
Exercices 2023

I) ENS MP-MPI xens

1) Algèbre

Exercice 1 [ENS 2023 # 1] SoientS etT des ensembles finis non vides et f une application deS dansT . On poseX =
{
(x, y) ∈ S2, f(x) = f(y)

}
.

Montrer que |X| ≥ max

(
|S|2
|T | ,

(⌈
|S|
|T |

])2

+ |S| −
⌈
|S|
|T |

])
.

Démonstration. Pour le terme de gauche, il s’agit de montrer que
∑

y n
2
y ≥

(∑
y ny

)2∑
y 1 , c’est Cauchy-Schwarz.

Pour le terme de droite, c’est un principe des tiroirs, puis compter pour 1 les éléments qui ne sont pas dans le tiroir.

Exercice 2 [ENS 2023 # 2] Soient n ∈ N∗ et (x1, . . . , xn) ∈ Rn. Montrer qu’il existem ∈ Z et S un sous-ensemble non vide de [[1, n]]
tels que

∣∣m−
∑

i∈S xi
∣∣ ≤ 1

n+1 .

Démonstration. S sera un sous-ensemble d’entiers consécutifs : considérer les sommes partielles S0, . . . , Sn.

Exercice 3 [ENS 2023 # 3] Pour tout n ∈ N∗, on note E(n) la valuation 5-adique de
∏n

k=1 k
k . Donner un équivalent de E(n), quand

n→ +∞. sup

Démonstration. C’est
∑⌊n/5⌋

q=1 5q +
∑⌊n/52⌋

q=1 25q + . . ..

Exercice 4 [ENS 2023 # 5] Soit p un entier premier > 1. Montrer que −1 est un carré modulo p si et seulement si p est somme de
deux carrés d’entiers.

Démonstration. Si p est somme de deux carrés d’entiers, p ≡ 1[4], et a est un carré si et seulement si a
p−1
2 ≡ 1[p].

Réciproquement, si p | m2 + 1. On peut trouver 0 < x, y <
√
p tels que p | m2x2 − y2. On obtient alors p | x2 + y2.

Exercice 5 [ENS 2023 # 6] 1. Soit p un nombre premier impair. Montrer que
(
Z/pZ

)×
contient (p− 1)/2 carrés.

2. Montrer que tout élément de Z/pZ s’écrit comme la somme de deux carrés de Z/pZ.

3. Soit n un entier impair. Montrer que tout élément de
(
Z/nZ

)×
s’écrit comme somme de deux carrés.

Indication : Commencer par le cas où n est sans facteur carré.

Exercice 6 [ENS 2023 # 7] Si n ∈ N∗, on pose Hn =
∑n

k=1
1
k . Si p est un nombre premier et si r ∈ Q∗ s’écrit a

b de manière
irréductible, on définit la p-valuation vp(r) comme vp(a)− vp(b).

1. Montrer que si p ≥ 3 est premier, alors vp(Hp−1) ≥ 1.
2. Montrer que si p ≥ 5 est premier, alors vp(Hp−1) ≥ 2.
3. Montrer que si p ≥ 5 est premier, alors vp(H(p−1)p) ≥ 1.
4. Pour n ∈ N∗, calculer v2(Hn).

Exercice 7 [ENS 2023 # 9] 1. Calculer
∑
d|n

φ(d) où φ est l’indicatrice d’Euler.

2. Calculer
∑
d|n

µ(d) où µ est la fonction de Möbius définie par µ(1) = 1, µ(p) = −1, µ
(
pk
)
= 0 pour k ≥ 2 si p est un nombre

premier et µ(nm) = µ(n)µ(m) si n ∧m = 1. On pose F : x ∈ R+ 7→
∣∣∣{p

q ∈ [0, 1]; q ≤ x
}∣∣∣.

3. Montrer que F (x) =
x→+∞

3
π2x

2 +O(x lnx).

Démonstration. 1.
∑

d|n φ(d) = n

2.
∑

d|n µ(d) = 0, ou 1 pour n = 1.

3. Par inversion de Möbius, on a φ(d) =
∑
d′|d

µ
(

d
d′

)
d′.

Exercice 8 [ENS 2023 # 10] Soient p, q deux nombres premiers distincts. On note vp(n) la valuation p-adique d’un entier n. On pose,
pour m ∈ N∗, N(m) = (1 − q)

(
1− q2

)
. . . (1− qm). Trouver une constante c > 0 telle que, pour tout m ∈ N∗, vp(N(m)) ≤

cm ln(m).

Démonstration. Relier à 423 (LTE).
On a vp(an − bn) = vp(a− b) + vp(n) (pour p ̸= 2).
Donc vp(N(m)) =

∑m
k=1 vp(1− q) + vp(m!), plus formule de Legendre.

Exercice 9 [ENS 2023 # 11] Si X est un ensemble fini, on note X∗ =
⊔

k∈N X
k, c : (X∗)

2 → X∗ la concaténation et ℓ : X∗ → N la
longueur. Soient A et B deux ensembles finis et φ : A∗ → B∗ telle que, pour tous a, a′ ∈ A,φ (c (a, a′)) = c (φ(a), φ (a′)). sup

1. On pose A = {a, b, c, d} et B = {0, 1}. Étudier l’injectivité des applications définies sur les lettres de A puis étendues sur A∗

par φ : A → B∗ telles que φ(a) = 0, φ(b) = 01, φ(c) = 10, φ(d) = 10011, et ψ : A → B∗ telle que ψ(a) = 01, ψ(b) =
10, ψ(c) = 11, ψ(d) = 00.

2. Montrer que, si φ est injective, alors
∑

a∈A |B|−ℓ(φ(a)) ≤ 1.
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Démonstration. 1. La première est non injective : 0100110 peut être lu de deux façons.
La seconde l’est.

2. On note CN le nombre de choix possibles, de mots, dont la longueur totale N .
On doit avoir CN ≤ |B|N . Mais CN vérifie une relation de récurrence : CN =

∑
a∈A CN−ℓ(a.

Donc les racines de cette récurrence doivent être ≤ |B|, ce qui implique qu’en |B| la valeur est négative, d’où le résultat.

Exercice 10 [ENS 2023 # 12] 1. Soit n ∈ N∗. Montrer que la transposition (1 2) et le cycle
(
1 2 · · · n

)
engendrent le

groupe symétrique Sn.
2. La transposition (1 3) et le cycle (1 2 3 4) engendrent-ils S4 ?
3. Soient n ∈ N∗ et 1 ≤ a < b ≤ n tels que τ = (ab) et σ =

(
1 2 · · · n

)
engendrent Sn. Montrer que b − a et n sont

premiers entre eux.
4. Montrer la réciproque de la propriété précédente. sup

Démonstration. 1.
2. Non.
3. Si p | b− a ∧ n, alors σ(a)− σ(b) ≡ a− b[p].
4. Facile de se ramener à un cycle (uu+ 1)

Exercice 11 [ENS 2023 # 14] Soit G un groupe fini. Si X et Y sont des parties non vides de G, on pose X−1 =
{
x−1, x ∈ X

}
et

XY = {xy, (x, y) ∈ X × Y }. sup

Dans la suite, X désigne une partie non vide de G.

1. On suppose que |XX| < 2|X|. Montrer que XX−1 = X−1X .
2. On suppose que

∣∣XX−1
∣∣ < 3

2 |X|. Montrer que X−1X est un sous-groupe de G.

Démonstration. 1. Si X a un seul élément, ok. Sinon, alors pour tous a, b ∈ X , les ensembles aX et bX ne sont pas disjoints, donc
il existe u, v tels que au = bv ⇔ a−1b = uv−1. D’où le résultat.

2. X−1X contient l’élément neutre, et stable par inverse.
Si ce n’est pas un sous-groupe, c’est qu’il existe u−1va−1b qui ne s’écrit pas de cette forme.
! !
Quitte à translater, on peut supposer que e ∈ X . Alors XX−1 contient tous les éléments de X , et leurs inverses. Au moins la
moitié des éléments de X ont leurs inverses dans X !

Exercice 12 [ENS 2023 # 15] Soient A un anneau et B ⊂ A finie non vide. On note E(B) =
∣∣{(a, b, c, d) ∈ B4 | ab = cd}

∣∣. Montrer

que E(B) ≥ |B|4
|BB| . sup

Démonstration. On note xi le nombre de couples qui donnent une valeur i ∈ A. Alors E(B) =
∑
x2i , et |BB| =

∑
i 1. Cauchy-

Schwarz permet de minorer par (supxi)2, d’où le résultat.

Exercice 13 [ENS 2023 # 16] 1. Montrer que S =

(
0 −1
1 0

)
et T =

(
1 1
0 1

)
engendrent SL2(Z).

2. Soit m ≥ 2. Montrer que le morphisme π : SL2(Z) → SL2(Z/mZ) est surjectif. sup

Démonstration. Easy

Exercice 14 [ENS 2023 # 17] Soit p un nombre premier. On admet qu’il existe un anneau commutatif A dans lequel p2.1A = 0A et il
existe un élément inversible x tel que :

• tout élément de A s’écrive P (x)x−k pour un P ∈ Z[X] et un k ∈ N ;
• pour deux polynômes P,Q dans Z[X] et deux entiers naturels k, l, l’égalité P (x)x−k = Q(x)x−ℓ équivaut à ce que XkQ et
XℓP aient même réduit modulo p2 (autrement dit, tous les coefficients de XkQ−XℓP sont des multiples de p2).

1. Soient P ∈ Z[X] et k ∈ N. Caractériser l’inversibilité de P (x)x−k dans A.
2. Montrer que le groupe multiplicatif A× ne possède pas de partie génératrice finie.

Démonstration. ! !

Exercice 15 [ENS 2023 # 18] Soit f ∈ Z[X]. On pose Sq =
∑

0≤a<q
a∧q=1

q−1∑
n=0

e
2iπaf(n)

q pour tout q ∈ N∗. Montrer que, si q ∧ q′ = 1, alors

Sqq′ = SqSq′ .

Démonstration. Les a ∈ [[1, qq′]] premiers avec q et q′ sont les bq + aq′, avec a premier avec q et b premier avec q′.

Exercice 16 [ENS 2023 # 19] On dit qu’un ensemble X ⊂ C est intégrable si : ∀(x, y) ∈ X2, |x − y| ∈ N. Montrer que, pour tout
n ∈ N, il existe un ensemble intégrable X composé de n points tous sur un même cercle. sup

Démonstration. On veut que les sin( θi−θj
2 ) soient rationnels, c’est-à-dire les sin θi

2 cos
θj
2 − sin

θj
2 cos θi

2 .
Il suffit donc de prendre les doubles d’une infinité de points rationnels sur le cercle.
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Exercice 17 [ENS 2023 # 20] Anneau des entiers algébriques Soit z ∈ C annulé par un polynôme unitaire à coefficients entiers.
Soit Q ∈ Z[X]. Montrer que Q(z) est annulé par un polynôme unitaire à coefficients entiers. sup

Démonstration. On note P le polynôme unitaire qui annule z (polynôme minimal, via lemme de Gauss).
Pour z2, je vois mal quoi faire, si ce n’est P =

∏
(X − x2i ).

Par dimension, on sait que Q(z) admet un polynôme annulateur dans Q[X].
! !

Exercice 18 [ENS 2023 # 21] Soit n = 2m + 1 ≥ 1 un entier impair. Expliciter un polynôme Pm de degré 2m tel que ∀x ∈
R \ Z, sin(nx) = (sinx)nPm(cotanx).

1. Donner une expression simplifiée de
∑m

k=1 cotan
2
(
kπ
n

)
.

2. Donner une expression simplifiée de
∑m

k=1
1

sin2( kπ
n )

.

3. En déduire que
∑+∞

k=1
1
k2 = π2

6 .

Démonstration. Easy.

Exercice 19 [ENS 2023 # 22] Pour n ∈ N, on pose Pn =
∑n

k=0
Xk

k! . sup

1. Montrer que Pn est scindé à racines simples sur C.
2. Montrer que si n est impair, alors Pn possède exactement une racine réelle, et qu’elle appartient à [−n,−1].
3. On suppose n pair. Le polynôme Pn a-t-il une racine réelle ?
4. Déterminer les variations et la convexité de x 7→ Pn(x).

Démonstration. Easy.

Exercice 20 [ENS 2023 # 23] Soit P ∈ R[X] de degré n ≥ 1.

1. On suppose P scindé sur R. Montrer que ∀x ∈ R, nP (x)P ′′(x) ≤ (n− 1)P ′(x)2.
2. Donner un polynôme ne vérifiant pas le résultat de la question précédente, puis un polynôme non scindé le vérifiant.

Démonstration. 1.
2. Ajouter à un précédent.

Exercice 21 [ENS 2023 # 24] Soit n ∈ N∗, P = Xn +
∑n−1

k=0 akX
k ∈ C[X]. On factorise P sous la forme P =

∏n
i=1(X − zi). Pour

k ∈ N, on note Sk =
∑n

i=1 z
k
i . Montrer que, si k > n, Sk + an−1Sk−1 + · · ·+ a0Sk−n = 0 et que, si k ≤ n, Sk + an−1Sk−1 + · · ·+

an−k+1S1 = −kan−k . sup

Exercice 22 [ENS 2023 # 25] Une suite d’entiers (an)n≥1 est un pseudo-polynôme si pour tous n,m ∈ N∗, m− n | am − an. sup

1. Soit P ∈ Z[X]. Montrer que
(
P (n)

)
n≥1

est un pseudo-polynôme.

2. Montrer que
(
⌊n!e⌋

)
n≥1

est un pseudo-polynôme.

3. Trouver un polynôme P ∈ Q[X] \ Z[X] tel que P (Z) ⊂ Z et que la suite
(
P (n)

)
n≥1

ne soit pas un pseudo-polynôme.

Démonstration. 1.
2.
3. n(n+1)

2

Exercice 23 [ENS 2023 # 26] Montrer que, pour tout n ∈ N, il existe (a0, . . . , an) ∈ (R+∗)
n+1 tel que, pour tout (ε0, . . . , εn) ∈

{−1, 1}n+1, le polynôme P (X) =
∑n

k=0 εkakX
k est scindé sur R.

Démonstration. Easy, à relier.

Exercice 24 [ENS 2023 # 27] Deux polynômes P,Q ∈ R[X] sont entrelacées si

• −P et Q sont scindés à racines simples sur R,
• P et Q n’ont aucune racine réelle commune,
• entre deux racines consécutives de P (respectivement Q) il y a une unique racine de Q (respectivement P ).

Soient P,Q ∈ R[X]. Montrer que si, pour tout λ, µ ∈ R∗, λP + µQ est scindé à racines simples sur R, alors P et Q sont entrelacés.

Démonstration. À relier.

Exercice 25 [ENS 2023 # 28] Soit P ∈ C[X] de degré n > 0 tel que P (0) = 0 et P ′(0) = 1. On note Dr le disque complexe ouvert
de centre 0 et de rayon r. Montrer que D1/n ⊂ P (D1). sup

Démonstration. X +X2Q(X)− zi = 0 avec |zi| < 1
n admet toujours une racine, < 1.

Vient des relations coefficients-racines.

Exercice 26 [ENS 2023 # 29] Pour P ∈ R[X], on note CQ = {Q ∈ R[X] | P ◦Q = Q ◦ P}. sup

On appelle suite commutante toute famille (Pn)n∈N telle que ∀n, degPn = n et ∀n,m ∈ N, Pn ◦ Pm = Pm ◦ Pn.

1. Soient α ∈ R et n ∈ N. Montrer que C(X2 + α) contient au plus un polynôme.
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2. Expliciter une famille commutante telle que P2 = X2.
3. Montrer que, pour n ∈ N, il existe Tn ∈ R[X] tel que ∀x ∈ R, cosh(nx) = Tn(coshx).
4. Montrer que (Tn)n∈N est une suite commutante.
5. Montrer que les polynômes de degré 1 sont inversibles pour ◦.
6. Montrer que, pour P de degré 2, il existe α ∈ R et U ∈ R[X] de degré 1 unitaire tel que P = U ◦ (X2 + α) ◦ U−1.
7. Soit (Pn)n∈N une famille commutante. Montrer que, ou bien il existe U de degré 1 tel que Pn = U ◦Xn ◦U−1, ou bien il existe
U ∈ R[X] de degré 1 tel que Pn = U ◦ Tn ◦ U−1.

Exercice 27 [ENS 2023 # 31] • CNS sur n pour que Z/nZ soit un corps.
• On suppose cette condition satisfaite. Combien y a-t-il de polynômes de degré d ∈ N fixé dans Z/nZ?
• Soit p premier. Montrer qu’il existe des polynômes irréductibles de degré 2 et 3 dans Z/pZ.

Démonstration. •
•
• Compter les multiples.

Exercice 28 [ENS 2023 # 32] Soit n ∈ N∗, K un corps, et V un sous-espace vectoriel de Mn(K) dont tous les éléments sont de rang
≤ 1. Montrer que V est de dimension ≤ n. Étudier le cas d’égalité.

Exercice 29 [ENS 2023 # 33] Quelle est la dimension maximale d’un sous-espace vectorielV deMn(R) tel que pour tout (X,Y ) ∈ V 2,
on ait Tr(XY ) = 0.

Démonstration. On a X⊥XT , donc la dimension de X est ≤ n2

2 .
Réciproquement. Dans Mn(C), on prend une diagonale, où le second coefficient est i× le premier etc.

Dans M2(C) :
(
a b
0 ia

)
. On cherche une forme réelle : ia = a donne u + π

2 = −u, c’est-à-dire u = −π
4 . Donc

(
1 −1
1 1

)
et idk, il

faudrait écrire les équations pour l’autre matrice.

Exercice 30 [ENS 2023 # 35] Soient A,B ∈ Mn(R) de même rang telles que A2B = A. Montrer que B2A = B. sup

Démonstration. En passant à la transposée, on veut montrer que (B′A′ − In)A
′ = On ⇒ (A′B′ − In)B

′ = On.
Mais la première relation donne que si X ∈ ImA′, alors B′A′X = X . Donc ImB′ = ImA′, et leurs induits sont inverses l’un de
l’autre.

Exercice 31 [ENS 2023 # 38] Soient n ≥ 1 et E une partie de P([[1, n]]). sup

1. On suppose que E est stable par différence symétrique. Que dire de C = {1A} comme partie de l’espace vectoriel
(
Z/2Z

)n
?

2. On ne fait plus l’hypothèse précédente, mais on suppose que A ∩ B est de cardinal pair pour tous A,B ∈ E. Montrer que
|E| ≤ 2⌊n/2⌋.

Démonstration. 1. C’est un sous-espace vectoriel.
2. D’une part les cardinaux des éléments sont pairs. D’autre part les cardinaux des réunions aussi.

On vérifie que si A,B,C ∈ E, alors (A∆B) ∩ C est pair. Donc on peut supposer que E est stable par ∆.
Chaque A ∈ E donne un élément du dual Ã : B 7→ A ∩B, ce qui limite la dimension de E.

Exercice 32 [ENS 2023 # 39] Soient (a1, . . . , an) ∈ Rn telle que |ai| ≥ 2, pour tout i ∈ [[1, n]]. sup

1. Soit A ∈ Mn(R) telle que ∀i, aii = ai, aij = 1 si |i − j| = 1 et aij = 0 sinon. Montrer que A est inversible et que son
déterminant a le même signe que

∏
ak .

2. Montrer que la conclusion tient encore si l’on suppose |aij | ≤ 1 si |i− j| = 1 au lieu de aij = 1.

Démonstration. 1. A est inversible car diagonale dominante.
Le signe du déterminant s’obtient en augmentant les coefficients, ou plutôt en diminuant les autres.
Par récurrence? On a ∆n = an∆n−1 −∆n−2 On montre que |∆n| > |∆n−1| + le signe, ça passe par récurrence.

2. . . . C’est clair.

Exercice 33 [ENS 2023 # 40] On considère φ :
(
R4

)2 → M4(R) qui à (u, v) associe la matrice dont le coefficient en (i, j) vaut∣∣∣∣ ui vi
uj vj

∣∣∣∣. sup

1. Que peut-on dire si φ(u, v) = φ (u′, v′) ̸= 0?
2. Que dire de la réciproque?
3. Montrer que A s’écrit comme φ(u, v) avec (u, v) libre si et seulement si A ∈ A4(R), det(A) = 0 et A ̸= 0.
4. Décrire l’image et le noyau d’une telle matrice.

Démonstration. 1.
2.
3.
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4.

Exercice 34 [ENS 2023 # 41] Soient a, b,m, p des entiers naturels tels que a2 + b2 − pm = −1. On pose A =

(
p a+ ib

a− ib m

)
.

Montrer qu’il existe B ∈ GL2(Q(i)) telle que A = B∗B où B∗ = B̄T . Même question avec B dans GL2(Z[i]).

Démonstration. On a une matrice hermitienne, de déterminant 1. Donc diagonalisable? ! !

Exercice 35 [ENS 2023 # 42] Soient n ∈ N∗, φ1, . . . , φn des formes linéaires non nulles sur R2. Pour g ∈ SL2(R), soit fg :
(x1, . . . , xn) ∈

(
R2

)n 7→ φ1 (g (x1)) × · · · × φn (g (xn)), application de
(
R2

)n
dans R. Montrer l’équivalence entre les proposi-

tions suivantes :

• il existe une suite (gk)k≥1 d’éléments de SL2(R) telle que, pour tous vecteurs x1, . . . , xn de R2, fgk (x1, . . . , xn) −→
k→+∞

0,

• il existe une droite vectorielle L telle que |{i | L ⊂ Ker (φi)}| > n
2 .

Démonstration. Si il existe une droite L, en prenant gk =

(
k 0
0 k−1

)
selon L et n’importe quel supplémentaire, ça devrait être bon.

Réciproquement, par décomposition polaire, on peut écrire gk = OkDkO
′
k , et supposer que Ok → O∞ et O′

k → O′
∞, et Dk =(

λk 0
0 λ−1

k

)
, avec λk ≥ 1.

On prend alors eL = O∞e1. En effet, pour x = O′−1
∞ (e1 + y), on a gkx = Ok((λk + o+∞(λk))e1 + (λ−1

k + o+∞(λ−1
k ))e2), donc,

pour que ça tende vers 0, il faut que φ(Oke1) → 0, au moins un.
En fait, les m facteurs pour lesquels φ(O∞e1) ̸= 0 contribuent (en termes d’équivalent) λmk .
Lemme : Si gk est une suite, et φ est fixée, il existe une extraction, et un vecteur x tel que φ(gk(x)) soit au moins de l’ordre de
λ−1
k . Démonstration : Sinon, c’est que φ(gk(x)) = o(λ−1

k ), pour tout x. Prendre une BON (e1, e2) avec e1 dans le noyau de φ. Les
coordonnées de gk sont de taille au plus λk donc l’un de gk(e1), gk(e2) doit avoir une coordonnée en bas pas trop petite.
On applique ça aux éléments qui ont L dans leur noyau, et eL pour les autres.

Exercice 36 [ENS 2023 # 43] Soit G l’ensemble des matrices de GL2(Z) de la forme
(
a b
c d

)
, où ad− bc = 1 et a ≡ d ≡ 1− c ≡

1 mod 3. Montrer que G est le sous-groupe de GL2(Z) engendré par les matrices
(

1 1
0 1

)
et

(
1 0
3 1

)
Démonstration. Facile ? Attention : faux pour 2.

Exercice 37 [ENS 2023 # 45] Soit A ∈ Mn(C) et CA : X ∈ Mn(C) 7→ AX −XA. Montrer que si la matrice A est diagonalisable,
alors CA l’est aussi.

Démonstration. Calculer les puissances de CA.

Exercice 38 [ENS 2023 # 46] Soient A et B deux matrices de GL2(R). On suppose que ABA−1B−1 commute avec A et B. Montrer
que BA = ±AB.

