T
2 , avec (P1, P2) libre.

Montrer qu’il existe A ∈ GLn(R) et Q0 ∈ Rn \ {0} tels que ∀X ∈ Rn, φ
(
XY T0

)
= AXQT0 .

Exercice 275 [X MP 2025 # 276] Soit n ∈ N avec n ≥ 2. Pour k ∈ [0, n], on pose N(k) = {N = (ni,j)1≤i,j≤n ∈ Mn(C) : ∀i, j ∈
[1, n], i > j − k =⇒ Ni,j = 0} et T (k) = {In +N ;N ∈ N(k)}.

1. Montrer que, pour tout k ∈ [0, n], T(k) est un sous groupe de GLn(C).
2. Construire pour, k ∈ [0, n− 1], un morphisme de groupes φk : T (k) → G(k) où G(k)est un groupe abélien bien choisi tel que
Ker(φ(k)) = T (k + 1).

3. Pour un groupe G, on note D(G) le sous-groupe engendré par {ghg−1h−1; g, h ∈ G}. Montrer que T(0) est résoluble i.e. qu’il
existe q ∈ N tel que Dq(T (0)) = {In}.

Exercice 276 [X MP 2025 # 277] 1. Soit D ∈ Mn(C) une matrice diagonale à coefficients diagonaux distincts. Montrer que l’en-
semble des X ∈ Mn(C) telles que X2 = D est fini non vide, déterminer son cardinal.

2. Soit N ∈ Mn(C) nilpotente. Montrer qu’il existe X ∈ Mn(C) telle que X2 = In +N .
Exercice 277 [X MP 2025 # 278] Pour A ∈ Mn(C) on pose R(A) = {M ∈ Mn(C),M2 = A}.

1. Déterminer le cardinal maximal d’une famille de matrices de R(In) non semblables deux à deux

à deux.
1. On suppose A diagonalisable avec n valeurs propres distinctes. Déterminer le cardinal de
2. Est-il vrai que, si A est diagonalisable, toutes les matrices de R(A) le sont?
3. Toute matrice A de Mn(C) admet-elle une racine carrée?
4. On pose Un = {In +N,N nilpotente}. Montrer que toute matrice A de Un admet une unique racine carrée dans Un.

Exercice 278 [X MP 2025 # 279] Pour n ∈ N∗, on pose
R(A).

IA = sup{r ∈ N; ∃A1, . . . , Ar ∈ Mn(C), ∀i, A2
i = In et ∀i ̸= j, AiAj = −AjAi}

.

1. Si n est impair, montrer que IA(n) = 1.
2. Soient s, t ∈ N. Montrer que IA(2s(2t+ 1)) = 2s+ 1.

Exercice 279 [X MP 2025 # 280] 1. Soit A ∈ Mn(R) une matrice diagonalisable. Donner une condition nécessaire et suffisante
sur A pour qu’il existe x ∈ Rn tel que (x,Ax, . . . , An−1x) soit une base de Rn.

2. Soient

b1, b2, b3 ∈ R

et M =

b1 0 0
1 b2 0
0 1 b3

.

• À quelle condition la matrice M est-elle diagonalisable?
• À quelle condition existe-t-il x ∈ R3 tel que (x,Mx,M2x) soit une base de R3 ?
• On suppose que b1b2b3 = 1. Montrer qu’il existe un unique (a1, a2) ∈ R2 tel que M soit semblable à la matrice

M ′ =

a1 a2 1
1 0 0
0 1 0

 .

Exercice 280 [X MP 2025 # 281] $ $ Soient V un C -espace vectoriel de dimension finie et G un sous-groupe de GL(V ).
1. On suppose que G = GL(V). Que vaut Vect(G)? La réciproque est-elle vraie?

On suppose maintenant que, pour tout g ∈ G, g id est nilpotent.
1. Quels sont les éléments diagonalisables de G?

29



2. On suppose que G est fini et que V ect(G) = L(V ). Quelle est la dimension de V?
3. Si G n’est plus fini mais que V ect(G) = L(V ), quelle est la dimension de V?

Exercice 281 [X MP 2025 # 282] 1. Soit
∑
anz

n une série entière de rayon de convergenceR > 0. SoitM ∈ Md(C) une matrice
complexe dont les valeurs propres sont de module strictement inférieur à R. Montrer que

∑
anM

n converge.
2. Existe-t-il une série entière

∑
anz

n de rayon de convergence R> 0 telle que, pour toute matriceM à spectre inclus dansD(0, R)
et admettant une valeur propre de module R, la série

∑
anM

n diverge?
3. Existe-t-il une série entière

∑
anz

n de rayon de convergence R> 0 telle que, pour toute matriceM à spectre inclus dansD(0, R)
admettant une valeur propre de moduleR, la série

∑
anM

n converge?d) Soit f : z 7→
∑+∞
n=0 anz

n la somme d’une série entière
de rayon de convergence R > 0.

On pose

f (k) : z 7→
+∞∑
n=k

n(n− 1) . . . (n− k + 1)anzn.

Soit M ∈ Md(C) de polynôme caractéristique χM =
∏r
i=1(X − λi)αi où les λi sont distincts

et de module < R et les αi dans N∗.

• Montrer l’existence de P ∈ C[X] tel que

∀i ∈ [1, r],∀k ∈ [0, αi1], f (k)(λi) = P (k)(λi).
• On suppose que M est diagonalisable. Montrer que f(M) = P(M).
• Est-ce toujours le cas si on ne suppose plus M diagonalisable?

Exercice 282 [X MP 2025 # 283] SoientE = C0([−1, 1],C), g une surjection continue croissante de [-1,1] sur luimême. On considère
F un sous-espace vectoriel de E de dimension finie stable par f 7→ f ◦ g. On note φ l’endomorphisme de F défini par φ : f 7→ f ◦ g.

1. Montrer que 1 est la seule valeur propre de φ.
2. En déduire que φ = idF .
3. Que peut-on dire des valeurs propres possibles de φ si q n’est plus supposée surjective?

Exercice 283 [X MP 2025 # 284] Soit p un nombre premier, A et B appartenant à Mn(Z). Démontrer que tr((A+B)p) ≡ tr(Ap) +
tr(Bp) (mod p).
Exercice 284 [X MP 2025 # 285] Soient n ∈ N∗ et H un sous-espace vectoriel de Mn(C) stable par produit matriciel. On note
D = {δ ∈ L(H) : ∀(A,B) ∈ H2, δ(AB) = δ(A)B +Aδ(B)}.

1. Soit C ∈ H . Montrer que δ : A 7→ CAAC est dans D, et exprimer simplement eδ .
2. Soit δ ∈ D. Montrer que ∀A,B ∈ H , eδ(AB) = eδ(A)eδ(B).
3. Retrouver le résultat de la question précédente en considérant l’application f : t ∈ R 7→ e−tδ (etδ(A)etδ(B)

)
et en calculant f’.

4. Soit δ ∈ D. Pour λ ∈ C, on note Hλ le sous-espace caractéristique de δ associé à λ (éventuellement {0}). Soient λ, µ ∈ C,
A ∈ Hλ et B ∈ Hµ. Montrer que AB ∈ Hλ+µ.

Exercice 285 [X MP 2025 # 286] 1. Soient k,m, n ∈ N∗. On munit Rm de sa structure euclidienne canonique. Soit (v1, . . . , vn)
une famille de vecteurs unitaires de Rm tels que ⟨vi, vj⟩ ≤ −1/k pour tous i,jdistincts. Montrer que n ≤ k + 1.

2. Montrer qu’il existe une famille (v1, . . . , vk+1) de vecteurs unitaires de Rk tels que ⟨vi, vj⟩ = −1/k pour tous i, j distincts.
Exercice 286 [X MP 2025 # 287] Soit E un R -espace vectoriel de dimension finie.

1. Soit f ∈ L(E). Montrer que Tr(f id) = 0 et rg(f id) = 1 si et seulement s’il existe a ∈ E et ℓ ∈ E∗ tel que ℓ(a) = 0 et f = id+ ℓa.
On dit alors que f est une transvection.

Soit φ : E × E → R une forme bilinéaire telle que : ∀x ∈ E \ {0}, ∃y ∈ E,φ(x, y) ̸= 0 et ∀(x, y) ∈ E2, φ(y, x) = −φ(x, y).
Soit G = {u ∈ GL(E) : ∀x, y ∈ E,φ(u(x), u(y)) = φ(x, y)}.

1. Montrer que G est un sous-groupe de GL(E).- c) Montrer que G contient les applications de la forme id +λφ(a, ·) a avec λ ∈ R
et a ∈ E.

2. Montrer que G est engendré par les transvections de la forme indiquée en c).
Exercice 287 [X MP 2025 # 288] Soient n ∈ N et O ∈ On(R). Calculer αO = | det(ψO)| où ψO : A ∈ Sn(R) 7→ OTAO.
Exercice 288 [X MP 2025 # 289] Pour M ∈ GLn(R) tel que −1 /∈ Sp(M), on pose T (M) = (InM)(In + M)−1. On note An(R)
l’ensemble des matrices antisymétriques et Bn(R) l’ensemble des matrices M ∈ On(R) telles que −1 /∈ Sp(M).

1. Montrer que T est bien définie sur An(R) et Bn(R).
2. Si A ∈ An(R), montrer que T (A) ∈ Bn(R).
3. Si B ∈ Bn(R), montrer que T (B) ∈ An(R).
4. Calculer T ◦ T (A) si A ∈ An(R).

5. Soient x ∈ R et A =
(

0 x
−x 0

)
. Calculer T(A).

6. Déduire des questions précédentes que toute matrice de A2n(R) est orthosemblable à une matrice diagonale par blocs avec des

blocs diagonaux de la forme
(

0 x
−x 0

)
.

30



Exercice 289 [X MP 2025 # 290] On munit Rn de sa structure euclidienne canonique.
1. Soit M ∈ S++

n (R). Montrer que l’application (x, y) ∈ (Rn)2 7→ ⟨M−1x, y⟩ définit un
produit scalaire sur Rn.

1. Soient M ∈ S++
n (R) et N ∈ An(R). Montrer que MN est diagonalisable dans Mn(C) à spectre inclus dans iR.

2. Soit A ∈ Mn(R) diagonalisable dans Mn(C) à spectre inclus dans iR. Existe-t-il M ∈
S++
n (R) et N ∈ An(R) telles que A = MN?

Exercice 290 [X MP 2025 # 291] Soit n ∈ N∗. On pose J =
(

0 −In
In 0

)
.

1. Soit M ∈ M2n(R) telle que M2 = −I2n. Montrer l’équivalence : MTJ ∈ S2n(R) ⇔ MTJM = J .
2. On note C = {M ∈ M2n(R),M2 = −I2n et MTJ ∈ S++

2n (R)}. Montrer que, pour tout M ∈ C , M + J ∈ GL2n(R).
3. PourM ∈ C , on note SM = (M+J)−1(M−J). Montrer que SM ∈ S2n(R). Montrer que ∀X ∈ R2n\{0}, ||SMX||2 < ||X||2.
4. Montrer que, pour pour tout M ∈ C , SMJ + JSM = 0.

Exercice 291 [X MP 2025 # 292] Les espaces Rp sont munis de leurs normes euclidiennes canoniques. Soient d et D des entiers
≥ 1. Étant donné p0, . . . , pn ∈ Rd, on dit que (p0, . . . , pn) se plonge isométriquement dans QD s’il existe q0, . . . , qn ∈ QD vérifiant
∥pi − pj∥ = ∥qi − qj∥ pour tous i, j ∈ [0, n].

1. On suppose que (p0, . . . , pn) se plonge isométriquement dans QD . Soit p une combinaison linéaire à coefficients rationnels de
p0, . . . , pn. Montrer que (p, p0, . . . , pn) se plonge isométriquement dans QD .

2. Soient p0, . . . , pn ∈ Rd tels que ||pipj ||2 ∈ Q pour tous i, j ∈ [0, n]. Montrer que (p0, . . . , pn) se plonge isométriquement dans
Q4d. On admettra que tout entier naturel est somme de quatre carrés d’entiers.

Exercice 292 [X MP 2025 # 293] 1. SoitA ∈ Sn(R). Montrer queA est définie positive si et seulement si, pour tout k ∈ [1, n], det((ai,j)1≤i,j≤k) >
0.

2. On pose Ak = (t|i−j|)1≤i,j≤k où t ∈ R+∗. Calculer detAk .

3. On pose A =
(

1
1+|i−j|

)
1≤i,j≤n

. Démontrer que A est symétrique définie positive.

Exercice 293 [X MP 2025 # 294] On munit Rn de sa structure euclidienne canonique.
1. Soient A ∈ Mn(R) et F un sous-espace vectoriel de Rn. Soit (fi)1≤i≤k une base or-

thonormée de F . On pose : τF (A) =
∑k
i=1⟨fi, Afi⟩. Montrer que τF (A) ne dépend pas de la

base orthonormée choisie.
Dans la suite de l’exercice, on suppose A ∈ Sn(R) et on note λ1 ≥ · · · ≥ λn les valeurs propres de A, comptées avec multiplicité.

1. Déterminer le meilleur encadrement possible de τF (A) en fonction de F et de Sp(A).
2. On pose, pour t ∈ R, A(t) = A + tE1,1. Pour t ∈ R, on note λ1(t) ≥ · · · ≥ λn(t) les valeurs propres de A(t). Montrer que :

∀t ≥ 0, λn(t) ≥ λn et λ1 ≥ λ2(t).
3. Déterminer un équivalent simple de λ1(t) quand t tend vers +∞.

