Exercices 2022

I) ENS
1) Algebre

Exercice 1 % Y [ENS 2022] Soient m, M,r € N avec r > 3, et ko,...,ky € Z tels que Zﬁo kirt = > r'. Montrer que
M

>izo kil Zm+ 1.

Démonstration. Unicité de la décomposition Y a;b% avec a; € [—b/2, b/2] (probléme b pair) + celle-ci minimise > |a;|. Par récurrence,

regarder modulo b.

Plus simple : récurrence sur m; regarder kg, qui s’écrit 1 + ur. O

Exercice 2 % % [ENS 2022] Pour n € N*,on note ¢, le nombre de nombres premiers < n, et m,, = Hpgn p.
1. Montrer que 7, = O(4™).
2. Montrer que ¢&* = O(ry,).
3. En déduire que ¢, = O(y%;).

Démonstration. O

Exercice 3 % % [ENS 2022] On note ¢ la fonction indicatrice d’Euler.
1. a) Montrer que p(nm) = ¢(n)p(m), pour n,m € N* premiers entre eux.
b) Rappeler la formule explicite pour ¢(n).
c) Calculer 3, ¢(d), pour n > 1.
2. Soient n,m € N*. Exprimer ¢(nm) en fonction de p(m), p(n), ¢(n A'm) et n A m.

3. Pour n € N*, on note d,, le nombre de diviseurs premiers de n, et j(n) = (—1)9" si n n’est pas divisible par le carré d’'un
nombre premier, 0 sinon. Montrer que y est multiplicative, et calculer ) din %d).
Démonstration. O

Exercice 4 % % [ENS 2022] On note Z[i\/2] = {a + ib\/2, a,b € Z}.
1. Montrer que A = Z[iv/2] est un sous-anneau de C.
2. Montrer que A est euclidien, c’est-a-dire qu’il existe une fonction N: Z[iv/2] — N telle que pour tout @ € A et b € \{0}, il
existe un couple (q,7) € A% tel que a = bg + r et N(r) < N(b).
3. Enoncer et démontrer un théoréme d’existence et d’unicité d’une décomposition en facteurs irréductibles dans A.

Démonstration. O

Exercice 5 % [ENS 2022] Pour 0 € S,,, on note (o) son nombre de points fixes. Calculer » | s %

Démonstration. Considérer une matrice dont le déterminant est e(o)zv(@). O

Exercice 6 % % [ENS 2022] Déterminer les inversibles de (Z/nZ) [X].

Démonstration. Sin est premier, seules les constantes le sont, car deg PQ) = deg P + deg Q.
Sinon, les constantes premieres avec n le sont. Et si on est inversible, on I’est modulo tous les premiers qui divisent 7. Donc tous les
coefficients sont divisibles par le radical.

On se raméne a n = p%, et méme o = 2, avec P(0) = Q(0) = 1. Alors PQ = P + @ — 1. C’est tout a fait possible : ils sont tous
inversibles.

Pour o = 3. Il faut p | les coefficients, I'inverse a des coefficients modulo p? qui sont les opposés. Q = 1 + > ((—b;)p + d;p?) X =
1 — P +p*Q’. Alors PQ = (1+ P')(1 — P' +p?Q’) = —P"? + p?Q’. Tout 4 fait possible, tous inversibles.
Par récurrence, on montre que c’est possible, en partant d’une solution modulo p®~1.

Puis, lemme chinois, on est bon : il suffit d’étre divisible par le radical. O

Exercice 7 % % [ENS 2022] Une partie A C R™ est un L-groupe si c’est un sous-groupe de R" tel que Vect A = R™ et si pour tout
x €R™etr >0, AN B(x,r) est fini.
1. Que dire dansle casn =17
2. Soite = (ey,...,e,) une base de R™. On pose L, = {a1e1 + -+ - + anen, (a1,...,a,) € Z"}.
a) Montrer que L. est un L-groupe.
b) A quelle condition a-t-on L, = L ?
Démonstration. 1.
2. a) C’est de I’équivalence des normes.
b) La matrice de passage est dans GL,,(Z). O

Exercice 8 % % [ENS 2022] Soit ¢: SL2(R) — GL,(R) un morphisme. Montrer que ¢ est a valeurs dans SL,(R).



Démonstration. SLy(R) est engendré par des commutateurs. Pourquoi? O

Exercice 9 % % DfcomposiTioN KAN [ENS 2022] Pour g = (i b) € SLy(R), et h € H, on pose g.z = 22+b

d cz+d”

1. Montrer que H est stable par ’action et que ¢’.(g.2) = (¢'g).z.

2. Soit K = SO3(R), A le sous-groupe de S L, formé de matrices diagonales, et N les unipotentes supérieures. Montrer que tout
élément g € G se décompose de maniére unique g = kan.

Indication : considérer g(i).

Démonstration. O

Exercice 10 [ENS 2022] Pour G un groupe, on note sub(G) I'ensemble des sous-groupes de G. Soient G, H finis de cardinaux
premiers entre eux. Montrer que |sub(G x H)| = |sub(G)| x | sub(H)|.

Démonstration. On a une application injective. Réciproquement, si K est un sous-groupe de G x H, de cardinal m, onam = (m A
n1) X (mAng). p1(K) est un sous-groupe de G, et on est inclus dans le produit des projections. L’application 2 — x% est une bijection
sur p1 (K), et envoie K dans p1(K). Donc K = p;(K) X pa(K). O

Exercice 11 % % [ENS 2022]

1. Soit (a,,) une suite sous-additive, montrer que % converge.

2. Soit G un groupe multiplicatif, S une partie génératrice finie de G, stable par passage a I'inverse. Pour 2 € G, on pose Lg(z) le
nombre d’éléments de S nécessaires pour 'engendrer. Pour ® un endomorphisme de G, on pose Ag(®) = max{Lg(®(x)), z €
S}. Montrer que + In Ag(®™) converge vers une limite indépendante de S.

Démonstration. 1.
2. Ag(®PT7) = max{Lg(PP(PI(x))),z € S} < Ag(PP)Ag(P?), d’ou la convergence.
Pour I'indépendance, si S7, S2 sont deux parties génératrices, on peut écrire 'un dans I’autre etc, ce qui donne deux constantes.
O
Exercice 12 [ENS 2022] Si A est un anneau commutatif, et 7 un idéal de A, on dit que 7 est premier si A\ T est stable par multiplication.
1. Montrer que tout idéal maximal est premier.
2. Soit n > 3 premier, et A = Z[e*7/"]. Montrer que tout idéal premier de A est maximal.
Démonstration. 1. Si I est maximal, pour tout ¢, (I, ¢) = A, donc il existe b tel que bc + i = 1, donc be fnl.
2. On a un polynéme annulateur : 1 + X + - -- + X"~ 1. Soit I un idéal premier. On a P(w)Q(w) € I = P(w) € I ou Q(w) € I.
Vectq I = A, puisque c’est un idéal d’un corps (car irréductible).
Donc A/I est fini, et intégre donc c’est un corps... O

Exercice 13 % % [ENS 2022, ENS 2019]
1. Pour n > 1, montrer qu’il existe P,, € R[X] tel que V6 € R, sin(4nf) = cos 0 sin 0P, (cos? §).

2. Calculer [T;™ " cos (57) puis []}_, cos (W) puis [[;_; cos (5255).

Démonstration. 1. Ona
2n—1 an
sin (4nf) = Im(e™"?) = I;J (2k N 1) (—1)* sin2k+1 cogtn—2k—1
= sin cos 2§1 sin®* cos™" (D) = sin cos MX_:l ( ! )(_1)k(1 — cos®)* (cos® )M_(kﬂ).
s P 2k +1

Dot Po(X) = 55" () (-1 (1 — X)X

2. P, aune propriété de symétrie :

P(1-X) z_: (2:_7_ 1) (_1)ka(1_X)2n—1—k _ Z_: (2(2n B ‘in_ 4+ 1) (_1)271—1—16)(271—1—@(1_)()2 _ Z_: (2€4iz 1

k=0 £=0 £=0

Les racines de P, :sin(4nf) =0 < 0 = Z—g, donc les cos? ’Z—Z sont racines de P, sauf pour sin§ = 0, ou cos # = 0, donc pour

ke[l,2n—1].

Pour le dernier : on trouve 2% ]
Exercice 14 % s [ENS 2022] Soit P € R[X] de degré n > 0. Montrer que P est scindé & racines simples sur R si et seulement si
Vi€ [I,n—1], Vz € R, (PO (x))* — P () Pi+1 (z) > 0.

)



Démonstration. Si scindé a racines simples, alors par récurrence : il suffit de vérifier i = 1: a? — 2agaz > 0; En divisant par le produit
es s (37 L2 1 -
des racines : (3 =) > 23, 7.2, Ce qui est correct.

Réciproquement, par récurrence également. Si P vérifie les inégalités, on sait que P’ est scindé a racines simples, et P'(z)? >
P(x)P"(x). En deux racines consécutives de P’, on a P(z)P”(x) < 0, mais on sait que P” change de signe, donc P change de
signe. O

Exercice 15 [ENS 2022] On pose ®; = X — 1 et, pourn > 2, ®,, = m.
n,d<n

1. Montrer que ®,,(X) =[], 1,1 (X — e ).
2. Montrer que ¢, (X) € Z[X].
3

. Montrer que pour p, ¢ premiers distincts, ®,,, est a coefficients dans [—1, 1].

4. Donner le coefficient en X7 dans ®1¢5.

Démonstration. .

C D (X 1) (N X (X, X = XP 1@, = XL XL (X 1) (1 X+ X0 D) (14 X9+ X2 ).
Donc le coefficient k est moins le nombre de facons d’écrire k = aq + Bp, plus le nombre de k — 1 = ag + p, avec «, [3 petits.

+ Onal05 =3 x5 x 7.0n calcule ®3 5 7, puis on fait la division euclidienne, en partant de la fin. O
. . . _ XP-1
Exercice 16 s ¥ [ENS 2022] Soit p un nombre premier. On pose ¢, = .
1. Montrer que ®,, est irréductible dans Q[X]. 5. Soient ag,...,ap—1 € QP. On pose C =
2. Onnote ( = e°» . Montrer quesi @ € Q[X] et R € Q[X] do a1 ... Gp—1
vérifient Q(¢) = R((), alors @, | Q — R. o :
3. Montrer que Q[¢] = {P(¢), P € Q,—1[X]} est un corps. .
a “oa
4. Montrer que si Q@ € Q[X] et R € Q[X] vérifient Q(¢) = ? !
R(¢), alors pour tout entier k& non multiple de p, Q(¢*) = aodz ... 40
R( Ck’) ’ Montrer que si C' est inversible, son inverse est de la méme
' forme.
Démonstration. O
Exercice 17 [ENS 2022] On admet que tout polynéme de C[Xy, ..., X,,_1] se factorise de maniére unique comme produit de poly-
nomes irréductibles.
Xo Xy ... X,
Calculer le déterminant D =
Xs X
X Xo .. Xy

Démonstration. D = []_(Xo +wX1 + -+ + w" 1X,,_1) : par exemple, si la somme vaut 0, c’est nul. On utilise que si P s’annule
lorsque @ s’annule, et () est irréductible, alors P = @ . ... C’est faux, car certains polynémes ne s’annulent pas. O

Exercice 18 % [ENS 2022] Soit n > 2. On note G,, 'ensemble des polynémes de R,,_1[X] dont 0 est racine simple.

1. Pour P,Q € G,,, montrer qu’il existe un unique 7' € G,, tel que X™ | Po @ — T. On note alors Px Q = T.
2. Montrer que (G, *) forme un groupe.