Démonstration. ⇐ Ok.
Si ABA−1B−1 commute avec un Vect de dimension 2. Si AB = λBA, c’est bon. Sinon, alors le commutant de ABA−1B−1 est
Vect(In, C), donc B = λA+ µIn, puis faire de la réduction.

Exercice 39 [ENS 2023 # 47] Soit A ∈ Mn(C) et λ1, . . . , λr les valeurs propres distinctes de A et α1, . . . , αr leurs multiplicités. On
note Pk = (X − λk)

αk et Fk = KerPk(A).

1. Montrer que Cn =
⊕r

i=1 Fi.
2. Montrer que Pk est le polynôme caractéristique de l’endomorphisme induit par A sur Fk .
3. Montrer que A se décompose en D +N , avec D diagonalisable, N nilpotente et ND = DN .

Démonstration. Easy.

Exercice 40 [ENS 2023 # 48] Soient A ∈ Mn(C) et m la multiplicité de 0 dans χA. On suppose que m ≥ 1. Montrer l’équivalence
entre

• KerA = KerA2.
• il existe M ∈ Mn(C) telle que Mm = A.
• pour tout k ≥ 1, il existe M ∈ Mn(C) telle que Mk = A.

Démonstration. (iii) ⇒ (ii)

(iii) ⇒ (i) est simple, via les noyaux itérés.
(i) ⇒ (iii) : Décomposition des noyaux, on est ramené au cas A inversible. ! !

Exercice 41 [ENS 2023 # 49] Soit M ∈ GLn(Z) dont toutes les valeurs propres sont de module ≤ 1. Montrer qu’il existe k ≥ 1 tel
que Mk − In soit nilpotente.

Démonstration. Il s’agit exactement de montrer que les valeurs propres de M sont des racines de l’unité.
Les TrMk prennent un nombre fini de valeurs, et par co-approximations, on peut tendre vers 1, donc c’est gagné.
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Exercice 42 [ENS 2023 # 51] Soit n ≥ 1. Pour σ ∈ Sn, on note Pσ =
(
δi,σ(j)

)
i,j

la matrice de permutation associée. On note A
l’ensemble des fonctions polynomiales f : Mn(C) → C telles que ∀A,P ∈ Mn(C) × GLn(C), f(PAP−1) = f(A). On note B
l’ensemble des fonctions polynomiales f : Dn(C) → C telles que f(PσDP

−1
σ ) = f(D). Expliciter un isomorphisme d’algèbres de A

sur B.

Démonstration. B est l’ensemble des polynômes symétriques. On a une application A → B.
Elle est injective : si l’on coïncide sur les matrices diagonales, on coïncide sur les diagonalisables, donc par densité, sur Mn(R).
Elle est surjective : Si f est donné sur lesDn, on montre que f est entièrement déterminée parσ1, . . . , σn. Par ailleurs, f est polynomiale
en les σi (il faut travailler. . .).
Puis on peut définir f sur Mn(C), en prenant l’image des coefficients du polynôme caractéristique.

Exercice 43 Décomposition de Jordan [ENS 2023 # 52] Soient E un K-espace vectoriel non nul de dimension finie, f ∈ L(E)
nilpotent d’indice m,x ∈ E tel que fm−1(x) ̸= 0.

1. Montrer que la famille
(
fk(x)

)
0≤k≤m−1

est libre. On note V le sous-espace de E engendré par cette famille.

2. Soit φ ∈ E∗ telle que φ(fm−1(x)) ̸= 0,W le sous-espace de E∗ engendré par (φ ◦ f i)0≤i≤m−1,W
⊥ l’ensemble des y ∈ E tels

que ∀ψ ∈W⊥, ψ(y) = 0. Montrer que W⊥ est un supplémentaire de V dans E stable par f .
3. Montrer qu’il existe une base de E dans laquelle la matrice de f soit diagonale par blocs, les blocs diagonaux étant de la forme
Jk avec k ∈ N∗, où Jk ∈ Mk(K) est une matrice dont tous les coefficients sont nuls en dehors de ceux de la sur-diagonale qui
sont égaux à 1.

Démonstration.

Exercice 44 [ENS 2023 # 53] Soit E un K-ev de dimension n ≥ 1. Un élément u ∈ L(E) est dit cyclique s’il existe x ∈ E tel que
(uk(x))0≤k≤n−1 soit une base de E.

1. Quels sont les endomorphismes de E diagonalisables et cycliques?
2. Montrer que si u est cyclique, le commutant de u est égale à K[u].
3. Montrer que si u ∈ L(E), il existe r ∈ N∗ et des sous-espaces E1, . . . , Er de E stables par u tels que E =

⊕r
i=1Ei et que,

pour tout i, uEi
soit cyclique.

Démonstration. Ok.

Exercice 45 [ENS 2023 # 54] Soient r ∈ N∗, d1, . . . , dr des entiers supérieurs ou égaux à 2 tels que d1 |d2| . . . | dr . Déterminer le
plus petit n ∈ N∗ tel que GLn(C) contienne un sous-groupe isomorphe à Z/d1Z × · · · × Z/drZ.

Démonstration. n = r convient. Réciproquement, si G contient un tel groupe, on peut codiagonaliser.

Exercice 46 [ENS 2023 # 55] Le groupe GL2(Q) contient-il un élément d’ordre 5?

Démonstration. Montrer qu’une racine 5-ème de l’unité n’a pas de polynôme annulateur sur Q de degré 2, c’est-à-dire que 1+ · · ·+X4

est irréductible.

Exercice 47 [ENS 2023 # 56] On note H l’ensemble des matrices de M2(R) de trace nulle.

1. Montrer que ∀M ∈ H, eM ∈ SL2(R).
2. Montrer que ∀M ∈ H, Tr eM ≥ −2.
3. A-t-on exp(H) = SL2(R)?
4. Montrer que toute matrice deSL2(R) est produit d’une matrice deSO2(R) et d’une matrice triangulaire supérieure à coefficients

diagonaux > 0.
5. En déduire que toute matrice de SL2(R) est produit de deux exponentielles de matrices de H .

Démonstration. 1.
2. C’est eiθ+e−iθ

2

3. Non, cf question précédente.
4. Partir d’une matrice de SL2, et faire le produit.
5. Antisymétrique + triangulaire.

Exercice 48 [ENS 2023 # 57] Soient E un espace vectoriel réel de dimension finie, h1 et h2 deux éléments de L(E). On suppose qu’il
existe une norme sur E pour laquelle h1 et h2 sont des isométries et que [h1, h2] = h1h2h

−1
1 h−1

2 commute avec h1 et h2. Montrer
que l’espace des vecteurs de E fixes par h1 et h2 admet un supplémentaire dans E stable par h1 et h2.

Démonstration. On peut supposer que l’ensemble F des points fixes est de dimension 1. Donc est le noyau d’une forme linéaire φ.
Notons C le commutateur. On a Ch2 = h1h2h

−1
1 .

Si h1 et h2 commutent.
Si h1 = h2. ! !

Exercice 49 [ENS 2023 # 58] Soit A ∈ Mn(C) et λ1, . . . , λn ses valeurs propres.

1. Montrer que
∑

|λi|2 ≤
∑

i,j |aij |2.

2. Montrer que |detA| ≤ nn/2 sup |aij |.
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Démonstration. 1. ! !
2. IAG probablement.

Exercice 50 [ENS 2023 # 59] Soient (E, ⟨⟩) un espace euclidien, m ∈ N∗, u1, . . . , um, v1, . . . , vm des vecteurs de E tels que,
pour tout (i, j) ∈ [[1,m]]

2
, ⟨ui, vj⟩ = δi,j . On note p le projecteur orthogonal de E sur Vect (u1, . . . , um). Montrer que ∀x ∈

E,
∑n

i=1 ⟨ui, x⟩ ⟨x, p (vi)⟩ = ∥p(x)∥2.

Démonstration. Easy, on a ⟨x, p(vi)⟩ = ⟨p(x), vi⟩ = ⟨ui, x⟩.

Exercice 51 [ENS 2023 # 60] On munit R[X] du produit scalaire (P,Q) 7→ ⟨P,Q⟩ =
∫ +∞
0

P (t)Q(t)e−t dt. On poseF = Vect (X,X2, . . . , Xn)
et on note Q la projection orthogonale de 1 sur F .
On écrit Q = −

∑n
k=1 akX

k et P = 1 +
∑n

k=1 ak(X + 1) . . . (X + k).

• Déterminer
〈
Q− 1, Xk

〉
pour k ∈ [[1, n]] et montrer que P (k) = 0 pour k ∈ [[1, n]].

• Calculer inf(a1,...,an)∈Rn

∫ +∞
0

(1 + a1x+ · · ·+ anx
n)2e−x dx.

Démonstration. 1. Cela vaut 0. Découle des relations intégrales.
2. Cela vaut ⟨1−Q, 1−Q⟩ = ⟨1−Q, 1⟩ =

∫
(1 +

∑
aix

i)e−x dx. C’est une fonction des ai, et la question 1 permet de conclure,
peut-être.

Exercice 52 [ENS 2023 # 61] Soient (E, ⟨⟩) un espace euclidien, m ∈ N∗ et u, u1, . . . , um des vecteurs de E. Montrer que u ∈
R+u1 + · · ·+ R+um si et seulement si pour tout x ∈ E, {x ∈ E;∀i ∈ [[1,m]], ⟨ui, x⟩ ≤ 0} ⊂ {x ∈ E; ⟨u, x⟩ ≤ 0}.

Démonstration. ⇒ : Easy.
⇐ : Si les vecteurs ui sont libres, on peut prendre un élément x orthogonal à tous sauf 1.
Sinon, si um est combinaison linéaire des précédents, avec un coefficient < 0. ! !

Exercice 53 [ENS 2023 # 62] Montrer que, si M ∈ GLn(R), M s’écrit d’une unique façon QR avec Q ∈ On(R) et R ∈ Mn(R)
triangulaire supérieure a termes diagonaux dans R+∗.

Démonstration. C’est GS.

Exercice 54 [ENS 2023 # 63] [Rennes sur dossier] Soit M ∈ Mn(R) une matrice antisymétrique et inversible.

• Que peut-on dire de l’entier n?
• En considérantM2, montrer queM admet un plan stable puis qu’il existe une matrice orthogonaleO ∈ On(R) telle queOTMO

soit une matrice diagonale par blocs de la forme diag(Ra1
, ..., Rak

), avec Ra =

(
0 −a
a 0

)
.

• Qu’en est-il si M n’est plus supposée inversible ?

Démonstration. 1. pair.
2. M2 est symétrique donc diagonalisable. Alors si X est valeur propre, X,MX est stable.
3. On rajoute le noyau.

Exercice 55 [ENS 2023 # 64] Soit n ≥ 1. Déterminer les matrices A dans Mn(R) telles que A+Ak = AT pour tout entier k ≥ n.

Démonstration. On a A et AT cotrigonalisable, donc λ 7→ λ+ λk est une bijection sur les valeurs propres. La seule possibilité est que
A soit nilpotente, donc symétrique.

Exercice 56 [ENS 2023 # 65] SoientA ∈ On(R) etM une matrice de réflexion dans On+1(R). On poseA′ =M

(
1 0
0 A

)
. Calculer

χA′(1) en fonction de la première colonne de M et de χA.

Démonstration. χA′(1) = det(In+1 −M

(
1 0
0 A

)
). ! !

Exercice 57 [ENS 2023 # 66] Soit A ∈ Sn(R) ayant n valeurs propres distinctes. Soit v ∈ Rn. On suppose que A et A + vvT n’ont
pas de valeur propre commune. Sous reserve d’existence, on pose F (x) = 1 + vT (A− xIn)

−1v pour x réel.

• Montrer que les zeros de F sont les valeurs propres de A+ vvT .
• On note λ1 < · · · < λn les valeurs propres de A. Montrer que chaque intervalle ]λ1, λ2[,. . ., ]λn−1, λn[, ]λn,+∞[ contient

exactement une valeur propre de A+ vvT .

Démonstration. ! !

Exercice 58 [ENS 2023 # 67] Soient n ∈ N impair,M ∈ Mn(R) telle que, pour touteA ∈ An(R),A+M soit non inversible. Montrer
que M ∈ An(R).

Démonstration. Par récurrence. On considère une matriceA =

 0 h 0
−h 0 0
0 0 A′

, avec h petit etA′ fixé. Le terme en h2 est h2 det(M ′+

A′).

Exercice 59 [ENS 2023 # 68] Soient A,B deux matrices de On(R) qui n’ont pas -1 pour valeur propre et telles que AB n’ait pas 1
pour valeur propre. Montrer que (A− In) (BA− In)

−1
(B − In) est antisymétrique.
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Démonstration. Classique

Exercice 60 [ENS 2023 # 69] Soit n ∈ N∗. On pose J =

(
0n −In
In 0n

)
.

• Déterminer les valeurs propres de J et leur multiplicité.
• Soit A ∈ S++

n (R). Montrer qu’il existe une matrice B ∈ S++
n (R) telle que B2 = A.

• Que peut-on dire de la matrice BJB ?
• Lorsque A est diagonale, calculer les valeurs propres de JA.
• Montrer plus généralement que toute valeur propre d’une matrice antisymétrique réelle est imaginaire pure.

Exercice 61 [ENS 2023 # 70] Soit A ∈ Sn(R). On note λ1 ≤ · · · ≤ λn les valeurs propres de A non nécessairement distinctes.
Montrer que ∀k ∈ [[1, n]],

∑k
i=1 λi ≤

∑k
i=1 ai,i ≤

∑k
i=1 λn+1−i.

Démonstration. ! !

Exercice 62 [ENS 2023 # 71] 1. SoientA ∈ S++
n (R) etB ∈ S+

n (R)Montrer queAB est diagonalisable à valeurs propres positives
ou nulles.

2. Soient A,B ∈ S++
n (R). On pose fA,B : X ∈ S++

n (R) 7→ Tr(AX) + Tr
(
BX−1

)
. Montrer que fA,B admet un minimum µA,B

atteint en une unique matrice MA,B . Expliciter µA,B et MA,B .

Démonstration.

Exercice 63 [ENS 2023 # 72] Soit A ∈ Sn(R). On définit p(A) comme la dimension maximale d’un sous-espace V sur lequel ∀x ∈
V \ {0}, ⟨Ax, x⟩ > 0. On définit de meme q(A) avec la condition ⟨Ax, x⟩ < 0.

• Montrer que p(A) + q(A) = rgA.
• Montrer que, si A est inversible, alors p et q sont constantes sur un voisinage de A dans Sn(R).
• Soit B ∈ Sn(R), on suppose que f : t 7→ det(A + tB) n’a que des racines simples sur R. Montrer que f admet au moins
|p(B)− q(B)| racines dans R.

Exercice 64 [ENS 2023 # 73] On note λ1(M) ≤ · · · ≤ λn(M) le spectre ordonne d’une matrice S de Sn(R).

• Soient A et B dans Sn(R) telles que A+B ∈ S+
n (R). Si 1 ≤ i, j ≤ n et i+ j ≥ n+ 1, que dire du signe de λi(A) + λj(B)

Soient a ≤ b deux réels, et (O − i ∈ I une famille d’ouverts de R telle que [a, b] ⊂
⋃

i∈I Oi. On note X l’ensemble des x ∈ [a, b] tels
qu’il existe une partie finie J ⊂ I vérifiant [a, x] ⊂

⋃
j∈J Oj . Montrer que X = [a, b].

Exercice 65 [ENS 2023 # 74] Pour M ∈ Sn(R), on note λ1(M) ≤ · · · ≤ λn(M) le spectre ordonné de M .

1. On considère A,B ∈ Sn(R) telles que A+B ∈ S−−
n (R). Montrer que, si i+ j < n+ 2 alors λi(A) + λj(B) < 0.

2. Généraliser à A1, . . . , Ad ∈ Sn(R) telles que A1 + · · ·+Ad ∈ S−−
n (R). telle que B = PTAP .

Démonstration.

Exercice 66 [ENS 2023 # 75] On note ∥·∥ la norme d’opérateur sur Mn(R) associée à la norme euclidienne. Soit S ∈ Sn. On suppose
que E = {M ∈ Mn(R) | S =MTM −MMT } est non vide. On note γ(S) = infM∈E ∥M∥2. Montrer que ∥S∥ ≤ γ(S) ≤ 2 ∥S∥.

Exercice 67 [ENS 2023 # 76] 1. Soient A,B ∈ S++
n . Montrer qu’il existe P ∈ GLn(R) telle que B = PTAP .

2. Soit f une fonction de R+∗ dans R. Proposer une définition naturelle de f(A) si A ∈ S++
n (R).

3. Pour A et B dans S++
n (R), on pose d(A,B) =

∥∥∥ln(√A−1B
√
A−1

)∥∥∥. Justifier la définition, et montrer que d est une distance

surS++
n (R).

4. Soient P ∈ GLn(R), A,B ∈ S++
n (R). Montrer que d

(
PTAP,PTBP

)
= d(A,B).

Démonstration.

Exercice 68 [ENS 2023 # 77] Soit n ∈ N∗.

1. Montrer que (X,Y ) 7→ TrXTY est un produit scalaire sur Mn(R). On note ∥·∥ la norme associée.
2. Si M ∈ Mn(R), soit L(M) : X ∈ Mn(R) 7→MX . Montrer que L est un morphisme d’algèbre injectif.
3. Soit ∥| · |∥2 la norme sur Mn(R) subordonnée à la norme euclidienne de Rn, et ∥| · |∥ la norme sur L(Mn(R)) subordonnée à

∥·∥. Si M ∈ Mn(R), montrer que ∥|L(M)|∥ ≤ ∥|M |∥2.
4. Montrer que

∥∥|MT |
∥∥
2
= ∥|M |∥2 pour tout M ∈ Mn(R).

Exercice 69 [ENS 2023 # 78] On note ∥·∥ la norme d’opérateur sur Mn(C) associée à la norme X 7→
√
X̄TX .

1. Soient A,B dans Sn(R). Montrer que
∥∥eiA − eiB

∥∥ ≤ ∥A−B∥.
2. Démontrer le même résultat sous l’hypothèse que A et B sont deux matrices de Mn(C) telles que ĀT = A et B̄T = B.

Démonstration.
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2) Analyse

Exercice 70 [ENS 2023 # 79] Soit p > 1. On pose, pour x ∈ Rn,
∥∥∥x = (

∑n
i=1 |xi|p)

1/p .

1. Montrer qu’il s’agit bien d’une norme.
2. Montrer l’inégalité de Hölder.
3. Dans R2, dessiner la boule unité de la norme p pour plusieurs valeurs de p.

Exercice 71 [ENS 2023 # 80] Soient a ≤ b deux réels, et (Oi)i∈I une famille d’ouverts de R telle que [a, b] ⊂
⋃

iOi. On note X
l’ensemble des x ∈ [a, b] tels qu’il existe une partie finie J ⊂ I telle que [a, x] ⊂

⋃
j∈J Oj . Montrer que X = [a, b].

Exercice 72 [ENS 2023 # 81] Soient K un compact convexe non vide d’un espace norme E, f un endomorphism continu de E tel
que f(K) ⊂ K . Montrer que f admet un point fixe dans K .

Exercice 73 [ENS 2023 # 82] Peut-on écrire ]0,1[ comme réunion dénombrable disjointe de segments d’intérieurs non vides?

Démonstration. Non. Par l’absurde, on fait de la dichotomie, entre des segments, dont la distance tend vers 0, alors la limite n’appartient
à aucun segment.

Exercice 74 [ENS 2023 # 83] Pour tout réel x dans [0,1[, on note 0, x1x2x3 . . . le développement décimal propre de x. On pose, pour
tout n ∈ N∗, Sn(x) =

∑n
i=1 xi. Soit a un réel tel que 0 < a < 9. On définit Pn = {x ∈ [0,1[;Sn(x) ≤ na} et P =

⋂
n∈N∗ Pn.

Montrer que P est compact, non vide, d’intérieur vide et sans point isolé.

Démonstration. P est borné et fermé, car Sn est continue inférieurement. Clairement non vide et d’intérieur vide. Si x ∈ P , en retirant
1 a un chiffre de x arbitrairement grand, on reste dans P . Possible sauf si x est décimal, auquel cas on peut ajouter 1.

Exercice 75 [ENS 2023 # 84] Soit A ∈ Mn(K), ou K = R ou K = C. Montrer que la classe de similitude de A est fermée si et
seulement si A est diagonalisable sur C.

Exercice 76 [ENS 2023 # 85] • On note D le disque unite du plan euclidien R2. Démontrer qu’il existe une suite (C − i ∈ N de
parties de D telle que :

▷ pour tout i ∈ N, l’ensemble Ci soit un carré de R2 dont les cotes sont parallèles aux axes ;
▷ les Ci soient d’intérieurs deux a deux disjoints ;
▷
∑

i∈N Aire(Ci) = π.

• On note C = [−1, 1]2. Démontrer qu’il existe une suite (D − i ∈ N de parties de C telle que :

▷ pour tout i ∈ N, l’ensemble Di soit un disque ferme de R2 ;
▷ les Di soient d’intérieurs deux a deux disjoints ;
▷
∑

i∈N Aire(Di) = 4.

Exercice 77 [ENS 2023 2023 # 86] Soit d ≥ 1. On note P l’ensemble des polynômes unitaires de degré d de R[X].

1. On poseA = {(P, x) ∈ P×R;P (x) = 0} et P ′(x) ̸= 0}. Déterminer les composantes connexes par arcs deA dans Rd[X]×R.
2. On pose B = {P ∈ P;∀x ∈ R, P (x) ̸= 0 ou P ′(x) ̸= 0}. Déterminer les composantes connexes par arcs de B dans Rd[X].

Démonstration. 1. Par translation, on peut passer de (P, x) à (P̃ , 0). Alors P = Xn +Q+αX , avec α ̸= 0. On peut ramener Q à
0, et α à ±1. Deux composantes connexes, selon le signe de α = P ′(x).

2. B est l’ensemble des polynômes unitaires à racines simples. Le nombre de racines simples est un invariant, et réciproquement,
ces morceaux sont clairement connexes par arcs.

Exercice 78 [ENS 2023 # 87] Soient (Mk)k≥1 une suite de matrices de Mn(C) semblables les unes aux autres, ∥·∥ une norme sur
Mn(C). On suppose que ∥Mk∥ → +∞. Montrer qu’il existe une matrice N ∈ Mn(C) nilpotente et une extractrice φ : N → N telles
que Mφ(k)

∥Mφ(k)∥ → N .

Démonstration. On peut extraire Mφ(k)

∥Mφ(k)∥ convergent, vers Π.

Si Π a une valeur propre complexe X , comme
∥∥∥∥ Mφ(k)

∥Mφ(k)∥ −Π

∥∥∥∥ ≤ ε, on a une valeur propre complexe proche de λ, donc Mφ(k) a une

valeur propre qui tend vers +∞.

Exercice 79 [ENS 2023 # 88] Soit A ∈ Mn(C) dont toutes les valeurs propres sont de module < 1. Montrer qu’il existe une norme
\|\| sur Cn telle que, pour la norme d’opérateur associée, on ait ∥A∥ < 1.

Démonstration. Trigonaliser, puis conjuguer par une matrice diagonale pour n’avoir que des petits coefficients hors de la diagonale.

Exercice 80 [ENS 2023 # 89] Soient A ∈ Mn(R), de lignes L1, . . . , Ln, et ε ∈ R+∗. On suppose que, pour tout i ∈ [[1, n]], ∥Li∥2 = 1
et la distance euclidienne canonique de Li au sous-espace engendré par les Lj , pour j ̸= i, est supérieure ou égale à ε. Montrer que
A est inversible et que sup

{∥∥A−1x
∥∥
2
;x ∈ Rn, ∥x∥1 = 1

}
≤ 1

ε .