2) Analyse

Exercice 294 [X MP 2025 # 295] 1. Soient N1 et N2 deux normes sur un R -espace vectoriel E. Montrer que si N1 et N2 ont la
même sphère unité alors N1 = N2.

2. On poseE = C0([0, 1],R). Soit (f, g) ∈ E2. Donner une condition nécessaire et suffisante pour que (x, y) ∈ R2 7→ ∥xf+yg∥∞
soit une norme sur R2.

3. Soit (E, ⟨, ⟩) un espace euclidien, dont on note ∥∥ la norme. Soit p une autre norme sur E. On note S et Sp les sphères unité
respectives pour ∥∥ et p. Montrer que d : x ∈ S 7→ sup |⟨x, y⟩| est à valeurs dans R+∗, que k = sup ∥y∥ est un réel strictement
positif, et enfin y ∈ Sp que d est k-lipschitzienne pour la norme ∥ · ∥.

4. On note B = {f ∈ E, p(f) ≤ 1} et, pour x ∈ S,Dx = {z ∈ E; |⟨x, z⟩| ≤ d(x)}. Montrer que B =
⋂
x∈S Dx.

Exercice 295 [X MP 2025 # 296] Soit E un R -espace vectoriel de dimension finie. Montrer que tout convexe non borné contient au
moins une demi-droite. On pourra commencer par le cas d’un convexe fermé.
Exercice 296 [X MP 2025 # 297] Pour k ∈ N∗, soit Rk la borne inférieure de l’ensemble Ek des r ∈ R+∗ tels qu’il existe une boule
fermée de R2 euclidien de rayon r contenant au moins k points de Z2.

1. Calculer Rk pour k = 2, 3, 4.
2. Si k ∈ N∗, montrer que Rk est le minimum de Ek .
3. Montrer que, pour k ∈ N∗, 4R2

k est entier.
4. Donner un équivalent de Rk lorsque k tend vers +∞.

Exercice 297 [X MP 2025 # 298] Soit E l’espace des fonctions continues de [0,1] dans R. On munit E de la norme ∥∥∞. Déterminer
les formes linéaires continues φ sur E telles que, pour tout (f, g) ∈ E2 tel que φ(fg) = 0, on ait φ(f) = 0 ou φ(g) = 0.
Exercice 298 [X MP 2025 # 299] Soit ρ : [0, 1] 7→ Mn(C) continue telle que, pour tout t, ρ(t)2 = ρ(t).

1. Montrer que t 7→ rg ρ(t) est constante.
2. Montrer l’existence de u ∈ C0([0, 1],GLn(C)) telle que ∀t, ρ(t) = u(t)ρ(0)u−1(t).
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3. On suppose de plus que ρ(1) = ρ(0). Montrer que l’on peut choisir u de sorte que l’on ait aussi u(0) = u(1).
Exercice 299 [X MP 2025 # 300] Soit n ≥ 2. On note Bn l’ensemble des matrices bistochastiques de Mn(R) c’est-à-dire
$les M \,=\, (mi,j)1≤ i,j≤ n \,∈\, Mn(R) \,\, telles que : ∀ i \,∈\, [[{]]1,n ,\,

∑
i=1

n mi,j \,=\, 1,\, ∀ j \,∈\, 1,n },$∑n
i=1 mi,j = 1 et ∀(i, j) ∈ [[1, n]]2,mi,j ≥ 0. Si σ ∈ Sn, on note Pσ = (δi,σ(j))1≤i,j≤n la

matrice de permutation associée à σ ; la matrice Pσ est dans Bn.

1. Montrer que Bn est une partie convexe de Mn(R). Un élément M de Bn est dit extrémal lorsqu’il ne peut pas s’écrire M=(1-
t)A+tB avec

A, B éléments distincts dans Bn et t ∈]0, 1[.
1. Montrer que les Pσ sont des points extrémaux de Bn.
2. On fixe un élément M de Bn.

Pour une partie I de [1, n], on note F(I) = {i ∈ [1, n] : ∃j ∈ I,mi,j > 0}.
a) Montrer que |I| ≤ |F(I)|.
b) Montrer qu’il existe une injection f : [1, n] → [1, n] telle que, pour tout i ∈ [1, n], mi,f(i) > 0.
c) En déduire l’ensemble des points extrémaux de Bn.

3. Montrer que Bn est l’enveloppe convexe des Pσ pour σ ∈ Sn.
Exercice 300 [X MP 2025 # 301] On munit E = C0([−1, 1],R) de la norme ∥ · ∥∞.

1. Soit n ∈ N. Montrer qu’il existe un unique Tn ∈ R[X] de degré n tel que ∀θ ∈ R, Tn(cos θ) = cos(nθ).
Soit (an)n≥0 ∈ (R+)N telle que

∑
an converge.

1. Soit f : x 7→
∑+∞
n=0 anT3n(x).

• Montrer que f est bien définie et continue sur [-1, 1].
• Montrer que d(f,R3n [X]) = infP∈R3n [X] ∥fP∥∞ =

∑+∞
k=n+1 ak .

Ind. On pourra considérer les points xk = cos(π(1 + k3−n−1)) pour k ∈ [0, 3n+1].
Exercice 301 [X MP 2025 # 302] Soient K une fonction continue de [0, 1]2 dans R, E l’espace des fonctions continues de [0,1] dans
R.- a) Si f ∈ E, soit TK(f) la fonction de [0,1] dans R telle que ∀x ∈ [0, 1], TK(f)(x) =

∫∞
−∞ K(x, y)f(y)dy. Montrer que TK est un

endomorphisme continu de l’espace normé (E, ∥ · ∥∞).
1. On suppose queK est à valeurs dans R+∗, que λ ∈ R+∗ et que l’espace propreEλ(TK) contient une fonction non identiquement

nulle à valeurs dans R+. Montrer que Eλ(TK) est de dimension 1.
Exercice 302 [X MP 2025 # 303] Soit (un)n≥0 une suite réelle telle que un+1 − un

2 → 0. Montrer que un → 0.
Exercice 303 [XMP 2025 # 304] Soient a < b réels et (un)n∈N une suite réelle telle que, pour tout t ∈ [a, b], il existe une suite (kn)n∈N

d’entiers tels que tun − kn −→ 0 quand n → +∞. Montrer que la suite (un) converge vers 0.
Exercice 304 [X MP 2025 # 305] Soient α ∈ R+∗ et β = 1/α. Soit (zn)n≥0 la suite définie par z0 = 1 et, pour tout n ∈ N, zn+1 =
αn+1
α(n+1)zn.

1. Donner un équivalent de zn et sa valeur exacte lorsque β ∈ N∗.
2. Soit (xn)n≥0 une suite réelle.

• On pose, pour n ∈ N, µn = 1
n+1

∑n
k=0 xk et yn = αxn + (1 −α)µn. On suppose que yn → x ∈ R. Montrer que xn → x.

Exercice 305 [X MP 2025 # 306] Pour n ∈ N, on pose un = |{(p, q) ∈ N2, p2 + q2 = n}|.
1. Déterminer la limite de la suite de terme général 1

n

∑
uk .

2. Étudier la nature de la suite (un).
3. Montrer que (un) n’est pas bornée.

Exercice 306 [X MP 2025 # 307] Soit (an)n∈N une suite réelle vérifiant, pour tout n ∈ N, an+1 = an(1 − an).
1. On suppose que a0 = 1/2. Montrer que 1

an
n ∼ lnn quand n → +∞.

2. On suppose a0 > 1. Déterminer la limite de (an) puis un équivalent de an.
3. Donner un développement asymptotique à deux termes de an.

Exercice 307 [X MP 2025 # 308] 1. Pour n ≥ 3, justifier l’existence de xn, yn ∈ R avec 0 < xn < yn solutions de x−n ln x = 0.
2. Donner un développement asymptotique à deux termes de xn et yn.

Exercice 308 [X MP 2025 # 309] Construire une suite strictement croissante (pn)n≥2 d’entiers avec p2 = 2 telle qu’il
existe C> 0 vérifiant, pour tout n ≥ 2,

∑pn+1−1
k=n

1
ln k ≥ C , et telle que la série de terme général 2−(pn+1−pn) diverge.

Exercice 309 [X MP 2025 # 310] On pose α = 4
∑499999
k=0

(−1)k

2k+1 . Montrer qu’exactement une des 16 premières décimales de α diffère
de la décimale de π correspondante.
Exercice 310 [X MP 2025 # 311] Soient p> 0 et q> 0 tels que 1

p + 1
q = 1 et n ∈ N∗. Montrer que, pour tout

(a1, . . . , an, b1, . . . , bn) ∈ (R+)2n,

n∑
i=1

aibi ≤

(
n∑
i=1

api

) 1
p
(

n∑
i=1

bqi

) 1
q

.
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Exercice 311 [X MP 2025 # 312] Soit f : R+∗ → R+∗ de classe C∞ telle que f(x) → 0 quand x → 0+ et quand x → +∞. On
suppose que, pour tout n ∈ N∗, il existe un unique xn ∈ R+∗ tel que f (n)(xn) = 0.

1. Montrer que la suite (xn)n≥1 est croissante.
2. Soit n ∈ N∗. Montrer que xnf (n)(x) −→

x→0+
0.

3. On pose g(x) = f(x)
x pour tout x > 0. Montrer que, pour tout n ≥ 0, il existe an,0, . . . , an,n ∈ Z tels que g(n)(x) =∑n

k=0 an,k
f(n−k)(x)
xk+1 pour tout x> 0.

4. Montrer que, pour tout n ≥ 0, (−1)ng(n)(x) > 0 pour tout x > 0.
Exercice 312 [X MP 2025 # 313] Soit f ∈ C2(R,R). On suppose que : f2 ≤ 1 et (f ′)2 + (f ′′)2 ≤ 1. Le but est de montrer par
l’absurde que g = f2 + (f ′)2 ≤ 1. On suppose donc qu’il existe t ∈ R tel que : f(t)2 + f ′(t)2 > 1.
On pose : E = {x ∈ R; ∀y ∈ [min(t, x),max(t, x)], f(y)2 + f ′(y)2 > 1}.

1. Montrer que E est un intervalle ouvert.
2. Montrer que f’ ne s’annule pas sur E.
3. Conclure.

Exercice 313 [X MP 2025 # 314] Si (φk)1≤k≤4 est une famille de fonctions de ]-1,1[ dans R, on dit que (φk)1≤k≤4 vérifie (C) si
φ1 < φ2 < φ3 < φ4 sur ]0, 1[ et φ2 < φ4 < φ1 < φ3 sur ]-1, 0[.

1. Montrer qu’il n’existe pas de famille (φk)1≤k≤4 de fonctions polynomiales vérifiant (C). Ind. On pourra étudier la valuation de
φi − φj pour i ̸= j.

2. Existe-t-il une famille (φk)1≤k≤4 de fonctions de classe C∞ vérifiant (C)?
Exercice 314 [X MP 2025 # 315] Soit s : R → R telle que (∗) : ∀x ∈ R, s(x+ 1) = s(x) + 1

1+x2 et s(x) −−−−−→
x→−∞

0.

1. Montrer que, pour tout x ∈ R, s(x) ≥ 0.
2. A-t-on existence et unicité de s vérifiant () ? Déterminer les s solutions.
3. Que se passe-t-il si on remplace la condition s(x) −−−−−→

x→−∞
0 par la condition s(x) −−−−−→

x→+∞
0?

Exercice 315 [X MP 2025 # 316] 1. Soit f ∈ C0(R,R). Montrer que f est affine si et seulement si, pour tout réelx, on a f(x+h)+f(x−h)−2f(x)
h2 −→

h→0+

0.b) Montrer que le résultat de la question précédente peut tomber en défaut sans hypothèse de continuité.
Exercice 316 [X MP 2025 # 317] Soit F : R → R+∗. On suppose qu’il existe α, η > 0 tels que :

∀(x, y) ∈ R2, αF (x)F (y) ≤ F (x+ y) ≤ ηF (x)F (y)

.

1. On suppose que F est de classe C1 et que F ′

F est bornée. Montrer qu’il existe γ ∈ R et H : R → R+∗ bornée tel que :
∀x ∈ R, F (x) = eγxH(x).

2. On revient au cas général. Montrer qu’il existe une unique fonction G : R → R+∗ telle que F
G soit bornée et ∀(x, y) ∈

R2, G(x+ y) = G(x)G(y).
Exercice 317 [X MP 2025 # 318] Soient M,m ∈ R avec 0 < m < M , f ∈ C0(R, [m,M ]), q ∈ R \ {−1, 0, 1}. Soit () l’équation
fonctionnelle ∀t ∈ R, g(t) = 1 + g(qt)

f(t) .
1. On suppose m > 2 ou M < 1/2. Montrer qu’il existe une unique solution bornée de ().
2. Montrer que les solutions bornées de () ne s’annulent pas.

Exercice 318 [X MP 2025 # 319] Soit E = R[X]. Soit φ ∈ L(E).
1. Montrer qu’il existe une unique suite (Gn)n≥0 ∈ EN telle que :

∀P ∈ E,φ(P ) =
+∞∑
n=0

GnP
(n)

.

1. Expliciter (Gn) pour φ vérifiant : ∀P ∈ E, ∀x ∈ R, φ(P )(x) =
∫ x

0 P (t)dt.
2. On suppose que, pour tout P ∈ E et a ∈ R, si P admet un minimum local en a alors φ(P )(a) = 0. Montrer qu’il existe Q ∈ E

tel que, pour tout P ∈ E, φ(P ) = QP ′.
3. On suppose que, pour toutP ∈ E et a ∈ R, siP admet un minimum local en a alorsφ(P )(a) ≥ 0. Montrer qu’il existeQ,R ∈ E

tels que, pour tout P ∈ E, φ(P ) = QP ′+

RP” avec R positif sur R.
1. Donner une preuve directe de l’égalité trouvée en b).