Démonstration. 1. Trivial.
2. O

Exercice 19 % % [ENS 2022] Soitd > 1et0 < a; < ... < aq des entiers. On pose P,, = ngl(X —nag) — 1.

1. Montrer que pour n assez grand, P, est scindé a racines simples sur R.

2. Pour tout n > 1 pour lequel P, est scindé a racines simples sur R, et tout k& < d, on note x%k) la k-iéme racine de P,, dans

I'ordre croissant. Déterminer, pour k € [1,n], un équivalent de xﬁf’.

3. Montrer que P, est irréductible dans Z[X] pour tout n > 1.

Démonstration. 1. On prend le polynoéme Q,, = HZ:l(X — nay,), et on le translate de 1. Il suffit de justifier que ses maximaux
sont > 1, quand la distance entre les racines consécutives est > 2.
2. On a une info sur les racines de la dérivée, qui sont entre nay, et nay1; c’est inutile.
Les racines de P, sont proches de celles de szl, done ¥ ~ aay. 1 suffit de justifier que Q,(nak(l +¢€)) > 1: clest
enay Hiﬁk oo > enay.

3. Si P, = Qu Ry, onaQy(nag) = 1, et R, + @, a trop de racines. O

Exercice 20 % [ENS 2022] Soient a, bréels et n > 3 impair. Etudier, en fonction de n, a, b le nombre de racines réelles de X" +aX +b.

Démonstration. O



Exercice 21 % % [ENS 2022] Soitn > 1et (\1,...,\,) € K™ A quelle condition existe-t-il M € M,,(K) telle que M? = M et

Vi, Mi; = Ni.

Démonstration. Nécessairement K = > \; € [0,n]. Les cas 0 et n sont rigides : tous les \; doivent étre égaux a 0 ou 1.
A

Pour K = 1,enprenant (11 ... 1)|...|, ¢a marche.
An

Donc pour K = n — 1, ¢a marche : si p projecteur, I, — p est un projecteur.
On peut obtenir n’importe quel (A1,..., A,—_1, 1), oun’importe quel (A1, ..., Ak, ft1, ..., n—k), siles sous-sommes valent 1 chacune.

On pourrait essayer de conjuguer un bloc, par SLy. On conjugue par une unipotente sup : c’est la féte, permet d’ajouter ¢ & un
coefficient diagonal, et retirer c a 'autre.

On prend une projection quelconque, et on modifie les coefficients petit 4 petit.

Pour le premier, s’il n’y a que des 0 plus bas, & moins que tous les vecteurs suivants soient dans 'image, on peut mettre un coefficient
# 0 en dessous de aq1, puis transformer a;; en ce qu’on veut.

Idem a chaque fois. Si tous les vecteurs suivants sont dans I'image, c’est qu’initialement, on pouvait découper les \; cherchés en groupe
dont la somme fait un entier, auquel cas, méthode précédente. O

Exercice 22 ¥ [ENS 2022] Soit n > 2. On note U,, 'ensemble des matrices diagonales de M., (C), dont les coefficients diagonaux
sont de module 1, et S,, 'ensemble des matrices de permutation. On pose NV,, = {AB; (A, B) € U,, x S, }.

1. Montrer que NV, est un sous-groupe de GL,,(C).

2. Montrer que le commutant du commutant de N,, est égal & M, (C).

Démonstration. 1.
2. Il contient Vect NV,,. O

Exercice 23 s [ENS 2022] Pour ¢ € S, on note P, la matrice de permutation associée. On note D,, 'ensemble des matrices
diagonales complexes de taille n dont les coefficients sont de module égal a 1. Les ensembles My = {P,DP,., 0,0’ € S;,, D € D, }
et My ={P,DP,, 0 €S,,D € D,} forment-ils des sous-groupes de GL,,(C)?

Démonstration. Le premier oui, le second non, car I'ensemble des o n’est pas un sous-groupe. O

Exercice 24 [ENS 2022] Soit A une sous-algébre de M,,(C) telle que pour tout M € A, M € A Soit A’ le commutant de A, et
A" celui de A’. Montrer que A" = A.

Démonstration. Soit Xy € C", et F' = AX|. Alors F est stable par A. Mais M + M etM -1 préservent I'orthogonalité. Donc
F Test.

Si M € A", M commute avec les matrices diagonales par blocs, donc M préserve aussi F' et F+.

Méga astuce : on considére l'action diagonale, et Xo = (EF1,..., E,).

On remarque que si M € A", alors Diag(M, ..., M) est dans le bicommutant de I’action diagonale. Car si U commute avec Diag(.A),
alors tous les coefficients de U commutent avec A.

Cela signifie que si M € A”, A — M A commute avec la projection orthogonale sur A. En particulier, M — M A préserve A, d’ou
M e A O

Exercice 25 % % [ENS 2022] Soit E un R espace vectoriel de dimension finie et G un sous-groupe fini de GL(E). Montrer que si
F’ est un sous-espace vectoriel de E stable par tous les éléments de G alors F' posséde un supplémentaire stable par tous les éléments

de G.

Démonstration. O

Exercice 26 [ENS 2022] Soit Pi,..., P, € M,(R) vérifiant Vi, j, P,P; = 6, jP, et >.._, P, = I,. Soient A1,...,\, des réels
distincts. On pose A = >""_, \; P;.

Montrer que pour toute matrice B € M, (R), il existe K € M,,(R) telle que B =>""_, P,BP, + AK — KA.

Démonstration. On peut conjuguer le tout, pour que les P; soient des projections sur des blocs consécutifs de la base canonique. Alors

>~ P,BP; est la partie diagonale par bloc de B, et A est une diagonale d’identité par blocs. On sait que A commute avec toutes les
diagonales par blocs, et uniquement avec eux, et 'image du crochet est inclus dans les non diagonales par blocs. O

Exercice 27 [ENS 2022] Soit A € M,,(C). On note ¢ la multiplicité de 0 dans le polyndme caractéristique de A.
1. Montrer I'existence et 'unicité de X € M,,(C) telle que AX = XA, A7 X = A%et XAX = X.
2. Quediresi A € M, (R)?
3. L’application ¢: A — X est-elle continue ?
4. Soit (Ay) une suite convergente de matrices complexes. CNS pour que p(Ag) — p(lim Ay).

Démonstration. 1. A7P(A) = 0 donc dans Ker A? & Ker P(A), la matrice est diagonale par blocs.
Unicité : Si on commute, on stabilise les deux espaces...

2. La méme...



3. En O,, non : I'inverse tend vers +o0, pour A = (0,...,0,¢).
4. Sila multiplicité de 0 n’est pas constante APCR, non continue ?

Si la multiplicité est constante, toute valeur d’adhérence de X}, est solution. Il faut exclure la possibilité que X}, tende vers +oo.
Mais si c’est le cas, il existe des vecteurs Ej, tels que X, Er — +00, avec Ey, dans le bloc du bas, donc tel que AX = Id, on
obtient A Xy Fx, = Ey, ce qui est impossible.

Alternative : Expliciter X} comme un polyndéme en A, qui dépend du polynéme caractéristique.

Réciproquement, on peut supposer que la multiplicité de la limite est 1 de moins. Trés simplement, utiliser la trace de Ay Xj.
Donc non continue. O
Exercice 28 [ENS 2022] Soit n > 1 impair, A, B € M,,(R) telles que AB = BA. Montrer que A + 7B admet un vecteur propre réel.

Démonstration. AX +iBX = (A +iu)X, c’est-a-dire AX = AX et BX = uX : c’est un vecteur propre commun, possible car n
impair. A admet une valeur propre, dont 'espace caractéristique est de dimension impair. Dans cet espace, B admet une valeur propre,
et A a forcément un vecteur propre la-dedans. O

Exercice 29 [ENS 2022] Soit P € C[X]. On pose F = P(X)2.
1. Montrer que f: A € M,,(C) — F(A) n’est pas surjective.
2. Montrer qu’il existe N € M,,(C) telle que f~*({NN}) soit infini.
3. Montrer qu’il existe un ensemble E dense dans M., (C) “L({M?})] soit fini et indépendant de M.

Démonstration. 1. Toutes les matrices ne sont pas des carrés : prendre une nilpotente de rang n — 1.

2. Si P(0) = 0, N = O,, fonctionne. Mais méme en général, on a (M — al,,)? en facteur, et une infinité de matrices sont annulées
par cela.

3. Si D est diagonale, a coefficients distincts, P(M)? = D implique M commute avec D, donc M diagonale, et P(m;)? = d;, et
en évitant les points critiques, (racines de la dérivée), cela a toujours le méme nombre de solutions. O

Exercice 30 [ENS 2022] Soit p > 1, K un sous-corps de C et A € M,,(K). On dit que A est toute puissante si pour tout n > 1, il
existe B € M, (K) telle que B” = A.

1. Traiter le cas p = 1, pour K= C R, Q.
2. On suppose que x4 = Hle(X — A\i)“ est scindé sur K.
a) Montrer qu’il existe N7, ..., Ni nilpotentes telles que A soit semblable a Diag(\;I,, + N;).
b) Montrer que A est toute puissante si et seulement si les A\; I, + N; le sont.
3. On dit que M est unipotente si M — I, est nilpotente
Pour A unipotente, on pose In A = Z+°° (G (A I)".

a) Justifier la définition de In A. Montrer que exp réalise une bijection de ’ensemble des matrices nilpotentes sur les matrices
unipotentes.

b) Montrer que les matrices unipotentes sont toutes puissantes.

Exercice 31 [ENS 2022] 1. Quelle est la dimension maximale d’une sous-algébre de M, (C) engendrée par une matrice nilpo-
tente.

2. Soitm > 1et Ay,..., A, € M,(C) nilpotentes qui commutent deux a deux. On note A I'algébre engendrée par les A;.
Montrer que dim A < n(n — minrang 4;).

Démonstration. 1. n: Cayley-Hamilton.

2. On note 7 le rang minimal. Dans une base qui commence par I'image, les matrices ont des matrices triangulaires supérieures,
donc on a déja nr — r? comme dimension de 0. D’autre part, les deux blocs diagonaux vérifient les mémes hypothéses, et on

(n

sait que la dimension d’une algébre nilpotente qui commutent est < ni) (puisque co-trigonalisables) O

Exercice 32 % % [ENS 2022] Déterminer les morphismes d’algébres de C*° (R, R) vers M,,(R).

Démonstration. C*°(R, R) est commutative. On prend un polynéme annulateur de ¢( f), et sa partie scindée annule également, je crois,
donc diagonalisable, donc codiagonalisable, et on a des f(z;) sur la diagonale. O

Exercice 33 % % [ENS 2022] On note E I'ensemble des suites u € CN de carré sommable. On fixe a € C* et b € C et on considére
Vopérateur Ty, : w € E +— (aunt1 + buy)nen. Déterminer les A € C tels que Ty, 5 — A Id ne soit pas bijectif.

Démonstration. Revient a déterminer les a, b tels que 17, ; ne soit pas bijectif.

Injectivité : si a = 0, si et seulement si b # 0. Si a # 0, si et seulement si |§| > 1.

Surjectivité : Sia # 0, on a |a| < |b|. Soit (vn) on résout Top(u) = v, équivalent & u; = w, uy = % — ifUO + a2 ug. Si
cette quantité tend vers 0, comme elle s’écrit 2 (uo — %o W2 ), nécessairement u est la somme de cette série. Donc elle doit
converger, ce qui n’est pas le cas pour certains (vn) dans le cas |b| = |a|. Mais en prenant deux suites (v,,) dont la série ait la méme

somme, et qui ne différent qu’en deux termes, les deux ne peuvent pas tendre vers 0, si |g| > 1. O

—b
Exercice 34 GrouPE SU(2) [ENS 2022] Soit G 'ensemble des matrices <Z - > olta,b € C vérifient |a|? + |b]? = 1



1. Vérifier que G est un sous-groupe de GLy(C).
2. Montrer que G posséde un unique sous-groupe distingué autre que G et {I5}.
Un sous-groupe H de G est distingué si pour tout g € G, gHg~* = H.