Démonstration. A est inversible car aucune ligne n’est combinaison linéaire des autres.
Si x = Ei, on considère les colonnes de A−1, notées Ci. On ⟨Ci, Li⟩ = 1 et Ci orthogonal aux autres lignes, ce qui donne ∥Ci∥2 ≤ 1

ε ,
peut-être.
Ensuite, utiliser une convexité ?
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Exercice 81 [ENS 2023 # 90] On note B(R) l’espace vectoriel des fonctions bornées de R dans R, muni de la norme ∥ ∥ ∥∞. On fixe
g ∈ B(R) non nulle a support compact, et on note W (g) l’espace vectoriel engendre par les fonctions x 7→ g(x − n), n décrivant Z.

Montrer que l’ensemble des réels t lets que
{
x 7→ f(x− t), f ∈W (g)

}
=W (g) est un sous-groupe discret de R.

Exercice 82 [ENS 2023 # 91] Soient (an) et (bn) deux suites réelles de limite 1 et (un) une suite réelle strictement positive telle que,
pour tout n, un+2 = an+1un+1 + bn+1un. On pose, pour n ∈ N, vn = un+1

un
et wn = ln(un)

n . Montrer que les suites (vn) et (wn)
convergent.

Démonstration. Soit m. On peut écrire ua+n = Gnua + Gn+1ua−1 et ua+n+1 = Gn+1ua + Gn2ua−1, où Gn −−−−−−→
a→+∞ Fn, ce qui

devrait implique ce que l’on veut.
wn s’obtient à partir de vn par Cesàro.

Exercice 83 [ENS 2023 2023 # 92] 1. Si n ≥ 2 est un entier, montrer que
∑n

k=2 ⌊logk(n)⌋ =
∑n

j=2⌊ j
√
n⌋.

2. Donner un équivalent lorsque n tend vers +∞ de
∑n

k=2 ⌊logk(n)⌋, puis un développement asymptotique à deux termes.

Démonstration. 1. Le premier compte les puissances de k inférieures à n, dont k1.
Le second compte les puissances j-èmes inférieures à n.

2. En coupant la somme en k =
√
n, on a du

√
n lnn+ (n−

√
n)n, d’où un équivalent à n.

En suite, on prend l’autre expression, on retire n. Le premier terme est
√
n. Les termes non nuls correspondent à j

√
n ≥ 2 ⇔

n ≥ 2j , donc les autres termes sont au plus en 3
√
n lnn, d’où le DSA n+

√
n+ o+∞(

√
n).

Exercice 84 [ENS 2023 # 93] Soient α > 0 et (a−n ∈ N une suite strictement décroissante a valeurs dans ]0, 1[. Soit (u−n ∈ N une
suite définie par u0 > 0 et ∀n ∈ N, un+1 = un(u

α
n + an). Montrer qu’il existe un unique u0 > 0 tel que la suite (u− n ∈ N converge

vers un réel strictement positif.

Exercice 85 [ENS 2023 # 94] Soit (un) une suite définie par : ∀n ∈ N∗, un = sin(lnn). On note V l’ensemble des valeurs d’adhérence
de (un).

• Montrer que, pour tous x et y ∈ R, sinx− sin y = 2 sin x−y
2 cos x+y

2 .
• Montrer que un+1 − un → 0.
• Montrer que V est un intervalle inclus dans [−1, 1], puis que V = [−1, 1].

Exercice 86 [ENS 2023 # 95] Si A est une partie de N∗, on dit que A admet une densité si la suite
(

|A∩[[1,n]]|
n

)
n≥1

admet une limite.

Cette limite est alors notée d(A).

• Si m ∈ N∗, quelle est la densité de l’ensemble des multiples de m dans N∗ ?
• Soient A et B deux parties disjointes de N∗ admettant une densite. Montrer que A ∪B admet une densité que l’on precisera.
• Donner un exemple de partie de N∗ n’admettant pas de densite.

Exercice 87 [ENS 2023 # 96] On considère une suite a ∈ {2, 3}N∗
telle que a1 = 2 et, pour tout n ≥ 1, le nombre de 3 apparaissant

dans la suite a entre la n-ième occurrence de 2 et la (n+ 1)-ième occurrence de 2 soit égal a an.
Étudier la convergence de la suite de terme général 1

n

∣∣{k ∈ [[1, n]], ak = 3}
∣∣.

Exercice 88 [ENS 2023 # 97] On considère une suite a ∈ {2, 3}N∗
telle que a1 = 2 et, pour tout n ≥ 1, le nombre de 3 apparaissant

dans la suite a entre la n-ième occurrence de 2 et la (n + 1)-ième occurrence de 2 soit égal à an. Montrer qu’il existe un unique
irrationnel α tel que les indices n ≥ 1 tels que an = 2 soient exactement les entiers de la forme ⌊mα⌋+ 1 pour un m ∈ N.

Démonstration.

Exercice 89 [ENS 2023 # 98] Une suite réelle (xn) est dite équirépartie modulo 1 si elle vérifie, pour tout entier k ∈ Z∗, limN→+∞
1
N

∑N
n=1 e

2ikπxn =
0.

1. Soit α ∈ R \ Q. Montrer que la suite (nα) est équirépartie modulo 1.
2. Soit (xn) ∈ RN∗

. On suppose que pour tout h ∈ N∗, la suite (xn+h − xn)n∈N∗ est équirépartie ; on veut montrer que (xn) est
équirépartie modulo 1.

a) Soit (an) une suite de complexes de module≤ 1. Montrer, pour tousN,H ∈ N∗ :
∣∣∣ 1
N

∑N
n=1 an

∣∣∣ ≤ ∣∣∣ 1
H

∑H−1
h=0

1
N

∑N
n=1 an+h

∣∣∣+
2H
N .

b) Montrer que
∣∣∣ 1
H

∑H−1
h=0

1
N

∑N
n=1 an+h

∣∣∣ ≤ √
1
N

∑N
n=1

∣∣∣∑H−1
h=0

an+h

H

∣∣∣2.

c) Conclure.
3. Soit P ∈ R[X] non constant et de coefficient dominant irrationnel. Montrer que (P (n))n≥1 est équirépartie modulo 1.
4. Soit (xn)n≥1 une suite réelle équirépartie modulo 1, et f : R → C une fonction continue 1-périodique. Montrer que 1

n

∑n
k=1 f (xk) −→

n→+∞∫ 1

0
f .

5. On reprend les hypothèses de la question 3. Montrer que la distance de P (Z) à Z est nulle.

Démonstration. 1.
2.
3.
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4.
5. ? ?

Exercice 90 [ENS 2023 # 99] Soit f : [0, 1] → R une fonction continue. Pour n ∈ N avec n ≥ 2, on note An la matrice

0 a1 0 · · · 0

a1 0 a2
. . .

...

0 a2 0
. . . 0

...
. . .

. . .
. . . an−1

0 · · · 0 an−1 0


ou, pour tout k ∈ [[1, n− 1]], ak = f

(
k
n

)
.

Soit q ∈ N∗. Déterminer la limite de (tr (Aq
n))n≥2.

Exercice 91 [ENS 2023 # 100] Montrer la convergence et calculer
∑+∞

k=1
(−1)k

k

⌊
ln(k)
ln(2)

⌋
.

Démonstration. Écrit quelque part. . .

Exercice 92 [ENS 2023 # 101] On note ℓ2(R) l’ensemble des suites réelles de carré sommable indexées par N. On se donne une suite
presque nulle v ∈ R(N) ainsi qu’une suite (uk)k d’éléments de ℓ2(R) (l’élément uk est donc noté (uk,i)i∈N

)
. On suppose que, pour tout

entier p ≥ 2, la suite de terme généralwk =
∑+∞

n=0 (uk,n)
p converge vers

∑+∞
n=0 (vn)

p. Montrer que infσ∈S(N)

∑+∞
n=0

(
uk,σ(n) − vn

)2 −→
k→+∞

0.

Démonstration. Écrit quelque part. . .
On peut supposer que les (vn) sont décroissants, par réordonnement.

Exercice 93 [ENS 2023 # 102] Soit f la fonction de R dans R nulle sur R \Q et telle que f
(

p
q

)
= 1

q si p ∈ Z et q ∈ N∗ sont premiers
entre eux. Quels sont les points de continuité de f ?

Démonstration. Facile.

Exercice 94 [ENS 2023 # 103] Soient I un intervalle ouvert, f : I → R dérivable et [a, b] ⊂ I avec a < b. On suppose que f ′(a) =
f ′(b). Montrer qu’il existe c ∈ ]a,b[ tel que la tangente au graphe de f en c passe par le point (a, f(a)).

Démonstration. On peut supposer f ′(a) = f ′(b) = 0. À relier.

Exercice 95 [ENS 2023 # 104] Construire une fonction continue de R dans R qui ne soit dérivable en aucun point.

Exercice 96 [ENS 2023 # 105] Déterminer les applications f de R dans R telles que, pour tout entier n ≥ 2, fn (puissance) soit
polynomiale.

Démonstration. f2 et f3 polynomiales, donc f est une fraction rationnelle, f ∈ Q(x) et f2 ∈ Q[X] impliquent f ∈ Q[X].

Exercice 97 [ENS 2023 # 106] Soit p > 1 un réel. Montrer qu’il existe une constante kp > 0 telle que, pour tout (x, y) ∈ R2 tel que
|x|p + |y|p = 2, on ait (x− y)2 ≤ kp (4− (x+ y)2).

Exercice 98 [ENS 2023 # 107] Soit f : R → R. On note f∗(s) = supx∈R (sx− f(x)) et f∗(x) = sups∈R (sx− f∗(s)).
Montrer que f∗(x) = supa affine ≤f a(x).

Exercice 99 [ENS 2023 # 108] Soient I un ensemble fini et (P − i ∈ I une famille de polynômes réels stable par derivation. On définit
une fonction signe par sign(x) =

x

|x|
si x ̸= 0 et sign(0) = 0.

Pour ε ∈ {−1, 1, 0}I , soient Aε = {t ∈ R ; ∀i ∈ I, sign(Pi(t)) = ε(i)} et
Bϵ = {t ∈ R ; ∀i ∈ I, sign(Pi(t)) ∈ {ε(i), 0}}.

• Montrer que Aε est soit vide, soit réduit a un point, soit un intervalle ouvert.
• Si Aε est non vide, montrer que Bε est l’adhérence de Aε. Si Aε est vide, montrer que Bε est soit vide suit un singleton.

Exercice 100 [ENS 2023 # 109] Soit I un intervalle de R et f : I → R de classe Cn.

• Soient x0, . . . , xn−1 des points de I .

▷ sV2 Soit P le polynôme d’interpolation de Lagrange de f aux points x0, . . . , xn−1. Montrer que pour tout x ∈ I , il existe
c ∈ I tel que

f(x)− P (x) =
f (n)(c)

n!

n−1∏
i=0

(x− xi).

▷ On note V (x0, . . . , xn) le déterminant de Vandermonde associe a (x0, . . . , xn). Montrer qu’il existe τ ∈ I tel que∣∣∣∣∣∣∣∣∣
1 x0 x20 · · · xn−1

0 f(x0)
1 x1 x21 · · · xn−1

1 f(x1)
...

...
...

...
...

1 xn x2n · · · xn−1
n f(xn)

∣∣∣∣∣∣∣∣∣ =
f (n)(τ)

n!
V (x0, x1, . . . , xn).
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• On suppose que n = 2, que I est un segment et que f est strictement convexe. On note Γf = {(x, f(x));x ∈ I} ⊂ R2 le graphe
de f . Montrer qu’il existe une constante C , dépendant uniquement de I et f , telle que le nombre de points de Γf ∩ 1

N Z2 soit
majore par C N2/3 pour tout entier N ≥ 1.

Démonstration. 1. a)
b) On part du déverminant de Vandermonde. Par des opérations sur les colonnes, on transforme la dernière en P (xi)−f(xi),

où P est un polynôme de degré ≤ n− 1.
On choisit pour P le polynôme d’interpolation de f en x0, . . . , xn−1.
Alors le déterminant vaut

(
f(xn)− P (xn)

)
V (x0, . . . , xn−1).

Par ailleurs, on sait que f(xn) − P (xn) =
λ
n! (xn − x1) . . . (xn − xn−1) (choisir λ pour que ce soit correct en xn), et on

obtient λ = f (n)(τ).
2. En trois points i

N ,
j
N ,

k
N qui vérifient la condition, on a∣∣∣∣∣∣

1 i f(xi)N
1 j f(xj)N
1 k f(xk)N

∣∣∣∣∣∣ = f (2)(τ)

2

∣∣∣∣∣∣
1 i i2

1 j j2

1 k k2

∣∣∣∣∣∣ ,
donc (i− j)(j − k)(i− k) = Nk

f(2)(τ)
, si f (2)(τ) ̸= 0, où k est un entier.

En particulier, il existe une constante C telle que l’un des trois facteur soit ≥ CN1/3. Cela implique la borne en N2/3.
Si f (2) s’annule, on applique ce qui précède sur chaque deux intervalles sur lequel ce n’est pas le cas.

Exercice 101 [ENS 2023 # 110] Pour n ∈ N, on pose wn =
∫ π/2

0
cosn(x) dx.

• Montrer que (wn)n≥0 est decroissante.
• Etablir une relation de recurrence entre wn+2 et wn.
• Sans utiliser la formule de Stirling, déterminer un équivalent simple de wn.
• Déterminer le rayon de convergence de la série entière

∑
wnx

n.

Exercice 102 Théorème de Rouché [ENS 2023 # 111] Soit P ∈ C[X] ne s’annulant pas sur U.

1. Montrer que le nombre de racines deP de module strictement inférieur à 1 comptées avec multiplicité n’est autre que 1
2π

∫ π

−π

eitP ′(eit)
P (eit) dt.

2. Soit Q ∈ C[X] ne s’annulant pas sur U et tel que ∀z ∈ U, |P (z) −Q(z)| < |Q(z)|. Montrer que P et Q ont même nombre de
racines de module strictement inférieurs à 1 comptées avec multiplicité.

Démonstration. 1. Écrire P ′

P en éléments simples, puis développement en série à l’intérieur de l’intégrale.
2. Prendre un arc continu entre les deux.

Exercice 103 [ENS 2023 # 112] Pour n ∈ N, on noteAn =
∫ π

2

0
cos2n(x) dx etBn =

∫ π
2

0
x2 cos2n(x) dx. On admet que, pour n ∈ N∗,

2nAn = (2n− 1)An−1.

• Montrer que
∑n

k=1
1
k2 = 2B0

A0
− 2Bn

An
pour tout n ∈ N∗.

• En déduire que
∑+∞

k=1
1
n2 = π2

6 puis que
∑n

k=1
1
k2 = π2

6 +O
(
1
n

)
.

Exercice 104 [ENS 2023 # 113] Soit f : R+ → R une fonction continue et presque périodique c’est-à-dire telle que, pour tout ϵ > 0,
il existe T > 0 tel que : ∀x ∈ R+,∀n ∈ N, |f(x+ nT )− f(x)| ≤ ϵ. Soit f : R+ → R continue et presque périodique.

1. Montrer que f est uniformément continue sur R+.

2. Montrer que t 7→ 1
t

∫ t

0
f possède une limite quand t→ +∞.

Démonstration. 1. Easy.
2. ! !

Exercice 105 [ENS 2023 # 114] Soit f une fonction continue par morceaux et croissante de [0, 1] dans R. Montrer que
∫ 1

0
f(x)eiλxdx =

λ→+∞
O
(
1
λ

)
.

Exercice 106 [ENS 2023 # 115] • Es On admet l’existence d’une notion d’intégrale multiple sur un rectangle de Rn, et que pour
des fonctions continues f1, . . . , fn : R → R,∫

[0,1]n
f1(x1) . . . fn(xn) dx1 . . . dxn =

n∏
i=1

∫ 1

0

fi(x) dx.

• Soient f1, . . . , fn, g1, . . . , gn des fonctions de C0([0, 1],R). Soit A la matrice de terme général Ai,j =
∫ 1

0
fi(x)gj(x) dx.

On poseB(x1, . . . , xn) = det
(
fi(xj)

)
etC(x1, . . . , xn) = det

(
gi(xj)

)
. Montrer que

∫
[0,1]n

B(x1, . . . , xn)C(x1, . . . , xn) dx1 . . . dxn =

n! det(A).
• s Montrer que si detA = 0, alors la famille (f1, . . . , fn) est liée.
• s En déduire que si (f1, . . . , fn) est libre, il existe (x1, . . . , xn) ∈ Rn tels que

(
fi(xj)

)
soit inversible.
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Démonstration. Le produit des déterminants est
∑

σ,σ′ ε(σ)ε(σ′)
∏n

i=1 fi(xσ(i))
∏n

i=1 gi(xσ′(i)) =
∑

σ,σ′ ε(σ)ε(σ′)
∏n

i=1 fσ(i)(xi)gσ′(i)(xi).

Quand on l’intègre, on obtient
∑

σ,σ′ ε(σ′)ε(σ)
∏n

i=1

∫ 1

0
fσ(i)(x)gσ′(i)(xi), et l’intégrale ne dépend que de σ−1 ◦ σ, ce qui permet

d’obtenir le résultat.

Exercice 107 [ENS 2023 # 116] • La fonction f : x ∈ [1,+∞[ 7→ sin(x2)
x est-elle uniformement continue?

• Soit f une fonction de classe C1 de R+ dans R admettant une limite en +∞ et telle que f ′ est uniformément continue. Est-ce
que f ′ a une limite en +∞?

Exercice 108 [ENS 2023 # 117] Soient d,N ∈ N tels que N > d. Soient (P − n ∈ N une suite de polynômes a coefficients réels de
degré au plus d et x1, ..., xN des réels distincts. On suppose que pour tout j ∈ {1, ..., N}, la suite (Pn(xj))n∈N est bornée. Montrer
que l’on peut extraire de (P − n ∈ N une suite (Q− n ∈ N qui converge uniformément sur [0, 1] vers un polynôme de degré au plus
d.

Exercice 109 [ENS 2023 # 118] Montrer que la suite de fonctions de terme général fn : x 7→ (sinx)n cos(x) converge uniformément
sur

[
0, π2

]
.

Exercice 110 [ENS 2023 # 119] On note I (resp. S) l’ensemble des fonctions f : [0, 1] → [0, 1] telles que, pour tout a ∈ R, l’ensemble
{x ∈ [0, 1], f(x) ≤ a} est ferme (resp. de meme avec l’inégalité dans l’autre sens).

• Montrer que S ∩ I est l’ensemble C des fonctions continues de [0, 1] dans [0, 1].
• Soit f : [0, 1] → [0, 1]. On pose fn : x 7→ inf({1} ∪ {f(y) + n|x − y|, y ∈ [0, 1]}) pour n ∈ N. Montrer que fn est continue

pour tout n, que la suite (fn) est croissante et que f ∈ I si et seulement si la suite (fn) converge simplement vers f .

Exercice 111 [ENS 2023 # 120] Soit Λ : N → R telle que Λ(n) = ln(p) sin = pk avec p premier et k ∈ N∗, et Λ(n) = 0 sinon. On
note P l’ensemble des nombres premiers.

1. Montrer que, pour tout n ∈ N∗,
∑

d|n Λ(d) = ln(n).

2. Montrer que, pour tout s > 1,
(∑

n∈N∗
Λ(n)
ns

) (∑
n∈N∗

1
ns

)
=

∑
n∈N∗

ln(n)
ns .

3. Montrer que, pour tout s > 1,
∑

p∈P
ln(p)
ps =

s→1+

1
s−1 +O(1).

4. Montrer que, pour tout s > 1,
∑

p∈P
1
ps =

s→1+
ln
(

1
s−1

)
+O(1). Qu’en déduire?

Démonstration.

Exercice 112 [ENS 2023 # 121] Soit q ≥ 2 entier. On se donne un caractère non trivial χ sur le groupe des inversibles (Z/qZ)×,
c’est-a-dire un morphisme de groupes non constant χ : ((Z/qZ)×,×) −→ (U,×). Pour m ∈ Z, on pose alors χ̃(m) = 0 si q n’est
pas premier avec m, et χ̃(m) = χ(m) sinon (ou m désigne la classe de m modulo q).

• Montrer que la série
∑

n≥1
χ(m)
ms converge si et seulement si s > 0.

• Montrer que la fonction s 7→
∑+∞

n=1
χ(m)
ms est de classe C1 sur R+∗.

Exercice 113 [ENS 2023 # 122] Soient f : R+ → R de classe C1, décroissante de limite nulle en +∞ et g : x 7→
∑+∞

n=0(−1)nf(nx).
Quelle est la limite de g en 0+ ?

Démonstration. C’est
∑
f(2nx) − f((2n + 1)x) =

∑∫ (2n+1)x

2nx
f ′(t) dt. Cela tend vers 1

2f(0), en découpant sur un segment, et en
utilisant l’uniforme continuité de f ′.

Exercice 114 [ENS 2023 # 123] Pour tout polynôme trigonométrique P : θ 7→
∑

k∈Z ck(P )e
ikθ (somme a support fini) et pour tout

d ∈ R, on pose ∥P∥2hd =
∑

k∈Z |ck(P )|2(1 + |k|)2d.
On admet que ∥ ∥hd est une norme sur l’espace vectoriel T des polynômes trigonométriques pour tout d ∈ R. Soit E l’espace des
fonctions continues par morceaux et 2π-périodiques de R dans C. On définit le produit de convolution de deux fonctions f, g ∈ E
par : f ⋆ g : φ 7→

∫ π

−π
f(θ)g(φ− θ)dθ. Enfin, on pose, pour f ∈ E, ∥f∥22 =

∫ π

−π
|f(θ)|2dθ.

• Montrer qu’il existe d ∈ R et c = c(d) ∈ R+ tels que, pour tous f , g ∈ T ,

∥f ⋆ g∥2 ≤ c(d)∥f∥hd∥g∥2.

• Déterminer tous les réels d vérifiant la condition de la question précédente.
• Soit f de classe C∞ et 2π-periodique. On pose, pour k ∈ Z, ck(f) = 1

2π

∫ π

−π
f(θ)e−ikθdθ et, pour tout d ∈ R, ∥f∥2hd =∑

k∈Z |ck(f)|2(1 + |k|)2d. Déterminer les d ∈ R tels que ∥f∥hd < +∞.
• Soient f , g de classe C∞ et 2π-périoddiques et d ∈ R. Calculer ∥f ⋆ g∥hd .

Exercice 115 [ENS 2023 # 124] Soient p ≥ 2 et q ≥ 2 deux entiers tels que p ∧ q = 1. Pour tout z ∈ C tel que |z| < 1, on pose
f(z) = 1−zpq

(1−zp)(1−zq) . Écrire f(z) sous la forme
∑+∞

n=0 cnz
n et trouver le plus grand n ≥ 0 tel que cn = 0.

Exercice 116 [ENS 2023 # 125] Soient R ∈ R+∗, f et g deux fonctions développables en série entière sur ]−R,R[ telles que ∀x ∈
]−R,R[,

∫ x

0
f(t)g(x− t) dt = 0. Montrer que l’une au moins des deux fonctions f et g est identiquement nulle sur ]−R,R[.

Démonstration.

Exercice 117 [ENS 2023 # 126] Soient f : z 7→
∑+∞

n=0 z
n et g : z 7→

∑+∞
n=0 z

2n .

• Déterminer les rayons de convergence de f et g.
• Trouver les complexes z ∈ S(0, 1) tels que f(z) converge.
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• Montrer que f admet un prolongement f̄ sur C \ {1}, développable en série entière en tout point de C \ {1}.
• Montrer que |g(r)| → +∞ quand r → 1 avec r ∈ R. - Montrer que, si z ∈ B(0, 1), alors g(z2) = g(z)− z.
• Soient n ∈ N et α ∈ U2n . Montrer que |g(rα)| → +∞ quand r → 1 avec r ∈ R.

• Soit h : z 7→
∑+∞

n=0
z2n+1

2n+1 . Montrer que h est continue sur B(0, 1).
• Montrer que, pour tout z0 ∈ S(0, 1), ε > 0 et h̃, prolongement de h sur B(0, 1) ∪ B(z0, ε), la fonction h̃ n’est pas développable

en série entière en z0.