Exercice 319 [X MP 2025 # 320] Soient f : R → R et g : R → R. On suppose qu’il existe quatre réels strictement positifs α, β,A,B
tels que ∀(x, y) ∈ R2, |f(x)f(y)| ≤ A|xy|α et |g(x)g(y)| ≤ B|xy|β et α + β > 1. On pose ζ : s ∈]1,+∞[ 7→

∑+∞
n=1

1
ns ·

On fixe deux réels a < b.
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1. Pour une subdivision σ = (x0, . . . , xn) de [a,b], on pose J(σ) =
∑n−1
k=0 f(xk)(g(xk+1) − g(xk))

g(xk)). Montrer que |J(σ)f(a)(g(b)g(a))| ≤ ABζ(α+ β)(2(b− a))α+β .
1. Montrer qu’il existe un réel Ia,b(f, g) tel que, pour tout ε > 0, il existe δ > 0 tel que, pour toute subdivision σ = (x0, . . . , xn)

de [a,b], maxk |xk+1xk| < δ ⇒ |J(σ)Ia,b(f, g)| < ε.
Exercice 320 [XMP 2025 # 321] On note S l’ensemble des nombres complexes de module 1. Soit γ : [0, 1] → S une fonction continue.
Montrer qu’il existe une fonction continue θ : [0, 1] → R telle que γ(t) = e2iπθ(t) pour tout t ∈ [0, 1].
Exercice 321 [X MP 2025 # 322] Soit f : [0, 1] → R continue. On pose h : t ∈ [0, 1] 7→ infs∈[0,t] f(s) et g=f-2h.

1. Montrer que g est continue, positive et que g(0) = 0.
2. Montrer que si f est affine par morceaux alors q l’est aussi.
3. On suppose que f atteint son minimum en 1. On pose q : t ∈ [0, 1] 7→ infs∈[t,1] g(s). Montrer que f = g - 2q.

Exercice 322 [XMP 2025 # 323] Soit P l’ensemble des nombres premiers. On pose Ψ(x) =
∑
p∈P,α∈N∗

pα≤x
ln p et T (x) =

∑
1≤n≤x Ψ

(
x
n

)
.

1. Montrer que T (x) =
∑

1≤n≤n ln(n) = x ln(x)x+O(ln x) quand x → +∞.
2. Montrer que T (x)2T

(
x
2
)

=
∑∞
n=0(−1)n−1Ψ

(
x
n

)
= x ln 2 +O(ln x).

Exercice 323 [X MP 2025 # 324] Soit f une bijection de classe C1 de R+ sur R+, de réciproque notée g.

1. Montrer que, pour x ≥ 0,
∫ x
a
f(t)dt+

∫ f(x)
a

g(t)dt = xf(x).
2. Déduire que ∀x, y ∈ R+, xy ≤

∫ x
0 f(t)dt+

∫ y
0 g(t)dt.

Exercice 324 [X MP 2025 # 325] Soit f : [0, 1] → R continue et strictement positive sur ]0,1[.

1. Calculer limp→+∞

(∫ 1
0 f(x)pdx

)1/p
.

2. Calculer limx→0+

(∫ 1
0 f(x)pdx

)1/p
.

Exercice 325 [X MP 2025 # 326] Soit f la fonction 1-périodique de R dans R telle que ∀x ∈ [0, 1[, f(x) = x− 1
2 . Pour i et j dans N∗,

calculer
∫ 1

0 f(ix)f(jx)dx.

Exercice 326 [X MP 2025 # 327] Pour a, b > 0, on définit Ja,b = 2
∫ π

2
0

dθ√
(a cos θ)2+(b sin θ)2

.

1. Montrer que Ja,b =
∫ +∞

−∞
dx√

(x2+a2)(x2+b2)
.

2. Montrer que Ja,b = J a+b
2

√
ab

Exercice 327 [X MP 2025 # 328] Déterminer les réels α et β tels que
∫ +∞

0 | sin t|αtβdt < +∞.329. [nil] a) Pour f ∈ C0(R,R), on
note If =

{
p > 0,

∫
R |f |p < +∞

}
. Montrer que If

Exercice 328 [X MP 2025 # 329] 1. Pour

f ∈ C0(R,R)

, on note If = {p > 0,
∫

R |f |p < +∞}. Montrer que est un intervalle et exhiber f telle que If =]a, b[, ]0, b[ ou ]b,+∞[ pour 0 < a < b.

1. Déterminer limp→+∞

(∫ 1
a

|f |p
)1/p

.

Exercice 329 [X MP 2025 # 330] Soit f : R → R intégrable sur R. On pose g : x ∈ R∗ 7→ f
(
x− 1

x

)
. Montrer que g est intégrable sur

R+∗ et sur R−∗. Exprimer
∫ 0

−∞ g +
∫ +∞

0 g en fonction de
∫ +∞

−∞ f .

Exercice 330 [X MP 2025 # 331] On rappelle que
∫

Rn e
−x2/2dx =

√
2π.

Pour n ∈ N, on pose pn : x ∈ R 7→ (−1)nex2/2 dn(e−x2/2)
dxn .

1. Montrer que pn est polynomiale, préciser son degré et son coefficient dominant, et dé-

montrer que pn est paire ou impaire.

1. Calculer
∫

R pm(x)pn(x)e−x2/2dx pour (m,n) ∈ N2.
2. Soit n ∈ N∗. Calculer l’intégrale multiple

I =
∫

R
· · ·
∫

R

 ∏
1≤i≤n

(xj − xi)2

 exp
(

−1
2

n∑
i=1

x2
k

)
dx1 · · · dxn

.
Ind. On pourra s’intéresser au déterminant de la matrice (pi−1(xj))1≤i,j≤n.
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Exercice 331 [X MP 2025 # 332] Soit (fn)n∈N une suite de fonctions de carré intégrable sur R telle que
∫

R fifj =
δi,j pour tous i, j ∈ N. Pour N ∈ N∗ et x, y ∈ R, on pose KN (x, y) =

∑N
i=1 fk(x)fk(y). Pour p ∈ N et x1, . . . , xp ∈ R, on pose

φp(x1, . . . , xp) = det((KN (xi, xj))1≤i,j≤p).
Calculer

∫
Rn · · ·

∫
Rn φp(x1, . . . , xp)dx1 . . . dxp.

Exercice 332 [X MP 2025 # 333] 1. Soit a ∈ R+∗. Calculer les intégrales
∫ 1

0
ln(1+ta)

t dt et
∫ 1

0
ln(1−t)

t dt.
2. Soit (an)n ∈ (N∗)N telle que I ∈ Pf (N) 7→

∑
n∈I an soit injective, Pf (N) désignant l’ensemble des parties finies de N. Montrer

que
∑+∞
n=0

1
an

≤ 2.
c. Soit (an)n ∈ (N∗)N telle qu’il n’existe pas d’entier n ni de partie finie I de N \ {n} telle que an =

∑
k∈I ak . Montrer que∑+∞

k=1
1
an

≤ 50.
Exercice 333 [X MP 2025 # 334] Soient (an)n∈N et (bn)n∈N deux suites réelles.
On pose fn : x ∈ R 7→ an cos(nx) + bn sin(nx). Montrer que si (fn)n∈N converge simplement sur R alors (an)n∈N et (bn)n∈N

convergent vers 0.
Exercice 334 [X MP 2025 # 335] Pour

n ∈ N

, soit fn : x ∈ R \ Z 7→ π cot(πx) −
∑n
k=−∞

1
x+k .

1. Montrer que (fn)n≥0 converge simplement sur R \ Z vers une fonction f , et que l’on peut prolonger f par continuité à R.
2. Montrer que la fonction prolongée par continuité est de classe C1 sur R et vérifie :

∀x ∈ R, 4f ′(x) = f ′
(x

2

)
+ f ′

(
x+ 1

2

)
.

1. En déduire que f est identiquement nulle sur R.
2. On pose g : x 7→ x

ex−1 . Justifier que g est développable en série entière au voisinage de 0 et que le développement en série
entière de x 7→ g(x) − 1 + x

2 ne contient que des termes

pairs. On note

g(x) = 1 − x

2 +
+∞∑
n=1

anx
2n

.

1. Pour n ∈ N∗, donner une expression de ζ(2n) en fonction de an. Ind. On pourra considérer g(ix) pour x ∈ R.
Exercice 335 [X MP 2025 # 336] Soit f ∈ C0([0, 1],R).
Si

t ≥ 0

, on pose gt : x ∈ [0, 1] 7→ inf{f(y) + t|y − x|, y ∈ [0, 1]}.

1. Si t ≥ 0, montrer que gt est une fonction continue.
2. Soit x ∈ [0, 1]. Montrer que la suite (gn(x))n≥0 est croissante et qu’elle converge vers

f(x).
1. Montrer que (gn)n≥0 converge uniformément vers f sur [0,1].

Exercice 336 [X MP 2025 # 337] 1. Soit n ∈ N. Montrer qu’il existe un unique Tn ∈ Z[X] tel que : ∀x ∈ R, Tn(2 cos(x)) =
2 cos(nx).

2. Pour x, y ∈ [−2, 2[ avec $x ̸= y,$ on pose S(x, y) =
∑+∞
n=0

1
nTn(x)Tn(y).

• Montrer que Sn(x, y) est bien défini.
• Montrer que, pour x, y ∈ [−2, 2[ avec x ̸= y, on a S(x, y) = −2 ln |xy|.

Exercice 337 [X MP 2025 # 338] Soit α ∈ R.
1. À quelle condition sur α la fonction f : x 7→

∑+∞
n=1

nα

n+x est-elle définie sur R+ ?
2. Lorsque f est définie sur R+, déterminer sa limite, puis un équivalent, en +∞.
3. On fixe un polynôme P ∈ R[X] de degré d > 0, sans racine dans [1,+∞[. Donner une condition nécessaire et suffisante sur

(α, d) pour que g : x 7→
∑+∞
i=1

nα

P (n+x) soit définie

sur R+. Dans ce cas, donner un équivalent de g en +∞.
Exercice 338 [X MP 2025 # 339] 1. On fixe un entier d ≥ 0. Soit (ck)k≤d une famille de nombres complexes indexée par Z≤d =

{k ∈ Z, k ≤ d}. On suppose qu’il existe un réel R > 0 telle que (ckzk)k soit sommable pour tout z ∈ C tel que |z| > R ; pour un
tel z, on pose g(z) =

∑
k ckz

k . On suppose enfin que c1, . . . , cd sont tous rationnels et que g(a) ∈ Z pour une infinité d’entiers
a. Montrer que c0 ∈ Q et ck = 0 pour tout k < 0.
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2. Soit s ∈ N∗ et P ∈ C[X]. On suppose que, pour tout entier n assez grand, P(n) est la puissance s-ième d’un entier. Soient
τ1, . . . , τs dans Z. Montrer qu’il existe une fonction gvérifiant les hypothèses de la question précédente (pour un certain d) et
telle que, pour tout complexe z de module assez grand,

∏
P (z + τk) = g(z)s. En déduire qu’il existe un polynôme Q ∈ C[X]

tel que P = Qs et ∀k ∈ Z, Q(k) ∈ Z.
Exercice 339 [X MP 2025 # 340] Soient θ > 1 et P ∈ Z[X] unitaire de degré n ∈ N∗ dont θ est racine de multiplicité 1 et dont les
autres racines complexes sont de module < 1 et dont 1/θ n’est pas racine. Soit Q = XnP (1/X).

1. Montrer que f : z 7→ P (z)
Q(z) est développable en série entière au voisinage de 0 de rayon

1/θ. On note f(z) =
∑+∞
n=0 bnz

n ce développement.
1. Montrer que g : z 7→ f(z)(1 − θz) est développable en série entière de rayon > 1. On note g(z) =

∑+∞
n=0 cnz

n. Montrer que les
cn sont dans Z et que 1

2π
∫ 2π

0
∣∣g(eit)

∣∣2 dt =
∑+∞
n=0 |cn|2.

2. Démontrer que 1 + θ2 = b2
0 +

∑+∞
n=0(bnθbn−1)2.

3. On suppose que P(0) > 0. Montrer que (bn)n∈N est croissante.
Exercice 340 [X MP 2025 # 341] 1. On pose u0 = 1 et un+1 =

∑n
k=0 ukun−k pour tout n ∈ N. Calculer un.

2. Pour n ∈ N, on pose In =
∫ 2

−2 x
2n√

4 − x2dx. Prouver l’existence d’une constante
c> 0 telle que ∀n ∈ N, un = c In et la déterminer.
Exercice 341 [X MP 2025 # 342] Soitm ∈ N∗. On pose u0 = 4m, u1 = 4m− 1 et, pour k ∈ [1,m], uk = −1 + 2m−k

2m uk+1 + k
2muk−1

et vk = m
∫ 1

0
(1+x)2m−k

x

(
(1 + x)k − (1 − x)k

)
dx.

1. Montrer que, pour tout k ∈ [1,m], vk = uk .
2. Donner un équivalent de Wm = m

∫ 1
0

(1+x)m

x ((1 + x)m(1 − x)m)dx.