Démonstration. 1.
2. 1l contient {£15} comme sous-groupe distingué.

Réciproquement, si H est distingué. Il contient un élément e. Cet élément est diagonalisable, de valeurs propres dont la somme
est réelle, est le produit fait 1. Donc e appartient 4 un SO(2).

a —b 2 a b 01012 £ e=01b12  ab(ei® — e—if ' .
(b ~ ) (60 e‘i(’) (b a) = (e lal +€ [l ab(e .”e ) . Dong, si 6 # +1, on peut trouver n’importe quel
coeflicient sur 'antidiagonale, et si on le fixe, on a un autre paramétre pour faire varier a. O

Exercice 35 [ENS 2022] On note G,, = (Z/2Z)" et V = F(Gn,R).
1. Dimension de V' ?
2. Pour z € G, on note v, = 1. Pour x,y € G, on note x ~ y si la liste y — = a exactement un terme non nul. On définit un
endomorphisme ¢ de V par ¢(vz) = >_, < |~y Vy- Montrer que ¢ est diagonalisable.
3. Montrer que tout morphisme de groupes de GG, vers (R*, x) est un vecteur propre de ¥

Démonstration. 1.
2. 1 est symétrique. O

Exercice 36 % Y PrarrieN [ENS 2022]

1. Montrer que si n est impair, alors A, ne contient aucune matrice inversible.

2. On suppose n pair. On note I = {(4,5) | 1 < i < j < n}. Montrer qu’il existe une fonction polynomiale P: R’ — R telle que
det A = P%((a;;)) pour tout A € A,,.

Démonstration. 1. Déterminant.

2. On peut faire une récurrence : écrire le bloc 2-2 en haut a gauche, et faire le pivot pour annuler ce qui est en dessous, puis ce
n’est pas trivial, il faut discuter de 'homogénéité.
Sinon. Quand on développe il ne reste que les termes pour lesquels toutes les orbites sont de longueurs paires. Que 'on peut
regrouper par deux, I'un et son inverse, sauf si 7> = 1. Ces termes donnent des carrés. On note P, 'ensemble des partitions de
[1,2n] en paires. On intuite P(A) = > p, s(P)[](;j)ep aij» ot s(P) est un signe.
Compliqué, mais si P = (i1, 1), - - - (in, jn) on prend pour s(P) la signature de la permutation 1 — iy, 2 — j1, 3 — i, etc.
Quand on développe le carré, les carrés sont bons. Les autres termes sont de la forme s(P1)s(P2) [1 ;< yep, @ij [1i<j)ep, %is-
A (Py, P,) on peut associer une classe d’équivalence de permutations, en suivant les orbites (mais chaque orbite peut aussi étre
lue dans l'autre sens). On peut vérifier que les orbites sont paires. La signature de la permutation est bien égale a s(P;)s(P2) :
il y a 2™ permutations dans la classe.
Réciproquement, si o est une telle permutation, alors elle correspond a plusieurs couples (Py, P;) : 2™ essentiellement : pour
chaque orbite, on peut choisir dans lequel de P;, P est-ce qu'on met le premier élément.
Autre approche : La méthode de Gauss permet de réduire une forme quadratique, comme somme/différence de carrés. On peut
de méme réduire la matrice antisymétrique, en > b;(w;y; 1 — y;Ti11), autrement dit, il existe P orthogonale, tel que P~1 AP
soit de cette forme. On obtient que det A est le carré d’une fraction rationnelle. Et si on admet la factorialité de R[a;;], comme
det A est un polynome, c’est le carré d’un polynoéme. O

Exercice 37 [ENS 2022] Soit £ un espace euclidien, G un sous-groupe fini d’ordre n > 1 de O(F) et v un vecteur unitaire de F tel
que [|g(v) — v||* < 22 pour tout g € G. Montrer qu’il existe un vecteur w € E \ {0} tel que g(w) = w pour tout g € G.

n—1
Démonstration. Considérer % > g : Cest un projecteur, et comme ce sont des isométries, I'image est 'ensemble des points fixes com-
muns.

Sous ’hypothése Y g = 0, on écrit Y gv = 0, et on isole 'identité. O

Exercice 38 [ENS 2022] Soient A1, Ay € M2(R). Montrer I’équivalence entre les conditions suivantes.

« Toute combinaison linéaire de A;, Ao est diagonalisable.

« Ou bien les matrices A;, A, sont codiagonalisables, ou bien toute combinaison linéaire non nulle de A, A5 admet deux valeurs
propres réelles distinctes.

. llexiste S € S 7 (R) telle que pour toute combinaison linéaire A de A; et As, on ait SA € Sy(R).

Démonstration. « (1) = (%) : supposons qu'une combinaison linéaire non nulle des A; admette deux valeurs propres égales
A A7 4+ Ao Ag = [, alors A; et As commutent, donc sont codiagonalisables.
o (ii) = (4i1) : Si Ay = PD1P71et Ay = PDyP7 ', ona SA = SPDP™1, et cette matrice est symétrique si et seulement si
SPDP~! = P~TDPTS, c’est-a-dire si et seulement si PT'SP commute avec D. On peut donc bien choisir S qui convient.
Si A; et As admettent toujours deux valeurs propres distinctes. Alors, en rajoutant I,,, on obtient un sous-espace vectoriel de
dimension 3 qui vérifie I’hypothese. Il contient une matrice non inversible, que I'on peut conjuguer par une orthogonale en



0 1 0 0
A, de déterminant —uAa — 23, et on doit avoir A2 + 4uda + 423 > 0. Donc le discriminant en A est < 0: p2a? — 24 <0,
c’est-a-dire a® < 8.

SiS,onaSA = (S1a51), et SB = (52851). donc S = <clv ;) = <clv g), et il faut que (14 3)* — 4(8 — o?) > 0,

clest-a-dire 1 — 23 + 82 4 4a? > 0, c’est bien le cas. Et la trace est positive, donc les valeurs propres le sont.

(1 g), et il contient une troisiéme matrice, que I’on peut écrire de la forme (O B ) On obtient (2 Ao+ #/8), de trace

« (iii) = (i) : une matrice Sy avec S def positive est toujours diagonalisable : écrire S = PPT, et SS5 est semblable & une
matrice symétrique. O

Exercice 39 [ENS 2022] Soit n > 1. Quand c’est défini, on pose f(B) = (I,, — B)(I,, + B)~*.
1. Si A € A, (R), montrer que f(A) est défini.

. Si A € A,(R), montrer que f(A) € SO, (R) et que —1 n’est pas valeur propre de f(A).

. Réciproque de la question précédente.

. Soit A €,, (R). Que vaut f(f(A))? Qu’en déduire ?

. Expliciter f(A) pour n = 2.

AN U A W

. Déduire de ce qui précede le théoreme de réduction des matrices antisymétriques pour n pair.
Démonstration. 1. 0 est la seule valeur propre réelle possible.
2. f(A)+ 1, =2(I, + A)~! est inversible.
3. Pour U € M,,(R) dont —1 n’est pas valeur propre, on résout f(A) = U; On trouve A = f(U).
4. f(f(A)) = A :bijection de A, sur SO;.

5. SiA= (_Ot 3>,on trouve f(A) = (COSQ —sinf

sind cosf
6. llexiste P € O, tel que P~ f(A)P est diagonale par blocs : avec de I'identité et des rotations. En reprenant I'image par f, on
obtient A conjuguée, par P a des blocs 2 — 2 antisymétriques. O

>, ou § = 2arctant.

Exercice 40 Soient A, B € M,,(R). Montrer qu’il existe O € O, (R) tel que A = OBO™! si et seulement s’il existe P tel que
A=PBP ltet AT = PBTP!

Démonstration. dans le sens dur, on obtient PPT qui commute avec B, mais P = OS5, avec S un polynéme en PPT douleO. O

Exercice 41 [ENS 2022] Soient A, B € M,,(R) telles qu’il existe U € M,,(C) telle que vU' = I,et A= UBU' . Montrer qu’il
existe O € O, (R) telle que A = OBOT.

Démonstration. On utilise la caractérisation : A = OBO™!, avec O € O, si et seulement s’il existe P tel que A = PBP 1 et
AT = PBT P! . dans le sens dur, on obtient PPT qui commute avec B, mais P = O.S, avec S un polynéme en PPT douleO.

Alors A = UBUT, et... O

Exercice 42 [ENS 2022] Soit A € S,,(R) et A, la matrice obtenue en supprimant la i-iéme ligne et la i-iéme colonne de A. On note
A1 < --- <\, les valeurs propres de A et 13 < -+ < py—q celles de A;. Montrer que A\ < p13 < Ao < g < -+ < 1 < App.

Démonstration. Principe du minimax. O

Exercice 43 [ENS 2022] Pour A € S,,(R), on note A\;(A4) > --- > A, (A) son spectre. Pour A, B € S, eti,jtelquei+j <n—1,
comparer \;yj_1(A + B) et \;(A) + \;(B).

Démonstration. Minimax. Pour i = j = 1,ona A\(A + B) < A;(A) 4+ A(B). Puis on utilise \; = infg, , , max(u(x),z), et on
choisit F,_(j4j—1)+1 = Fn—i—j en somme directe avec les 7 premiers vecteurs propres de 4, et les j de B. O

Exercice 44 [ENS 2022] Soit P = a2, X?" + -+ + a1 X + ag € R[X] de degré 2n. Montrer que la fonction associée a P est positive
sur R si et seulement s’il existe A = (A4; ;)o<i,j<n € St 1 (R) telle que aj, = > i j=r Aij-

Démonstration. Si A existe, pour X = (Ii)ggién, ona XTSX = P(z) > 0.

Réciproquement, pour n = 2 ¢a marche. Quitte a retirer une constante a P, on peut supposer qu’il s’annule, puis il faudrait pouvoir
le translater, pour se ramener au cas ou 0 est racine. Alors on peut faire une récurrence.

Ou on fait la récurrence sans le translater, ¢a a I’air plus simple peut-étre : Si P = Q(x + a)?, ona ay = by_o + a?by, + 2aby_1. Donc
si ) est associé a une matrice S, P est associé a a®S + 2a.S! + 52, ot S! est la matrice ol on tronque la derniére ligne/colonne, puis
on met ajoute une premiére ligne/colonne nulle, S? on recommence. Si a > 0, les trois matrices sont positives. Si a < 0, on peut se
ramener a l'autre cas en prenant x — P(—zx).

Plus simple : on peut écrire P = A% + B2, ce qui donne une expression des coefficients de S. O

Exercice 45 [ENS 2022] Soit A € A,, et B € S,". On suppose qu’il existe K € S,, telle que le spectre de KA — AK + B soit > 0.
Montrer qu’il existe ¢, C' > 0 tels que V¢ > 0, ||67t(A+B) ||Op < Ce™“, ou |||, est subordonnée a la norme euclidienne.



Démonstration. KA — AK est symétrique de trace nulle. On a e~ *(A+5) = ¢~ HA—(KA-AK))—t(KA-AK+E)

Supposons AK = K A (par exemple sur deux sous-espaces différents) et B € S;'+. (En fait, revient 4 prendre K = O,,)
Alors I’hypothése est B € S;F .

Avec Lie-Trotter, on peut traiter ce cas.

Via I’équation différentielle, c’est équivalent a montrer le résultat pour ¢ = 1, ou pour ¢ tres petit en fait.