Exercice 118 [ENS 2023 # 127] Soit α = (α − i ≥ 1 une suite de Z nulle a partir d’un certain rang. Pour n ≥ 1, on pose un =∏
i∈N∗((in)!)αi .

• Déterminer, selon la valeur de α, le rayon de convergence R de la série entière
∑

n≥1 unz
n.

Dans la suite, on note f la somme de cette série entière.

• Expliciter f si α = (−δi,1)i≥1.
• Pour une somme g de série entière sur un intervalle ]−a, a[ non trivial, on pose ∆(g) : z 7→ zg′(z). Expliciter P (∆)(g) lorsque
g : z 7→ zk avec k ∈ N et P ∈ R[X].

• Soit v ∈ CN∗
une suite complexe, et P ∈ R[X] sans racine dans N∗ tels que, pour tout n ≥ 1, vn+1 = vn

P (n+1) . Montrer que∑
n≥1 vnz

n a un rayon de convergence non nul et donner une methode simple pour trouver une équation différentielle lineaire
non triviale a coefficients polynomiaux dont sa somme est solution.

• Résoudre le meme probleme qu’en (d) lorsqu’il existe P et Q dans R[X] sans racine dans N∗ telles que vn+1 = Q(n+1)
P (n+1) vn pour

tout n ≥ 1, et en supposant cette fois-ci que deg(Q) ≤ deg(P ).
• Justifier que le cadre de la question - s’applique bien a la suite (un)n≥1 lorsque R > 0.

Exercice 119 [ENS 2023 # 128] Pour n ∈ N, on pose un = n! (30n)!
(15n)! (10n)! (6n)! .

• Montrer que, pour n ∈ N, un est un entier.
• Déterminer le rayon de convergence de la série entière

∑
unx

n.
• Trouver une équation différentielle vérifiée par la somme de la série entière précédente.

Exercice 120 [ENS 2023 # 129] Existe-t-il une partie A de N telle que
∑

n∈A
xn

n! ∼
x→+∞

e
√
x ?

Démonstration. Cf un précédent

Exercice 121 [ENS 2023 # 130] • Soit f : z 7→
∑+∞

n=0 anz
n la somme d’une série entière de rayonR > 0. Montrer que, pour tout

0 < r < R et pour tout n ∈ N, anrn = 1
2π

∫ 2π

0
f(reiθ)e−inθdθ.

▷ Soit f une fonction développable en série entière de rayon de convergence égal a 1. On suppose que f est prolongeable
par continuité sur le disque ferme Df (0, 1). Expliquer pourquoi la formule de Cauchy ci-dessus reste vraie pour r = 1. -
Soit f : x ∈]− 1, 1[ 7→ 1√

1−x
e−

1−x
1+x . Montrer que f est développable en série entière au voisinage de 0.

▷ On admet que le rayon de convergence du développement de f en 0 vaut 1. Montrer que les coefficients du développement
en série entière en 0 de f sont bornes par M > 0. Experimer M en fonction de f .

Exercice 122 [ENS 2023 # 131] Calculer
∫ +∞
0

sin x
x dx a l’aide de la transformation de Laplace.

Exercice 123 [ENS 2023 # 132] Soit (a, b) ∈ R × R− tel que ∀x ∈ [0, 1], 1 + ax+ bx2 ≥ 0.

1. Si a ∈ R+, montrer que n
∫ 1

0

(
1 + ax+ bx2

)n
dx −→

n→+∞
+∞.

2. Si a ∈ R−∗, montrer que n
∫ 1

0

(
1 + ax+ bx2

)n
dx −→

n→+∞
− 1

a .

Démonstration.

Exercice 124 [ENS 2023 # 133] Soit, pour x ∈ R+, f(x) =
∫ π

0
dt√

e2x cos2(t)+e−2x sin2(t)
. Montrer qu’il existe (a, b) ∈ (R+)

2 tel que

∀x ∈ R+, f(x) ≤ (ax+ b)e−x.

Démonstration.

Exercice 125 [ENS 2023 # 134] Pour x réel, on pose J(x) =
∫ π

0
cos(x sin t) dt.

• Calculer J(0).
• Montrer que J est de classe C∞.

• En estimant
∫ π

2 +ε
π
2 −ε

cos(x sin t) dt pour un ε a choisir convenablement en fonction de x, etablir que J(x) = O(x−1/2) quand
x→ +∞.

Exercice 126 [ENS 2023 # 135] Soient f et g deux fonctions de classe C∞ de R+ dans R. On pose f ⋆g : x ∈ R+ 7→
∫ x

0
f(t) g(x−t) dt.

Montrer que f ⋆ g est dérivable et donner une expression de sa derivée.

Exercice 127 [ENS 2023 # 136] Soit f :]0, 1[→ R continue. Pour n ≥ 1 et s < t dans ]0, 1[, on pose

an(f, s, t) =
2

t−s

∫ t

s
f(u) cos

(
2nπ
t−s (u− s)

)
du.

• On suppose f strictement convexe. Montrer que a1(f, s, t) > 0 pour tous s < t dans ]0, 1[.
• On suppose f strictement convexe. Montrer que an(f, s, t) > 0 pour tous s < t dans ]0, 1[ et tout n ∈ N∗.
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• Réciproquement, on suppose f de classe C2 et a1(f, s, t) > 0 pour tous s < t dans ]0, 1[. Montrer que f est strictement convexe.

Exercice 128 [ENS 2023 # 137] Soit S l’ensemble des solutions de l’équation différentielle sur R :
∑n

k=0 y
(k) = 0.

À quelle condition sur n tout élément de S possède-t-il une limite en +∞?

Démonstration. Si et seulement si toutes les valeurs propres ont une partie réelle < 0 (puisque 0 n’est pas racine).

Exercice 129 [ENS 2023 # 138] Soit I un (vrai) intervalle de R. Si r ∈ N∗ et f1, . . . , fr ∈ Cr−1(I,R), on pose Wr (f1, . . . , fr) =

det

((
f
(i−1)
j

)
1≤i,j≤r

)
. Soient r ∈ N∗, f1, . . . , fr ∈ Cr−1(I,R).

1. Soit g ∈ Cr−1(I,R). Montrer que Wr (gf1, . . . , gfr) = grWr (f1, . . . , fr).
2. On suppose que, pour tout k ∈ [[1, r]],Wk (f1, . . . , fk) ne s’annule pas. Montrer que, pour tout (a1, . . . , ar) ∈ Rr non nul, la

fonction a1f1 + · · ·+ arfr s’annule au plus (r − 1) fois sur I .
3. On suppose queWr (f1, . . . , fr) est identiquement nul sur I et queWr−1 (f1, . . . , fr−1) ne s’annule pas. Montrer que (f1, . . . , fr)

est liée.

Démonstration.

Exercice 130 [ENS 2023 # 139] On considère l’équation différentielle (Dλ) : y
′′ + (λ− r)y = 0 avec λ ∈ R, r ∈ C∞(I,R), ou I un

intervalle contenant [0, 1]. On considère Eλ l’espaces des solutions y de (Dλ) telles que y(0) = 0, y(1) = 0.

1. Quelles sont les dimensions possibles de Eλ ?
2. On note yλ la solution du probleme de Cauchy (Dλ), yλ(0) = 0, y′λ(0) = 1. Caractériser le cas où dim(Eλ) = 1.

3. Montrer que, à r fixé, les Eλ sont orthogonaux pour le produit scalaire ⟨f, g⟩ =
∫ 1

0
fg.

4. On note Nλ le nombre de zeros de yλ sur [0, 1]. Pourquoi est-il fini ?
5. Calculer Nλ dans le cas r = 0, λ > 0.
6. Dans le cas général, étudier le comportement de Nλ.

Démonstration. 1. 0, 1 : c’est l’intersection de deux formes linéaires.
2.
3.
4.
5.
6.

Exercice 131 [ENS 2023 # 140] Soient I un intervalle non trivial de R, et a, b deux fonctions continues de I dans R. On considère
l’équation différentielle (E) : x

′′
+ a(t)x′ + b(t)x = 0.

• Soit x une solution non nulle de (E). Montrer que les zeros de x sont isoles.
• On suppose a de classe C1. Montrer qu’il existe z de classe C2 de I dans R, et q : I → R continue telles que x 7→ [t 7→ x(t) ez(t)]

définisse une bijection de l’ensemble des solutions de (E) sur celui des solutions de y
′′
+ q(t) y = 0.

• Soient q1, q2 deux fonctions continues de I dans R telles que q1 ≤ q2. On considère l’équation différentielle (Ei) : y
′′
+qi(t) y = 0

pour i ∈ {1, 2}. Soient y1, y2 des solutions respectives de (E1) et (E2) sur I . Soient α < β deux zeros consecutifs de y1. Montrer
que y2 s’annule dans [α, β].

• Soient q : I → R continue, et m,M deux réels strictement positifs tels que m ≤ q ≤ M . Soient α < β deux zeros consecutifs
d’une solution non nulle de y

′′
+ q(t)y = 0. Montrer que π√

M
≤ β − α ≤ π√

m
.

Exercice 132 [ENS 2023 # 141] Soient A une application continue de R+ dans Mn(R), M l’unique application dérivable de R+ dans

Mn(R) telle que M(0) = In et ∀t ∈ R+, M ′(t) = A(t)M(t). Montrer que ∀t ∈ R+, det(M(t)) = exp
(∫ t

0
TrA

)
.

Exercice 133 [ENS 2023 # 142] Soit p : R → R une fonction continue, non identiquement nulle, π-périoddique et telle que
∫ π

0
p(t)dt ≥

0 et
∫ π

0
|p(t)|dt ≤ π

4 . Montrer que l’équation u
′′
+ pu = 0 n’admet pas de solution u non nulle sur R telle qu’il existe λ ∈ R∗ tel que

∀t ∈ R, u(t+ π) = λu(t).

Exercice 134 [ENS 2023 # 143] Soit A0 ∈ Mn(R) telle que Sp(A0 +AT
0 ) ⊂ R−.

On admet l’existence d’une unique fonction A : R+ → Mn(R) telle que A(0) = A0 et ∀t ≥ 0, A′(t) = (A(t))
2−

(
A(t)T

)2
. Montrer

que la fonction A a une limite en +∞ et expliciter cette limite.

Exercice 135 [ENS 2023 # 144] Soit A ∈ M3(R). Décrire le comportement asymptotique en +∞ des solutions de l’équation diffé-
rentielle X ′(t) = AX(t).

Exercice 136 [ENS 2023 # 145] On considère l’équation différentielle (1) : X ′(t) = P (t)X(t) où P est une application continue et
périodique de R dans Mn(C).

• Résoudre (1) si ∀t ∈ R, P (t) =

(
1 cos(t)
0 −1

)
.

• On revient au cas général. Soit T ∈ R+∗ une période de P . On note X1, . . . , Xn une base de l’espace des solutions de (1) et, si
t ∈ R, M(t) = (X1(t), . . . , Xn(t)). Montrer qu’il existe C ∈ GLn(C) telle que ∀t ∈ R, M(t+ T ) =M(t)C .

• Avec les notations de la question précédente, montrer qu’il existe A ∈ GLn(C) tel que l’application t ∈ R 7→ M(t)e−tA soit
T -périoddique.
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Démonstration. •
• Par inversibilité, il existe C tel que M(T ) =M(0)C .

Puis on considère Y (t) =M(t)C , elle vérifie la même équation différentielle.
• Si et seulement si M(t)Ce−(t+T )A =M(t)e−tA, c’est-à-dire Ce−TA = In

Le caractère inversible de A implique que C ne peut pas avoir 1 comme valeur propre, ce qui est faux pour P = 0.
Sans cette condition, c’est la surjectivité de l’exponentielle. . .

Exercice 137 [ENS 2023 # 146] • Soit f : (x, y) 7→
(
ln

(
x2 + y2

)
, arctan

(
y
x

))
. Donner le domaine de définition Ω de f . Étudier

la continuité et la différentiabilité de f .
• On identifie naturellement R2 à C. Montrer que, si (x, y) ∈ Ω, df(x,y) est C-lineaire.

Démonstration. • Ω = {(x, y) | x ̸= 0}. La continuité et la différentiabilité ne posent pas de problème.
•

Exercice 138 [ENS 2023 # 147, 148] 1. Calculer sup
a,b,c>1

(
1− 1

a

)b
+
(
1− 1

2b

)c
+

(
1− 1

3c

)a
.

2. Trouver sup
a,b,c≥1

(
1− 1

a

)b (
1− 1

2b

)c (
1− 1

3c

)a
.

Démonstration. • C’est ≤ e−
b
a + e

c
2b + e

a
3c , et cela s’en approche pour a, b, c très grand. Puis étudier cette quantité, en dérivant.

• C’est ≤ e−
b
a− c

2b−
a
3c , et cela s’en approche pour a, b, c très grand. Puis étudier la quantité dans l’exponentielle.

Exercice 139 [ENS 2023 # 149] Soient q ∈ R+, D = {(x, y) ∈ R2 ; x ≥ 0, y ≥ 0, x+ y = 1}, Déterminer min(x,y)∈D(xq + yq).

Exercice 140 [ENS 2023 # 150] Soient A ∈ S++
n (R) et b ∈ Rn.

Déterminer les extrema de x ∈ Rn 7→ 1
2 ⟨Ax, x⟩ − ⟨b, x⟩.

Exercice 141 [ENS 2023 # 151] Soient f une application différentiable convexe de Rn dans R, L ∈ R+∗.

1. Montrer que ∀(x, y) ∈ Rn × Rn, ⟨∇f(y)−∇f(x), y − x⟩ ≥ 0.
2. On suppose que l’application ∇f est L-lipschitzienne.

Montrer que ∀(x, y) ∈ Rn × Rn, ⟨∇f(y)−∇f(x), y − x⟩ ≥ 1
L∥∇f(x)−∇f(y)∥2.

Exercice 142 [ENS 2023 # 152] Soit p > 1. Montrer qu’il existe Kp ∈ R tel que, pour tous x, y ∈ R tels que |x|p + |y|p = 2, on a
(x− y)2 ≤ Kp(4− (x+ y)2).

Démonstration. Il s’agit de montrer que (x−y)2

Kp(4−(x+y)2)2 est majorée.

On sait que |x|+|y|
2 ≤

(
|x|p+|y|p

2

)1/p

= 2, donc le seul problème de définition est en (x, y) = (1, 1), où il faut montrer que la fonction
admet un prolongement par continuité.
Le dénominateur est (x− y)2 − 2(x− 1)2 − 2(y − 1)2 − 4(x− 1)− 4(y − 1). On pourrait poser x′ = x− 1.

Exercice 143 [ENS 2023 # 153] Soient f une application de classe C1 de Rn dans Rm, x ∈ Rn telle que dfx soit injective. Montrer
qu’il existe un voisinage de x dans Rn sur lequel f est injective.

Démonstration. Par l’absurde, on extrait deux suite (xn), (yn) qui tendent vers x. Alors f(xn) = df0(xn) + o(xn), idem pour yn, et
en posant zn = xn − yn, on a df(zn) = o(zn). Ce qui n’est pas possible car ∥df(. . . )∥ est une norme.

Exercice 144 [ENS 2023 # 154] On identifie R2 a C. Soit f une fonction de R2 dans R, de classe C2 et telle que ∆f = 0. Montrer que
f(0) = 1

2π

∫ π

−π
f(eit)dt.

Exercice 145 [ENS 2023 # 155] On munit Rn de la nome euclidienne canonique et on note B unité fermée de cet espace. Soient f
une application de Rn dans Rn de classe C1 et telle que, pour tout (u, v) ∈ B2, ∥−f(0) + v − dfu(v)∥ ≤ 1

2 . Montrer que f s’annule
exactement une fois sur B.

Démonstration. La fonction g = Id−f vérifie ∥dgu(v)− g(0)∥ ≤ 1
2 . En intégrant, on obtient ∥g(x)∥ ≤ 1

2 sur B.
Cela justifie que ∥f∥ admet un minimum dans l’intérieur de la boule. L’inégalité de l’énoncé donne dfu inversible, donc le minimum
ne peut être atteint qu’en un point où f s’annule.
Si f s’annule en deux points x1 et x2, la fonction g a deux points fixes, mais sa différentielle est de norme ≤ 1

2 + ∥f(0)∥, avec par
ailleurs ∥f(0)∥ ≤ 1

2 . Donc il faudrait que ∥f(0)∥ = 1
2 , et que le long du chemin entre x1 et x2, on ait dg...(x2 − x1) parallèle (de

même sens) à f(0), donc x2 − x1 est également parallèle à f(0).
Mieux : On a ∥f(0)∥ = 1

2 et ∥dgu(v)− f(0)∥ ≤ 1
2 , donc ∥dgu(v)∥ doit être nul : f(v) = v + f(0).

3) Géométrie

Exercice 146 [ENS 2023 # 156] • Montrer que, pour tout n ∈ N, il existe un unique Tn ∈ Z[X] tel que
∀θ ∈ R, Tn(2 cos(θ)) = 2 cos(nθ).

• Si n ∈ N∗, quel est le terme de plus haut degré de Tn ? En déduire les r ∈ Q tels que cos(πr) ∈ Q.
• Déterminer les triangles du plan euclidien dont les cotes ont des longueurs rationnelles et les angles sont des multiples rationnels

de π.
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Exercice 147 [ENS 2023 # 157] SoitG un groupe d’isométries affines de R2 tel que, pour tout point x, il existe g ∈ G tel que g(x) ̸= x.
Montrer que G contient une translation autre que l’identité de R2.

Démonstration. Vrai pour G = O2, avec x = 0⃗.
Les éléments de G sont de la forme z 7→ az + b, ou z 7→ az + b, avec a ∈ U.
On considèreG+ (isométries affines qui préservent l’orientation), dont les éléments ont un unique point fixe. Si il existe deux éléments
qui ne commutent pas dans G+, on s’en sort : conjuguer, puis multiplier par l’inverse. Par ailleurs, deux éléments commutent si et
seulement si ils ont le même point fixe.
Si tous les éléments de G+ ont le même point fixe, tout élément de G− (qui a une droite de points fixes) doit préserver ce point, sinon
on créerai d’autres éléments de G+ avec un point fixe différent.

Exercice 148 [ENS 2023 # 158] Soit S le groupe (pour la composition) des applications de C dans C de la forme z 7→ az + b avec
a ∈ U et b ∈ C. Soit G un sous-groupe de S vérifiant les conditions suivantes :

• si g ∈ G, g(0) est nul ou de module supérieur ou égal à 1 ;
• l’ensemble des b ∈ C tels que z 7→ z + b appartienne à G contient deux éléments R linéairement indépendants.

Montrer que l’ensemble {a ∈ U | ∃b ∈ C, z 7→ az + b ∈ G} est fini.

Démonstration. Sinon, il existe une suite (an) qui s’accumule. On peut supposer qu’elle s’accumule sur 1, puis on peut borner les (bn),
puis extraire une suite convergence, donc elle est constante à partir d’un certain rang. Donc on a une infinité de z 7→ anz, ce qui est
impossible.

Exercice 149 [ENS 2023 # 159] Soit L la courbe du plan complexe d’équation |z|2 = cos(2 arg(z)).

• Trouver une équation cartésienne réelle définissant L.
• En déduire une paramétrisation de L ∩ (R+)2 sous la forme {(x(r), y(r)), r ∈ [0, 1]}.
• Montrer que la longueur de la courbe L entre le point (0, 0) et le point (x(r), y(r)) s’écrit : A(r) =

∫ r

0
1√
1−t2

dt.

• Montrer que A définit une bijection de [−1, 1] dans un intervalle de la forme [−w,w] ou w > 0.
• On définit B = A−1. Montrer que B vérifie une équation différentielle du second ordre.

Exercice 150 [ENS 2023 # 160] Soit (e1, e2) une famille libre de vecteurs de R2. On poseL =1 +2 et on note coVol(L) = |det(e1, e2)|.

• sV2 Pour e1 =

2
0

 et e2 =

1
1

, représenter L dans R2. Que représente géométriquement le covolume coVol(L)?

• Soit A un disque fermé de R2, d’aire strictement supérieure a coVol(L). Montrer qu’il existe deux éléments distincts x et y de
A tels que x− y ∈ L.
Indication : Les parallélogramme du réseauL découpent le disqueA en un nombre fini de morceauxAi. Considérer les translatés
A′

i des Ai, déplacés dans le parallélogramme à l’origine de R2, appliquer l’hypothèse.
• Soit ε > 0. Montrer qu’il existe dans L \ {0} un élément ℓ tel que ∥ℓ∥ ≤ 2+ε√

π

√
coVol(L).

• Soit p un nombre premier congru a 1 modulo 4.

▷ En considérant m = (p− 1)!, montrer qu’il existe ω ∈ Z tel que p divise 1 + ω2.
▷ En utilisant la question précédente, montrer qu’il existe (a, b) ∈ Z2 tel que p = a2 + b2.

Démonstration. •
•
•
• ▷

▷

Exercice 151 [ENS 2023 # 161] • On note D le disque unite du plan euclidien R2. Démontrer qu’il existe une suite (Ci)i∈N de
parties de D telle que :

▷ pour tout i ∈ N, l’ensemble Ci soit un carré de R2 dont les cotes sont parallèles aux axes ;
▷ les Ci soient d’intérieurs disjoints ;
▷
∑

i∈N Aire(Ci) = π.

• On note C = [−1, 1]2. Démontrer qu’il existe une suite (Di)i∈N de parties de C telle que :

▷ pour tout i ∈ N, l’ensemble Di soit un disque ferme de R2 ;
▷ les Di soient d’intérieurs disjoints ;
▷
∑

i∈N Aire(Di) = 4.

4) Probabilités

Exercice 152 [ENS 2023 # 162] On note A l’ensemble des parties de A de N telles que lim
n→+∞

|A∩[[1,n]]|
n existe. Est-ce que A est une

tribu?

Démonstration. Non vide, stable par complémentaire, et stable par union dénombrable. On n’est pas stable par union dénombrable :
toute partie est réunion dénombrable de singleton.
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Exercice 153 [ENS 2023 # 163] On pose, pour toute permutation σ ∈ Sn, d(σ) =
∑n

k=1 |σ(k) − k| et on note, pour p ∈ N,
qn,p = |{σ ∈ Sn, d(σ) = p}|. Montrer que, si p ≥ 2n, alors qn,p est pair.

Démonstration. On procède par récurrence. Si σ ̸= σ−1, ils vont par paires. De même, par hypothèse de récurrence, si σ a au moins
un point fixe, le cardinal est pair.
Reste les éléments vérifiant σ = σ−1, sans point fixes, qui sont produits de transpositions. Par ailleurs, la condition p ≥ 2n, implique
que les transpositions ont des croisements.
On peut alors transformer (i1i2)(j1j2) en (i1j2)(j1i2), qui préserve la quantité donnée (faire le dessin), et faire la transformation
réciproque.

Exercice 154 [ENS 2023 # 164] Un derangement est une permutation σ ∈ Sn sans point fixe. On note Dn le sous-ensemble de Sn

formé des derangements. sup

• Soit X une variable aléatoire suivant la loi uniforme sur Dn. Calculer la probabilité que X soit une permutation paire.
Indications.

▷ On donne la formule d’inversion de Pascal : si (an) et (bn) sont deux suites telles que ∀n ∈ N, an =
∑n

k=0

(
n
k

)
bk , alors

∀n ∈ N, bn =
∑n

k=0(−1)n−k
(
n
k

)
ak .

▷ On pourra calculer la difference du nombre d’éléments pairs et impairs de Dn.

• Soit Y une variable aléatoire suivant la loi uniforme sur Sn. Calculer la probabilité de (Y ∈ Dn) sachant que Y est paire.

Démonstration. • La différence du nombre d’éléments pairs et impairs est le déterminant de la matrice avec des 1 et des 0 sur la
diagonale.