Exercice 342 [X MP 2025 # 343] Déterminer un équivalent de
∫ +∞

0 (te−t)xdt quand x tend vers +∞.
Exercice 343 [X MP 2025 # 344] Soit E l’ensemble des fonctions y de classe C2 de R+ dans R telles que, pour tout t ∈ R+, y′′(t) +
ety(t) = 0. Soit y ∈ E \ {0}.

1. Montrer que les zéros de y sont isolés.
2. Montrer que les zéros de y peuvent être rangés en une suite strictement croissante (tn)n≥0 tendant vers +∞.
3. Donner un équivalent de tn.

Exercice 344 [X MP 2025 # 345] Soit E un espace vectoriel euclidien de dimension n ≥ 1.
1. Soient p un projecteur de E et a ∈ L(E) tels que ap + pa = a. Montrer que tr a = 0.
2. On note P(E) l’ensemble des projecteurs orthogonaux de E. Pour p ∈ P(E), décrire l’espace tangent à P(E) en p. Quelle est

sa dimension?

3) Géométrie

Exercice 345 [X MP 2025 # 346] Soit (u, v) une base de R2. Donner une condition nécessaire et suffisante sur (u, v) pour qu’il existe
un polygone régulier à n côtés dont les sommets sont tous dans +.

4) Probabilités

Exercice 346 [X MP 2025 # 347] Un tiroir contient 2n chaussettes, constituant n paires. On tire successivement et aléatoirement les
chaussettes du tiroir les unes après les autres jusqu’à avoir tiré une paire. Quelle est l’espérance du nombre total de chaussettes tirées?
Ind. Pour simplifier le résultat,
on pourra utiliser un raisonnement probabiliste pour établir que

2n∑
k=n

(
k

n

)
2−k = 1

.
Exercice 347 [X MP 2025 # 348] On organise un tournoi avec une infinité (Jn)n∈N de joueurs. Les modalités sont les suivantes :
J0 et J1 s’affrontent, le gagnant affronte J2 et ainsi de suite : le gagnant de chaque partie affronte le joueur suivant lors de la partie
suivante. On considère tous les matchs comme indépendants et on note pn = P(Jn remporte son premier match). Le tournoi s’arrête
lorsqu’un joueur remporte deux matchs successifs. On note T la variable aléatoire donnant le nombre de matchs joués jusqu’à l’arrêt
du tournoi. Pour les deux premières questions, on fixe

α ∈]0, 1[

et on suppose que : ∀n ≥ 2, pn = 1 − 1
nα .

1. Montrer que T est presque sûrement finie.
2. Montrer que T est d’espérance finie.
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3. Dans cette question, on fixeN ≥ 2 et la condition de victoire devient : un joueur remporte le tournoi quand il a gagnéN matchs
consécutifs. Ainsi le cas précédent correspond au cas N=2. On suppose que, pour tout n ∈ N∗, pn = p ∈]0, 1[.

On note an = P(T ≥ n) avec, pour k ≤ N , ak = 1. Déterminer une relation de récurrence entre les an.
Exercice 348 [X MP 2025 # 349] Soit n ∈ N∗. Pour σ ∈ Sn, on note |σ| le nombre de cycles dans la décomposition de σ en cycles à
supports disjoints (y compris les cycles de longueur 1).a) Pour k ∈ [1, n], on pose Ck = |{σ ∈ Sn, |σ| = k}|.

1. Pour k ∈ [1, n], on pose Ck = |{σ ∈ Sn, |σ| = k}|

Calculer fn où fn : x 7→
∑n
k=1 Ckx

k .
1. Soit σn une variable de loi uniforme sur Sn. Donner un équivalent de l’espérance de |σn|.
2. Montrer que |σn|

ln(n) tend vers 1 en probabilités quand n → +∞.
Exercice 349 [X MP 2025 # 350] 1. Soient λ > 0 et X une variable aléatoire suivant la loi de Poisson P(λ). Calculer E(X(X −

1) · · · (X − p+ 1)) pour tout p ∈ N∗, et calculer E(1/(X + 1)) et E(1/(X + 2)).
2. Soient A un ensemble fini de cardinal n et p ∈ N∗. Une p-partition de A est une partition de X formée de p sous-ensembles

(non vides) deX . SoitB un ensemble fini de cardinalm. Dénombrer, pour une p-partition de F de A, les applications deA dans
B dont F est l’ensemble des fibres non vides (à savoir des ensembles non vides de la forme f−1{b} où b ∈ B).

3. En utilisant les deux questions précédentes, exprimer le nombre de partitions de A comme
Exercice 350 [X MP 2025 # 351] Soient p ∈]0, 1[ et t> 0. Soient (Xn)n∈N une suite de variables aléatoires i.i.d. vérifiant P(Xn =
1) = p et P(Xn = −1) = 1 − p et N ∼ P(t) indépendante des Xn. On pose :

Sn =
n∑
i=0

Xi

.

1. Pour n ∈ Z, calculer P(SN = n).
2. Montrer que :

la somme d’une série numérique.

∀(x, y) ∈ (R+∗)2,
∑
n∈Z

yn
∑
i∈N
n≥0

xn+2i

n!(n+ i)! = exy+1/y

.
Exercice 351 [X MP 2025 # 352] Soient p ∈ [0, 1[,m ≥ 2 et ξ = e2iπ/m].

1. Montrer que :

∀a, b ∈ C,
∑

k∈[[0,n]]

(
n

k

)
akbn−k = 1

m

m−1∑
j=0

(b+ ξja)n

.

1. Soit (Xi)i∈N∗ une suite de variables aléatoires i.i.d. suivant la loi de Bernoulli de paramètre p. On pose :An = (m | X1+· · ·+Xn)
et un = P(An). Montrer que la suite (un) est convergente et déterminer sa limite.

2. Montrer que : ∀n ∈ N∗,
∣∣un 1

m

∣∣ ≤ e−8pqn/m2 où q = 1 p.
Exercice 352 [X MP 2025 # 353] Soit X une variable aléatoire discrète positive ayant un moment d’ordre 2 et telle que E(X2) > 0.
Montrer que, pour t > 0, P(XE(X) ≤ −t) ≤ exp

(
− t2

E(X2)

)
.

Exercice 353 [X MP 2025 # 354] Soit (Xn)n≥1 une suite de variables aléatoires i.i.d. à valeurs dans N∗. On suppose
de plus que E(X2

1 ) < +∞, et on pose Sn =
∑n
i=1 Xi et Tn =

∑n
i=1

1
Si

pour n ≥ 1.

1. Montrer que, pour tout ω, (Tn(ω))n≥1 a une limite dans [0,+∞].
2. Montrer qu’il existe une constante C > 0 et une suite strictement croissante (nk)k≥1

d’entiers ≥ 1 vérifiant nk+1 ≥ 2nk et P(Snk
≥ 2nkE(X1)) ≤ C

2k pour tout k ≥ 1.
1. En déduire que (Tn)n≥1 tend presque sûrement vers +∞.

2. Montrer que V(Tn) ≤
∑n
i=1 E

(
1
S2

i

)
pour tout n ≥ 1.

Exercice 354 [X MP 2025 # 355] On pose (X)0 = 1 et, pour n ∈ N∗, (X)n = X(X − 1) · · · (X − n+ 1).
1. Montrer que ((X)n)n≥0 est une base de R[X].
2. Pour k ∈ N, on décompose Xk =

∑+∞
n=0 ak,n(X)n. Déterminer ak,0 et ak,n pour n ≥ k.

3. En considérant une variable aléatoireZ suivant la loi de Poisson de paramètre 1, montrer que ∀k ∈ N,
∑+∞
i=0 ak,n = 1

e

∑+∞
i=0

ik

i! .
4. Pour 0 ≤ n ≤ k, on note bk,n le nombre de façons de ranger k objets indifférenciés dans n tiroirs non numérotés, aucun des

tiroirs n’étant vide. Montrer que bk,n = ak,n.
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5. Soit k ∈ N. Déterminer le nombre de façons de partitionner un ensemble à k éléments.
Exercice 355 [X MP 2025 # 356] On cherche à prouver l’existence d’un réel C > 0 tel que, pour toutes variables aléatoires réelles X
et Y indépendantes et de même loi, on ait l’inégalité P(|X − Y | ≤ 2) ≤ C P(|X − Y | ≤ 1).

1. On suppose X et Y à valeurs dans Z. Montrer l’existence de C’ > 0 indépendant de X tel que P(|XY | ≤ 2) ≤ C ′P(X = Y ).
2. Montrer le résultat souhaité.
3. Montrer que C’ 3.

Exercice 356 [X MP 2025 # 357] 1. Soient n ∈ N∗ et p ∈]0, 1[. Existe-t-il deux variables aléatoires indépendantes Y1 et Y2 de
même loi telles que Y1 + Y2 ∼ B(n, p)?

2. On dit qu’une variable aléatoire Z est infiniment divisible si, pour tout k ∈ N∗, il existe des variables aléatoires i.i.d. Y1, . . . , Yk
telles que Y1 + · · · + Yk ∼ Z , avec a priori (Y1, . . . , Yk) défini sur un espace probabilisé différent de celui de Z .

Donner un exemple d’une telle variable aléatoire.

1. Que dire d’une variable aléatoire Z infiniment divisible de support inclus dans [0,1] ?
2. Soient (Xi)i∈N une suite de variables aléatoires i.i.d. et N ∼ P(λ) indépendante des Xi (avec λ > 0). Montrer que Z =
X1 + · · · +XN est une variable aléatoire infiniment divisible.

Exercice 357 [X MP 2025 # 358] Soient a ∈]0, 1[ et φa : x 7→ 1(1 − x)a.
1. Montrer qu’il existe une variable aléatoire Xa à valeurs dans N∗ telle que, pour tout x ∈ [0, 1], φa(x) = E(xXa).b) Soit

(An)n≥1 une suite d’événements de l’espace probabilisé (Ω,A,P) telle que, pour tout n ∈ N∗, P(An) = a
n . On pose Y =

inf{n ∈ N∗, 1An = 1}. Montrer que Y ∼ Xa.
On considère l’équation fonctionnelle : ∀x ∈ [0, 1], φa(x) = xφ(φa(x)) d’inconnue φ :
[0, 1] → R.

1. Montrer que, pour a ∈ [1/2, 1] cette équation admet une unique solution continue, qui est
de plus la fonction génératrice d’une variable aléatoire à valeurs dans N .

1. Montrer que ce n’est pas le cas pour a = 1/3.
Exercice 358 [X MP 2025 # 359] Soit (Xn) une suite de variables aléatoires indépendantes telles que P(Xn = 0) = 1 − 1

n et
P(Xn = n) =
rac1n. On pose, pour n ∈ N∗, Sn = X1 + · · · +Xn.

1. Soit λ ∈ R+. Déterminer la limite de
(

E
(
e−λSn

n

))
n≥1

.

2. Soit f ∈ C0(R+∗,R) dérivable sur ]1,+∞[ et telle que : ∀x > 1, f(x− 1) + xf ′(x) = 0 et ∀x ∈ [0, 1], f(x) = 1.
Montrer qu’il existe une unique fonction f qui respecte ces conditions, qu’elle est strictement positive sur R+ et tend vers 0 en +∞.

1. On définitφ(λ) =
∫ +∞

0 e−λtf(t)dt, avec f la fonction de la question précédente. Mon- trer qu’il existe k > 0 tel que, pour tout λ ∈
R+, limn→+∞ E

(
e−λSn

n

)
= e−kφ(λ).

Exercice 359 [X MP 2025 # 360] Soient X une variable aléatoire à support fini à valeurs dans Z2 et telle que −X ∼X, (Xk)k≥1 une
suite i.i.d. de variables aléatoires suivant la loi de X . Pour n ∈ N∗, on pose Sn = X1 + · · · +Xn.

1. Montrer que, si n ∈ N∗, E(∥Sn∥2) = nE(∥X∥2) et P(S2n = 0) =
∑
x∈Z2 P(Sn = x)2.

2. Montrer qu’il existe c ∈ R+∗ tel que ∀n ∈ N∗,P(S2n = 0) ≥ c
n .

3. Démontrer que P (∃n ≥ 1, Sn = 0) = 1.

V) X PSI autre

1) Algèbre

Exercice 360 [X PSI 2025 # 361] Soit P (X) = X1114X25X + 1. Montrer que P admet au moins une racine complexe de module
strictement inférieur à 1.
Exercice 361 [X PSI 2025 # 362] Soit f : P ∈ R[X] 7→ 1

2
(
P
(
X+1

2
)

+ P
(
X
2
))

. Soit a ∈ R. Déterminer la limite de (fn(P )(a)) quand
n tend vers +∞.
Exercice 362 [X PSI 2025 # 363] 1. Soient E un C -espace vectoriel de dimension finie, u, h ∈ L(E) tels que h est diagonalisable

et h ◦ u− u ◦ h = 2u. Montrer que u est nilpotent.
2. Soit E = C[X] et soient u, v, h les trois endomorphismes de E définis par∀P ∈ E, u(P ) = X2P ′ +XP, v(P ) = P ′ et h(P ) =
P + 2XP ′.

a) Montrer que h est diagonalisable et que h ◦ uu ◦ h = 2u. L’endomorphisme u est-il nilpotent ?
b) Soit F un sous-espace vectoriel de E à la fois u-stable et v-stable. Montrer que F = {0} ou F = E.

Exercice 363 [X PSI 2025 # 364] Soient A ∈ Mn(C) et B =
(

0 A
In 0

)
∈ M2n(C).