_A4B A+B —A+B

> X) =1, Cest-a-dire (e~ " e~ X, X) = 1. Au premier

Supposons que ce soit faux. Alors il existe X tel que (e_#X ,€
ordre, on obtient (BX, X) = 0, donc X € Ker B.

Non seulement, mais en plus, AX € Ker B. On en déduit qu’il existe un sous-espace vectoriel stable dans Ker B, par A. Cela contredit
Iexistence de K, en effet, on doit avoir ((K A — AK)X, X) > 0, mais la matrice de K dans une BON adaptée 4 Ker B est symétrique,
donc et ce K’ ala méme propriété, mais K'A — AK’ est de trace nulle. O

Exercice 46 [ENS 2022] Soit F euclidien et u € L(F) symétrique. On munit £(E) de la norme subordonnée. Soit F' un sous-espace
vectoriel et Ap I'ensemble des projecteurs d’'image . Montrer que I'ensemble {[[uop —pou|,, . p € Ar} admet un minimum.

Démonstration. On prend une suite p,, de projecteurs qui tend vers I'inf. On peut associer aux supplémentaires de F' des BON, et en
extraire une suite convergente. On a un probléme si la famille obtenue n’est pas en somme directe avec F'. Supposons que e; — z,

avec x € F. Alors (up(x) — pu(z),y) = (p(x), u(y)) — (u(m),p* (y)).
On prend y € F*, ce qui annule p*(y). On prend z = Te==1- On obtient que nécessairement, (p(x),u(y)) =0.

ZH

Donc e¢; — z dans une direction | a F'*, ce qui est impossible, car on peut supposer e; — z € F*. O

Exercice 47 [ENS 2022] Soit n € N*. Déterminer les fonctions f de S,, dans R% possédant les propriétés suivantes :
« pour S €S, etO € O,, f(OTSO) = f(S)
+ il existe une famille (f; ;)i<; de fonctions R — R tel que VS, f(S) = [],<; fi;(5i;)

Démonstration. 1l suffit essentiellement de traiter le cas n = 2. On écrit f < (Z b>) fi(a) f2(b) f3(c).

En conjuguant par (é _01), on obtient fo paire. En conjuguant par <(1) (1)> on obtient f; = fs.

On suppose f1(0) =1
On conjugue par une rotation. Sia, ¢ = 0, on obtient f1(0)? f2(b) = f1(2bsin cos) f1(—2bsin cos) f2 (b(sin? — cos?)) = f1(u) f1(—u) f2(v),

avec —u® — v? = —b%. En posant f; = fi(z)f1(—x), on obtient fo(b) = f1(u)f2(v), avec la condition u? + v = b2.
En fait, en posant g = +/ f(z) X f(—z), on peut supposer f; paire, donc fi= 12
En prenant a, b = 0, on obtient f1(c) = fi(csin®) fi(ccos?) f2(c(sin® — cos?)), donc f1(u) f1(v) = flf(;&t;’) ot uv — w? = 0.

En prenant . = v, et en combinant avec le précédent, on obtient fo(vu2 4+ u2) = f1(2u) : f2(v/2u) = f1(2u), donc fo(x) = f1(v2x)
Alors on réinjecte, en f1(v/2b) = f1(u)?f1(v/2v), si u? +v? = b? En posant hy = In f1(1/x), on a hy(2b%) = 2h; (u?) + h1(2v?); En
prenant v = 0, on obtient hy (z + y) = h1(z) + h1(y), donc h est un morphisme de R (n’importe lequel marchera), et f; = eh(@?,
Ensuite, sans la parité : La fonction hy précédente vérifie les mémes hypothéses, donc quitte & multiplier par une des fonctions trouvées,
on peut supposer fo = 1. Donc fi(—x) = fi(z)~1, et f1(u)f1(v) = fi(u+ v) : donc f; est un morphisme.
Finalement, les solutions sont les Cle/1(Tr 5) gh2 (2 ””?-7'), ou hy, ho sont des morphismes de R -+ RetR; — R...
Autre idée (RMS) :
Utiliser (x y> semblable a (m +y 0 ) et <x y > semblable a ( Va? +y? 0 >

Yy x 0 T —y Yy —T 0 —\/m
Cela donne f1(2?) fa(y) = fi(z +y) fi(z —y) et fi(x) fr(—2) faly) = fL(V2% +¥2) fr(—V/2% + 4?) O

Exercice 48 [ENS 2022] On munit M,,(R) de la norme subordonnée a la norme euclidienne. Soit ¢ > 0. Montrer qu’il existe § > 0
tel que pour tous n,d > 1, et A, B € O,, vérifiant Ad =T, et ||AkB — BA”“H < § pour tout k£ € N, il existe B € O,, telle que
HBI — BH <eet AB; = B A.

Démonstration. Considérer B’ = £ 5> A¥BA~F,

On a B’ qui commute avec A, et || B’ — B|| < 6.

Si A n’a que des valeurs propres distinctes, on est bon.

| X ~ 0.
Décomposition polaire, sur I'espace propre, B’ = O, et ||S|| = sup Sp < ¢, donc B’ est proche d’une matrice orthogonale.
Ona S = vVB'TRB commute avec A, car B’ et B’T commutent avec A. O
Exercice 49 [ENS 2022] Soient A, B € S,,.
1. s Montrer que Tr ((AB)?) < Tr (A2B?).
2. sPour k > 1, montrer que Tr ((AB)2k> ((A2B2)2k 1)



Démonstration. 1. On prend A diagonale. Pour k = 1, c’est a® +b? > 2ab: on a a droite Tr((DB)T DB) = D A7b3; et & gauche
Tr(DBDB) = Te((BD)"(DB)) = 3, ; AiAsb7

VRSN
Alternative : Tr ((AB)?) = (AB, BA) < \/|[AB]| || BAJ|, qui donne le résultat.
2. En général, on a, a gauche

Et a droite, une somme sur les mémes indices, et les mémes b, mais )‘121 )\223 e

On regroupe les termes de mémes produit en b, étant donné un 2¥-cycle, on peut le lire en partant de chaque point, et dans le
sens inverse.

Si le produit des b est positif, 'TAG permet de conclure.

2k
1112

a gauche donnent A?\3 + ... )‘31/2 et a droite A\JA3 ...

Il faut rajouter les termes en b ' )\fffl, qui donnent de la positivité. Ou faire demi-tour a la moitié : b7 , ... b?

, : i
1112 12k71,122k71’qu

. . N 2 . PN R
Alors a gauche, la somme est positive (en tout), et c’est (b;, 4, - . - bin/271in>\1 s Aot bin/zin/zﬂ ... )* qui devrait étre < a
la méme chose, mais avec des \; au carré tous les deux termes. On a un probléme si les deux sommandes n’ont pas le méme
signe... Irréparable : le terme de droite pourrait étre nul.

Plutot : récurrence. Tr(AB)2" = Tr ((ABAB)?’“”) <Tr ((ABAABAB2)2’“‘2) - ((ABA?BAB?)?’“‘Z) — Ty ((BA?BAB?A
Mais Tr ((ST)2"") < Trs? 72 <[] 5272 /|| 72

, d’ou le résultat. O

Exercice 50 [ENS 2022] On note ||-|| la norme euclidienne sur M., (R).

1. Montrer que SI est un convexe fermé de S,,, et préciser son intérieur dans S,,.
2. Soit A € S,,. Montrer qu’il existe un unique P € S, que 'on déterminera tel que VM € S;7, ||[A — P|| < ||A — M]|.

Démonstration. 1.

2. Projection sur un convexe fermé. O

Exercice 51 [ENS 2022] Soit A € S,, et a,b > 0 tels que al,, — A et A — bI,, soient positives. Soit X, Y dans R™ tels que (X,Y) = 0.
Montrer que

(X, AY)? < (Z;Z)Q (X, AX)(Y, AY).

Démonstration. En conjuguant par O, on peut supposer que X = Fy, et Y = FE,. On obtient 'inégalité

2
a2 < L_b a11a
125\ 0 11022.
On est ramené au cas de dimension 2. Les racines sont celles du polynome (X —a11)(X —age)—a2y = X2 —(a11+ag) X +a1a22—a,

On a pris un polyndéme scindé, on le descend verticalement. Au bout d’'un moment, les racines sont trop écartées.

Au pire des cas, on a aj1 + a2 = ‘%rb, et méme aj] = a9y = "7“’, et aq2 la valeur pour laquelle on obtient a et b comme racines. [

Exercice 52 % [ENS 2022] Pour A € M, (R), on note C(A) sa comatrice. Soient U,V € R™ unitaires. On note P, () les matrices
des projections orthogonales sur U+ et V. Montrer que C'(P)C(Q)C(P) = (U, V)2C(P).

Démonstration. P est de rang n — 1, donc C(P) est de rang 1, et son image est incluse dans Vect U, et U~ est inclus dans le noyau de
C(P), donc C(P) est la projection sur U, LU*. D’ou le résultat. O

Exercice 53 [ENS 2022] Une matrice H € M,,(C) est dite hermitienne lorsque, pour tout i, j € [1,n], h; ; = h; ;. Elle est positive
si toutes ses valeurs propres sont réelles positives.

1. Déterminer les formes linéaires f sur M,,(C) telles que f(I,) = 1 et f(H) € R pour tout H hermitienne positive.

2. Déterminer les formes linéaires f sur M,,(C) telles que f(I,,) = 1 et f(H) € R pour tout H hermitienne strictement positive.

Démonstration. 1. La trace marche, les M — M;; marchent. On peut supposer que f(M;;) = % en ajoutant celles qui marchent,
pour égaliser, puis en divisant.

1

Dans Mo, (1 1) est symétrique, positive. Donc f(E12 + Eo21) + f(E11) + f(Ea2) > 0. Et ( i) aussi, donc i f (E12 —

FE31) + -+ > 0 On en déduit que f(E;;) = f(Ej;). (i 2) est positive si et seulement si a + b > 0 et ab > |2 Sous

cette condition, on doit avoir af(E11) + bf (Ea2) + 2Re (Af(E12) > 0. Cest-a-dire af (E11) + bf(F22) + 2Vabf (F12) > 0,
cest-a-dire | f(E12)| < v/ f(E11)f(Fa2), c’est-a-dire (f(EZj))Z . est hemitienne.

J
Alors f(A) = ai; f(Ei;) = (A, F). Si Fy, F5 sont > 0 (nécessite diagonalisation, semble-t-il...).

Réciproquement, toute forme linéaire s’écrit A — (A, F'). On a vu que F' était hermitienne. Et si on la diagonalise avec un
coefficient < 0, contradiction.



2. D’aprés la question précédente, on correspond a une hermitienne, qui doit étre non nulle. Cela sulffit. O

Exercice 54 [ENS 2022] Soit A € M,, ,(R).

1. Justifier que AA” est diagonalisable & valeurs propres positives. On note o1 > --- > o, > 0 ses valeurs propres non nulles

(avec multiplicité), et S(A) = (\/E, cee \/ﬁ)
2. Comparer S(A)a S (AT).

3. Montrer qu’il existe U dans O,,(R) et V dans O,(R) telles que UTAV = R = <
S(A) = (o1,...,0.).

4. On considére A* = VR*UT, avec R* =

g 8 ),avecD = diag (01,...,04), o0

D~ 1
0
en commengant par examiner le cas particulier ou A est inversible.

8 € M, »(R). Interpréter géométriquement les matrices AA* et A*A,

Démonstration. 1. Cours.
2. Elles ont les mémes traces de puissances.
Ou, quitte a agrandir la matrice, on peut la supposer carrée, auquel cas AB et BA ont le méme polyndme caractéristique.
Ou, si E) est un espace propre pour AAT, ona ATAATX = ATAX, donc I'image par AT est un espace propre pour AT A
(sauf A = 0).
3. 1l existe une BON telle que (A7 X, AT X) = 02, ce qui donne exactement le résultat.