•

Exercice 155 [ENS 2023 # 165] Soient m ≥ 1 et r ≥ 1 deux entiers. On munit l’ensemble des morphismes de groupes de (Z/mZ)r

dans Z/mZ de la loi uniforme. Donner une expression simple de la probabilité de l’événement «le morphisme φ est surjectif».

Démonstration. Le faire pour m = p, puis lemme Chinois.

Exercice 156 [ENS 2023 # 166] Deux joueurs A et B lancent une pièce truquée donnant pile avec une probabilité égale à 5/9.
Les règles de gain sont les suivantes : pile rapporte 5 euros et face 4 euros. Pour n ∈ N∗, chacun des joueurs effectue 9n lancers
indépendants ; on note An (resp. Bn) la variable aléatoire donnant le gain du joueur A (resp. B).

• Trouver un équivalent, lorsque n tend vers +∞, de P (An = Bn).
• Montrer que P (An ≥ Bn) ≥ 1

2 .
• Vers quoi tend P (An < Bn)?

Démonstration. • On a P (An = Bn) = P (An = 9n−Bn) = P (An +Bn = 9n), et la somme est une loi binomiale.
• C’est clair.
• Découle des questions précédentes.

Exercice 157 [ENS 2023 # 167, 177] On joue a pile ou face avec une pièce pipée qui donne pile avec probabilité p < 1
2 . On lance la

pièce 2n fois et on compte le nombre de «Piles». Déterminer l’entier n qui maximise la probabilité d’avoir compté au moins n + 1
«Piles».

Démonstration. On a P (S2n = n+ k)P (S2n = n− k), puis on montre que P (S2n ≥ n+ 1) + 1
2P (S2n = n) est décroissante. Mais

on connaît P (S2n = n), et il suffit de voir quand elle devient plus petite que les premières valeurs de P (S2n ≥ n+ 1).

Exercice 158 [ENS 2023 # 168] Soit X une variable aléatoire à valeurs dans N telle que E(X) = 1, E
(
X2

)
= 2 et E

(
X3

)
= 5.

Quelle est la valeur minimale de P(X = 0)?

Démonstration. On a E(X)E(X3) ≥ E(X2)2. En notant e = P (X = 1), on a E(X1X>1)E(X31X>1) ≥ E(X21X>1)
2, donc

(1− e)(5− e)(2− e)2, qui donne e ≤ 1
2 .

Comme E(X) = 1, on doit avoir P (X = 0) ≥ 1
4 , mais le cas d’égalité ne donne pas les bonnes valeurs : mais E(X) = 1, E(X2) = 3

2
et E(X3) = 5

2 .
Si on suppose que e = 1

2 , on peut prendre Y qui vaut 3 avec probabilité 1
6 et 0 avec probabilité 1

3 .
! ! Manque : on ne peut pas faire mieux. . .

Exercice 159 [ENS 2023 # 169] Soient n ∈ N un entier impair ≥ 3, (Xm)m≥0 une suite de variables aléatoires à valeurs dans Z/nZ
telle queX0 = 0, et pourm ∈ N, P(Xm+1 = k+1 |Xm = k) = P(Xm+1 = k−1 |Xm = k) = 1

2 . Montrer que (Xm)m≥0 converge
en loi vers la loi uniforme sur Z/nZ.

Démonstration. On regarde la loi de Xm +m, dont la série génératrice est Gm =
(

1+X2

2

)m

. Puis on regarde P (Sm = 0[n]), c’est∑
ω∈Un

Gm(ω) = 1
n

∑n−1
k=0

(
1+e

4ikπ
n

2

)m

= 1
n

∑n−1
k=0 cos

2m 2kπ
n

Pour les autres valeurs que 0 modulo n, il faut prendre XkGm(X), cela marche pareil.

Exercice 160 [ENS 2023 # 170] Pour σ ∈ Sn on note I(σ) le nombre d’inversions de σ c’est-a-dire le nombre de couples (i, j) avec
i < j et σ(i) > σ(j).
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• Montrer que Pn =
∑

σ∈Sn
XI(σ) =

∏n−1
k=1(1 +X + · · ·+Xk).

• On pose f(n) = |{σ ∈ Sn, (n+ 1) divise I(σ)}|. Exprimer f(n) a l’aide de Pn.

• Montrer qu’il existe une infinite de nombres premiers p tels que f(p−1) < (p−1)!
p et de meme une infinite de nombres premiers

p tels que f(p− 1) > (p−1)!
p .

Exercice 161 [ENS 2023 # 171] Soient p un nombre premier, n ∈ N∗, P une variable aléatoire suivant la loi uniforme sur l’ensemble
des polynômes unitaires de degré n de Fp[X], N le nombre de racines de P dans Fp (sans tenir compte des multiplicités). Calculer
E(N) et V(N).

Exercice 162 [ENS 2023 # 172] Dans tout l’exercice, les variables aléatoires considérées sont supposées réelles, discrètes et à loi de
support fini. Pour deux telles variablesX et Y , on noteX ≤c Y pour signifier que E(f(X)) ≤ E(f(Y )) pour toute fonction convexe
f : R → R.

1. Soient X une variable aléatoire vérifiant les conditions de l’exercice et f : R → R convexe. Montrer que f(E(X)) ≤ E(f(X)).
2. Donner un exemple de couple (X,Y ) pour lequel X ≤c Y mais X ̸= Y .
3. Montrer que si X ≤c Y alors E(X) = E(Y ) et V(X) ≤ V(Y ).
4. Montrer que X ≤c Y si et seulement si E(X) = E(Y ) et

∀a ∈ R,
∫ +∞

a

P(X ≥ x) dx ≤
∫ +∞

a

P(Y ≥ x) dx.

Démonstration.

Exercice 163 [ENS 2023 # 173] On fixe N ∈ N∗. On choisit de façon équiprobable u1 ∈ [[1, N ]], puis u2 ∈ [[1, u1 − 1]], et ainsi de
suite jusqu’à arriver à uℓ = 1 avec nécessairement ℓ ≤ N . On note EN = {uj , 1 ≤ j ≤ ℓ}.

1. Calculer P (k ∈ EN ) pour 1 ≤ k ≤ N .
2. Calculer P (2 ∈ EN | 3 ̸∈ EN ).
3. Calculer E (|EN |) et V (|EN |).

Démonstration. 1. P (k ∈ Ek+1) = 1
k , puis P (k ∈ En) = 1

n−1 + 1
n−1

(
P (k ∈ EN−1) + · · · + P (k ∈ Ek+1)

)
. On trouve

P (k ∈ EN ) = 1
k .

2. On a P (2 ∈ EN | 3 ∈ EN ) = 1
2 .

3. Semble facile.

Exercice 164 [ENS 2023 # 174] Dans tout l’énonce, on fixe un entier p ≥ 1.

• Développper (x1 + · · ·+ xN )p pour toute liste (x1, . . . , xN ) de nombres réels.
• Soient X1, . . . , Xn des variables aléatoires i.i.d. suivant la loi uniforme sur {−1, 1}. Soit (a1, . . . , an) ∈ Rn. On pose X =∑n

i=1 aiXi. Montrer que E(X2p) ≤ (2p)p(E(X2))p.
• Montrer que E(X2p) ≤ pp(E(X2))p.

• Soit (a− k ≥ 1 une suite réelle telle que
∑+∞

k=1 a
2
k = 1. Soient x ∈ R et Yx =

∑n
k=1 ak cos(kx)Xi.

Montrer que ω 7→
∫ 2π

0
Yx(ω)

2p dx prend au moins une valeur inférieure ou égal a 2πpp.

Exercice 165 [ENS 2023 # 175] suivant la loi uniforme sur {1,−1}. Soient X1, . . . , Xn des variables aléatoires i.i.d. suivant la loi de
Rademacher, et a1, . . . , an des réels. On pose Y =

∑n
k=1 akXk .

• Montrer que E(|Y |)2 ≤ E(Y 2).
• Montrer que E(Y 2) =

∑n
k=1 a

2
k .

• Montrer que si
∑n

k=1 a
2
k = 1 alors E(Y 2) ≤ eE(|Y |)2.

• Montrer que E(Y 2) ≤ eE(|Y |)2 en toute généralite.

Exercice 166 [ENS 2023 # 176] Une variable aléatoire discrète réelle X est dite decomposable s’il existe deux variables aléatoires
discrètes réelles non presque sûrement constantes et indépendantes X1 et X2 telles que X ∼ X1 + X2. - Une variable aléatoire de
Bernoulli est-elle decomposable? Une variable aléatoire binomiale est-elle decomposable?

• Montrer que le polynôme T 4 + 2T + 1 ne peut se factoriser comme produit de deux polynômes de degré 2 a coefficients dans
R+. En déduire une variable aléatoire réelle discrète decomposable X telle que X2 ne soit pas decomposable.

• Soient n ∈ N∗ et X une variable aléatoire suivant la loi uniforme que [[0, n− 1]]. Donner une condition nécessaire et suffisante
sur n pour que X soit decomposable.

Exercice 167 [ENS 2023 # 178] On fixe n ∈ N∗ et on pose X = [[1, n]]. Soient A et B des variables aléatoires indépendantes
uniformément distribuées sur l’ensemble P(X) des parties de X .

• Déterminer la loi, l’espérance et la variance de la variable aléatoire |A| (cardinal de A).
• Montrer que, pour tout ε > 0, P

(
|A| ≥

(
1
2 + ε

)
n
)

−→
n→+∞

0.

• Pour i ∈ [[1, n]], on note 1{i} la fonction indicatrice du singleton {i}. Déterminer la loi de 1{i}(A).
• Calculer P(A ⊂ B). Commenter.
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Exercice 168 [ENS 2023 # 179] Soient n ∈ N∗ et p ∈ [0, 1]. On considère un échiquier n× n. On colorie chaque case en rouge (resp.
en bleu) avec probabilité p (resp. 1− p). On note Q(p) la probabilité pour qu’il existe un chemin joignant le bord gauche au bord droit
constitué uniquement de cases rouges (les déplacements ne se font pas en diagonale) ? Que dire de la fonction Q?

Exercice 169 [ENS 2023 # 180] Soit (Xn)n≥1 une suite de variables aléatoires indépendantes de loi de Rademacher. On pose Sn =
X1 + · · ·+Xn pour n ≥ 1.

• Calculer l’espérance du nombre R de retour en zero de la suite (Sn)n≥1.
• Soit I un intervalle de R distinct de R. Montrer que la probabilité qu’il existe n ≥ 1 tel que Sn /∈ I est égale a 1.
• Montrer que l’évènement (R = +∞) est presque sûr.

Démonstration. • Passer par la probabilité de premier retour en 0, il faut tout refaire. . .

Exercice 170 [ENS 2023 # 181] Soient (Ω,A,P) un espace probabilise et (m − k ∈ N une suite de réels positifs de somme 1. On
considère un arbre aléatoire sur cet espace tel que chaque noeud ait un nombre aléatoire X de successive avec, pour tout k ∈ N,
P(X = k) = mk . Ces variables aléatoires correspondant au nombre de succcesseurs sont mutuellement indépendantes. On note
X1 la variable aléatoire comptant le nombre de succcesseurs de la racine. Caracteriser le fait que la longueur de l’arbre soit presque
surement finie.

Exercice 171 [ENS 2023 # 182] On construit iterativement et aléatoirement un arbre aléatoire sur l’ensemble de sommets [[1, n]]
(graphe oriente) selon le procede suivant : a l’etape k, on choisit aléatoirementun point dans [[1, k]] (avec probabilité uniforme) et on
rajoute une arete orientée de ce point vers k + 1. Ces choix s’effectuent de maniere indépendante les uns des autres.

• On note Xn la variable aléatoire donnant le nombre d’aretes partant du point 1. Déterminer l’espérance et la variance de Xn.
• On suppose n ≥ 2. On note Sn la variable aléatoire donnant le nombre de descendants (directs ou non) du sommet 2. Déterminer

la loi de Sn.
• Calculer l’espérance du nombre de feuilles de l’arbre.

Exercice 172 [ENS 2023 # 183] Soient E un ensemble fini, V : E → P(E) une fonction de E vers les parties de E et f : E → R
une fonction. Un point a ∈ E est un minimum local si f(a) ≤ f(b) pour tout b ∈ V (a). Soit M un entier tel que M ≥

√
|E|. Soient

b1, . . . , bM des variables aléatoires indépendantes et uniformément distribuées dans E. Soit k tel que f (bk) = min1≤i≤M f (bi). Soit
(un)n≥0 une suite de E telle que u0 = bk et, pour tout n ≥ 0 :

• si un est un minimum local, alors un+1 = un ;
• sinon un+1 ∈ V (un) et f (un+1) < f (un).

Montrer que uM est un minimum local avec probabilité au moins 1/2.

Démonstration. La donnée est celle d’un graphe. Étant donné l’algorithme, on peut retirer des arêtes, de sorte que les voisins de a
vérifient f(b) < f(a). Auquel cas il n’y a plus de cycles.
Alors on choisit aléatoirement

√
n sommets du graphe, et parmi ceux-ci le sommet de valeur minimale. On veut montrer que la plus

longue chaîne décroissante à partir de celui-ci est de longueur ≤
√
n avec probabilité ≥ 1

2 .
On peut attribuer à chaque sommet sa valeur par f , et on peut supposer que c’est injectif.
Puis on peut ajouter des arêtes, vers ceux qui sont < s. Puis on peut retirer les arêtes, sauf celle juste en dessous. On est ramené à
traiter le cas du graphe n→ n− 1 → . . .→ 1.

Exercice 173 [ENS 2023 # 184] Une variable aléatoire réelle X est infiniment divisible si X admet un moment d’ordre 2, et si, pour
tout n ≥ 2, il existe (Xi,n)i∈[[1,n]] i.i.d. et admettant des moments d’ordre 2 telles que X ∼

∑n
i=1Xi,n. Montrer que si X est bornée

et infiniment divisible, alors X est presque surement constante.

Exercice 174 [ENS 2023 # 185] On se donne une suite (X − i ≥ 1 de variables aléatoires indépendantes. On suppose que pour tout
i ≥ 1, il existe ai ∈ ]0, 2] et pi ∈ [0, 1] tels que Xi soit a valeurs dans {0, ai,−ai} et P(Xi = ai) = P(Xi = −ai) = pi

2 .

• Quelle relation doivent vérifier ai et pi pour que V(Xi) = 1? Dans toute la suite, on suppose cette relation vérifiée et on pose
Sn =

∑n
i=1Xi.

• Calculer la variance de n−1/2Sn.
• Montrer que E(cos(n−1/2tSn)) =

∏n
i=1 E(cos(n−1/2tXi).

• En déduire que E(cos(n−1/2tSn)) −→
n→+∞

e−t2/2.

Exercice 175 [ENS 2023 # 186] On fixe un entier n ≥ 1. On considère la relation d’ordre partielle ≼ sur Rn définie par x ≼ y ⇔
∀i ∈ [[1, n]], xi ≤ yi. Une fonction f : {0, 1}n → R est dite croissante lorsque f(x) ≤ f(y) quels que soient x, y dans {0, 1}n tels que
x ≼ y.

• Donner un exemple de fonction croissante non constante de {0, 1}n dans R.
• Dans la suite, on se donne une liste (X1, . . . , Xn) de variables aléatoires i.i.d. suivant B(1/2). Soit f : {0, 1}n → R croissante.

On suppose n ≥ 2.

Montrer que E(f(X1, . . . , Xn)) =
1
2

(
E(f(X1, . . . , Xn−1, 0) + E(f(X1, . . . , Xn−1, 1))

)
. - Soit f : {0, 1}n → R et g : {0, 1}n → R

croissantes.
Montrer que E((fg)(X1, . . . , Xn)) ≥ E(f(X1, . . . , Xn))E(g(X1, . . . , Xn)).

Exercice 176 [ENS 2023 # 187] Soitn ∈ N∗. On munitSn de la distribution uniforme de probabilité. On noteAi = {σ ∈ Sn, σ(i) = i}
et N la variable aléatoire donnant le nombre de points fixes d’une permutation.
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• Soit I ⊂ [[1, n]]. Calculer P
(⋂

i∈I

Ai

)
.

• Exprimer N avec des indicatrices. Calculer E(N) et V(N).
• Soient k ∈ [[1, n]] et F ⊂ [[1, n]]. Calculer

∑
I⊂[[1,n]], |I|=k

∏
i∈I

1F (i).

• Soit k ∈ [[1, n]]. Calculer E(N(N − 1) · · · (N − k + 1)).
• Soient X ∼ P(1) et k ∈ N. Calculer E(X(X − 1) · · · (X − k + 1)).
• Calculer P(N = 0).

Exercice 177 [ENS 2023 # 188] On considère une suite i.i.d. (Xn)n≥1 de variables aléatoires suivant toutes la loi uniforme sur {1, 2}.
On définit (Sn)n≥0 par S0 = 0 et ∀n ∈ N, Sn+1 = Sn +Xn+1.
a) i) Déterminer l’espérance et la variance de Sn.

• Soit ε > 0. Montrer que P(|Sn − 3n/2| ≥ εn) tend vers 0 quand n tend vers +∞.
• Soit ε > 0. Montrer que P(|Sn − 3n/2| ≥ εn2/3) tend vers 0 quand n tend vers +∞.
• On considère la variable aléatoire Tn : ω 7→ min{k ∈ N, Sk(ω) ≥ n}. Déterminer l’ensemble des valeurs prises par Tn.
• Soit k ≥ 2. Montrer que P(Tn = k) = 1

2P(Tn−1 = k − 1) + 1
2P(Tn−2 = k − 1).

• Calculer l’espérance de Tn.

Exercice 178 [ENS 2023 # 189] Soient d ∈ N∗ et n ≥ 3. On pose G = (Z/nZ)d et S = {±ei, 1 ≤ i ≤ d}, où ei désigne l’élément de
G dont toutes les coordonnées sont nulles sauf la i-ème, égale à 1. Soient enfin f : G→ R une fonction quelconque et X une variable
aléatoire uniformément distribuée sur G.
Montrer que E(|f(X)−E(f(X))|) ≤ nd

2 maxs∈S E(|f(X)− f(X + s)|).

Démonstration. C’est simple : On peut passer d’un somme à un autre en au plus nd
2 pas.

II) X xens

1) Algèbre

Exercice 179 [X MP 2023 # 275] On note p(n) le nombre de partitions de n pour n ∈ N∗. Monter que p(n) ≤ 2n−1. sup

Démonstration. On a p(n) ≤ p(n − 1) + p(n − 2) + · · · + p(1) + 1, en considérant le (un) plus grand élément de la partition.
Formellement, on a une surjection ⊔n−1

k=0Pk → Pn (X, k) 7→ X + (n− k).

Exercice 180 [X MP 2023 # 276] Soient er > · · · > e2 > e1 ≥ 0 des entiers, n =
∑r

k=1 2
ek et X = {s ∈ N; 2s |n!}. sup

• Montrer que maxX = n− r.
• Montrer que le nombre d’entiers k tels que

(
n
k

)
est impair est 2r .

Démonstration. • Formule de Legendre.
• Relié à Lucas.

Exercice 181 [X MP 2023 # 277] • Montrer que l’équation a2 − 2b2 = 1 admet une infinite de solutions (a, b) ∈ N2.
Déterminer l’ensemble des solutions.

• Que dire de l’ensemble des solutions de a2 − 2b2 = −1?

Exercice 182 [X MP 2023 # 278] Si G est un groupe, les éléments d’ordre fini forment-il un sous-groupe?

Démonstration. Non : cf le produit libre Z/2Z ∗Z/2Z : l’ensemble des mots sur {A,B} où deux A d’affilée se simplifient, munit de la
concaténation. Cf # 281

Exercice 183 [X MP 2023 # 279] • Trouver deux groupes G1 et G2 non isomorphes de cardinal 2023 = 7.172.

▷ Soit p premier. Montrer qu’un groupe de cardinal p2 est isomorphe a Z/p2Z ou â (Z/pZ)2.
▷ Soient G,H deux groupes finis et ψ : G→ H un morphisme surjectif.

Montrer que |G| = |H| × |Kerψ|.
• On suppose que G est un groupe de cardinal 2023, que H = Z/7Z et que φ : G→ H est un morphisme surjectif. Montrer que
G est isomorphe a Z/7Z ×Kerφ.

• Montrer que tout groupe de cardinal 2023 est isomorphe a G1 ou G2.

Exercice 184 [X MP 2023 # 280] Soit G un groupe fini de neutre 1. Soit φ un automorphisme de G sans point fixe c’est-a-dire tel
que : ∀x ∈ G, φ(x) = x⇒ x = 1. On note n l’ordre de φ ; c’est le plus petit entier n ∈ N∗ tel que φn = id.

• Montrer que ∀x ∈ G, xφ(x)φ2(x) · · · φn−1(x) = 1.
• Si n = 2, que peut-on dire du groupe G? Donner un exemple.
• Si n = 3, montrer que, pour tout x ∈ G, x et φ(x) commutent.

Exercice 185 [X MP 2023 # 281] Soient G un groupe et T l’ensemble des éléments de G d’ordre fini.

• En général, T est-il un sous-groupe de G?
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• Soit S une partie finie de G stable par conjugaison munie d’une relation d’ordre totale ≤. Montrer que, pour tous s1,. . ., sr ∈ S,
il existe s′1,. . ., s′r ∈ S tels que s′1 ≤ s′2 · · · ≤ s′r et s1s2 · · · sr = s′1s

′
2 · · · s′r .

• Avec la question précédente, montrer que, si T est fini, alors T est un sous-groupe de G.

Démonstration. • Non : cf le produit libre Z/2Z∗Z/2Z : l’ensemble des mots sur {A,B} où deuxA d’affilée se simplifient, munit
de la concaténation.

• Pour deux éléments : on peut écrire s1s2 = s2
(
s−1
2 s1s2

)
: on a mis le second en premier. On peut recommencer tant que le

premier est plus grand, on obtient une suite strictement décroissante, qui s’arrête car S fini.
Puis récurrence sympa.

• Si T est fini, si ab ̸∈ T , alors on obtient une infinité de puissances, qui sont distinctes, mais d’après la question précédentes, elle
s’écrivent comme un produit croissant, qui n’a qu’un nombre fini de possibilités.

Exercice 186 [X MP 2023 # 282] • Soit s : R∗ → R∗, t 7→ t−1. Déterminer le groupe engendré par s.
• On définit les applications s1 : (t, u) ∈ R∗ × R∗ 7→ (t−1, tu) ∈ R∗ × R∗ et

Montrer que le sous-groupe qu’elles engendrent est isomorphe a S3.
• Retrouver le résultat de la question précédente en considérant le quotient A de (R∗)3 par la relation de colinearite, la bijection
f : A → (R∗)2 qui associe a la classe de (x1, x2, x3) le couple (x1/x2, x2/x3), et enfin les permutations de A induites par
(x1, x2, x3) 7→ (x2, x1, x3) et (x1, x2, x3) 7→ (x1, x3, x2).

• Soitn ≥ 3. Déterminer le groupe engendre par les bijections (s−1 ≤ i ≤ n de (R∗)n définies par si(t1, ..., tn) = (t1, ..., ti−2, ti−1×
ti, t

−1
i , ti×ti+1, ti+2, ..., tn) si 1 < i < n, s1(t1, ..., tn) = (t−1

1 , t1×t2, t3, ..., tn) et sn(t1, ..., tn) = (t1, ..., tn−2, tn−1×tn, t−1
n ).

Ind. Considèrer f : (R∗)n+1 → (R∗)n définie par f(t1, ..., tn+1) =

(
t2
t1
, ...,

tn+1

tn

)
et chercher des bijections simples s′i de

(R∗)n+1 telles que si ◦ f = f ◦ s′i.
Exercice 187 [X MP 2023 # 283] Soit G un groupe fini d’ordre n. On note, pour tout diviseur positif d de n, nd(G) le nombre
d’éléments de G d’ordre d.

• Montrer que n =
∑

d|n nd(G).