1. Montrer que ∀λ ∈ C, dim(Ker(BλI2n)) = dim(Ker(Aλ2In)).
2. À quelle condition sur A la matrice B est-elle diagonalisable?
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Exercice 364 [X PSI 2025 # 365] SoitX ∈ Cn. Déterminer une condition nécessaire et suffisante pour que la matriceXXT ∈ Mn(C)
soit diagonalisable.
Exercice 365 [X PSI 2025 # 366] SoitA ∈ M3(R) telle que R3 = Ker((AI3)2)⊕Ker(A2I3). Soit x ∈ R3 \{0}. Trouver un équivalent
de ||Anx||.

Exercice 366 [X PSI 2025 # 367] On définit deux matrices M =
(

1 1
0 1

)
et Nε =

(
1 1
0 1 + ε

)
avec ε > 0.

1. Étudier la diagonalisabilité de M et Nε, détailler leurs sous-espaces propres et donner une base de chacun d’eux.
2. Pour n ∈ N, on pose Xn = MnE, Y = Nn

ε E, où E =
(1
ε

)
. Expliciter Xn et Yn et étudier asymptotiquement les vecteurs Xn

∥Xn∥
et Yn

∥Yn∥ .

Exercice 367 [X PSI 2025 # 368] Soit A ∈ Mn(R) \ {0} telle que AT = −A. Soient µ ∈ C∗ une valeur propre de A et X ∈ Cn un
vecteur propre associé. On écrit X = U + iV avec U, V ∈ Rn. Montrer que U et V sont orthogonaux.

2) Analyse

Exercice 368 [X PSI 2025 # 369] SoientE et F deux espace vectoriels normés (de dimension quelconque) et ψ : E → F une fonction
telle que ∀x, y ∈ E, ψ(x) +ψ(y) = ψ(x+ y) et ψ est bornée sur la boule ouverte unité de E. Montrer que ψ est linéaire et continue.
Exercice 369 [X PSI 2025 # 370] Soit (E, || ||) un espace vectoriel normé avec E ̸= {0}.

1. Soit φ un endomorphisme continu de E. Montrer que : supx̸=0
∥φ(x)∥

∥x∥ < +∞
2. Soient u,v deux endomorphismes continus de E tels que uv-vu= id. Montrer que E = {0}.

Exercice 370 [X PSI 2025 # 371] Soient E un R -espace vectoriel normé de dimension finie, u ∈ L(E) et K ⊂ E un convexe non
vide. Pour n ∈ N∗, on note Sn = 1

n

∑n−1
k=0 u

k .- a) Montrer que : ∀n ∈ N∗, Sn(K) ⊂ K .
1. Montrer que : ∀n ∈ N∗, (S1 ◦ · · · ◦ Sn)(K) ⊂

⋂n
Sk(K).

2. On suppose que K est compact et que, pour tout x ∈ E, ||u(x)|| ≤ ||x||. Montrer que : ∀x ∈
⋂
Sn(K), u(x) = x.

Exercice 371 [X PSI 2025 # 372] Soit (ak)k∈N une suite de réels positifs. Pour tout n ∈ N, posons An =
∑n
k=1 ak . Montrer

l’équivalence entre les trois propriétés suivantes :
• An−1 = o(an),
• an−1 = o(an),
• An−1 = o(An)

Exercice 372 [X PSI 2025 # 373] Soit u une suite réelle strictement positive, croissante et tendant vers +∞. Montrer que la série∑ un−un−1
u diverge.

Exercice 373 [X PSI 2025 # 374] Soit (dn) une suite de réels positifs telle que la série de terme général dn diverge. Nature de
∑ dn

1+dn
,∑ dn

1+ndn
,
∑ dn

1+d2
n

et
∑ dn

1+n2dn
?

Exercice 374 [X PSI 2025 # 375] Trouver f ∈ C∞(R,R) telle que, successivement,
• f est nulle sur R− et ne s’annule pas sur ]0,+∞[ ;
• f est nulle sur R− et [1,+∞[ et ne s’annule pas sur ]0, 1[ ;
• f est nulle sur R−, égale à 1 sur [1,+∞[ et ne s’annule pas sur ]0, 1[.

Exercice 375 [X PSI 2025 # 376] Soit f ∈ C0(R,R). Soit (xk)k∈N telle que ∀k ∈ N, xk+1 = f(xk). On suppose que
( 1
n

∑n
k=1 xk

)
est bornée. Montrer que f admet un point fixe.
Exercice 376 [X PSI 2025 # 377] Soit a > 0. Pour n ∈ N, on pose : I(a, n) =

∫ π
2

0 (a+ cos(x))ndx.
1. Trouver la limite de (I(a, n))n≥0.

b) Soit b ∈]0, π/2[. Montrer que
√
n

(1+a)n

∫ π
2
b

(a+ cos(x))ndx −→
n→+∞

0.

1. Calculer la limite de
( √

n
(1+a)n · 1√

a+1

∫ b
0 (a+ cos(x))ndx

)
.

2. En déduire un équivalent de I(a,n) quand n → +∞
Exercice 377 [X PSI 2025 # 378] Soit f ∈ C∞(R,R) telle que f(t) → 0 quand t → +∞. Soit () l’équation différentielle y’ + y = f(t).

1. Montrer que toute solution y de () tend vers 0 lorsque t → +∞.
2. On suppose de plus que f(t) ∼ 1

t→+∞
1
tα avec α > 0. Soit y une solution non nulle de (). Déterminer un équivalent de y(t)

quand t → +∞.
Exercice 378 [X PSI 2025 # 379] Pour f ∈ C1(R+,R+∗), on considère le problème de Cauchy f ′ = −f2 et f(0) = 1.

1. Résoudre l’équation différentielle.
Soit h ∈]0, 1/2[. On définit la suite (yn) par y0 = 1 et yn+1yn = −hy2

n.
2. Montrer que yn → 0.
3. Montrer que 1

yn
= 1 + nh+ o(n).
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3) Probabilités

Exercice 379 [X PSI 2025 # 380] Soient n ≥ 2 et X une variable aléatoire à valeurs dans [0, n].
1. Soit Y une autre variable aléatoire à valeurs dans [0,n]. Montrer que si ∀k ∈ [0, n],

E(Xk) = E(Y k) alors X ∼ Y .

1. Montrer qu’il existe des variables aléatoiresX ,Y à valeurs dans [0, n] ne suivant pas la même loi et telles que ∀k ∈ [2, n],E(Xk) =
E(Y k).

Exercice 380 [X PSI 2025 # 381] Soient ε,X etY trois variables aléatoires indépendantes. On suppose que ε ∼ B(1/2) et que X et Y suivent G(p) pour un réel p ∈

]0, 1[. On note M =
(

(2ε− 1)X Y
Y (2ε− 1)X

)
.

1. Déterminer P(M ∈ GL2(R)).
2. Déterminer P (M ∈ S++

2 (R)).
Exercice 381 [X PSI 2025 # 382] Soit n ≥ 2. Soit X l’ensemble des variables aléatoires définies sur (Ω,A,P) et à valeurs dans [1, n].
Déterminer les X ∈ X , indépendantes de toutes les Y ∈ X .
Exercice 382 [X PSI 2025 # 383] On effectue n ≤ N tirages sans remise dans un sac de N jetons numérotés de 1 à N . On note Xi la
variable aléatoire donnant le numéro du jeton du i-ème tirage et on pose Zn = max1≤i≤nXi. Calculer E(Zn).
Exercice 383 [X PSI 2025 # 384] On pose (Xk) une suite i.i.d. de variables aléatoires suivant la loi de Bernoulli de para- mètre
p ∈ [0, 1]. Pour n ∈ N, on pose Yn =

∑n
k=1

Xk

k+n
1. Calculer l’espérance de Yn
2. Déterminer la limite de (E(Yn))
3. Trouver α ∈ R tel que, pour tout ε > 0, on ait limn→∞ P(|Ynα| > ε) = 0.

VI) X PC autre

1) Algèbre

Exercice 384 [X PC 2025 # 385] Soit (P,Q) ∈ R[X]2 tel que P P’ = Q. Montrer que, si Q ≥ 0, alors P ≥ 0.
Exercice 385 [X PC 2025 # 386] Soit E l’ensemble des polynômes à coefficients dans {−1, 0, 1} et A l’ensemble des racines des
polynômes de E. Montrer que A∩]2,+∞[= ∅.
Exercice 386 [X PC 2025 # 387] Soient

P =
n∑
k=0

akX
k ∈ C[X]

et r ∈ [0, 1].
Montrer que

1
2π

∫ 2π

0

∣∣P (reiθ)
∣∣2 dθ =

n∑
k=0

|ak|2r2k ≤ sup
θ∈[0,2π]

|P (eiθ)|2

.
Exercice 387 [X PC 2025 # 388] Soient P ∈ Z[X] unitaire de degré d et λ1, . . . , λd ses racines. On suppose que, pour
tout

k ∈ [1, d]

, |λk| ≤ 1. On pose, pour tout n ∈ N∗, f(n) =
∑d
k=1 λ

n
k .

1. Montrer que, pour tout n ∈ N∗, f(n) est entier.
2. Montrer qu’il existe p ∈ N∗ tel que, pour tout n ∈ N∗, f(n+p) = f(n).

Exercice 388 [X PC 2025 # 389] Soient A et B dans M2(Z). On suppose que, pour tout k ∈ {0, 1, 2, 3, 4}, A + kB est inversible et
que son inverse est à coefficients dans Z. Montrer que A + 5B est inversible et que son inverse est à coefficients dans Z.
Exercice 389 [X PC 2025 # 390] On considère la matrice A = (1i=j+1 mod n)1≤i,j≤n ∈ Mn(R). Donner une condition nécessaire et
suffisante sur p ∈ N∗ pour que B =

∑p−1
k=0 A

k soit inversible.
Exercice 390 [X PC 2025 # 391] On considère une ferme avec 2n+1 vaches. Le fermier s’aperçoit que quelle que soit la vache que
l’on retire du troupeau, il peut séparer les vaches restantes en deux groupes de n vaches, de telle sorte que les sommes des poids des
vaches de chacun des groupes sont égales. Montrer que toutes les vaches ont le même poids.
Exercice 391 [X PC 2025 # 392] Soit A = (ai,j)1≤i,j≤n ∈ Mn(R), avec ai,j = 1

min(i,j) . Calculer detA.
Exercice 392 [X PC 2025 # 393] Soit A ∈ Mn(R) telle que : ∀H ∈ Mn(R), det(A+H) = det(A) + det(H). Que dire de A?
Exercice 393 [X PC 2025 # 394] Soit p ∈ N∗.

1. Soient α1, . . . , αp des réels distincts. Soient c1, . . . , cp des réels non tous nuls. On pose
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φ : x 7→
p∑
cie

αix

. Montrer que φ s’annule au plus p− 1 fois.

1. Soient α1, . . . , αp, β1, . . . , βp des réels tels que α1 < · · · < αp et β1 < · · · < βp. Montrer que le déterminant de la matrice(
eαiβj

)
1≤i,j≤p est strictement positif.

Exercice 394 [X PC 2025 # 395] Soient A et B ∈ Mn(C) telles que AB2B2A = B. Montrer que B est nilpotente d’ordre impair.
Exercice 395 [X PC 2025 # 396] 1. Donner un exemple de matrice A ∈ Sn(C) non diagonalisable.b) Soit M ∈ Mn(C) et Q :

x = (x1 . . . xn)T ∈ Cn 7→
∑

1≤i,j≤nmi,jxixj ∈ C. Montrer
qu’il existe une unique matrice S ∈ Sn(C) telle que ∀x ∈ Cn, Q(x) = xTSx.
c. Montrer qu’il existe un ensemble fini I , une famille (ℓi)i∈I ∈ (L(Cn,C))I de formes linéaires indépendantes et une famille (αi)i∈I ∈
CI telles que
linéaires indépendantes et une famille

(αi)i∈I ∈ CI

telles que ∀x ∈ Cn,
∑

1≤i,j≤n ai,jxixj =
∑
i∈I αiℓi(x)2.

Ind. Commencer par traiter l’exemple Q(x) = x2
1 + 3x1x2 + 6x2

2 + 4x2
3.

Exercice 396 [X PC 2025 # 397] SoientE un K -espace vectoriel de dimension finie et u ∈ L(E). Déterminer une condition nécessaire
et suffisante pour qu’il existe v ∈ L(E) tel que u ◦ v = 0 et u+ v ∈ GL(E).
Exercice 397 [X PC 2025 # 398] Soit M ∈ Mn(C). Donner une condition nécessaire et suffisante sur M pour que l’application
f : A ∈ Mn(C) 7→ AM +MA ∈ Mn(C) soit bijective.
Exercice 398 [X PC 2025 # 399] Soit

M ∈ Mn(C)

. On pose exp(M) =
∑+∞
k=0

Mk

k! .

1. Justifier que cette définition est pertinente.
2. On suppose que M s’écrit M = In +A où A est nilpotente. Montrer qu’il existe P ∈ C[X] tel que M = exp(P (M)).

Exercice 399 [X PC 2025 # 400] On munit Rn de sa structure euclidienne canonique.
Pour

v ∈ Rn \ {0}

, on pose Hv = In − 2 vvT

∥v∥2 .

1. Donner une interprétation géométrique de Hv .
2. Montrer que, pour tout vecteur unitaire e ∈ v⊥, on a Hv−∥v∥e(v) = ∥v∥e.
3. SoitA ∈ GLn(R). Donner un algorithme permettant de trouverQ ∈ On(R) etR ∈ Mn(R) triangulaire supérieure à coefficients

diagonaux > 0 telles que A = QR.
Exercice 400 [X PC 2025 # 401] Soient E = [[1, n]] et A1, . . . , Am des parties distinctes de E telles qu’il existe c ∈ N∗ vérifiant :
∀(i, j) ∈ [[1, n]]2, i ̸= j,⇒ Card(Ai ∩Aj) = c. Montrer que m ≤ n. Ind. Considérer d’abord le cas où il existe i tel que card(Ai) = c.
Ensuite pour i ∈ [[1,m]],

poser vi =

1Ai(1)
...