4. Ona A = URVT. Si A est inversible, A*A = I,,. En général, c’est la matrice de projection orthogonale sur la somme des
sous-espaces vectoriels des valeurs propres # 0. O
2) Analyse
Exercice 55 [ENS 2022] Soitn > 1.

1. Déterminer les plus petites constantes C' et C” telles que
VX R X[, <Ol et Xl < CIX ],

2. Soit A € M,,(R) telle que VX € R", ||[AX ||, > || X|| .. Montrer qu’il existe X € R™ tel que || AX||, > /n | X]| ..

3. Pour deux espaces vectoriels normés £ et I’ de dimension finie, et f € L(E, F), on note || f|| = supy, =1 ||f(2)| - Lorsque

I
dim F = dim F', on note K

d(E,F) =inf{||f|| |||, f € L(E, F) bijective}.
Déterminer d(E, F') lorsque £ = R™ est muni de ||-||, et F' = R" est muni de [|-|| .
Démonstration. 1. || X[, < vn| X, et || Xnl]l; < |z,
2. Les colonnes de A sont unitaires. C’est la méthode probabiliste.
3. D’aprés la premiere question, d(F, F') < /n. D’apres la seconde, d(E, F') > /n. O
Exercice 56 % % CONTINUITE DES RACINES [ENS 2022] Soit n € N*.

1. Montrer que 'ensemble des polyndmes de degré n scindé a racines simples sur C est un ouvert de C,,[X].

2. Pourt € C,onpose P, = X™ — tX — 1. Montrer qu’il existe n fonctions continues 1, ..., x, définies sur un voisinage de 0
dans C sur lequel P, = [\, (X — a;(t)).
Démonstration. O

Exercice 57 [ENS 2022] Soit f: x + 22 — <. On pose K = (0,,cn /~"([~1,1]). Montrer que K est un compact d’intérieur vide
sans point isolé et que f(K) = K.

Démonstration. Compact : intersection de compacts.

Intérieur vide : la fonction est expansive sur [—1, 1], donc tout intervalle ouvert grossi.

Sans point isolé : on montre dense, par segments emboités.

K) = K semble clair. O
f(K)

Exercice 58 [ENS 2022] On note B([0, 1], R) 'ensemble des fonctions bornées, que ’on munit de la norme infinie. Montrer qu’il
n’existe pas d’application linéaire continue 7" de B([0, 1], R) dans C([0, 1], R) dont la restriction a C([0, 1], R) soit I'identité.
Démonstration. On postule I'existence d’une projection p continue, dont I'image est C([0, 1], R). C’est donc que C(]0, 1], R) admet un
supplémentaire fermé.

Réciproquement, si C([0, 1], R) admet un supplémentaire fermé, pourquoi est-ce que la projection est continue ? (c’est vrai dans un
espace de Banach mais dur).

On construit une suite ¥, € H et ¢,, € C([0, 1], R) tel que 1,, — 400 et ¢, — ¢, = O(1).
On va prendre 1,, continue par morceau, dont les sauts sont < 1, sauf en un nombre fini de points.

Soit e, I'indicatrice de a. On écrit e, = h, + ¢4, h, a un unique point de discontinuité. Donc sur un voisinage, a droite ou a gauche
de a, h, est > %
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On construit une suite de telles fonctions, que I’'on somme. On s’assure que la série des 1),, — ¢, converge absolument.

si P est la projection sur le supplémentaire de C([0, 1],R), v, oP est une forme continue sur C([0, 1], R) donc représentée par une
mesure M.

Mais 1, est limite d’une suite de fonctions f,, continue, donc par convergence dominée (par rapport a m,), on a donc P1, = 0,
contradiction.

Cette convergence dominée, c’est le fait que si f,, — f simplement, alors (P f,,) — J(Pf). O

Exercice 59 L’espace des suites qui tendent vers 0 n’a pas de supplémentaire fermé dans '’ensemble des suites bornées.
Démonstration. « 1 existe une famille non dénombrable (U,) de parties de N infinies, dont les intersections deux a deux sont
finies. (prendre des suites de rationnels qui convergent vers un irrationnel).

« On prend ¢, la fonction caractéristique de U,,. Si g est une application continue qui est nulle sur |o, alors {a | [g(pa)| > €} est
fini. En effet, sinon, en les réorientant et les sommants et en rajoutant une suite qui tend vers 0, on obtient des suites de norme
1, pour lequel la valeur de g est > me, ce qui contredit la continuité.

« Donc {a | g(ps) # 0} est dénombrable.
« Si | avait un supplémentaire fermé H. Alors il réalise une bijection topologique entre les f

Pour k € N, on considére 'application f) : u — uy, qui est continue. On peut alors définir fj,: = — fi(p(z)), la projection sur
H (qui est continue, c’est dur vient de théoreme sur les Banach : application ouverte qui découle de Baire).

D’apres ce qui précede, la famille des fx est non nulle uniquement sur un ensemble dénombrable. Donc il existe a tel que
Vk, fr(a) = 0, donc p(a) = 0, contradiction. O

Exercice 60 [ENS 2022] Soit f: M + 2M — M?. On note I' I'ensemble des N € M,,(C) qui sont limites d’une suite de la forme
FE(M).

1. Déterminer I'.

2. Pour N € T, déterminer les X tels que f*(X) — N.

Démonstration. 1. Toute limite vérifie A = 24 — A2, donc projecteur.
2. Les valeurs propres réelles possibles de X sont des 0 (ou 2), et n’importe quelle autre valeur dans ]0,2[ qui tendra vers 1.
Si on autorise une valeur propre complexe, ;11 = U (2 — Uuy,). Ona u,+1 — 1 = —(u, — 1), ce qui permet de faire I’étude.
D’autre part, si on se restreint a un espace caractéristique. Sur Fy, F; on peut étre quelconque, mais sur Fy,, comme u,(a) — 1,
il faut que I'on soit diagonale. En fait non. On peut étre quelconque : 'application est N +— 2N — N2 —2AN = (2—2)\)N — N2,
donc on tend vers 0 dans tous les cas. O

Exercice 61 [ENS 2022] DUNFORD, PAR LA METHODE DE NEWTON Soitn € N*. Pour u € £(Q™), onpose s¥y, (X) = [\ cgp (u) (X —
A). Etudier la bonne définition et la convergence de la suite (u,,) définie par ug = u et U, 11 = tup — Uy (un) o U (u,) "t

Démonstration. On a P’ (ug) inversible, car les valeurs propres de ug ne sont pas racines de P.

Le polynome est bien a coefficients dans Q, puisque c’est le quotient de ., avec le pged de sa dérivée.

Comme les u; sont des polyndmes en u, les espaces caractéristiques sont préservés, et méme valeurs propres (les racines de P’ sont
£ ).

Onau— P(u)P'(u)~t — A\ = Q(u), ot A, est racine double de Q.

On en déduit que P(u,) = P(u)?" H(u). En particulier, P(u,,) = 0 APCR, donc la suite est constante APCR. Diagonalisable sur C.
C’est la décomposition de Dunford de w. O

Exercice 62 [ENS 2022] On munit GL, (C) de la norme subordonnée a la norme ||-|| . Déterminer le plus petit a > 0 tel qu’il existe
un sous-groupe non trivial de GL,,(C) inclus dans la boule fermée B(I,,, a).

Démonstration. Forcément que des valeurs propres de module 1. Dans le cas ou il n’y a que des 1, c’est forcément I'identité. Si une
valeur propre est irrationnelle, on peut trouver un coefficient qui tend vers —1, auquel cas | M — I,,|| > 2.
De méme, on est forcément diagonalisable.

Donc les valeurs propres sont rationnelles. En prenant D = Diag(j), onaa = |1 — j| = 1. On ne peut pas faire mieux, car on aura
une valeur propre a une distance > 1 de 1. O

Exercice 63 % % [ENS 2022] Soit E euclidien, et A une partie bornée non vide de E.
1. Montrer qu’il existe une unique boule fermée de rayon minimal contenant A.
2. Qu’en est-il dans un evn quelconque ?

Démonstration. ]

Exercice 64 [ENS 2022] On munit R™ d’une norme, et L(R™,R) de la norme d’opérateur associée. Montrer qu’il existe une base de
vecteurs unitaires de R™ dans laquelle les formes linéaires coordonnées sont unitaires.
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On choisit x; unitaire. La boule unité admet (au moins) un plan tangent en x;, qui défini un espace L; de dimension n — 1, supplé-
mentaire a z1. Alors si on compléte en une base quelconque de L1, la forme coordonnée en x; sera bien unitaire. D’autre part, en tout
y € L1, on aura nécessairement x; qui appartiendra a (au moins un) plan tangent a y.

Démonstration. [|€]| = supj, =1 [[€(2)]| = : on cherche des z; tel que ||z; + > ajz;|| > ||z

, pour tout «;.

On recommence, en choisissant x5 quelconque dans L, etc. O]

Exercice 65 [ENS 2022] Soit (A,),~; une suite de matrices de déterminant 1 dans M (R), ainsi qu'une norme arbitraire N sur
M3 (R). On suppose que (A,), -, est bornée. On considére, pour tout k > 1, la matrice produit By, = A Ai_1 ... A;. On suppose

enfin que %ln N(B,) tend vers un réel v > 0 lorsque n tend vers +o0o. Montrer qu’il existe un vecteur non nul v de R? tel que
L1n||B,v||, tende vers —y lorsque n tend vers +oc.

Démonstration. On peut remplacer la norme par la norme subordonnée & la norme 2.

Ona ||AB||, < [|All, || B2]|, mais également ||AB||,.

On note v, tel que B, v, soit de norme minimale, w,, telle que B, w, soit maximale. En fait, v,, et w,, sont orthogonaux, sinon
cos twy, + sin tv,, est de norme 1 + 2 cost sin t{u, v) et son image, de norme cos? t M,, + sin® M,, + 2costsint. IDK.

Comme la suite (A,,) est bornée, on a || B, +1v,]|| qui est égale & || By, +1vn+1]|, & une constante multiplicative prés. Donc si on écrit
Up = QUp11 + Bwp1, B a une décroissance géométrique, donc ||v, — vnt1|| = O(c™), donc (vy,) converge. O

Exercice 66 s Y Corps p-ADIQUE [ENS 2022] On fixe un nombre premier p. On note v, la fonction de valuation p-adique sur Z\ {0}.

1. Pour 7 = ¢ un rationnel avec a, b
entiers, on pose |r|, = pUr(®)~vr(b)
sia # 0, et |r|, = 0 sinon. Mon-
trer que la quantité ainsi définie ne
dépend effectivement que de r et non
du couple (a, b) envisagé.

. Montrer que | - |, vérifie |r + 5|, <
max(|r(p, [s[p) < [r]p + |s], pour
tous 7, s dans Q, que | — 7|, = |r|,
pour toutr € Q, que |- |, est a valeurs
positives et ne s’annule qu’en 0. On
définit a partir de la, et comme pour
une norme sur un R-espace vectoriel,
la notion de convergence vers 0 pour
une suite a termes dans Q.

. Une suite (ay),,~, a termes dans Q
est dite de Cauchy lorsque, pour tout
réel ¢ > 0, il existe un entier ng > 0
tel que [a, — an|, < € pour tous
n > ng et m > ng. Montrer que
si une telle suite ne tend pas vers 0,
alors elle est a termes non nuls a par-

Démonstration.

tir d’'un certain rang et la suite in-
verse (1/ay,),, estde Cauchy.