• Calculer les nd(G) lorsque G est cyclique.
• Montrer que, si pour tout diviseur positif d de n, |{x ∈ G, xd = 1}| ≤ d, alors G est cyclique. - Soient K un corps et G un

sous-groupe fini de K∗. Montrer que G est cyclique.

Exercice 188 [X MP 2023 # 284] On pose Q[i] = {a+ ib ; a, b ∈ Q}.

• Montrer que Q[i] est un sous-corps de C.
• Déterminer les éléments de Q[i] \ {0} qui sont d’ordre fini.

Exercice 189 [X MP 2023 # 285] • Soient K un corps, (a, b) ∈ K2, P = X2 − aX − b. On considère la K-algèbre A admettant
une base sur K de la forme (1, x) avec x2 = ax+ b. À quelle condition cette algèbre est-elle un corps?

▷ On suppose que K = Fp ou p est un nombre premier. Combien de Fp-algèbres non isomorphes peut-on obtenir ainsi ?

Exercice 190 [X MP 2023 # 286] Soit p un nombre premier. On suppose que, pour toute Fp-algèbre A, il existe un endomorphisme
uA deA de sorte que, pour tout couple (A,B) de Fp-algèbres et tout morphisme τ de Fp-algèbres deA dansB, on ait τ ◦uA = uB ◦τ .
Que dire des uA ?

Démonstration. Pour tout isomorphisme τ : A→, uA commute avec τ .

Exercice 191 [X MP 2023 # 287] Soit, pour n ∈ N∗, Pn = 1 +X + · · ·+Xn−1. sup

Montrer que
∑n

k=1

(
n
k

)
Pk = 2n−1Pn

(
X+1
2

)
.

Démonstration. Revient à l’identité 1
2n−1

∑n
k=p+1

(
n
k

)
=

∑n−1
k=p

1
2k

(
k
p

)
, qui peut se démontrer par des récurrence, en appliquant suc-

cessivement la formule de Pascal. Faire le dessin.
Interprétation probabiliste : on divise par 2, à gauche, on a la probabilité de tirer une partie de taille > p. À droite, si on imagine des
tirages pile/face successif, c’est la probabilité d’obtenir le p+ 1-ème élément au rang k + 1 exactement.

Exercice 192 [X MP 2023 # 288] • Montrer que pour tout n ∈ N, il existe un unique polynôme Sn ∈ Q[X] tel que ∀N ∈
N, Sn(N) =

∑N−1
k=0 k

n. Dans la suite, on note bn le coefficient de Sn devant X .
• Donner une relation de recurrence exprimant bn en fonction de b0, . . . , bn−1.
• Pour n ≥ 1, donner une relation entre S

′′

n et S′
n−1.

• En déduire une expression explicite des coefficients de Sn en fonction de b0, . . . , bn.

Exercice 193 [X MP 2023 # 289] Soit n ∈ N∗. Soit q ∈ C tel que 0 < |q| < 1. sup

On pose F : z ∈ C∗ 7→
∏n

k=1(1 + q2k−1z)(1 + q2k−1z−1).

• Montrer qu’il existe une unique liste (c0, . . . , cn) ∈ Cn+1 telle que

∀z ∈ C∗, F (z) =

n∑
k=0

ck(z
k + z−k)

.
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• Donner une relation de recurrence entre ck et ck+1, et en déduire une expression de ck a l’aide d’un produit.
Ind. Exprimer F (q2z) en fonction de F (z).

Démonstration. • Existence claire, unicité via l’unicité polynomiale.
• On a F (q2z).

Exercice 194 [X MP 2023 # 290] Soit p un nombre premier. Trouver tous les entiers n ∈ N tels que (X+Y )n soit congru aXn+Y n

modulo p.

Démonstration. Pour n = p ok. Sinon, cf Lucas pour les coefficients binomiaux, on veut que n divise tous les
(
n
k

)
.

Exercice 195 [X MP 2023 # 291] Soit f ∈ C[X] tel que f(0) ̸= 0. Soit (k, n) ∈ (N∗)2. Montrer qu’il existe P ∈ C[X] tel que Xn

divise P k − f .

Démonstration. C’est des DLs.

Exercice 196 [X MP 2023 # 292] Soit p un nombre premier. Pour deux polynômes P,Q dans Z[X,Y ], on note P ≡ Q [p] pour
signifier que P −Q a tous ses coefficients (devant les XkY l) divisibles par p. On adopte une définition similaire pour les polynômes
a une indéterminée.

• Exhiber un polynôme P ∈ Z[T ] tel que P (XY ) ≡ P (X)P (Y ) [p], P ̸≡ T [p] et P ̸≡ 0 [p].
• Exhiber un polynôme P ∈ Z[T ] tel que P (XY ) ≡ P (X)P (Y ) [p], P (X + Y ) ≡ P (X) + P (Y ) [p], P ̸≡ T [p] et P ̸≡ 0 [p].
• Déterminer tous les polynômes P ∈ Z[T ] tels que P (XY ) ≡ P (X)P (Y ) [p] et P (X + Y ) ≡ P (X) + P (Y ) [p].

Démonstration. • T p

• T p

•

Exercice 197 [X MP 2023 # 293] Soient α1, . . . , αr des complexes deux a deux distincts. Soient n1, . . . , nr dans N∗ et H1, . . . ,Hr

dans C[X]. Montrer qu’il existe un H ∈ C[X] tel que (X − αi)
ni divise H −Hi pour tout i ∈ [[1, n]].

Démonstration. Interpolation de Hermite.

Exercice 198 [X MP 2023 # 294] • SoientN1, . . . , Nr des entiers premiers entre eux deux a deux, et f1, . . . , fr des entiers. Mon-
trer qu’il existe un entier F tel que F ≡ fi [Ni] pour tout i ∈ [[1, r]].

• Soient N1, . . . , Nr des éléments de C[X] premiers entre eux deux a deux, et f1, . . . , fr des éléments de C[X]. Montrer qu’il
existe F ∈ C[X] tel que Ni divise F − fi pour tout i ∈ [[1, r]].

• Soient f, g deux éléments de C[X] premiers entre eux, et n ∈ N∗. Montrer qu’il existe h ∈ C[X] tel que g divise hn − f .

Démonstration. •
•
• Se ramener au cas de g = Xn, via ce qui précède, peut-être.

Exercice 199 [X MP 2023 # 295] Soit n ∈ N. Le polynôme Xn+1 − nXn + 1 est-il irréductible dans Z[X]?

Démonstration. ! ! Pour n = 2, 1 est racine :)

Exercice 200 [X MP 2023 # 296] Soit P ∈ Z[X] un polynôme unitaire dont les racines complexes ont un module inférieur ou égal a
1. Montrer que les racines de P sont des racines de l’unite.

Exercice 201 [X MP 2023 # 297] Soit P ∈ Z[X] possedant n racines distinctes x1, . . . , xn ∈ Z. On écrit P 2 + 1 = Q1 . . . Qr ou les
Qi sont dans Z[X]. On pose R =

∑r
i=1Qi

2 − r. sup

• Montrer que les xk sont racines au moins doubles de R.
• En déduire qu’il existe i ∈ {1, . . . , r} tel que deg(Qi) ≥ 2

⌊
n+1
2

⌋
.

Démonstration. •
• C’est juste le degré de R.

Exercice 202 [X MP 2023 # 298] On se propose de donner une preuve du théorème de d’Alembert-Gauss. sup

• Montrer qu’il suffit de montrer le théorème pour les polynômes a coefficients réels. Dans la suite, on écrira le degré d’un
polynôme non constant de R[X] sous la forme 2nq, ou n ∈ N et q ∈ N est impair. La preuve se fait par recurrence sur n.

• Montrer le théorème dans le cas ou n = 0.
Dans la suite, on suppose le résultat vrai jusqu’au rang n, ou n ≥ 1 est fixe.

• Soit P ∈ R[X] de degré 2nq, ou n ≥ 1. On admet l’existence d’une extension K de C sur laquelle P est scinde, et on note
x1, . . . , xd ses racines dans K, distinctes ou non. Ayant fixe c ∈ R, on pose yij(c) = xi + xj + cxixj pour 1 ≤ i ≤ j ≤ d.

▷ Montrer que le polynôme Qc =
∏

i≤j(X − yij(c)) est a coefficients réels.
▷ Montrer que l’un des yij(c) est élément de C.
▷ Montrer finalement que l’un des xi est élément de C.

Démonstration. • Considérer QQ.
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• Tout polynôme de degré impair admet une racine.
• ▷ Propriété de symétrie : prendre son conjugué.

▷ Découle de la première question.
▷ Pour tout c ∈ R, un des xi + xj + cxixj est dans R. Si i = j c’est bon. Sinon, pour une infinité de c, c’est le même couple,

donc xi + xj ∈ C, et xixj ∈ C.

Exercice 203 [X MP 2023 # 299] Soient F ∈ C(X) et q ∈ C∗. sup

• On suppose que q n’est pas une racine de l’unite. Montrer qu’il existe au plus deux fractions rationnelles G ∈ C(X) telles que
F = 1 +G(qX)G(q−1X)F (q−2X), et que s’il y en a deux alors elles sont opposées l’une de l’autre.

• Montrer que le résultat precedent peut tomber en defaut si l’on ne suppose plus que q n’est pas une racine de l’unite.

Démonstration. • On a G(qX)G(q−1X) = F−1
F (q−2X) .

Si xi sont les poles/racines de G, les poles/racines de G(qX)G(q−1X) sont les qxi et les q−1xi, de multiplicités m(yi) =
mq−1yi

+mqyi .
Ces multiplicités déterminent entièrement les multiplicités d’origine, car q n’est pas une racine de l’unité (. . . technique à écrire).
Si on a l’égalitéG(qX)G(q−1X) = G′(qX)G(−1X), on a les mêmes poles/racines, et quitte à les retirer, on a la même constante,
à ± près.

Exercice 204 [X MP 2023 # 300] Soit G un groupe, M l’ensemble des morphismes de groupes de G dans C∗. Montrer que M est
une partie libre du C-espace vectoriel CG.

Exercice 205 [X MP 2023 # 301] On note C l’ensemble des matrices de GL2(R) dont les coefficients sont non nuls. Pour M =

(mi,j)1≤i,j≤2 ∈ C , on pose J(M) =
( 1

mi,j

)
1≤i,j≤2

. Soit φ : C → C qui a M associe J(M−1). Montrer que φ est bien définie et

trouver a quelle condition sur M ∈ C la suite (φn(M))n≥1 est stationnaire, ou bien périoddique a partir d’un certain rang.

Démonstration.
(
a b
c d

)
→ (ad − bc)

(
1/d −1/b
−1/c 1/a

)
Si on est un point fixe, on vérifie a/b = − 1/d

1/b , c’est-à-dire b2 = −ad et

c2 = −ad. Donc b = ±c, mais si b = −c, ad− bc = 0, donc b = c.
et ad− bc = 2ad = −2b2

Alors
(
a b
c d

)
→

(
2a 2b
2c 2d

)
, donc pas de point fixe.

Si on applique une deuxième fois l’application, comme φ(cx) = cφ(x), on obtient
(
a b
c d

)
→ (ad− bc)

(
1
da − 1

bc

)(a b
c d

)
Donc on

est point fixe si et seulement si (ad− bc)(bc− ad) = adbc⇔ (ad− bc)2 = −adbc⇔ X2 + Y 2 = 3XY . M’enfin, si c’est le cas, c’est
directement le cas je dirais, peut-être.

Exercice 206 [X MP 2023 # 302] Soit R ∈ Mn(Z) non nulle et M = In + 3R. Montrer que, pour tout k ∈ N∗, Mk ̸= In.

Exercice 207 [X MP 2023 # 303] SoientE un R-espace vectoriel de dimension finie, p, u ∈ L(E). On suppose que p est un projecteur
et que pu+ up = u. Montrer que tr(u) = 0. sup

Démonstration. On a u(Ker p) ⊂ Im p et u(Im p) ⊂ Ker p.

Exercice 208 [X MP 2023 # 304] Pour (A,B) ∈ Mn(R)2, on pose φA,B :M ∈ Mn(R) 7→ AMB. sup

Soit T = {φA,B , (A,B) ∈ Mn(R)2}.

• L’ensemble T est-il un R-espace vectoriel ?
• Montrer que l’espace vectoriel engendré par T est L (Mn(R)).

Démonstration. • Non.
• On prend les EijMEkℓ, ils forment une famille libre.

Exercice 209 [X MP 2023 # 305] Pour une matrice de projecteur P ∈ Mn(K), on pose RP = det(In + (X − 1)P ). sup

• Calculer RP en fonction de P .
• Soient P,Q des matrices de projecteur dans Mn(K) telles que PQ = QP = 0. Montrer que RPRQ = RP+Q.
• Soit φ un automorphisme de la K-algèbre Mn(K).

▷ Montrer que φ(Ei,i) est un projecteur de rang 1, pour tout i ∈ [[1, n]].
▷ Que dire du rang de φ(Ei,j), pour i, j dans [[1, n]]?
▷ Montrer que Kn =

⊕n
i=1 Imφ(Ei,1).

Démonstration. • RP = Xr

• C’est-à-dire que rang(P +Q) = rangP + rangQ.
• Pas de rapport avec ce qui précède.

▷
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Exercice 210 [X MP 2023 # 306] Soient E un C-espace vectoriel de dimension finie n ≥ 1 et V un sous-espace vectoriel de L(E).
On suppose qu’il existe une application q : V → C telle que u2 = q(u) id pour tout u ∈ V .

• Monter que, pour tous u, v ∈ V , il existe B(u, v) ∈ C tel que uv + vu = 2B(u, v) idE .
• Montrer que B est une forme bilineaire.
• Soient d ≥ 1 et u1, . . . , ud ∈ V tels que B(ui, uj) = −δij pour tous i, j ∈ [[1, n]]. Montrer que (u1, . . . , ud) est libre.
• Soient d ≥ 2 et u1, . . . , ud ∈ V tels que B(ui, uj) = −δij pour tous i, j ∈ [[1, n]]. Montrer que les ui sont de trace nulle, et que
dimE est paire.

Exercice 211 [X MP 2023 # 307] Soit n ∈ N avec n ≥ 2. Soit φ ∈ L (Mn(C)). On suppose que φ(In) est inversible et que
∀A,B ∈ Mn(C), φ(AB) = φ(A)φ(B). Montrer qu’il existe P ∈ GLn(C) tel que : ∀A ∈ Mn(C), φ(A) = PAP−1.

Exercice 212 [X MP 2023 # 308] • Caracteriser les endomorphismes φ de C(X) vérifiant (∗) : ∀F1, F2 ∈ C(X), φ(F1F2) =
φ(F1)φ(F2).

• Déterminer les automorphismes de C(X) vérifiant (∗).
Exercice 213 [X MP 2023 # 309] Soit M = (mi,j)1≤i,j≤n ∈ Mn(R) telle que : ∀i, j, mi,j ≥ 0 et

∑n
j=1mi,j = 1.

• Montrer que 1 est valeur propre de M et que tout valeur propre de M est de module ≤ 1.
• On note µ = min1≤i≤nmi,i. Montrer que le spectre de M est inclus dans le disque de centre µ et de rayon 1− µ.
• On suppose que µ > 0 et que 1 est valeur propre de multiplicité 1 dans χM . Montrer que (Mp)p≥1 converge vers une matrice

de rang 1 dont toutes les lignes sont égales.
• On se donne trois réels strictement positifs p, q, r tels que p + q + r = 1. On considère la matrice B ∈ Mn(R) définie par
bi,i = r, bi,i+1 = q si i > 2, b1,2 = p + q, bi+1,i = p si i < n − 1, bn,n−1 = p + q, et tous les autres coefficients sont nuls.
Montrer que 1 est valeur propre simple de B, et expliciter la limite de (Bk)k≥0.

Exercice 214 [X MP 2023 # 310] Soient E un K-espace vectoriel de dimension finie, f ∈ L(E) cyclique, F un sous-espace de E
stable par f . Montrer que l’induit par f sur F est cyclique.

Exercice 215 [XMP 2023 # 311] SoientE un C-espace vectoriel de dimension finie, a, b ∈ L(E). On suppose qu’il existe f ∈ L(C, E)
et v ∈ L(E,C) telles que ab− ba = fv.

• Que peut-on dire de det(ab− ba)?
• Montrer que a et b sont cotrigonalisables.
• À quelle condition sur u ∈ L(E) existe-t-il w ∈ L(E) tel que uw − wv soit de rang 1?

Démonstration. • fv est un endomorphisme de rang 1, on note son image Vect(t).
• Si Ker b non stable par a, alors il existe x tel que −b(a(x)) ∈ Vect t, donc t ∈ Im b. Alors Im b est stable par a.

En appliquant ça à des b− λIn répétitivement, on trouve un vecteur propre commun.
• Si u a deux valeurs propres distinctes, en diagonalisant u par blocs et en prenant une matrice v avec un unique 1 à l’intersection,

on obtient une matrice de rang 1.
Si u a une unique valeur propre, on peut supposer u nilpotente. Alors, si u est non nulle, on peut prendre v de rang 1, qui envoie
un élément de l’image de u sur un élément du noyau de u, et on obtient uv − vu de rang 1.

Exercice 216 [X MP 2023 # 312] Soient E un C-espace vectoriel de dimension finie et f ∈ L(E) tel que, pour tout vecteur x ∈ E,
l’ensemble {fn(x), n ∈ N} est fini.

• Montrer que, si f ∈ GL(E), il existe k ∈ N∗ tel que fk = Id.
• On revient au cas général. Montrer l’existence de k ∈ N∗ et p ∈ N tels que fp+k = fp.

Démonstration. • Les valeurs propres sont des Uk , et si elle n’était pas diagonalisable. . .

Exercice 217 [X MP 2023 # 313] Pour σ ∈ Sn, on note Pσ ∈ Mn(C) la matrice de permutation associée a σ. Montrer que, si σ et σ′

sont dans Sn, σ et σ′ sont conjuguées dans Sn si et seulement si Pσ et Pσ′ sont semblables.

Exercice 218 [X 2023 # 314] Soient p et q deux projecteurs orthogonaux dans un espace euclidien E.

1. Montrer que p ◦ q ◦ p est diagonalisable.
2. Montrer que E = Im p+Ker q + (Im q ∩Ker p).
3. Montrer que p ◦ q est diagonalisable.
4. Montrer que le spectre de p ◦ q est inclus dans [0, 1].

Démonstration.

Exercice 219 [X MP 2023 # 315] Soit n ∈ N∗. On pose Ln = Dn((X2−1)n), ouD designe l’operateur de derivation des polynômes.

• Déterminer le degré de Ln. Montrer que
∫ 1

−1
Ln(t)P (t) dt = 0 pour tout P ∈ Rn−1[X].

• Montrer que Ln est scinde a racines réelles simples x1 < · · · < xn avec x1 > −1 et xn < 1.

• Montrer qu’il existe des réels a1, . . . , an tels que ∀P ∈ R2n−1[X],
∫ 1

−1
P (t) dt =

∑n
k=1 akP (xk).

Exercice 220 [X 2023 # 316] Soit α ∈ R+∗. On note S2 =
{
x ∈ R3, ∥x∥ = 1

}
où ∥·∥ désigne la norme euclidienne canonique.

Montrer l’équivalence entre les propositions suivantes.

• α = 2.
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• ∀n ≥ 1,∀ (a1, . . . , an, b1, . . . , bn, c1, . . . , cn) ∈
(
S2

)3n
,∃p ∈ S2 tel que

n∑
i=1

∥p− ai∥α =

n∑
i=1

∥p− bi∥α =

n∑
i=1

∥p− ci∥α

Démonstration. Pour α = 2, on veut montrer que si on prend 3n points dans la sphère unité, il existe un point tel que la somme des
distances au carré soient égales.
Pour n = 1 : c’est l’intersection de la droite passant par l’origine et le centre du cercle circonscrit au triangle.
! ! Pour n = 2, On peut Pa(x) + P ′

a(y) = Pb(x) + P ′
b(y) = . . .

Exercice 221 [X MP 2023 # 317] Existe-t-il A ∈ SO2(Q) telle qu’il n’existe pas B ∈ SO2(Q) vérifiant B2 = A?

Démonstration. S’il en existe une, son opposé marche aussi. On a cos θ =
√

1+cos(2θ)
2 , si on pouvait appliquer ça à chaque fois,

problème de taille du dénominateur.

Exercice 222 [X MP 2023 # 318] Soient E un espace vectoriel euclidien, f ∈ S(E), Φ :
E → R
v 7→ ∥f(v)∥2 − ⟨f(v), v⟩2 . Donner

une condition nécessaire et suffisante pour que Φ admette un extremum.

Démonstration. Si λ est valeurs propres, Φ(tvλ) = λ2t2 − λt2 = (λ2 − λ)t2. Il est donc nécessaire, ou bien que toutes les valeurs
propres sont ∈ [0, 1], ou bien toutes dans le complémentaire.

Exercice 223 [X MP 2023 # 319] On considère dans M2n(R) les matrices J =

(
0 −In
In 0

)
et I =

(
In 0
0 In

)
.

• Soit K ∈ M2n(R) tel que K2 = −I . Montrer que KTJ ∈ S2n(R) si et seulement si J = KTJK .
• On note C l’ensemble des K ∈ M2n(R) telles que K2 = −I et KTJ ∈ S++

n (R). Soit K ∈ C. Montrer que K + J est inversible
et que (K + J)−1(K − J) est symétrique.

• Soit K ∈ C. On pose S = (K + J)−1(K − J). Montrer que SJ + JS = 0.

Exercice 224 [X MP 2023 # 320] Montrer que ∀(A,B) ∈ S+
n (R)2, det(A+B) ≥ max(det(A),det(B)).

Démonstration. Simple? Écrire A = PDPT et B = PPT , si detB > 0.

Exercice 225 [X MP 2023 # 321] Soient A,B ∈ Sn(R).

• Montrer que tr
(
eAeB

)
> 0.

• Montrer que tr
(
eA+B

)
≤ tr

(
eAeB

)
.

Exercice 226 [X 2023 # 322] Soit t1, . . . , tn des réels.

1. Montrer que la matrice A = (titj)1≤i,j≤n est dans S+
n (R).

2. On suppose 0 ≤ t1 ≤ · · · ≤ tn. Montrer que la matrice B = (min (ti, tj))1≤i,j≤n est dans S+
n (R).

3. On suppose 0 ≤ t1 ≤ · · · ≤ tn ≤ 1. Montrer que M = B −A ∈ S+
n (R).

Démonstration. 1. XTAX = (
∑
tixi)

2

2.
∫ (∑

xi1ti

)2
3. Il s’agit de montrer que

∫ 1

0

(∑
xi1ti

)2 ≥ (
∑
tixi)

2, c’est-à-dire
∫
h2 ≥

( ∫
h
)2

, car l’intégrale est sur [0, 1].

Exercice 227 [X MP 2023 # 323] On munit Rn de son produit scalaire standard et on note ∥A∥ = supX∈Bf (0,1)
∥AX∥ pour A ∈

Mn(R).

• Montrer que ∥·∥ définit une norme sur Mn(R).
• Montrer que ∥A∥ = sup(X,Y )∈Bf (0,1)2

| ⟨AX,Y ⟩ |.

• On prend A =
( 1

i+ j + 1

)
0≤i,j≤n

dans Mn+1(R). Pour X = (x0 · · ·xn)T et Y = (y0 · · · yn)T dans Rn+1, donner une

interpretation de ⟨AX,Y ⟩ a l’aide d’une intégrale faisant intervenir P : t ∈ [0, 2π] 7→
∑n

k=0 xke
ikt et Q : t ∈ [0, 2π] 7→∑n

k=0 yke
ikt.

• En déduire que ∥||A|| ≤ 2π.
• Montrer que l’on a meme ∥|A||| ≤ π.