1Ai(n)

 ∈ Mn,1(R) et considérer G = (⟨vi, vj⟩)1≤i,j≤m

.
Exercice 401 [X PC 2025 # 402] Soient n, p ≥ 2. On munit Rn de sa structure euclidienne canonique. SoientE un sousespace vectoriel
de Rn et b ∈ Rn.

1. Montrer que inf{||x− b||, x ∈ E} est atteint en un unique point de E.
2. SoitA ∈ Mn,p(R). Montrer que inf{∥Axb∥, x ∈ Rp} est atteint. Si x1 et x2 sont deux points en lesquels le minimum est atteint,

montrer que x2x1 ∈ KerA.
3. Résoudre l’équation ATAx = AT b d’inconnue x ∈ Rp.

Exercice 402 [X PC 2025 # 403] Soit
H ∈ Sn(R)

.a) Montrer qu’il existe des réels distincts λ1, . . . , λk et des matrices de projecteurs orthogo-
naux P1, . . . , Pk de Rn tels que :

∑k
i=1 Pi = In, PiPj = 0 si i ̸= j et H =

∑k
i=1 λiPi.

1. Soit R ∈ S+
n (R) tel que tr(R) = 1. On pose pi = tr(RPi) pour 1 ≤ i ≤ k.

Montrer que (p1, . . . , pk) est une loi de probabilité sur {1, 2, . . . , k}.
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Exercice 403 [X PC 2025 # 404] Soient A,B ∈ S++
n (R). Montrer que det1/n(A+B) ≥ det1/n(A) + det1/n(B).

Exercice 404 [X PC 2025 # 405] Soient M1, . . . ,Mn ∈ Mp(R) telles que
∑n
i=1 M

T
i Mi = Ip.

Pour X ∈ Mp(R), on pose L(X) =
∑n
i=1 M

T
i XMi.

On écrit M ≥ N pour signifier M −N ∈ S+
n (R). Montrer que L(XTX) ≥ L(XT )L(X).

Exercice 405 [X PC 2025 # 406] Soient d ∈ N∗ ainsi que A ∈ S++
d (R). On définit la suite (An)n∈N par A0 = A et, pour n ∈

N, An+1 = An +A−2
n . Donner un équivalent de trAn lorsque n → +∞.

Exercice 406 [X PC 2025 # 407] 1. Soit (u1, . . . , uk) ∈ (Rn)k . Montrer que l’on peut renuméroter les ui pour qu’il existe α ∈
[1, k] tel que la famille (u1, . . . , uα) soit libre et uj ∈ Vect(u1, . . . , uα) = E

pour tout j ∈ [α+ 1, k].
1. Soit U = (u1| · · · |uα) ∈ Mn,α(R). Montrer que UTU est inversible.
c. Soient

β ≥ α+ 1

et B =

⟨uβ , u1⟩
...

⟨uβ , uα⟩

. Montrer que la solution de UTUX = B donne

les coordonnées de uβ dans la base (u1, . . . , uα) de E.
d. Soit (v1, . . . , vk) ∈ (Rn)k telle que : ∀(i, j) ∈ [[1, k]]2, ⟨ui, uj⟩ = ⟨vi, vj⟩. Montrer qu’il existe W ∈ On(R) telle que : ∀i ∈
[1, k],Wvi = ui.
Exercice 407 [X PC 2025 # 408] 1. Soit A ∈ Mn(R). Montrer que A ∈ S+

n (R) si et seulement s’il existe k ∈ N∗ et
B ∈ Mk,n(R) tels que A = BTB.
Soient n ≥ 2 et L un endomorphisme de Mn(R). Soit k ∈ N∗.

Pour A ∈ Mkn(R) que l’on écrit A =

A1,1 . . . A1,k
...

...
Ak,1 . . . Ak,k

 où chaque bloc est une matrice de Mn(R), on définit L̂k par L̂k(A) =

L(A1,1) . . . L(A1,k)
...

...
L(Ak,1) . . . L(Ak,k)

.

On dit que L est C .P. (complètement positif) lorsque, pour tout k ∈ N∗ et tout A ∈ S+
nk(R), L̂k(A) ∈ S+

nk(R).

1. Montrer que L : M ∈ Mn(R) 7→ MT ∈ Mn(R) n’est pas C .P.
c. Soit L ∈ L(Mn(R)) complètement positif. En regardant le cas k=2, montrer que, pour toutM ∈ Mn(R),L(MT ) = L(M)T .

Exercice 408 [X PC 2025 # 409] Soient S, T ∈ Sn(R) telles que, pour tout X ∈ Rn \ {0}, XT (S + T )X > 0.
Montrer qu’il existe une base (e1, . . . , en) de Rn telle que, pour tout i ∈ {1, . . . , n}, la famille (Sei, T ei) soit liée. Ind. Considérer
B : (X,Y ) 7→ XT (S + T )Y et M = (S + T )−1S.

2) Analyse

Exercice 409 [X PC 2025 # 410] Soit A = {M ∈ Mn(R); ∀(i, j) ∈ [1, n]2,mi,j ∈ [0, 1]2}.
On pose α = supM∈A(detM).

1. Montrer que α est un maximum.

b. Montrer que ce maximum est atteint en des matrices M à coefficients dans {−1, 1} telles que detM > 0.
Exercice 410 [X PC 2025 # 411] Pour

A ∈ Mn(R)

, on pose exp(A) =
∑+∞
k=0

Ak

k! .

1. Montrer que exp(A) est bien définie. Soit (A,B) ∈ Mn(R)2.

1. Montrer que, si A et B commutent, alors exp(A+B) = exp(A) exp(B).
c. Montrer que

lim
k→+∞

(
exp

(
A

2k

)
exp

(
B

k

)
exp

(
A

2k

))k
= exp(A+B)

.
Exercice 411 [X PC 2025 # 412] On munit

E =
{
f ∈ C0([0, 1],R),

∫ 1

0
f(t)dt = 0

}
de la norme ∥∥∞. Si f ∈ E, on pose A(f) : x ∈ [0, 1] 7→

∫ x
0 f(t)dt+

∫ 1
0 tf(t)dt.
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1. Trouver C > 0 tel que ∀f ∈ E, ||A(f)||∞ ≤ C||f ||∞.

b. Déterminer la constante C optimale.
Exercice 412 [X PC 2025 # 413] Soit A ⊂ R2. On pose

Conv(A) =
{

n∑
i=1

λixi ; n ∈ N∗, (x1, . . . , xn) ∈ An, (λ1, . . . , λn) ∈ (R+)n,
n∑
i=1

λi = 1
}

.
On suppose de plus que, pour tout (x, y) ∈ A2, il existe γ : [0, 1] → A continue telle que γ(0) = x et γ(1) = y. Montrer que
Conv(A) =

⋃
(a,b)∈A2 [a, b].

Exercice 413 [X PC 2025 # 414] Soit E un espace vectoriel normé. On dit que (un) ∈ EN vérifie la propriété C si : ∀ε > 0, ∃N ∈
N, ∀p ≥ N, ∀q ≥ N, ∥up − uq∥ ≤ ε. On dit que E vérifie la propriété B si toute suite de E vérifiant C est convergente. On admet
que R vérifie la propriété B. On
pose

ℓ1 =
{

(un) ∈ RN;
∑
n∈N

|un| < +∞

}
. On munit ℓ1 de la norme définie par ||u||1 = 0

+∞∑
n=0

|un|

. Montrer que (ℓ1, ||∥1) vérifie la propriété B.

Exercice 414 [X PC 2025 # 415] On munit ℓ1 =
{
u ∈ RN,

∑+∞
n=0 |un| < +∞ight} de la norme définie par ∥u∥1 =

∑+∞
n=0 |un|

et
ℓ∞ = {u ∈ RN : ∃M ∈ R, ∀n ∈ N, |un| ≤ M}

de la norme définie par ||u||∞ = {u ∈ RN : ∃M ∈ R, ∀n ∈ N, |un| ≤ M}
supn∈N |un|. Enfin, pour (u, v) ∈ ℓ1 × ℓ∞, on pose φv(u) =

∑+∞
n=0 unvn.

1. Montrer que pour tout v ∈ ℓ∞, φv est bien définie sur ℓ1.

On note Dℓ1 l’ensemble des formes linéaires sur ℓ1 qui sont continues.

1. Montrer que pour tout v ∈ ℓ∞, φv ∈ Dℓ1 . On pose, pour v ∈ ℓ∞, ∥φv∥ = inf{C > 0 : ∀u ∈ ℓ1, |φv(u)| ≤ C∥u∥1}.
c. Montrer que ∥∥ est une norme.

2. Calculer ∥φv∥ pour v ∈ ℓ∞.
d. Calculer ∥φv∥ pour v ∈ ℓ∞. Les question précédentes montrent que l’application T de ℓ∞ dans Dℓ1 , qui à v associe φv est
une application linéaire et une isométrie

est une application linéaire et une isométrie.
1. Montrer que T est bijective.

Exercice 415 [X PC 2025 # 416] 1. Soit M ∈ M2(C). Montrer qu’il existe un unique (N,D) ∈ M2(C)2 tel que :
• M = D + N ,
• D est diagonalisable,
• N est nilpotente, iv) ND = DN.

2. Quels sont les points de continuité de M 7→ (D,N)?

Exercice 416 [X PC 2025 # 417] Pour tout n ≥ 1, on pose vn =
∑n2

n=1
1

n2+k2 . Déterminer la limite de (nvn).
Exercice 417 [X PC 2025 # 418] On définit (un) par u0, u1 ∈ R+∗ et ∀n ∈ N, un+2 = √

un+1 + √
un. Montrer que (un) converge.

Exercice 418 [X PC 2025 # 419] Soient (an) ∈ (R+∗)N et, pour n ∈ N, tn =
√
a0 +

√
a1 +

√
· · · + √

an.

1. Montrer que, si limn→+∞ supk≥n

{
ln(ln ak)

k

}
> ln 2, alors (tn) diverge.

2. Montrer que, si limn→+∞ supk>n
{

ln(ln ak)
k

}
< ln 2, alors (tn) converge.

Exercice 419 [X PC 2025 # 420] Soit f : R+∗ → R+∗ strictement croissante, continue et telle que f(t) → +∞ quand t → +∞.
Montrer que les séries de termes généraux 1

f(n) et f
−1(n)
n2 sont de même nature.

Exercice 420 [X PC 2025 # 421] Soit (un) ∈ (R+∗)N. Pour n ∈ N on pose Sn =
∑n
k=0 uk . Montrer que

∑
un converge si et

seulement si
∑ un

Sn
converge.

Exercice 421 [X PC 2025 # 422] Soient (ci)i∈N ∈ {0, 1}N et f : x 7→
∑+∞
i=0 cix

i. Montrer que, si f
( 2

3
)

= 3
2 , alors f

( 1
2
)

est irrationnel.
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Exercice 422 [X PC 2025 # 423] Soit
n ∈ N∗

. Montrer : ∀(x1, . . . , xn) ∈ Rn,
∑n
i=1
∑n
j=1

√
|xi − xj | ≤

∑n
i=1
∑n
j=1

√
|xi + xj |.

Exercice 423 [X PC 2025 # 424] Soit f : x ∈ R∗ 7→ e−1/x2 . Montrer que f admet un prolongement de classe C∞ sur R.
Exercice 424 [X PC 2025 # 425] Soit G : [0, 1] → R telle que G(0)=G(1)=0, G est continue en 1 et dérivable en 0, G′(0) ≥ 0 et, pour
tout x ∈ [0, 1], on a G(x) = maxy∈[0,x](G(y) +G(x− y)).
Montrer que G est nulle.

1. Montrer In → +∞.
Exercice 425 [X PC 2025 # 426] $$ Montrer que :

∑
p≤x

ln p
p ≥ ln x+O(1). Ind. Considérer ln(n!).

Exercice 426 [X PC 2025 # 427] Soient f : [0, 1] → R continue, g : [0, 1] → R continue à valeurs positives telle
∫ 1

0 g = 1 etφ : R → R
de classe C2 telle que φ′′ ≥ 0.
Montrer :

φ

(∫ 1

0
f(x)g(x)dx

)
≤
∫ 1

0
φ(f(x))g(x)dx

.
Exercice 427 [X PC 2025 # 428] Soient deux réels a < b et f, g ∈ C0 ([a, b],R+∗) avec f ̸= g.
On suppose ∫ b

a

f =
∫ b

a

g

. Pour n ∈ N, on pose In =
∫ b
a
fn+1

gn .

1. Montrer que (In)Ja

n∈N est strictement croissante.
Exercice 428 [X PC 2025 # 429] Soif f ∈ C2([0, 1],R+) telle que f(0) = 0 et f ′′ ≥ 0.
Montrer que

∫ 1
0 f(x)2dx ≤

∫ 1
0 x

2f ′(x)2dx.
Exercice 429 [X PC 2025 # 430] Soient K : [0, 1]2 → R+∗ et f, g : [0, 1] → R+∗ continues telles que : ∀x ∈ [0, 1], f(x) =∫ 1

0 K(x, z)g(z)dz et g(x) =
∫ 1

0 K(x, z)f(z)dz. Montrer que f=g.
Exercice 430 [X PC 2025 # 431] Soient L1 (resp. L2) l’ensemble des fonctions continues de R dans C intégrables (resp. de carré
intégrable). Soit f ∈ C1(R,C) telle que x 7→ x f(x) et x 7→ x f ′(x) sont dans L2.