. Montrer que 'ensemble C,, des suites

de Cauchy a termes dans Q est un
sous-anneau de QN.

. Deux suites de Cauchy (an),>

et (by), >, sont dites équivalentes
lorsque leur différence converge vers
0. Montrer que 'on définit ainsi une
relation d’équivalence sur QN. On
considére 'ensemble quotient Q,, de
Pensemble des suites de Cauchy par
cette relation d’équivalence. Mon-
trer qu’il existe une unique structure
d’anneau sur Q, qui fasse de la pro-
jection canonique de C,, dans Q, un
morphisme d’anneaux.

. Montrer que Q, est un corps, et

mettre en évidence un unique mor-
phisme injectif de Q dans Q,,.

. Soit (an)p>o une suite de Cau-

chy a termes dans Q. On appelle

norme de a le réel : N(a) =
lim,, 1 o SUP {|ak|p ik > n}
Montrer que deux suites de Cauchy
équivalentes ont la méme norme, et
en déduire une fonction ||-|| sur Q,
telle que N(a) = |la|| pour toute
suite de Cauchy a a termes dans Q,
dont on note [a] la classe pour la re-
lation d’équivalence précédente.
Vérifier que N(z + y) <
max(N(z),N(y)) pour tous z,y
dans Q,, que N(—z) = N(z) pour
tout x € Qp, et enfin que N est po-
sitive et ne s’annule qu’en I’élément

nul de Q,.

. Soit Y a,, une série a termes dans

()p. Montrer qu’elle converge au
sens de N si et seulement si (ay,),,c v
converge vers 0 au sens de V.

. Le corps R est-il isomorphe au corps

Qp?

O

Exercice 67 % % [ENS 2022] Soit u une suite réelle. Déterminer une CNS pour qu’il existe une réindexation de u qui soit monotone
APCR.

Démonstration. A une limite, et tous les termes sont du méme coté de la limite APCR. O

Exercice 68 % Y FORMULE DE LiE-TROTTER [ENS 2022] Soitd > 1 et A, B € M4(C). Montrer que (eA/"eB/”)n — eAtB,

Démonstration. O

Exercice 69 % % [ENS 2022] Pour z € R, on note [z] le plus petit entier relatif supérieur ou égal & 2. On pose ug = 1 et u,, = 2u,—1

pour tout entier n > 2 qui est une puissance de 2, et u,, = [u”3’1 | pour tout entier n > 3 qui est une puissance de 3 et enfin u,, = w1
sinon. Montrer que u tend vers +o0.
, X gnbpuissde2 9lng(n))]
Démonstration. On a uyn, 2 Sirpumssaes = IOIR
Notons v), la suite qui vaut 1 en p, puis suit une récurrence *2, /3. En notant x; les indices ou on fait +1/3, ou +2/3, on a u,, =
1,2
x 73 Ve

Mais les v, sont minorées, par 1/3, (a partir de x;) et il y a une infinité de z;.
Alternative : par I’absurde, si on ne tend pas vers +o00, on est bornée, mais alors, dans chaque indice ou on est divisé par 3, mais pas
parfaitement, on est multiplié par %(1 + %) On peut utiliser ¢a pour obtenir une minoration u, > “X(1 4 %)nb de fois O

Exercice 70 % REGLE DE RAABE-DUHAMEL [ENS 2022]
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“5+. Que dire des séries ) a,, et

1. Soient (ay,), (by,) deux suites de réels > 0. On suppose qu’a partir d’un certain rang, a;”zl <
22 bn?

2. Soit (ay,) une suite de réels > 0. On suppose que “**% = 1 +%+o0 ( ) avec o > —1. Montrer que Y a,, converge.

3. Quediresia < —17?

Démonstration. O

Exercice 71 s [ENS 2022] Sia = (ay,)ncz est une famille sommable de complexes, on pose ||al| = > |a,].
Si (an) et (by,) sont sommables, on pose (a * b)p, = > ;7 Axbn—g-

1. Montrer que a * b est bien définie, sommable, et que 3. Montrer que f, est continue sur le disque unité fermé.
l[a bl < lla]l [|b]. 4. Si a est inversible pour *, montrer que f, ne s’annule pas
2. Montrer que * est commutative, associative. Déterminer un sur D.
neutre pour . 5. On suppose que a est a support fini et que f, ne s’annule
Sia est sommable, on pose, pour |z| < 1, fo(2) = Y5 an2™. pas sur D. Montrer que a est inversible pour .
Démonstration. 1.
2.

3. Découper, avec un reste < .
4. Siaxb=1,0ona f,fp = 1.
5. fq est polynomiale, donc fi O

Exercice 72 % % [ENS 2022] Soit (a,,) € ]O,l[N. Donner une CNS pour que pour tout « € ]0,1], il existe une permutation o de N*

_ +00 Ag(n)
telleque z = ) ' = —53~
Démonstration. 0 et 1 sont valeurs d’adhérences. O

Exercice 73 [ENS 2022] Soient a,b,c € Ret f: x — 4az® + 3bz? + 2cx. Montrer qu'il existe z € [0, 1] tel que f(z) =a+ b+ c.
Démonstration. C’est la FAF; Facile. O

Exercice 74 s [ENS 2022] Donner une fonction f: R — R continue en tout point de R \ Q et discontinue en tout point de Q.

Démonstration. % — % O

Exercice 75 [ENS 2022] Soit f: R} — R de classe C*° telle que f(2) =7 0 et f(z) 5o 0 et dont la dérivée n-iéme s’annule
en un unique z,, > 0, pour tout n > 1.
1. Montrer que (z,,)n>1 est strictement croissante.

2. Montrer que z" f(") (x) —— 0, pour tout n > 0.

z—0
3. Soit g: = +— f( ) Montrer que pour tout n € N, il existe des coefficients c,, ,, tels que (™) (z) = ZZ:O cmp%. Montrer
alors que (—1 ) g™ est strictement positive.
Démonstration. 1. Etant monotone APCR, les dérivées admettent des limites, qui doivent étre nulles. f doit étre croissante, puis
décroissante. Donc f” est positive, puis négative, mais comme elle tend vers 0, donc elle est décroissante, puis croissante, vers 0.
Donc f” est négative, puis positive, donc croissante, puis décroissante.
On obtient aussi la monotonie de (x, ).
2. C’est une récurrence. On a

Si |z f()(x)| > e, ona|f™(z)] > -, et par monotonie, ‘f("_l)(x) — f"=Y(z/2)| > 5z5=. Cela contredit 'hypothése au

rang n — 1.

3. Onag™(z) = e (X () (~1)Pplf ) ()27 ), done g (z) = oo ().
Pourn = l,onag'(x) = L; L < 0 pour x assez petit : si f’ décroissante et positive, on a f(z fo t) dt (utiliser FAF
plutdt).

D’autre part, en un 0, on a f’ du méme signe que f, donc f’ est encore de la bonne monotonie. Impossible!
L’expression trouvée permet de justifier que 2"+ g(™) (z) oy 0. Par ailleurs, on a g = f, donc xg™ + ¢(»~1) = (") donc
(xg™) = 2g("+1) 4 g(") = £ donc s’annule une seule fois. On en déduit, par Rolle généralisé, que ¢(™ ne s’annule pas. [

Exercice 76 % % [ENS 2022] Soient I un intervalle ouvert et f,g: I — R dont I’ensemble des points de continuité est dense dans
I. Montrer que f, g ont un point de continuité commun.

Démonstration. On part d’un point x. Il existe un point x; de continuité de f tel que |z — x1| < § = |f(z) — f(z1)| < 1.

1l existe x5 de continuité de f tel que 30, |z — 22| < > = |f(z) — f(z2)| < 1/2. Et on peut supposer 55 < 3.

On continue, avec d3 < %2. Alors le point d’adhérence est un point de continuité de f.

En général, on reprend la construction, mais on alterne un point de continuité de f, et un de g. O
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Exercice 77 % % FoncTiONS HARMONIQUES [ENS 2022] Déterminer les fonctions f: R — R continues et bornées telles que
Ve €R, 1(fla+ 1)+ fle =1 + flz+7) + flz — 7)) = f().

Démonstration. Si f admet un maximum, minimum, par continuité, elle est constante, car Z + wZ est dense.

Sinon, pour M assez grand, le maximum sur [— M, M] est forcément atteint & 7 du bord.

La fonction M (x) = max(, ;4] f(t) est croissante.

Soit y un point. Pour tout €, on peut écrire f(y) comme un barycentre symétrique de valeurs de f de points qui, pour un poids d'un
moins 1 — ¢, sont dans [y + 7,y + 27], et [y — 27,y — 7).

Si M () > €1 + M(z¢ — 7), alors si on suppose que le maximum est atteint en xg, on a M (xg + 27) — M(xg) > e1(1 — €), sile
maximum est atteint en x1, ona M (1) — M (z1 — 2727) > &1(1 — ¢).

On peut recommencer. Il faut clarifier les constantes multiples de 7, etc. O

Exercice 78 s [ENS 2022] Soit f une fonction de classe C* de [0, 1] dans R telle que (f(z), f'(x)) # (0,0) pour z € [0,1].
Déterminer la limite, lorsque 4 tend vers 07, de $ fol 1i5e)<slf(t)] dt.

Démonstration. Le nombre de zéros de f est fini. On devrait trouver 2 fois le nombre de zéros (compté une seule fois sur les bords). [

Exercice 79 % [ENS 2022] Soit f € C°([0, 1], R telle que ¥(z,y) € [0,1]%, 2 f(y) + yf(z) < 1. Montrer que fo z)dr < %

Démonstration. NB : 'inégalité en conclusion est atteinte pour f(z) = v/1 — z2.

Ecrire I'inégalité en (sin 6, cos 0) et intégrer entre 0 et 5. Par changement de variable, c’est I'intégrale de f (deux fois). O

Exercice 80 % % [ENS 2022] Soit f € C°([—m,],R) monotone et continue par morceaux. On pose, pour n € Z,c,(f) =

5 " f(z)e™™™* dz. Montrer que la suite (nc,(f)),,c, est bornée.

Démonstration. Rmq : Si f C!, ok. Si f constante, ok.

M/n einmk+176i"mk

On définit (x,,) de sorte que f(zn41) — f(2n) = +. On écrit la somme, comme Y, /" £ , c’est bien borné.

n
Vrai pour des fonctions aux variations bornées. O
2
Exercice 81 [ENS 2022] Calculer f0+°° f;oo e~ T dtdz.
Démonstration. On pose G(x) = f+oo ~t*/ddt. Ona f () dz = [2G(2)]7> + f+°o —=*/2 qp.
Il faut quand méme justifier I'IPP, par le fait que le crochet converge, par une ma}oratlon simple (ve™* */2 par exemple). O

Exercice 82 [ENS 2022] Soit f € C° (R, R) strictement décroissante telle que f(2) — 0 quand 2 — +o0. Montrer que | oo W dz
—+00.

Démonstration. Intuitivement, c’est duf 7 ,donc enln f.Onmontre quesi f(z1) < * (IO) etx; > xo+1,lintégrale f;ol_ W dx >

1
C.
Cela revient a montrer que f;;:ll ! Ef(;r)l) dz est loin de (1 — x¢), mais par Cauchy-Schwarz

x1—1 f(l‘-i—l) x1 . x1—1 1 o . L
/ @) <\// ft )/ Fp < ol O

Exercice 83 [ENS 2022] Déterminer les suites croissantes u a termes positifs telles que, pour toute fonction f: R — R continue et

intégrable, on ait u,, [ ’f(m + %) ’ ) dz ——= 57 0.