Démonstration. •
•
• $⟨ AX, Y⟩ = $
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2) Analyse

Exercice 228 [X MP 2023 # 324] Trouver f : R2 → R continue sur R2 \ {(0, 0)}, discontinue en (0, 0), dont la restriction a toute
droite passant par (0, 0) est continue.

Démonstration. f(x, y) = x4

y2+x6

Exercice 229 [X 2023 # 325] Soit K ⊂ R2 un convexe fermé non vide.

1. On suppose K borné. Montrer que K s’écrit comme intersection de carrés fermés.
2. On suppose K non borné et K ̸= R2. Donner des exemples de tels convexes. Montrer que si K contient deux droites, celles-ci

sont parallèles.
3. On suppose toujours K non borné. Montrer que K contient une demi-droite.

Démonstration. 1. Si x ̸∈ K , on peut trouver une droite séparant x de K , donc un carré contenant K et non x.
2. Si K contient deux droites non parallèles, K = R2. La partie au dessus du graphe de x 7→ ex.
3. Fixer y ∈ K , et une suite (xn) ∈ K qui tend vers ∞, et prendre une valeur d’adhérence des segments [y, xn].

Exercice 230 [X MP 2023 # 326] Déterminer les endomorphismes continus du groupe C∗.

Exercice 231 [X MP 2023 # 327] Soit d ∈ N∗. On munit Rd de la structure euclidienne canonique. On définit une norme sur Md(R)
en posant, pour M ∈ Md(R), ∥M∥ = sup

{
∥Mx∥ ; x ∈ Rd, ∥x∥ = 1

}
.

• Soient A,B ∈ Md(R). Montrer que ∥AB∥ ≤ ∥A∥ × ∥B∥.
• Soit (un)n≥0 une suite réelle. On suppose que la série de terme général |un − 1| converge.

Montrer que la suite de terme général
∏n

k=0 uk converge.

Soit (Mn)n≥0 une suite de matrices de Md(R). On suppose que la série de terme général ∥Mn − Id∥ converge. On pose, pour n ∈ N,
Bn =M0 ×M1 × · · · ×Mn.

• Montrer que la suite (Bn)n≥0 converge.
• Soit σ une permutation de N. Que peut-on dire de la suite de terme général Mσ(0) × · · · ×Mσ(n) ?

• Soit E =
{∏+∞

k=0Mσ(k), σ ∈ S(N)
}

. Existe-t-il une suite de matrices pour laquelle E n’est pas ferme?

• Soit k ∈ N∗. Existe-il (Mn)n≥0 ∈ (Md(R))N telle que E possede exactement k composantes connexes?

Démonstration. ! !

Exercice 232 [X MP 2023 # 328] On définit la longueur d’un intervalle borne I de bornes a et b par ℓ(I) = |b− a|. - Soient N ∈ N∗,
I1, . . . , IN des intervalles bornes de R tels que [0, 1] ⊂

⋃N
i=1 Ii. Que peut-on dire de

∑N
i=1 ℓ(Ii)?

• Soit δ : [0, 1] → R+∗. Montrer qu’il existe p ∈ N∗, 0 ≤ x1 < x2 < · · · < xp = 1, t1, . . . , tp ∈ R tels que, pour tout k ∈ [[1, p]],
xq−1 ≤ tq ≤ xq et xq − xq−1 ≤ δ(tq).

• Soit (In)n≥1 une suite d’intervalles bornes de R telle que [0, 1] ⊂
⋃+∞

n=1 In. Que peut-on dire de
∑+∞

n=1 ℓ(In)?

Démonstration. •
• Incompréhensible. Quel sens pour x1 ? Il faudrait que δ soit continue?
• Si

∑
ℓ(In) < 1, on montre que ce n’est pas possible. On considère une suite (εn) telle que

∑
ℓ(In) + εn < 1.

On choisit x0 = 0, puis le plus grand intervalle restant qui contient (n’existe pas . . .) x0, puis ℓ(In0) < x1 < ℓ(In0) + εn0 , puis
le plus grand qui le contient etc.

Exercice 233 [X MP 2023 # 329] Dans R2, on note D le disque unite ferme pour la norme infinie, C la sphere unite pour la norme
infinie. On cherche a montrer qu’il n’existe pas de fonction continue r : D → C telle que la restriction de r a C soit l’identite.

• On considère une fonction f : R2 → R, antisymmetrique (i.e. f(x, y) = −f(y, x)), et A = (ai,j)i,j≤n une matrice réelle telle
que : ∀i, j ∈ [[1, n− 1]],

f(ai,j , ai+1,j) + f(ai+1,j , ai+1,j+1) + f(ai+1,j+1, ai,j+1) + f(ai,j+1, ai,j) = 0.
Montrer que :∑n−1

i=0 f(ai,1, ai+1,1) +
∑n−1

j=0 f(an,j , an,j+1) +
∑n−1

i=0 f(ai+1,n, ai,n) +
∑n−1

j=0 f(a1,j+1, a1,j) = 0

• Soit M ∈ Mn+2(R) une matrice de la forme


1 1 · · · · · · 1
1 3
... M ′ ...
1 3
1 2 · · · · · · 2

 ou M ′ ∈ Mn(R)

est a coefficients dans {1, 2, 3}. Montrer qu’au moins un des petits carrés de M comporte trois valeurs differentes.

• Montrer qu’on dispose d’un η > 0 tel que, pour tous x, y ∈ D vérifiant ∥x− y∥∞ ≤ η, on a ∥r(x)− r(y)∥ ≤ 1
10 .

• Soit alors n ∈ N tel que 2
n−1 ≤ η. Pour tous i, j ∈ [[1, n]], on pose

vi,j =
(
1− 2 i−1

n−1 , 1− 2 j−1
n−1

)
.

Montrer que, pour tous i, j ∈ [[1, n− 1]], vi,j , vi+1,j , vi+1,j+1, vi,j+1 sont contenus dans une boule de rayon 1/10.
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• En utilisant une fonction bien choisie de C dans {1, 2, 3}, aboutir a une contradiction et conclure.
• Utiliser ce résultat pour montrer que toute fonction continue de D dans D admet un point fixe.

Exercice 234 [X 2023 # 330] On dit qu’une famille (Dt)t∈R+ de disques fermés de R2 vérifie (P) si

• pour tous s, t ∈ R+ distincts, Ds et Dt ont des centres distincts,
• pour tous s, t ∈ R+ tels que s < t,Ds ⊂ Dt.

1. Existe-t-il une telle famille ?
2. Soit A : R+ → R2 une fonction C1 et injective. Existe-t-il une famille (Dt)t∈R+ vérifiant (P) telle que, pour tout t ∈ R+, A(t)

soit le centre de Dt ?
3. Le résultat subsiste-t-il si A est seulement supposée continue?

Démonstration. 1. Cercles de centre (x, 0), de rayon x.
2. Prendre Dt de rayon la longueur de la courbe de A(0) à A(t).
3. Prendre une fonction non réglée.

Exercice 235 [X MP 2023 # 331] Dans tout l’enonce, K designe R ou C. On se donne une K-algèbre A de dimension finie, et on
identifie K a une sous-algèbre de A via λ 7→ λ.1A. On suppose donnée sur A une norme multiplicative ∥ ∥, autrement dit une norme
vérifiant ∀(a, b) ∈ A2, ∥ab∥ = ∥a∥ ∥b∥. On suppose K = C.

• Soit x ∈ A. Montrer qu’il existe un z0 ∈ C tel que ∀z ∈ C, ∥z0 − x∥ ≤ ∥z − x∥.

• On suppose ∥a∥ = 2 pour a = z0 − x. Montrer que ∥a− e
2ikx
n ∥ ≥ 2 pour tout (n, k) ∈ N∗ × N.

• En déduire que ∥a− 1∥ = 2.
• En déduire que A = C.
• Retrouver le résultat de la question précédente en utilisant des polynômes annulateurs.

Dans la suite, on suppose que K = R.

• Est-ce que A est nécessairement égale a R?
• On admet qu’il existe une R-algèbre H ayant une base de la forme (1, i, j, k) ou i, j, k anticommutent deux a deux et i2 = j2 =
k2 = −1. On considère la symétrie x 7→ x par rapport a R parallélément a VectR(i, j, k), et on considère la normeN : q 7→

√
qq.

Montrer que N est bien définie, est effectivement une norme, et qu’elle est multiplicative.
• Montrer que A est isomorphe, en tant que R-algèbre, a R, C ou H.

Exercice 236 [X 2023 # 332] Soient a, b, c des entiers naturels non nuls. Montrer qu’il existe un n ∈ N∗ tel que
√
n4 + an2 + bn+ c /∈

N.

Démonstration. Dérivée discrète.

Exercice 237 [X MP 2023 # 333] Pour n ≥ 2, on note ℓn = min
{
k ∈ [[1, n]] |

∏k
i=1

(
1− i

n

)
≤ 1

2

}
.

• Montrer que ℓn = o(n).
• Donner un équivalent de ℓn.

Démonstration. • C’est montrer que ∀c,
∏cn

i=1

(
1 − i

n

)
≤ 1

2 APCR. Ou bien par comparaison
∑
/
∫

, ou somme de Riemann un
peu technique.

• La comparaison
∑
/
∫

devrait marcher. . .

Exercice 238 [X 2023 # 334] Soient (an) et (bn), deux suites réelles positives telles que la série de terme général bn converge, que la
série de terme général nan diverge et que

∑+∞
n=0 an = 1.

1. Montrer qu’il existe une unique suite (un) telle que, ∀n ∈ N, un = bn +
∑n

k=0 ukan−k .
2. Montrer que (un) est bornée.
3. Montrer que, si (un) converge, alors sa limite est 0.

Démonstration. Cf une année précédente.

Exercice 239 [X MP 2023 # 335] On considère la suite réelle définie par x0 = 2 et xn+1 = xn +
x2
n

n2 pour tout n ≥ 1. Montrer qu’il
existe un réel C > 1 tel que xn ∼ C2nn2 quand n→ +∞.

Démonstration. ! !

Exercice 240 [X MP 2023 # 336] Soit (an)n≥0 la suite réelle définie par a0 = 1, a1 = 2 et ∀n ∈ N∗, an+1 = 2an + an−1

n2 . Donner un
équivalent de an.

Exercice 241 [X MP 2023 # 337] Soit (an)n≥0 définie par a0 = π/2 et ∀n ∈ N, an+1 = sin(an). Nature de la série de terme général
a2n ?

Démonstration. On a an+1 − an ∼ a3n, donc
∑
a3n converge. Il faut trouver un équivalent de an, via la méthode usuelle.

Exercice 242 [X MP 2023 # 338] Soit
∑
un une série convergente de réels positifs. Existe-t-il une suite (vn)n≥0 de réels positifs

tendant vers +∞ telle que la série
∑
unvn converge?
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Exercice 243 [X MP 2023 # 339] Soit (xn) une suite réelle. On suppose que (xnyn) est sommable pour toute suite réelle (yn) de carré
sommable. Montrer que (xn) est de carré sommable.

Exercice 244 [X MP 2023 # 340] Soit σ une permutation de N∗. Déterminer la nature de la série
∑ σ(n)

n2 .

Exercice 245 [X MP 2023 # 341] Étudier la convergence de la série de terme général sin(lnn)
n .

Exercice 246 [X MP 2023 # 342] On pose un = −2
√
n+

∑n
k=1

1√
k

pour tout n ≥ 1.

• Montrer que u converge vers une limite ℓ.

• Montrer que ℓ = −(
√
2 + 1)

∑+∞
n=1

(−1)n+1

√
n

.

• Montrer que un = ℓ+ 1
2n1/2 +O

(
1

n3/2

)
.

• Montrer que ℓ = −
∑+∞

n=1
1√

n (
√
n+

√
n−1)2

.

• Étudier les variations de u.
• Déterminer un développement asymptotique similaire pour la suite de terme général vn =

∑n
k=1

1
k − lnn.

• Soit α ∈ ]0, 1[. Donner un développement asymptotique à trois termes pour wn =
∑n

k=1
1
kα .

Exercice 247 [X 2023 # 343] Soit f ∈ C0 (R+,R+), strictement croissante et bijective. Montrer que les séries
∑

1
f(n) et

∑ f−1(n)
n2

sont de même nature.

Démonstration. La série
∑

1
f(n) a la même nature que

∫
1
f . On peut raccorder f de manière C1, puis on pose u = f(t) :∫ +∞

0

1

f(t)
dt =

∫ +∞

0

1

uf ′(f−1(u))
du,

puis IPP.

Exercice 248 [X MP 2023 # 344] • Soit m ∈ N∗. Montrer que
+∞∑
n=1

√
m

(m+n)
√
n
≤ π.

Ind. : Dans R2, considérer les points xn = (
√
m,

√
n) et l’intersection rn du cercle C(0,

√
m) avec le segment [0, xn].

• Soient (an)n≥1 et (bn)n≥1 deux suites de carré sommable et a termes positifs. On noteA =
∑+∞

n=1 a
2
n etB =

∑+∞
n=1 b

2
n. Montrer

que
∑

(m,n)∈(N∗)2
ambn
m+n ≤ π

√
AB.

Démonstration. • Se fait par comparaison intégrale.
Méthode géométrique : 1

m+n est l’inverse de la longueur de l’hypothénuse. IDK

• ! ! À Relier, Carlemann.

Exercice 249 [X MP 2023 # 345] • Trouver les fonctions f : R → R monotones telles que ∀(x, y) ∈ R2, f(xy) = f(x) f(y).

• Trouver les fonctions f : R → R monotones telles que ∀x ̸= y ∈ R, f
(

x+y
x−y

)
= f(x)+f(y)

f(x)−f(y) .

Démonstration. •
• ! !

Exercice 250 [X 2023 # 346] Que dire d’une fonction f : R → R continue, 1-périodique et
√
2-périodique?

Démonstration. Easy.

Exercice 251 [X MP 2023 # 347] Trouver les fonctions f : R → R de classe C1 telles que |f ′|+ |f + 1| ≤ 1.

Démonstration. ?? On obtient f ≤ 0, f = 0 → f ′ = 0, la fonction est coincée entre −2 et 0.
On peut juste poser g = f + 1, auquel cas |g|+ |g′| ≤ 1. La fonction g peut osciller tranquillement. . .

Exercice 252 [X MP 2023 # 348] Pour x ≥ 1, on note Θ(x) =
∑

p∈P, p≤x ln(p). Montrer que Θ(x) =
x→+∞

O(x). sup

Démonstration. Utiliser
(
2n
n

)
.

Exercice 253 [X MP 2023 # 349] Soit F un ferme de R. Montrer qu’il existe une fonction f de classe C∞ de R dans R telle que
F = f−1({0}).
Démonstration. e−1/d(x,F )

Exercice 254 [X MP 2023 # 350] Soit (xn)n≥0 une suite de points de [0, 1]2. Donner une condition nécessaire et suffisante pour
que, pour toute permutation σ de N, il existe une fonction continue f : [0, 1] → [0, 1]2 et une suite strictement croissante (tn)n≥0

d’éléments de [0, 1] telle que f(tn) = xσ(n) pour tout n ≥ 0.

Exercice 255 [X MP 2023 # 351] Calculer
∫ 1

0
ln(1+t)
1+t2 dt.

Exercice 256 [X MP 2023 # 352] Pour n ∈ N∗, on note Ln la derivée n-ième de (X2 − 1)n.

• Soit n ∈ N∗. Montrer que : ∀P ∈ Rn−1[X],
∫ 1

−1
PLn = 0.

• Montrer que Ln possede n racines distinctes x1 < x2 < · · · < xn dans ]− 1, 1[.

• Montrer qu’il existe α1, . . . , αn ∈ R tels que : ∀P ∈ R2n−1[X],
∫ 1

−1
P =

∑n
i=1 αiP (xi).
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Exercice 257 [X MP 2023 # 353] Pour n ∈ N, on pose In =
∑n

k=0(−1)k
(
n
k

)3
.

• On suppose n impair. Montrer que In = 0.
• On suppose n multiple de 4. Montrer que In > 0.
• Montrer, pour tout n ∈ N, l’égalité

I2n = (−1)n
43n−1

π2

∫ 2π

0

∫ 2π

0

sin2n(x) sin2n(y) sin2n(x+ y) dxdy

.

Démonstration. • Changement de variable, à extraire?

• Il suffit
(
n
k

)3 ≤ 1
2

((
n

k−1

)3
+
(

n
k+1

)3)
, 1
k3(n−k)3 ≤ 1

2

(
1

(n−k)3(n−k+1)3+
1

k3(k+1)3

)
Par l’AM-GM, il suffit 1

k3(n−k)3 ≤ 1
(n−k+1)3(k+1)3 ,

ce qui est faux. ! !
•

Exercice 258 [X MP 2023 # 354] • Soient n ∈ N∗ et f : [0, 2π] → R continue. Montrer queHn : (a0, . . . , an, b1, . . . , bn) ∈
R2n+1 7→

∫ 2π

0
(a0 +

∑n
k=1(ak cos(kt) + bk sin(kt))− f(t))

2
dt admet un minimum, atteint en un unique point, et donner une

expression simple de ce point en fonction de f .

▷ Déterminer la limite de minHn quand n tend vers +∞.

Exercice 259 [X MP 2023 # 355] Justifier l’existence et calculer
∫ 1

0
dt

2+⌊ 1
t ⌋

.

Exercice 260 [X 2023 # 356] Soit f : x ∈ R 7→ e
x2

2

∫ +∞
x

e−
t2

2 dt.

1. Montrer que f(x) < 1
x pour tout x > 0.

2. Montrer que f(x) >
√
x2+4−x

2 pour tout x > 0.
3. Donner un développement limité à quatre termes de f(x) quand x→ +∞.

Démonstration.

Exercice 261 [X 2023 # 357] Soient u, v ∈ R. Pour r ∈ R+ \ {|u|, |v|}, calculer Ir(u, v) =
∫ 2π

0
dθ

(u−reiθ)(v−reiθ)
.

Démonstration.

Exercice 262 [X MP 2023 # 358] Soit f : R → R+ intégrable, de classe C1, telle que
∫ +∞
−∞ f(t) dt = 1. On suppose que f ′ s’annule en

un unique M ∈ R.

• Donner le tableau de variations de f . Montrer qu’il existe un unique m ∈ R tel que
∫m

−∞ f(t)dt = 1
2 .

• Montrer que, pour tout ℓ ∈]0, f(M)[ il existe un unique couple (x1, x2) ∈ R2 tel que x1 < M < x2 et f(x1) = f(x2) = ℓ.
• Supposons que, pour tout ℓ ∈]0, f(M)[, f ′(x1) + f ′(x2) > 0. Montrer que m > M .

Démonstration. • f est croissante, puis décroissante, puisque sa limite est nulle en ±∞.
•
• Revient à montrer que

∫M

−∞ f(t) dt <
∫ +∞
M

f(t) dt, via un changement de variable.

Exercice 263 [X MP 2023 # 359] • Soient a et b deux suites réelles telles que b − a converge vers 0. Soit (fm)m∈N une suite de
fonctions de R dans R. On suppose que, pour tout m ≥ 0, il existe un entier Nm tel que ∀n ≥ Nm, am ≤ fn ≤ bm. Montrer
que (fm) converge uniformément vers une fonction constante.

• On note H l’ensemble des fonctions continues f : R → R strictement croissantes et telles que f(x + 1) = f(x) + 1 pour tout
x ∈ R. Montrer que H forme un groupe pour la composition des fonctions.

• Soit f ∈ H . Montrer que sup{f(x)− x, x ∈ R} < 1 + inf{f(x)− x, x ∈ R}.

Démonstration. • Suite de Cauchy.

Exercice 264 [X MP 2023 # 360] On note F l’ensemble des fonctions de [0, 1] dans [0, 1], C l’ensemble des fonctions continues de F .
On note aussi I = {f ∈ F ; ∀a ∈ [0, 1], {x ∈ [0, 1], f(x) ≤ a} est ferme} et S = {f ∈ F ; ∀a ∈ [0, 1], {x ∈ [0, 1], f(x) ≥ a} est
ferme}.
Pour f ∈ F et n ∈ N, soit Ln(f) : x ∈ [0, 1] 7→ infy∈[0,1] (f(y) + n|x− y|) ∈ [0, 1].

• Montrer que C = I ∩ S.
• Montrer que, si f ∈ F , Ln(f) est une suite croissante d’applications continues.
• Soit f ∈ F . Montrer que f ∈ I si et seulement s’il existe une suite (fn)n≥0 de fonctions de C telle que pour tout x ∈ [0, 1],
f(x) = supn∈N fn(x).

Démonstration. ! !

Exercice 265 [X MP 2023 # 361] Soient a ∈ R+∗ et f : R+ → R+∗ de classe C1 telle que
f ′(x)

f(x)
∼ a

x
quand x→ +∞.

• Rappeler le théorème d’intégration des relations de comparaison.
• Donner un équivalent de ln f(x) quand x→ +∞.
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• Déterminer le domaine de définition de la fonction u : x 7→
∑+∞

n=0 f(n)e
−nx.

• Déterminer les limites de u aux bornes de son intervalle de définition.

• Montrer qu’il existe une constante C > 0 telle que f(x) ∼ C

x
f

(
1

x

)
quand x→ +∞.

Exercice 266 [X MP 2023 # 362] Soit (an)n∈N une suite réelle telle que a0 > 0, a1 > 0 et

∀n ∈ N, an+2 =
n+ 4

n+ 1
an+1 +

3n+ 7

n+ 2
an.

• Montrer que le rayon de convergence de la série entière
∑
anx

n est strictement positif.
• Déterminer la valeur de ce rayon de convergence.

Démonstration. • On an+2 ≤ Can+1 +Dan.
• On a an+2 ≥ an+1 + 3an, et pour tout ε, an+2 ≤ (1 + ε)an+1 + (3 + ε)an.

Exercice 267 [X MP 2023 # 363] Pour x réel, on pose f(x) =
∑+∞

n=1

xn

1− xn
sous reserve de convergence.

• Déterminer le domaine de définition de f .
• Étudier la continuité puis la dérivabilité de f .
• Donner un équivalent simple de f en 1−.
• Montrer que f est développable en série entière, et preciser le développement associé.

Démonstration. • ]−1,1[

• pas de soucis.
• Comparaison

∑
/
∫

.

Exercice 268 [X MP 2023 # 364] • Soient U un voisinage de 0 dans C, et f : U → C somme d’une série entière. Soit k ∈ N∗ tel
que f(z) = O(zk) quand z tend vers 0. Montrer que, pour r voisin de 0+, il existe au moins 2k nombres complexes z de module
r tels que f(z) soit un nombre réel.

• SoientA etB deux polynômes a coefficients réels dont toute combinaison lineaire a coefficients réels est scindée ou nulle. Soient
x < y deux racines de A. Montrre que [x, y] contient au moins une racine de B.

Exercice 269 [X MP 2023 # 365] Soit
∑
anz

n une série entière de rayon de convergence égal a 1 et de somme f .

On suppose qu’il existe C > 0 tel que ∀r ∈ [0, 1[,
∫ 2π

0
|f ′(reiθ)|dθ ≤ C .

Montrer que
∫ 1

0
|f(t)|dt < +∞.

Démonstration. Formule de Cauchy donne (akk) bornée, donc
∑

|ak|/k converge.

Exercice 270 [X 2023 # 366] Soit P = a1X + · · ·+ adX
d ∈ Z[X] avec a1 impair.

1. Montrer l’existence d’une suite réelle (bk)k≥0 telle que : ∀x ∈ R, exp(P (x)) =
∑+∞

k=0 bkx
k .

2. Montrer que les bk sont tous non nuls.

Démonstration. 1.
2. Quand on dérive successivement eP , on trouve une quantité qui vaut toujours 1 modulo 2.

Exercice 271 [X MP 2023 # 367] Pour x et q dans ]0, 1[, on pose (x, q)n =
∏n−1

k=0(1− qkx).

• Montrer que la suite de terme général (x, q)n converge vers un réel (x, q)∞ > 0.