1. Montrer que f ∈ L2 ∩ L1.

1. Montrer limx→±∞ f(x) = 0. Montrer que x 7→ xf2(x) est dans L2

Exercice 431 [X PC 2025 # 432] Soit E l’ensemble des f ∈ C2(R,R) telles que x 7→ (1 + x2)|f(x)|, x 7→ (1 + x2)|f ′(x)| et
x 7→ (1 + x2)|f ′′(x)| soient bornées sur R. Pour t ∈ R et f ∈ C1(R,R), on pose At(f) : x 7→ f ′(x) + txf(x) et A∗

t (f) : x 7→
−f ′(x) + txf(x).

1. Si f ∈ E, montrer que
∫

Tn A
∗
t (At(f))f ≥ 0.

Ind. Montrer, pour (f, g) ∈ E2, que
∫

R At(f)g =
∫

R fA
∗
t (g).

1. Soit f ∈ E telle que
∫

R f
2 = 1. Montrer que

(∫ +∞
−∞ x2f2(x)dx

)(∫ +∞
−∞ f ′2(x)dx

)
≥ 1

4

Exercice 432 [X PC 2025 # 433] Soit (fn)n∈N une suite de fonctions de classe C3 définies de R dans R.
On suppose que supn∈N

(
supx∈R

∣∣∣f (3)
n (x)

∣∣∣) = c ∈ R et limn→+∞ supx∈R |fn(x)| = 0. Montrer que limn→+∞ supx∈R |f ′
n(x)| =

0 et limn→+∞ supx∈R |f ′′
n (x)| = 0.

Exercice 433 [X PC 2025 # 434] On admet que
∑+∞
n=1

1
n4 = π4

90 . Soit g : x 7→ π2

3 +
∑+∞
n=1

4(−1)n

n2 cos(nx).
1. Montrer que g est définie sur R.
2. Calculer

∫∞
−∞ g(x)2dx.

3. Calculer
∫ π

0 (x2g(x))2dx.
4. Expliciter q et tracer son graphe.

Exercice 434 [X PC 2025 # 435] Soit f ∈ C∞(R,R). Soit (fn) la suite de fonctions définie par f0 = f et, pour tout n ∈ N et tout
x ∈ R, fn+1(x) =

∫ x
0 tfn(t)dt.

1. Montrer que l’application T qui à f associe
∑+∞
n=0 fn est un endomorphisme de C∞(R,R).

2. Exprimer T(f) à l’aide de f .
3. L’application T est-elle injective? surjective?

Exercice 435 [X PC 2025 # 436] Soit f : t 7→ (1 − t)1−1/t. Cette fonction est-elle développable en série entière? Si oui déterminer le
rayon de convergence et le signe des coefficients de ce développement en série entière.
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Exercice 436 [X PC 2025 # 437] Donner le développement en série entière de f(x) = 1
1−2x−x2 et son rayon de convergence. Montrer

que les coefficients sont entiers. Pouvait-on le prévoir ?
Exercice 437 [X PC 2025 # 438] On pose f : z 7→

∑+∞
n=0

zn

2n(n−1)/2 . Montrer que f n’est pas le quotient de deux polynômes.

Exercice 438 [X PC 2025 # 439] 1. Donner le développement en série entière de arctan et montrer :
∑+∞
k=0

(−1)k

2k+1 = π
4 .

2. Pour n ∈ N∗, on pose Sn = 4
∑n−1
i=1

(−1)k

2k+1 . Montrer :
∣∣∣πSn (−1)n

n

∣∣∣ ≤ 1
2n3 .

3. Montrer que, pour n = 5 × 105, π et Sn ont leurs 16 premières décimales communes, sauf pour la 6e.
Exercice 439 [X PC 2025 # 440] 1. Soit f ∈ C[X] non constant. Soit r > 0. On suppose que f n’ a pas de racine de module r. On

note Nr(f) le nombre de racines de f (comptées avec multiplicité) situées dans le disque de centre 0 et de rayon r. Montrer que
Nr(f) = 1

2π
∫ 2π

0
f ′(reiθ)
f(reiθ) re

iθdθ.
2. Soit r > 0. Soient f et g dans C[X] tels que, pour tout z de module r, [g(z)] < |f(z)|. Montrer que f et f+g ont le même nombre de

racines comptées avec multiplicité dans le disque de centre 0 et de rayon r.
3. Application : montrer que X85X3 +X + 2 possède 3 racines comptées avec multiplicité dans le disque unité.

Exercice 440 [X PC 2025 # 441] Soit A : C → SL2(C). On suppose que les coordonnées de A sont sommes de séries entières de
rayon +∞ et queA(R) ⊂ SO2(R). Montrer qu’il existe φ : C → C somme d’une série entière de rayon +∞ telle que ∀z ∈ C, A(z) =(

cos(φ(z)) − sin(φ(z))
sin(φ(z)) cos(φ(z))

)
.

Exercice 441 [X PC 2025 # 442] Soit γ : [a, b] → C une fonction continue. On suppose qu’il existe une subdivision a = a0 < a1 <
· · · < an = b telle que, pour tout k ∈ {0, . . . , n − 1} la restriction γk de γ au segment [ak, ak+1] est de classe C1. Soit f : C → C
continue. On définit

∫
γ
f(z)dz =

∑n−1
i=0

∫ aj+1
ai

f(γj(t))γ′
j(t)dt. Si γ(a) = γ(b) et f est développable en série entière sur C, montrer

que
∫

R f(z)dz = 0.

Exercice 442 [X PC 2025 # 443] 1. Montrer que, pour x > 0, e−x2 ∫ +∞
0 e−t2dt =

∫ +∞
0 xe−x2(1+s2)ds.

2. En déduire la valeur de
∫ +∞

0 e−t2dt.
3. Calculer

∫ +∞
0 cos(t2)dt.

Exercice 443 [X PC 2025 # 444] 1. Montrer que ∀t ∈ [0, 1[,
∫ 2π

0
eiθ

1−teiθ dθ = 0.b) En déduire que

∀z ∈ C,
1

2π

∫ 2π

0
ln |eiθ − z|dθ = max(0, ln |z|)

.
Ind. Considérer la fonction

f : t 7→
∫ 2π

0
ln
(
|z − teiθ|

)
dθ

.
Exercice 444 [X PC 2025 # 445] Pour x ∈ R, on note x+ = max(x, 0). Soit f̂ : ξ ∈ R 7→

∫ +∞
−∞

( sin x
x

)2
eiξxdx.

1. Montrer que f̂ est définie et continue sur R.
2. Pour N ∈ N et x ∈ R, montrer que

1
N + 1

N∑
k=0

k∑
j=−k

eijx =
N∑

j=−N

(
1 − |j|

N + 1

)
eijx = 1

N + 1

(
sin
(
N+1

2 x
)

sin
(
x
2
) )2

.
c. Pour N ∈ N et k ∈ Z, montrer que :

1
2π

∫ π

−π

1
2N + 2

(
sin((N + 1)x)

sin(x2 )

)2
e−ikxdx =

(
1 − |k|

2N + 2

)+

.
d. Montrer que, uniformément en k ∈ Z, la suite de terme général 1

2π
∫ π

−π
1

2N+2

(
sin((N+1)x)

sin( x
2 )

)2
e−ikxdx− 1

2π
∫ π

−π
1

2N+2

(
sin((N+1)x)

x
2

)2
e−ikxdx

tend vers
0

lorsque N → +∞. En déduire : ∀ξ ∈ R, f̂(ξ) = π
(

1 − |ξ|
2

)+
.

Exercice 445 [X PC 2025 # 446] Soit n ∈ N∗. Soit A ∈ Mn(R).

1. Justifier l’existence de exp(A) =
∑+∞
k=0

Ak

k! Ind. Montrer l’existence d’une norme ∥ ∥

sur Mn(K) pour laquelle il existe c > 0 tel que ∀A,B ∈ Mn(R), ∥AB∥ ≤ c∥A∥∥B∥.
1. Soit M : R → Mn(R), t 7→ exp(tA). Montrer que M est de classe C1 sur R et calculer

M’(t) pour tout t ∈ R.
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1. Soit p ∈ N∗. Soient u : R → Rp continue et B ∈ Mn,p(R). Trouver toutes les fonctions X : R → Rn dérivables telles que
∀t ∈ R, X ′(t) = AX(t) +Bu(t).

2. Existe-t-il P ∈ R[X] telle que exp(A) = P (A)?
Exercice 446 [X PC 2025 # 447] On munit Rn de sa structure euclidienne canonique. Soient A ∈ S++

n (R) et b ∈ Rn. On pose :
∀x ∈ Rn, J(x) = 1

2 ⟨Ax, x⟩⟨b, x⟩.
1. Montrer que J est strictement convexe : ∀x ̸= y ∈ Rn, ∀λ ∈ ]0, 1[ , J(λx+ (1 − λ)y) < λJ(x) + (1 − λ)J(y).
2. Montrer que lim∥x∥→+∞ J(x) = +∞.
3. Montrer que J atteint son minimum en l’unique point x0 vérifiant Ax0 = b.

Exercice 447 [X PC 2025 # 448] Soit n ≥ 2. On pose Σ =
{

(a1, . . . , an) ∈ Rn ;
∑n
i=1 ai = 0 et

∑n
i=1 a

2
i = 1

}
.Maximiser Sn =

a1a2 + a2a3 + · · · + an−1an + ana1 lorsque (a1, . . . , an) décrit Σ.

3) Probabilités

Exercice 448 [X PC 2025 # 449] Soit λ > 0. Pour n ∈ N∗, soit Xn une variable aléatoire suivant la loi binomiale B(n, λ/n). Soit Y
une variable aléatoire suivant la loi de Poisson de paramètre λ. Montrer que, pour tout k ∈ N, P(Xn = k) −−−−−→

n→+∞
P(X = k).

Exercice 449 [X PC 2025 # 450] Soit (an)n∈N∗ une suite croissante d’entiers naturels non nuls. On tire des dés équilibrés, le n-ième dé
admettant an faces numérotées de 1 à an. On effectue les tirages tant que la suite des résultats est croissante. On note p la probabilité
de faire une infinité de tirages. Donner une condition nécessaire et suffisante sur (an)n∈N∗ pour que p soit non nul.
Exercice 450 [X PC 2025 # 451] On définit pour

A ∈ Mn(R)

, eA =
∑+∞
k=0

Ak

k! .

1. Montrer que eA est bien défini.

Ind. On pourra montrer qu’il existe une norme ∥ · ∥ et une constante C > 0 telles que, pour toutA,B ∈ Mn(R), ||AB|| ≤ C||A||||B||.
On note

R = 1
2I2

, K =
(

0 1
1 0

)
et H =

(
1 0
0 −1

)
.

1. Calculer, pour s, t ∈ R, f(s, t) = Tr(Rei(sR+yH)).

Soit (X,Y) un couple de variables aléatoires à valeurs dans un sous-ensemble fini de R2. On note g(s, t) = E(ei(sX+tY )).
c. Montrer que

∀s1, . . . , sm, t1, . . . , tm ∈ R,
m∑
k=1

m∑
ℓ=1

g(sk − sℓ, tk − tℓ) ≥ 0

()

1. On prend s2 = s3 = t1 = t3 = 2π
3 et t2 = s1 = 0. Montrer que f ne vérifie pas ().

2. Soient H ∈ Sn(R), R ∈ S+
n (Ř) tel que TrR = 1. Montrer qu’il existe une variable aléatoire réelle X telle que ∀s ∈

R,Tr(ReisH) = E(eisX)
Exercice 451 [X PC 2025 # 452] Pour n ∈ N∗, soit Sn une variable aléatoire suivant la loi binomiale B(n, p).

1. Soient n ∈ N∗ et s ≥ 0. Calculer E(esSn).
2. Montrer que, pour tout réel a,

P
(
Sn
n

≥ a

)
≤ exp

(
−n sup

s>0
(as− ln (pes + (1 − p)))

)
.
c. Montrer qu’il existe une fonction H ∈ C0(R+∗,R+∗) ne dépendant pas de n telle que

∀ε > 0, P
(∣∣∣∣Snn − p

∣∣∣∣ ≥ ε

)
≤ exp(−nH(ε))

.
Exercice 452 [X PC 2025 # 453] Une suite (Yn) de variables aléatoires à valeurs dans N est dite transiente si, pour toute partie
bornée A de N, on a

∑
n∈N P(Yn ∈ A) < +∞.Soient α > 0 et (Xn)n≥1 une suite de variables aléatoires indépendantes telle que,

pour tout i ∈ N∗ on ait Xi ∼ P
(
α
i

)
. On pose Yn = X1 + · · · +Xn. Montrer que (Yn) est transiente.

Exercice 453 [X PC 2025 # 454] Une suite (Sn) de variables aléatoires à valeurs dans N est dite transiente si, pour toute partie
bornée A de N, on a

∑
n∈N P(Sn ∈ A) < +∞. Soit (Xn)n≥1 une suite i.i.d. de variables

aléatoires telle que P(X1 = 1) = p et P(X1 = −1) = 1 − p, avec p ∈]0, 1[. On pose Sn = X1 + · · · + Xn. Montrer que (Sn) est
transiente si et seulement si p ̸= 1/2.
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Exercice 454 [X PC 2025 # 455] Soit (Xk)k≥1 une suite de variables aléatoires i.i.d. telle que P(Xk = 1) = p et

P (Xk = −1) = 1 − p

. On pose Sn =
∑n
k=1 Xk , T = inf{n ∈ N∗, Sn = 1} et fn = P (T = n).