Démonstration. On prend f avec des pics de base vy, tout les k, de hauteur 1, avec Y vy qui converge. On a f' = i

L'intégrale en questionest 37, -1 vk1n2 < % LD DNPIRUS SRNPE S DRPTRTt

Si (uy,) converge, par CVD, on tend vers 0. /

On prend vy, = Uklﬂ — i

On obtient wu,, (w + ui) qui ne tend pas vers 0. O

Exercice 84 [ENS 2022] Soit (a,b) € R? tel que a > b > 0.

o
+Vab’

. Calculer I(a, a), puis démontrer que I(a,b) = I (‘IT“’, \/@)

1. Montrer que 1 < a“’ < /%, puis que 0 < E

2. On pose I(a,b) = f+oo o 2)( 102)

3. On définit deux suites réelles (ay,),,,o et (bn),00 Par ao = a,by = bet, pourn € N,ap11 = “";b" et b, 11 = Va,b,. Etudier
la convergence de (ay),,~q et (bn),,>0-

4. En déduire I(a,b).

Démonstration. 1.
2. Cest du arctan. Partir de I(a;b, . ab), poser t = %(:1: — %b)
3.
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4. Utilise la continuité par rapport aux parametres. O

Exercice 85 [ENS 2022] Soit f € C°(]0,1],R) décroissante. On pose r,, = =377 | f (&) et I(z) = fwl f(t)dt pour n € N* et
x €]0,1].
1. Montrer que, pour tout n € N*,I( ) + %f(l) <r,<I (%) + %f( )

1 1
n n
2. Trouver une condition suffisante pour que (7,,) converge.

al/n

3. Soit f: x — % — 3 Inz. Calculer 7, et en déduire la limite de sans utiliser Stirling.

Démonstration. 1. Trivial.
2. fintégrableenOet xf(z) = o(1).
3. Onar, =137, B 1_ Lyl Oron sait que f est intégrable, et z f(x) = o(1). D’autre part, f(1) = 0, donc 7, ala

4n? 4 2n n"
méme limite que (L), que I'on calcule par IPP. O

Exercice 86 [ENS 2022] Soit f € C°(R,,R) de carré intégrable et g: x — f(z)—2e~" [ €' f(t) dt. Montrer que f0+°° g = f0+°° f2.
Démonstration. On a g(z) = f(z) — u(z), ot v’ + u = 2. On écrit

/g2:/fQ-l-/u2—2fu=/f2—|—/(uu’)7

et [(uu') = [u?], mais u(0) = 0, et on montre que u*(+00) = 0. O
Exercice 87 [ENS 2022] Soit f: RT — R™ continue et intégrable sur R™ telle que [, f = 1. On pose g(z) = f;oo f(t) dt pour
x> 0.

1. Montrer que f0+oo g= 0+o° xf(z) dz (dans R). On suppose a présent que f est décroissante.

2. Montrer qu’il existe un unique m € R™ tel que fom flz)da = %

3. Montrer que f0+oo xf(x)dx > m.

Démonstration. 1. IPP.

2. Simple, avec f décroissante.

3. La fonction g est décroissante, et g’ = — f, donc g est convexe, avec g(0) = 1 et g(+00) = 0 et g(m) = 3.
Dessiner le graphe de g, il s’agit de montrer que l'intégrale de g est > qu’un rectangle.
Mais le graphe de g est au-dessus de sa tangente en ce point. Et I'inégalité découle de 2ab < a? + b2, O
Exercice 88 [ENS 2022] 1. s Déterminer I’ensemble des fonctions réelles qui sont limites uniformes sur [0, 1] d’une suite de po-

lynémes a coefficients positifs.

2. s Déterminer 'ensemble des fonctions réelles qui sont limites uniformes sur [—1,0] d’une suite de polynomes a coefficients

positifs.
Démonstration. 1. C’est les fonctions DSE a coefficients positifs.
2. Toutes les fonctions : il suffit de montrer que —X est dans cette adhérence, via le polynéme P, = X ((1 + X)) — 1). O
Exercice 89 [ENS 2022] Pour N € N*, onpose gy: © € R\Z — EfyszN P%n

1. Montrer que (gn) 5y converge simplement sur R\Z. On note g sa limite.
2. Montrer que g est continue.
3. Montrer que g est impaire, 1-périodique et vérifie ’équation fonctionnelle :

Ve € R\ Z,g(x) = % (g(g)—l-g(x;l))

4. Montrer que g(z) = 7 cotan(mz) pour tout x € R\Z.

Démonstration. 1.
2.
3.
4. On considere la différence, qui vérifie la méme équation fonctionnelle, et un DL en 0 montrer qu’elle se prolonge de maniére
continue, avec D(0) = 0.
Puis considérer un maximum.
On peut en déduire les valeurs de ¢, cf X MP B 2002. O

Exercice 90 [ENS 2022] On considére une suite (\,,),, cy de réels positifs telle > e~ converge pour tout ¢ > 0. On suppose en
outre que E;;OS e~ Mt ~y 04 Bt~ pour des réels B > 0 et a > 0. On note E I'espace des fonctions f: R — R continues par
morceaux et telles que ¢ — f(t)e’ soit bornée, et pour f € E on note N(f) = sup,cg |f(¢)|e’. On admet que (E, N) est un espace

vectoriel normé.
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Pour f € Eett € R%, onnote L;(f) = ;r:og f (Ajt) t*. On note F'le sous-espace vectoriel de E' engendré par les f,: — exp(—kt),
pour k € N*.

Pour f € E, onnote Lo(f) = F(a) f t)to~1dt ou I'(a) := +00 ta—1e—t 4t

1. Montrer que L; est b1en définie, hnealre et continue sur F.
2. Montrer que Lg est bien définie, linéaire, continue et que L1 (f) =57 T Lo(f) pour tout f € F.

3. Pour z > 0, on note N, := [{j € N*, \; < «}|. Montrer que N; ~;_, o B

o
at(@)"
Démonstration. 1. Ona |L:(f)| < ] S N(f)em?itte = CN(f), d’ou la convergence et continuité.
De plus, C; = O(B)
2. Définition, linéarité, continuité sans probléme.
La question se pose seulement pour f € F. Pour f € F, on va dire que c’est clair.
D’autre part, comme les L; sont équicontinues, c’est bon.
3. Onprend f = 1,<1.0na Ly /,(f) = 2= N,, d’ou le résultat. O

Exercice 91 [ENS 2022] Soient a,b € R tels que a € ]0,1[, b > 1 et ab > 1. On pose

= Ina
. — n b7l t =
fap: x Z a” cos ( mc) e "
n=1
1. Montrer que f, ; est définie sur R, bornée et continue.
2. Montrer que f, (z) = +°° 1 b" ™ cos (b"mx) pour tout .
3. Montrer qu’il existe un reel C > 0 tel que YV, y, |fob(z) — fap(y)| < Clz —y|~.

4. Soitn € N et x € R. Calculer f;j: fab(t) cos (b"mt) dt, pour h = 2b~™.

Démonstration. 1. Trivial.
2. Trivial.
3. NB:onaa < 1.
Ona | cos(b"mz) —cos(b"my)| < min(b" |z —y|,1) = < b" min(|z — y/, ) Donc | fa,n(z) — fap(y)] < ZT_L:IT’ lo=vl pn—na (g
Y) I, oy b = B e = gy
11 faudrait identifier ot on utilise o < 1...
4. On intervertit somme et intégrale, on obtient ) am(m + i) = Yom am%zm. On DSE a droite et 4 gauche de

m? O
Exercice 92 % % [ENS 2022] On pose p(n) = [{(k1,....kn) € (N)N [ k14 +ky = (0) = 1. Montrer que pour
|z] < 1,

+oo +o00o 1
n_
2 rm =11
n=0 k=1
Démonstration. On sait gérer les produits finis, puis limite. O

Exercice 93 [ENS 2022] Pour z € C de module < 1, on pose f(z + 1) = :icl (le)n "

1. Soient u,v € C tels que |ul, [v] < 1et|u+ v+ uv| < 1. Montrer que f((1 +u)(1+v)) = f(1+u) + f(1 +v).
2. Soit h(X) = (X —aq)...(X —ay,) € C[X], avec a; # 0. Montrer que

2m

1
— In |h(re)| dt = In|h(0)| + In
[ wleteey =i
pour r > max(|a;]).
Démonstration. 1. Produit de Cauchy, éventuellement on peut regarder les coefficients pour z réel.

2. Cela revient a 5~ fo In|re® — aq|dt = Inr, pour r > 3|ay|.

On peut écrire cela comme fo In|ret — a2 dt = 0% flre®t —a) + f(re”® —a@)dt f(re —a) = re* f(1 — a/re~"), puis
DSE. O

Exercice 94 s Y [ENS 2022] Soit (a,,) une suite réelle décroissante, positive de limite nulle telle que la suite (a,, — a,+1) soit
décroissante.

Montrer que pour tous n € Net z € [0,1], 3755 (=1)apzh < 22 370%5 (—1)++1q,

Démonstration. Revient a montrer que Z;:oz(—l)kakxk > Zk:o(_l) ar. On se raméne a des choses positives : Y asgt1(1 —
2281) > 3" a9y, (1 — 2%%). On fait apparaitre des différences :

(a1 —ag)(1 —x) + (a3 — ag)(1 — 23) + --- > ag(x — 22) + ag(2® — ) + ...
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On divisepar 1 — x :
(a1 —as) + (a3 — as)(1 +x + 2%) + (a5 — ag) - - > apx + agx® + ...

Ona
ar —a 1 1
(a1 — az2) + (a3 — as)(1 + =+ 2%) + (a5 — ag) - -+ > %4‘5(&3 —a5)(1+x+x2)+§(a5 —a7)...
> 4+ %ag(x +2%) + %a5(ﬂc3 +2%) + ... Mais %(al + azx) > asx, car la moyenne de a; et az est > as. O
Exercice 95 [ENS 2022] Soient C'(z) = :58 cxz® et D(x) = 2_:5 dj " les sommes de deux séries entiéres a coefficients réels

de rayon de convergence infini. Soit ¢ > 0 avec a # 1. On suppose que, pour tout entier naturel n € N, C (a™) = D (a™).
1. On suppose que ¢ = d, a partir d’un certain rang. A-t-on C = D?
2. On suppose a € |0,1[. Montrer que C' = D.
3. Donner un exemple de séries entiéres distinctes C' et D, et de @ > 1 pour lesquels la propriété est vérifiée.

4. On suppose que a > 1 et qu’il existe r € |0,1] tel que ¢ < 7k et di, < 7%* pour tout entier k£ € N. Montrer que C' = D.
ppose q q q p q

Exercice 96 VALEURS DU DILOGARITHME [ENS 2022] Pour z € [—1,1[, on pose L(z) = — [ M dt.

1. Justifier la bonne définition de L sur [—1,1] et montrer que L est prolongeable par continuité en 1.

2. Déterminer le développement en série entiére de L en 0 et préciser son rayon de convergence.
3. Calculer L(1).
4. Calculer L(—1).
5. Exprimer a ’aide de L la somme :z ﬁ
6. Déterminer L(1/2).
Démonstration. 1. Prolongeable par L(1), qui existe.

2. L(z) = 3,5 .

3. Par continuité, %2

4. Clest L(3).

5. On trouve L(z) + L(—xz) = $L(z?).
6

. Faire une IPP et un changement de variable, on trouve L(z) + L(1 — ) = —lnzIn(l —z) — L(1 — =) + L(1). O
Exercice 97 [ENS 2022] Soient f(z) = :i% an,z"™ la somme d’une série entiére de rayon de convergence infini et P € C[X] un

polynéme de degré k € N*. Montrer I'existence d’une série entiere de rayon de convergence infini et de somme g, et d’un polynéme

Q € Cy_1[X] tel que Vz € C, f(2) = g(2)P(z) + Q(%).