• Déterminer le rayon de convergence de la série entière
∑

n≥0
(x,q)n
(q,q)n

zn. On notera fx,q sa somme sur le disque ouvert de conver-
gence, et D son disque ouvert de convergence.

• Etablir l’identife fx,q(z)− fx,q(qz) = (1− x)zfx,q,q(z) pour tout z ∈ D.
• Etablir l’identife fx,q(z) = 1−xz

1−z fx,q(qz) pour tout z ∈ D.

• Démontrer que fx,q(z) =
(zx,q)∞
(z,q)∞

pour tout z ∈ D.

• Soit α ∈ R+∗. Déterminer, pour tout z ∈ D, la limite de fqα,q(z) quand q tend vers 1−.

Exercice 272 [X MP 2023 # 368] • Pour x ≥ 0 on pose f(x) = card
{
(n,m) ∈ (N∗)2, n2 +m2 ≤ x

}
. Trouver un équivalent de

f(x) lorsque x→ +∞.

▷ On pose g(t) =
∑+∞

n=0 t
n2

. Trouver un équivalent de g en 1− en utilisant g2.

Démonstration. •
• Considérer (

∑
tn)g(t).

Exercice 273 [X MP 2023 # 369] Soit p un nombre premier. Pour tout F ∈ Fp[X], on pose |F | = pdegF .

• Soit s ∈ C tel que Re s > 1. Montrre que la famille
(
|F |−s

)
, indexée par les polynômes F ∈ Fp[X] unitaires, est sommable et

calculer sa somme, qu’on notera z(s).
• On note A l’ensemble des polynômes unitaires de F ∈ Fp[X] sans facteur carré, c’est-a-dire tels que : ∀D ∈ Fp[X], D2|F ⇒
degD = 0. Montrre que

∑
F∈A |F |−s = z(s)

z(2s) .
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• En déduire, pour tout d ∈ N, la proportion de polynômes sans facteur carré parmi les polynômes unitaires de degré d de Fp[X].

Démonstration. ! ! todo

Exercice 274 [X MP 2023 # 370] Soit f continue sur [0, 1] et g : x 7→
∫ 1

0
f(t)
1+xtdt pour x ≥ 0. On suppose f(0) ̸= 0.

• Donner un équivalent de g lorsque x→ +∞.
• On suppose f de classe C1. Majorer l’ecart avec l’équivalent trouve.
• Que peut-on dire de plus si f est de classe C2 ?

Démonstration. • CVD

Exercice 275 [X MP 2023 # 371] • Déterminer le domaine de définition de f : x 7→ 2√
π

∫ π/2

0
(cos t)2x dt.

▷ Montrre, pour tout réel x > 0, l’égalité f(x) = 2√
π

∫ +∞
0

u exp
(
−u2

(
x+ 1

2

))
√

1−e−u2
du.

Exercice 276 [X MP 2023 # 372] • Calculer
∫ +∞
0

e−t sin(xt) dt pour tout réel x.

• On pose F : x 7→
∫ +∞
0

sin(xt)
t (1+t2) dt. Montrer que F est de classe C2 sur R+∗ et que ∀x > 0, F

′′
(x) = F (x)−

∫ +∞
0

sin t
t dt

• Donner une expression simplifiée de F .

Exercice 277 [X MP 2023 # 373] Soit f ∈ C0(R+∗,R) de carré intégrable. On pose Sf : x ∈ R+∗ 7→
∫ +∞
0

f(y)
x+y dy.

• Justifier la bonne définition de Sf .
• Montrer que Sf est de carré intégrable.

Démonstration. • CS
• Relier à des semblables.

Exercice 278 [X MP 2023 # 374] Soient α, β > 0. Pour x > 0, on pose I(x) =
∫ +∞
0

tβ−1e−t−xtα dt.

• Déterminer la limite et un équivalent de I en +∞.
• Donner un développement asymptotique de I a tout ordre.
• Donner une condition nécessaire et suffisante pour que ce développement soit la somme partielle d’une série convergente pour

tout x > 0.

Exercice 279 [X MP 2023 # 375] • Soient K un segment et f : K → K une fonction continue croissante. Montrer que f admet
un point fixe.

▷ On considère l’équation différentielle non lineaire (E) : x′ = cos(x) + cos(t). On admet que pour tout a ∈ R il existe
une unique solution φa de (E) sur R vérifiant φ(0) = a, et que, pour tous a, b réels distincts, les fonctions φa et φb ne
coincident en aucun point. Montrer que (E) possede une solution 2π-périoddique.

Exercice 280 [X MP 2023 # 376] Soient f et g deux fonctions de classe C1 de R+ dans R+∗. Soit a ∈ [0, 1].

• Justifier qu’il existe une unique fonction xa : R+ → R de classe C1 telle que ∀t ∈ R+, x′(t) = f(t) − (f(t) + g(t))x(t) et
x(0) = a.

• On suppose que f et g ont une limite finie strictement positive en +∞. Montrer que xa tend vers 0 en +∞.
• Montrer que f et g peuvent être choisies de telle sorte que xa n’ait pas de limite en +∞.
• On suppose que l’une des fonctions f et g n’est pas intégrable sur R+. Montrer que x1 − x0 tend vers 0 en +∞.

Démonstration. 1. On peut exprimer la solution, via exp.
2. Utiliser l’expression.
3. Prendre f + g constante, et f qui oscille.
4. Expression intégrale.

Exercice 281 [X MP 2023 # 377] Soient v : R → R une fonction continue à support compact et ω ∈ R+∗. On considère l’équation
différentielle y′′ + ω2y = v(t) dont on note SE l’ensemble des solutions.

• Montrer que, pour tout (a, b) ∈ R2, il existe une unique solution f+a,b (resp. f−a,b) de (E) telle que f+a,b(t) = a cos(ωt)+ b sin(ωt)

pour tout t dans un voisinage de +∞, (resp. f−a,b(t) = a cos(ωt) + b sin(ωt) pour tout t dans un voisinage de −∞.

• Montrer que SE = {f+a,b, (a, b) ∈ R2} = {f−a,b, (a, b) ∈ R2}.

• On pose c(ω) =
∫ +∞
−∞ v(t) cos(ωt) dt et s(ω) =

∫ +∞
−∞ v(t) sin(ωt) dt, et on définit l’application Sω : R2 → R2 par : f−a,b =

f+Sω(a,b) pour tout (a, b) ∈ R2. Expliciter l’application Sω en fonction de c(ω) et s(ω).

• On suppose que Sω = idR2 pour tout ω > 0. Montrer que v est identiquement nulle.

Démonstration. 1. Appliquer les conditions aux bords du compact.
2. Pas de difficulté.
3. Méthode de variation de la constante je pense, à écrire.

Exercice 282 [X MP 2023 # 378] Soient q1, q2 deux fonctions continues de R+ dans R telles que q1 ≤ q2. On considère l’équation
différentielle (Ei) : y

′′
+ qi(t) y = 0 pour i ∈ {1, 2}.
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• Soient y1, y2 des solutions respectives de (E1) et (E2) sur I . Soient α < β deux zeros de y1. Montrer que y2 s’annule dans
[α, β].

• Soient q : R+ → R continue, m,M deux réels strictement positifs tels que m ≤ q ≤ M . Soient α < β deux zeros consecutifs
d’une solution non nulle x de y′′ + q(t) y = 0.

• Montrer que les zeros de x fortner une suite strictement croissante (t− n ∈ N.
• Montrer que π√

M
≤ tn+1 − tn ≤ π√

m
pour tout n ∈ N.

Exercice 283 [X MP 2023 # 379] • Soit p un projecteur d’un espace vectorielE de dimension finie, et u ∈ L(E) tel que pu+up =
u. Montrer que tr(u) = 0.

• Soit E un espace euclidien de dimension n ≥ 1. Soit r ∈ [[0, n]]. On note G l’ensemble des projecteurs orthogonaux de E de
rang r. Soit p ∈ G. Déterminer l’espace vectoriel tangent à G en p.

Démonstration. • pup = 0

• u symétrique + pu+ up = u (puisque c’est le noyau de l’application linéaire).
En conjuguant par une matrice orthogonale, on se ramène à u = Jr .

On considère G = {S ∈ Sn | JrS + SJr = S}. Matriciellement, G =

{(
O U
UT O

)}
.

On a l’inclusion de l’espace tangent dans G.
Réciproquement, Jr est la projection sur F = Vect(e1, . . . , er) parallèlement à Vect(er+1, . . . , en).
Étant donné des coefficients uij , et t ∈ R, on peut considérer Ft = Vect(e1 +

∑
j≥r+1 u1jej , . . . , er +

∑
j≥r+1 urjej), et Pt la

projection orthogonale sur Ft.
En utilisant l’expression de la matrice de Pt via des produits scalaires, on obtient ( ?).

Exercice 284 [X MP 2023 # 380] On munit R2 de sa structure euclidienne canonique. On considère le carré de coins {0, 1} × {0, 1}.
On choisit trois points A, B et C sur ce carré. sup

• Montrer qu’il existe une disposition des points A, B et C maximisant l’aire du triangle ABC .
• Caracteriser une telle disposition.

Démonstration. •
• Si A n’est pas dans un coin, il faut nécessairement que le côté BC soit parallèle au côté sur lequel A est.

3) Géométrie

Exercice 285 [X MP 2023 # 381] Pour n ≥ 2, on note Pn le perimêtre d’un polygone regulier a 2n cotes inscrit dans le cercle unite.

• Calculer Pn et étudier la convergence de la suite (Pn)n≥2.
• Etablir une relation de recurrence entre Pn et Pn+1.
• Estimer l’erreur 2π − Pn.
• Proposer une methode d’approximation de π par exces.

Exercice 286 [X MP 2023 # 382] On se donne un triangle direct ABC du plan complexe. On note respectivement a, b, c les mesures
principales des angles orientes (

−−→
AB,

−→
AC), (

−−→
BC,

−−→
BA) et (

−→
CA,

−−→
CB). On note P l’unique point tel que b

3 soit une mesure de (
−−→
BC,

−−→
BP )

et c
3 soit une mesure de (

−−→
CP,

−−→
CB) ; Q l’unique point tel que a

3 soit une mesure de (
−→
AQ,

−→
AC) et c

3 soit une mesure de (
−→
CA,

−−→
CQ) ; R

l’unique point tel que a
3 soit une mesure de (

−−→
AB,

−→
AR) et b

3 soit une mesure de (
−−→
BR,

−−→
BA). L’objectif est de montrer que le triangle

PQR est equilateral.

• On note f, g, h les rotations de centres respectifs A,B,C et d’angles de mesures respectives 2a
3 , 2b

3 et 2c
3 . Montrer que P est

l’unique point fixe de g ◦ h.
• Montrer que (f3 ◦ g3 ◦ h3)(z) = z pour tout nombre complexe z.
• On note f : z 7→ a1z + b1, g : z 7→ a2z + b2 et h : z 7→ a3z + b3. Experimer P,Q,R en fonction des ai et des bi.
• Conclure.

4) Probabilités

Exercice 287 [X MP 2023 # 383] Déterminer le nombre moyen de 2-cycles, de 3-cycles, de p-cycles, d’une permutation de [[1, n]].

Exercice 288 [X MP 2023 # 384] • Montrer que ∀x ∈ R+∗, e−x

(1−e−x)2 <
1
x2 .

• Soit n ∈ N∗. On appelle partition de n toute liste decroissante (λ− 1 ≤ k ≤ n d’entiers naturels non nuls de somme n. On note
P (n) le nombre de telles listes.
Montrer que P (n) ≤ 2n−1.

• On fixe n ≥ 1 et on considère une variable aléatoireX suivant la loi uniforme sur l’ensemble des partitions de n. On fixe k ∈ N∗

et j ∈ N. On pose Nk = |{i ∈ [[1, n]] : Xi = k}|.
Exprimer P(Nk ≥ j) comme un quotient P (a)

P (b) pour des entiers a et b a preciser.

• Calculer
∑n

i=1 iNi.

Démonstration. ! ! todo
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Exercice 289 [X MP 2023 # 385] On considère la suite (an) définie par a1 = 0, a2 = 1 et an = an−1 + an−2 pour n ≥ 3.

• Calculer
∑+∞

n=2
an

2n .
• On lance une piece non truquée. Déterminer la loi de la variable aléatoireX qui donne l’instant de premiere apparition du motif

Face-Face.
• Calculer E(X) et V(X).
• Donner un équivalent de P(X = n).

Exercice 290 [X MP 2023 # 386] Soit n ∈ N∗. On munit Sn de la loi uniforme, et on note N la variable aléatoire associant a tout
σ ∈ Sn le nombre de ses orbites.

• Calculer P(N = 1) et P(N = n).
• Donner une formule simple pour la fonction génératrice de N .
• Donner un équivalent de E(N) quand n tend vers +∞.
• Donner un équivalent de V(N) quand n tend vers +∞.

Exercice 291 [X MP 2023 # 387] Soient n ≥ 2, X1, . . . , Xn des variables aléatoires i.i.d. suivant la loi uniforme sur [[1, n]]. Soit
(e1, . . . , en) la base canonique de Cn et f(X1,...,Xn) la variable aléatoire a valeurs dans L(Cn) telle que, pour tout i, f(X1,...,Xn)(ei) =
eXi

.

• Déterminer E
(
rg

(
f(X1,...,Xn)

))
.

• Pour z ∈ C, soit µz la multiplicité de z comme valeur propre de f(X1,...,Xn). Calculer E(µz).

Exercice 292 [X MP 2023 # 388] Soient b, n ∈ N∗. On considère (Bi)1≤i≤n des variables aléatoires indépendantes suivant la loi
uniforme sur [[0, b− 1]]. On note S l’ensemble des descentes de la suite B c’est-a-dire S = {i ∈ [[1, n]] | Bi > Bi+1}.

• Pour i ∈ [[1, n− 1]], calculer P(Bi > Bi+1).
• Soit j ∈ [[1, n− j − 1]]. Calculer P(B1 > B2 > · · · > Bj+1).
• Pour I ⊂ [[1, n]], on pose α(I) (resp. β(I)) le nombre de suites a n éléments à valeurs dans [[0, b− 1]] qui vérifient S ⊂ I (resp.
S = I). Exprimer α en fonction de β, puis β en fonction de α.

Exercice 293 [X MP 2023 # 389] Si n ∈ N∗, σ ∈ S2n et k ∈ {1, . . . , 2n}, on note s(σ, k) le segment de C qui joint les points e
ikπ
n et

e
iσ(k)π

n . On note b(σ) le nombre de segments qui ne croisent aucun autre segment (ou on dit que deux segments se croisent s’ils ont
un point d’intersection qui n’est pas une extremite).
Pour n ∈ N∗, soit σn une variable aléatoire suivant la loi uniforme sur S2n. Déterminer E(b(σn)) et en donner un équivalent.

Exercice 294 [X 2023 # 390] Soient p ∈ [0, 1/2], (Xn)n≥1 i.i.d. telle que P (Xn = −1) = P (Xn = 1) = p et P (Xn = 0) = 1− 2p.
On cherche p tel que : ∀n ∈ N∗,∀a1, . . . , an, b ∈ Z,P (

∑n
i=1 aiXi = 0) ≥ P (

∑n
i=1 aiXi = b).

1. Montrer que p ≤ 1
3 , puis que p < 1

3 et enfin que p ≤ 1
4 .

2. Si X une variable aléatoire à valeurs dans Z, on pose ΦX : θ 7→ E
(
eiXθ

)
. Exprimer P(X = k) en fonction de ΦX .

3. En déduire que p ≤ 1
4 est une condition suffisante.

Démonstration. 1. On regarde les probabilités, jusqu’à n = 3.
2. ΦX(θ) =

∑
P (X = k)eikt et formule de Cauchy.

3.

Exercice 295 [X MP 2023 # 391] Soient n et d des entiers tels que 1 ≤ d < n, et X1, . . . , Xn des variables aléatoires indépendantes
uniformément distribuées sur [[0, d]]. On note Sn la classe de X1 + · · ·+Xn dans Z/nZ.

• La variable aléatoire Sn est-elle uniformément distribuée sur Z/nZ?
• Calculer la loi de Sn.

Démonstration. • Non, cf d = 1, c’est une loi binomiale.
• Fonction génératrice.

Exercice 296 [X MP 2023 # 392] Soient d ∈ N∗, (Xn)n≥1 une suite i.i.d. de variables aléatoires suivant la loi uniforme sur [[1, d]].
Pour n ∈ N∗, on pose Sn = X1 + · · ·+Xn.

• Soient Y une variable aléatoire a valeurs dans Z, r ∈ [[0, d− 1]], ω = e2iπ/n.

Montrer que P(Y ≡ r [d]) = 1
n

∑n−1
k=0

1
ωkr E

(
ωkY

)
.

• Soit [[0, d− 1]]. Donner une expression de P(Sn ≡ r [d]).
• Déterminer la limite de la suite de terme général P(Sn ≡ 0[d]).

Exercice 297 [X MP 2023 # 393] Soit n ≥ 1.

• On se donne deux variables aléatoires indépendantesXn et Yn suivant chacune la loi uniforme sur [[1, n]]2. Soit r ∈ Q. Détermi-
ner la probabilité un(r) pour que Xn et Yn soient deux points distincts et le coefficient directeur de la droite (XnYn) soit égal
a r. Donner un équivalent de un(r) lorsque n→ +∞.

• On se donne quatre variables aléatoires indépendantes Xn, Yn, An, Bn suivant chacune la loi uniforme sur [[1, n]]2. On note pn
la probabilité pour que Xn ̸= Yn, An ̸= Bn et les droites (XnYn) et (AnBn) soient parallèles. Montrer que pn = O

(
lnn
n2

)
quand n→ +∞.

Démonstration. ! !
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• C’est la probabilité que an−bn
cn−dn

= p
q , c’est-à-dire p(cn − dn) = q(an − bn). Les différences suivent des lois

Exercice 298 [X MP 2023 # 394] • Soit a ∈ [1, 2]. On pose fa : x 7→ |1 + x|a − |2x|a − ax. Montrer : ∀x ∈ R, fa(x) ≤ 1.
• Soit X une variable aléatoire réelle centrée et admettant un moment d’ordre 2. Montrer : ∀c ∈ R, E (|c+X|a) ≤ 2aE(|X|a) +
|c|a.

• Soit (Xn)n≥1 une suite i.i.d. de variables aléatoires centrées admettant un moment d’ordre 2. Montrer que, pour n ∈ N∗,
E
(
|
∑n

i=1Xi|
a) ≤ 2a

∑n
i=1 E(|Xi|a).

Exercice 299 Urne de Polya [X MP 2023 # 395] Une urne contient a boules jaunes et b boules rouges. On effectue une succession
de tirages d’une boule dans l’urne avec remise. À chaque tirage, on ajoute une boule de la couleur de celle tirée dans l’urne. On note
Xn le nombre de boules jaunes dans l’urne apres n tirages et Tn l’évènement «tirer une boule jaune au n-ième tirage».

1. s Calculer P (T1 | T2).
2. Déterminer la loi de Xn.
3. Calculer P (Tn).
4. Pour n1, ..., np,m1, ...,mq tous distincts, calculer P (Tn1

∩ · · · ∩ Tnp
∩ Tm1

∩ · · · ∩ Tmq
).

Démonstration. 1.
2. P (Xn = a) = b

a+b
b+1

a+b+1 . . .
b+n−1

a+b+(n−1)

P (Xn = a+ 1) = n b
a+b

b+1
a+b+1 . . .

b+n−2
a+b+(n−2)

a
a+b+(n−1) .

En général, P (Xn = a+ k) =
(
n
k

) (a+b−1)!
(a+b+n−1)!

(b+n−k−1)
(b−1)!

a+k−1!
(a−1)! .

3. dur dur, E(Xn)

4.

Exercice 300 [X 2023 # 396] Soient n ≥ 1 et A,B,C des variables aléatoires indépendantes uniformément distribuées sur {0, 1}n.

1. Pour n ≥ 2, calculer la probabilité pn que ABC soit un triangle équilatéral.
2. Déterminer un équivalent de pn.

Démonstration. Relier à un précédent.

1. On prend A = 0⃗. Alors on veut B,C avec autant de termes 1, et autant de différences entre les deux.
On considère les ensembles B ⊂ [[1, n]], C[[1, n]], et B ⊕ C .
Les parties U = B \ C , V = C \ B et W = B ∩ C vérifient u + w = v + w = u + v, donc ils sont de même cardinaux, et
disjoints.

Exercice 301 [X MP 2023 # 397] On munit l’ensemble Sn des permutations de [1, n] de la probabilité uniforme. Soit Xn la variable
aléatoire donnant le nombre de points fixes d’une permutation aléatoire σ ∈ Sn.

• Calculer P(Xn = 0).
• Déterminer la loi de Xn.
• Étudier la convergence en loi de la suite (X − n ∈ N∗.
• Calculer les espérance et variance de la variable aléatoire Xn.

Exercice 302 [X MP 2023 # 398] Soit M =


a −b −c −d
b a d −c
c −d a b
d c −b a

 une matrice aléatoire ou (a + 1) ∼ P(α), (b + 1) ∼ P(β),

(c+ 1) ∼ P(γ) et (d+ 1) ∼ P(δ).

• Calculer la probabilité que la matrice M soit inversible.
• Calculer la probabilité que la matrice M soit inversible et diagonalisable dans R.

Exercice 303 [X MP 2023 # 399] Soient X et Y deux variables aléatoires a valeurs dans N vérifiant P(X ≥ Y ) = 1, et, pour tout

n ∈ N et tout i ∈ [[0, n]], P(X = n) > 0 et P(Y = i|X = n) =
1

n+ 1
.

• Montrer que, si (i, j) ∈ N2, P(X = i, Y = j) = P(X = i,X − Y = j), puis que X − Y ∼ Y .
• Montrer que P(Y = 0) > 0.
• On suppose que X − Y et Y sont indépendantes. Déterminer la loi de Y , puis celle de X .

Exercice 304 [X MP 2023 # 400] Soit n ≥ 3 un entier. Si k ∈ Z, on note k la reduction de k modulo n. Soient X1, . . . , Xn des
variables aléatoires indépendantes a valeurs dans Z/nZ telles que, pour tout k ∈ [[1, n]], Xk suit la loi uniforme sur {1, 2, 3}. Soit F
l’application aléatoire de Z/nZ dans lui-meme telle que, pour tout k ∈ [[1, n]], F (k) = k + Xk . Calculer la probabilité que F soit
bijective.

Exercice 305 [X MP 2023 # 401] On cherche a collectionnerN jouets. À chaque achat, chaque jouet a une probabilité uniforme d’être
obtenu. Pour i ∈ [[1, N ]], on note Ti le temps d’attente pour obtenir i jouets différents.

• Calculer l’espérance de TN .
• Calculer la variance de TN .
• Montrer que ∀ε > 0, P

(∣∣ TN

N lnN − 1
∣∣ ≥ ε

)
−→ 0 quand N → +∞.
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Exercice 306 [X MP 2023 # 402] Soit (X − n ∈ N∗ une suite i.i.d. de variables aléatoires réelles centrées.
On suppose que E(X4

1 ) < +∞.

• Montrer que E
(
(X1 + · · ·+Xn)

4
)
= O(n2).

• Pour ε > 0, quelle est la nature de la série de terme général P
(
X1+...+Xn

n > ε
)

?

Exercice 307 [X MP 2023 # 403] Soient x ∈ R+∗, (X − k ≥ 1 une suite i.i.d. de variables aléatoires suivant la loi P(x). Pour n ∈ N∗,
soient Sn =

∑n
k=1Xk, Tn = Sn−n√

n
.

• Montrer que
∫ +∞
0

P(Tn ≥ x)dx =
√
n
(
n
e

)n 1
n! .

• On admet que, pour tout x ∈ R, P(Tn ≥ x) −→
n→+∞

1√
2π

∫ +∞
x

e−t2/2dt. Retrouver la formule de Stirling.
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