1. Montrer que f1 = p et que ∀n ≥ 2, fn = (1 − p)
∑n
k=0 fk−1fn−k .

2. On pose F : x 7→ E
(
xT 1T<+∞

)
. Montrer que F (x) = px+ (1 − p)F (x)2x.

Exercice 455 [X PC 2025 # 456] On considère un marcheur qui peut se situer sur n sites numérotés de 1 à n. À chaque étape, il a une
probabilité pi,j de sauter du site numéro i au site numéro j.
Pour k ∈ N, on note Xk la variable aléatoire donnant le site occupé par le marcheur à l’étape k et µk,i = P (le marcheur est en i à
l’étape k). L’application µk : i ∈ [[1, n]] 7→ µk,i est la loi de Xk .

1. Donner les lois de X1 et X2 et fonction de µ0 et des pi,j .
2. Pour f : [1, n] → R, donner E(f(X1)).

On pose, pour f ∈ R[1,n], l’application T (f) : [1, n] → R définie par : T (f)(i) = E(f(X1)) lorsque la suite (Xn) vérifie µ0 = 1{i}.
On dit que la marche aléatoire est déterministe si : ∀i ∈ [1, n], ∃ji ∈ [1, n], pi,ji

= 1.
1. Interpréter cette dernière définition.
2. Montrer que la marche est déterministe si et seulement si : ∀(f, g) ∈ (R[1,n])2, T(fg) = T(f)T(g).

Exercice 456 [X PC 2025 # 457] Soit n ≥ 2. On munit Rn de sa structure euclidienne canonique.
Soit X = (X1, . . . , Xn)T un vecteur aléatoire à valeurs dans Rn. On suppose que X est à valeurs dans {V1, . . . , Vm} avec, pour
k ∈ [1,m], P(X = Vk) = pk > 0.

1. On dit que X est centrée lorsque E(X) = 0. Montrer que, si X est centrée, alors rg(V1, . . . , Vm) < m.
2. On dit que X est centrée-réduite lorsque E(X) = 0 et que la matrice de covariance (Cov(Xi, Xj))1≤i,j≤n est égale à In.

Montrer que si X est centrée-réduite alors m ≥ n.
3. On suppose que m = n + 1. Montrer que X est centrée-réduite si et seulement si, pour tous i ̸= i ⟨Vi, Vj⟩ = −1 et pour tout i n

= 1

tous i ̸= j, ⟨Vi, Vj⟩ = −1 et, pour tout i, pi = 1
∥Vi∥2+1 .

VII) De Christophe xens

Exercice 457 [ENS 25, ULSR] Une randonneuse doit choisir un emplacement pour poser sa tente. Elle dispose de N emplacements
distincts numérotés, qu’elle parcourt à partir du premier. Elle ne peut pas revenir en arrière, et lorsqu’elle est au niveau d’un em-
placement, elle peut le comparer aux emplacements qu’elle a déjà vu. On suppose que tous les emplacements ont autant de chance
d’être le meilleur. L’objectif est de s’arrêter au niveau du meilleur emplacement. But de l’exercice : trouver une stratégie maximisant
les chances de réussite.

1. Traiter le cas N = 3.
2. (Question donnée après avoir fini Q1) On considère la stratégie suivante : la randonneuse parcourt les k premiers emplacements

sans s’arrêter, et à partir du k+ 1-ième, elle s’arrête dès qu’elle en trouve un meilleur que les précédents. Quel est le meilleur k
(asymptotiquement) ?

Exercice 458 [ENS 25, SR] Soit M =
(
A C
0 B

)
où A ∈ Mn(C), B ∈ Mk(C) et C ∈ Mn,k(C). On écrit

eM =
(

∗ ΦA,B(C)
∗

)
1. Rappeler la valeur de chacune des étoiles.
2. Montrer que ΦA,B est linéaire.
3. On suppose A,B diagonalisables. Montrer que ΦA,B est diagonalisable.

Exercice 459 [ENS SR 25] Montrer le caractère C∞ sur R2 de la fonction définie par

∀x ̸= y, f(x, y) = ex − ey

x− y
et ∀x, f(x, x) = ex

Exercice 460 [X 2025] Soit α > 0. On définit

z0 = 1 et ∀n ∈ N, zn+1 = αn+ 1
α(n+ 1)zn

1. Montrer que
n∑
i=0

zi ∼ αnzn.

2. Soit (xn) ∈ RN. On note µn = 1
n+ 1

n∑
i=0

xi. On suppose que αxn + (1 − α)µn → x. Montrer que xn → x.
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Exercice 461 [ENS 2025, MPI] Soit E un espace préhilbertien de dimension infinie. Soit K une partie de E non vide, bornée et dont
la frontière est compacte. Montrer que K est d’intérieur vide. Question supplémentaire : et si on remplace l’hypothèse "préhilbertien"
par "normé"?
Exercice 462 [ENS 2025, MPI] Dans S++

n (R), on définit la relation d’ordre strict >: A > B ⇐⇒ A − B ∈ S++
n (R). Montrer que

l’application A 7→ A−1 est décroissante sur S++
n (R).

Exercice 463 [X 2025] Soit d ∈ N∗. On note f : z 7→
∑

k≤d,k∈Z

ckz
k , et on suppose que f est définie sur le complémentaire d’un

disque centré en 0. On suppose également que c1, . . . , cd ∈ Q et qu’il existe une infinité de z ∈ Z tels que f(z) ∈ Z.
1. Montrer que c0 ∈ Q.
2. Montrer que ∀k < 0, ck = 0.
3. Autres questions non abordées.

Exercice 464 [X 2025] Quels sont les entiers n ∈ N∗ tels que cos
( 2π
n

)
∈ Q?

Exercice 465 [ENS SR 2025] Soit n ∈ N∗. On note E = {A ∈ S+
n (R), rg(A) = 1}.

1. Montrer que A ∈ E ⇐⇒ ∃U ∈ Rn \ {0}, A = UUT .
2. Soit a ∈ C0 (R+, E). Montrer que les deux propriétés suivantes sont équivalentes :

• ∃u ∈ C0 (R+,Rn \ {0}) , ∀x > 0, a(x) = u(x)u(x)T

• ∃z ∈ C0 (R+,Rn \ {0}) ,∀x > 0, z(x)Ta(x)z(x) > 0
3. On suppose vraies les propriéts de la question 2. Soient b < c dans R+ et i, j ∈ [1, n]. On suppose que ai,i(x) > 0 et aj,j(x) > 0

pour tout x ∈ [b, c]. Montrer que

∃z ∈ C0 ([b, c],Rn \ {0}) ,

 ∀x ∈ [b, c], z(x)Ta(x)z(x) > 0
z(b) = ei
z(c) = ±ej

Exercice 466 On note A =
{

(an) ∈ RN, ∀n ∈ N, nan+1 = (n+ 1)an
}

.
1. Etudier A.
2. Trouver les solutions sur ]−1,1[ de (H) : x(x− 1)y′′ + 3xy′ + y = 0

Exercice 467 [ENS 2025] Soient α ∈ N∗, ppremier impair. On dit qu’une partie D ⊂ Z/pαZ est f génératrice pour f : Z/pαZ×
Z/pαZ → Z/pαZ si

∀y ∈ Z/pαZ, ∃n ≥ 2, ∃d1, . . . , dn ∈ D, y : f (f (. . . f (d1, d2) , d3) . . . , dn)

1. Avec f : (x, y) 7→ x− y, dénombrer les parties D ⊂ Z/pαZ qui sont f -génératrices et de cardinal minimal.
2. Avec f : (x, y) 7→ xy, montrer qu’il n’existe aucune partie f -génératrice de cardinal 1.
3. Avec f : (x, y) 7→ xy, montrer qu’il existe au moins une partie f -génératrice de cardinal 2. On admettra que le groupe des

inversibles de Z/pαZ est cyclique.

Exercice 468 [ENS25, SR] Pour f, g ∈ E = C0([−1, 1],R), on note (f | g) =
∫ 1

−1 fg.

Pour tout entier naturel n, on pose Ln =
(
X2 − 1

)n et Pn = 1
n!2nL

(n)
n .

1. Rappeler pourquoi (.|.) est un produit scalaire.
2. Montrer que pour tout n, Pn est un polynôme de degré n. Montrer que les Pi sont deux à deux orthogonaux.
3. Montrer que Pn est scindé simple à racines dans ] − 1, 1[.
4. Ecrire Pn sous la forme

∑n
k=0 αk(X − 1)n−k(X + 1). Montrer que (X − 1)nP

(
X+1
X−1

)
est un polynôme.

5. Etudier la rationnalité des racines de Pn
Exercice 469 [X 2025] Soit

∑
(anzn) une série entière de rayon R > 0 et de somme f . Soeint p ∈ N∗ et M ∈ Mp(C) telle que

∀λ ∈ Sp(M), |λ| < R.
1. Montrer que

∑
(anMn) converge.

2. Peut-on trouver une suite (an) telle que le résultat soit vrai pour toute matrice M ∈ Mp(C) telle que ∀λ ∈ Sp(M), |λ| ≤ R.
Exercice 470 [X 2025] On note Bn(R) l’ensemble des matrices M ∈ On(R) telles que det(M) = 1 et −1 /∈ Sp(M). On note

T : M 7→ (In −M) (In +M)−1

1. Montrer que T est bien définie sur An(R) et que T (An(R)) ⊂ Bn(R).
2. Montrer que T (Bn(R)) ⊂ An(R).

3. On prend n = 2. Soit M =
(

0 − tan(θ)
tan(θ) 0

)
avec |θ| < π

2 . Que dire de T (M) et T 2(M)?

Exercice 471 [ENS 2025] On dit qu’une matrice est de Bordaud si ses coefficients diagonaux sont exactement ses valeurs propres
comptées avec multiplicité.
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1. Montrer que A est semblable à une matrice de Bordaud si et seulement si A est trigonalisable dans R.
2. Existe-t-il une matrice symétrique dans C, non diagonalisable, qui est de Bordaud?
3. Caractériser les matrices A qui sont normales, i.e. ATA = AAT , et de Bordaud.

Exercice 472 [ENS 2025] 1. Soit n ∈ N. SoientA,B diagonalisables qui commutent. Montrer queA etB sont codiagonalisables.
2. Soit Φ : S++

n (R) ×On(R) → GLn(R) telle que Φ(H,Q) = HQ. Montrer que Φ est une bijection.
3. Montrer que Φ−1 est continue.

Exercice 473 [X 2025] Trouver deux dés non biaisés tels que la probabilité de la somme soit la même que pour deux dés usuels. Les
valeurs des faces sont des entiers naturels, pas forcément distincts et les dés peuvent être différents.
Exercice 474 Ci-dessous, version alternative du même exercice Soient f, g : R → R deux fonctions telles que :

• Il existe α, β > 0 tels que α+ β > 1 ;
• Il existe A,B > 0 tels que : ∀x, y ∈ R, |f(x) − f(y)| ≤ A|x− y|α, |g(x) − g(y)| ≤ B|x− y|β .

Soit S = {x0, x1, . . . , xn} avec x0 < x1 < · · · < xn, a = x0, b = xn. On définit :

JS(f, g) :=
n−1∑
i=0

f (xi) (g (xi+1) − g (xi))

1. Montrer que : $ |JS(f, g) − f(a)(g(b) − g(a))| ≤ A B|2(b-a)|α+β ζ(α+β)$, où ζ désigne la fonction zêta de Riemann.
2. Montrer qu’il existe une unique valeur I ∈ R telle que :

∀ε > 0, ∃δ > 0, si max
0≤i<n

|xi+1 − xi| < δ ⇒ |JS(f, g) − I| < ε

Exercice 475 Soient f et g deux fonctions définies sur R vérifiant :

∀x, y ∈ [a, b], |f(x) − f(y)| ≤ A|x− y|α
|g(x) − g(y)| ≤ B|x− y|β

Soient a < b et S = (xk) une subdivision de [a, b] de cardinal n. On note :

JS(f, g) =
n−1∑
k=0

f (xk) (g (xk+1) − g (xk))

1. Montrer qu’il existe un indice i entre 1 et n− 1 tel que xi+1 − xi−1 <
2(b−a)
n−1 .

2. Soit un tel i, et S′ = S \ {xi}. Exprimer simplement puis majorer |JS(f, g) − JS′(f, g)|.
3. Montrer que $ |JS(f, g) − f(a)(g(b) − g(a))| ≤ A B(2(b-a))α+β ζ(α+β)$.
4. Montrer qu’il existe un réel I tel que pour tout ε > 0, il existe δ > 0 tel que pour toute subdivision S de [a, b] de pas inférieur

à δ,

|JS(f, g) − I| < ε

Exercice 476 [X 2025] Soit φ : R[X] → R[X] une application linéaire.

1. Montrer qu’il existe une suite de polynômes (gn)n≥0 tels que pour tout P ∈ R[X], on ait : φ(P ) =
+∞∑
n=0

gn · P (n).

2. Déterminer les polynômes gn dans le cas particulier où φ(P )(X) =
∫ X

0
P (t) dt.

Exercice 477 [X 2025] On pose u0 = 1
2 et ∀n, un = un−1(1 − un−1).

1. Etudier la limite de (un).
2. Montrer que un ∼ 1

n .
3. Montrer que 1

un
− n ∼ ln(n).
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