Démonstration. On veut g = %. On choisit () par interpolation. On note f,, la somme partielle. On fait la division euclidienne de
fn par @, ses valeurs sont proches de celles de (), et on peut dériver, donc cela converge vers (). O
Exercice 98 [ENS 2022] Soit f: R\ Z — R une fonction 1-périodique intégrable sur ]0,1].

1. Soitn > 1 et § € R. Montrer qu’il existe une subdivision (ao, ..., ax) de [0, 1] telle que chacune des intégrales

ait1 n—1 1/2
/ (Z ft+ k6)2> dt
i k=0

soit bien définie.
1/2
On admet alors que leur somme ne dépend pas du choix de la subdivision envisagée, et on la note fol (Ez;é ft+ k9)2> dt.

1/2
2. Soit § € R. Déterminer la limite, quand n tend vers 400, de £ fol (Zz;é fi+ k0)2) dt.

Démonstration. 1. On découpe 12 ot il faut, et si f; intégrable, (3 f?)'/2 est intégrable.
2. Si f est bornée c’est ok. La quantité considérée vérifie une inégalité triangulaire.
Si [|f] < e, alors (3 f2)1/2 < 3 |fi]- Donc on majore par e. O

Exercice 99 [ENS 2022] Soit d € N*. On munit R de la norme euclidienne canonique. Soit [a,b[ un intervalle de R, (f,),,>, une
suite de fonctions de [a,b[ dans R? continues par morceaux. On suppose que (f,,) converge uniformément sur tout compact vers
f: [a,b[ — RZ On suppose de plus qu’il existe g: [a,b[ — R* intégrable telle que Vn € N, Vt € [a,b], || f. ()| < g(t).

1. Montrer que f; fet f; fn, pour n. € N, convergent. Montrer que ff fo 5o f: I

n
2. Onpose f,:t € RT — (1 — %) Lic(o,/m)- Montrer que (fy) converge uniformément sur tout compact vers une fonction f

+oo
o T

3. Donner une expression exacte de f0+oo fn et retrouver la limite a ’aide de Stirling.

que 'on déterminera. Montrer que f0+°o fn—

4. Montrer la convergence uniforme de (f,,) & 'aide du théoréme de Dini (et en le démontrant dans le cas général).

Démonstration. 1. Trivial.
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2.

3. Wallis.
4. La convergence simple d’une suite monotone de fonctions implique I'uniformité, et la convergence simple d’une suite de fonc-
tions monotones implique I"uniformité. O
. +o0 (2:) 2n _ 1
Exercice 100 [ENS 2022] 1. Montrer que Yu € |—=1,1[, > =) ~ru" = AR
2. Montrer que I'application f: z € [—1,1] = [ In ((cos(t) + z)?) dt est constante. On pourra poser x = cos(u) avec 0 < u <
.

3. Que déduit-on des deux questions précédentes ?

Démonstration. 1.

2. On écrit z = cos u, puis somme de deux cosinus, on obtient

T+u T—u
f(a:):/ 1n(c052(g))+/ ln(COSQ(%)).

—Uu

D’ou la dérivabilité, pour u € 0,7, et la continuité en 0 et 7. La dérivée est bien nulle.

1 +
3. En posant u = cost, on obtient f(x f 1 n( ? 52) )
2n
En prenant x = 0, on obtient f(0 f_ o0 In(u?)un (4")-

f_l In(u?)u?" se calcule. Donc on a d’une part une somme fixée.

D’autre part, f ( ) + f(— fo In (cos t— 1) dt =2 foﬂ In(sin ¢) d¢. Qui se calcule classiquement en disant que sa valeur

. T
est deux fois fo , puis la méme que cos, puis calculer la somme. O

Exercice 101 [ENS 2022] Soit f: R — C continue et m-périodique. Sous réserve d’existence, on définit, pour ¢ € [—7, 7| et ¢ € R,
L)) =[5, O+ [ IO

T (1—cos(0—¢))" 2 ? (1-cos(9—¢))' "
1. Pour quelles valeurs de ¢ la quantité I;(f)(p) est-elle définie quelle que soit f: R — C continue 7-périodique et quel que soit
p € [-mm|?
2. Calculer, pour les réels ¢ et  en lesquels elle est définie, la quantité I;(1)(y) en fonction de fol 271 —2)" 2 da.

3. Montrer que I;(f) est continue pour tout réel ¢ < 1.
Démonstration. 1. En 0 = ¢, on est en 62, on veut 2(t — 1/2) < 1, c’est-a-dire t < 1.
0 T— . 5 . T .
2. L)) = [_,_, W + 57 W, puis c’est deux fois [; W df. Puis on pose u = 1 — cos 6,
on obtient du = sinfdf = /1 — (1 — u)2 = v2u — w2, donc I;(1)(p) = f02 u_tul/Qul/zdi\/“ﬂ, puis poser u = 2.

3. Faire le méme changement de variable, pour mettre la singularité en 0, et passer un terme dans I’autre, pour avoir des bornes
constantes, puis convergence dominée. O

Exercice 102 [ENS 2022] On pose P(z,0) = 12 I‘Q pourz € C\Uetf € [—m, 7.

|e16
1. Calculer [ P(z,6)d6 pour |z| < 1.
2. Soit f: S; — R continue sur S; = {z € C, |z| < 1}
Onpose P(f)(z) = f(z)si|z| =1et P(f = o [T f () P(z,60)df si |z| < 1. Montrer que P(f) est continue sur 5.
Démonstration. 1. On trouve 1 : développer en série entiere W (C’est un produit de Cauchy de deux séries). Puis seuls les
termes sans 6 restent.

2. Sur |z] < 1, on a la continuité par CVD.
Si 2, — zso € C!, on prend une boule de rayon 7 autour de 2., et on montre que le poids en dehors — 0, ce qui est simple. [

Exercice 103 [ENS 2022] Soit f: R — R continue et de limite nulle en +oc.
2
1. Justifier qu’est correctement définie la fonction u: (¢,z) € RY xR — ﬁ Jrexp <7%) Fy)dy
2. Montrer que u est prolongeable en une fonction uniformément continue sur R, x R.

Démonstration. 1.

2. On pose u(0,z) = f(x). Changement de variable : ¢/ — 2 = yz;gf, O

Exercice 104 [ENS 2022] Soit f: R — R™ continue a support compact d’intégrale 1. On note, pour g continue, 7'(g): ©
Jr f(t)g(x —t)dt.

1. s Montrer que T(g?) > g°. Cas d’égalité ?

2. s Soit g: R — R continue telle que 7'(g) = g. On pose h = T'(g?) — g*. Montrer que T'(h) > h.

3. Quelles sont les fonctions g continues et bornées telles que T'(g) = g?
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Démonstration. Onnote T'(g): z — [ f(t)g(z —1).
On considere h: 2 — [, f( (g(:v —t) — g(m))2, cest-a-dire h(x) = T((g — g(x))?)(z).
Sous I’hypothése T'(g) = g, on obtient h(x) = T'(g?) — 29(z)T(g9) + g(z)?, donc h = T( 2) — g%

OnaT(h):x»—)ftf(t)fuf(u)(g(x—u—t)—g(x—t))zduT(h)(x):f flu (t)(g(x —u—t) g(x—t))zdtdu.COmmef
2

est de moyenne l,ona ft (g(m —u—t)—g(x—1t))"dt > ([, f(t)(9(x —u— t) gz —1t))d ) = (T(9)(x — u) — T(g)(z))?
Donc T'(h = [ flu (z —u) — T(g)(z))? du, mais T(g) = g, donc T'(h)(x) > h(z).

Comme T(h) > h,ona Tz(h) 2 T(h) > h, mais T"(h) = T"*1(g?) — T"(g?), donc en télescopant, T"(g?) > nh + g2, impossible,
sauf si h = 0, ce qui donne g = 0. O
Exercice 105 [ENS 2022] Soit A € M,,(C). Soit r € R tel que A n’ait pas de valeur propre de module r. Donner une interprétation
simple de la matrice M (r) := 5= [7_re® (re'’I,, — A) ~' 46 en fonction de la matrice A (on montrera en particulier que M () est

un projecteur).

Démonstration. Par dunford, on peut se ramener au cas oi A n’a qu’une valeur propre. Puis pour [A| < r ou |a| > r, on DSE. On
trouve, pour |A| < r, I,, et pour |A| > r on trouve 0.

Donc c’est la projection sur les espaces caractéristiques de valeurs propres < r. O

Exercice 106 [ENS 2022] On note E I'espace vectoriel des fonctions continues et intégrables de R dans C. Pour f € FE, on note
fraz— Jg f(t)e~*"" dt. On admet que f(x) = 2nf(—x) pour tout f € E tel que f € E. Déterminer les complexes A tels que
I’équation f = \f ait une solution non nulle f € E \ {0}.

Indication : On pourra introduire le sous-espace vectoriel des fonctions f: R — C de classe C™ telles que f®) () = ;15,0 (|z|™")
pour tout (n, p) € N2.

Démonstration. Si f = \f,ona f =271 f(—x), puis \* = 47.

L’espace donné S est stable par °, on a T* = 1Id, donc il existe une valeur propre telle que 7'(f) = \;f, puis les autres existent
également, puisque sinon, I' — \; serait injectif, donc on aurait un polynéme annulateur de f de degré < 3. Mais sur 'espace des
fonctions paires ont est annulé par X2 — 27, donc le polynéme annulateur est un multiple de X2 — 27, et sur les fonctions impaires,

on est annulé par X2 + 27, donc on est multiple. O
Exercice 107 [ENS 2022] 1. Soit z € RT". Montrer que € — f:; - oo et gy posséde une limite finie en 0T, que
I'on notera I(x).
2. Déterminer un équivalent de I en 0.
Démonstration. 1. C’est un changement de variable sans guére d’intérét (u = —t a gauche, et on découpe). A vérifier...
T o —xtt 400 p—z—t z—t_ _—att 400 o—T—t
On obtient — f — +f€ £ dtff ++fm ——dt
La partle de gauche est intégrable en 0.
2. Onal(z fo 25 Smh(t dt + f+oo ' dt. La partie de gauche tend vers 0 quand z — 0, la partie de droite diverge.
Elle est en e~ * fois f+oo e = f dt + O(1), et on compare & f , la différence est en O(1). O
Exercice 108 [ENS 2022] 1. Montrer que la suite de terme général >, _, % —In(n) converge vers un réel strictement positif noté

+Ootx Le=t dt pour z > 0.

2. Montrer que I est une fonction de classe C' sur R

3. Montrer que (1) = O+OO In(t)e~tdt

4. Etablir successivement les expressions suivantes pour (1) :

, ) +oo e~ 7 +oo . 1 1
I"(1) = lim dz+Ilny| = e "= — dz.
y—=0t |Jy x 0 r l—e™®

+00 g~ _g—(ntu

5. Montrer que I'(1) + Y>3 = noto0 Jy

Démonstration. 1. Cours.

~.On pose I'(z) :=

du + o(1), et conclure que I (1) = —~.

u

2. Intégrale a parametre.

3. IPPsur I’ expressmn precedente qui est une limite quand y — 0. t=—= se primitive, et I'intégrale obtenue converge en 0.
—x (n+1)a:
4. Onale fo fo s =T e e La différence de I''(1) et de l'intégrale
, —x —(nt+1)z —z__—(n+D)az
donnée est — O+OC 1ie*2 — £ = de = 0+°O % 4 e~ (n+l)z (ﬁ - 7> La premiére partie fait ce qu’on veut.
La seconde tend vers 0 par CVD. O

Exercice 109 [ENS 2022] Soit A € M3 (R) et () 'équation différentielle X' (¢) = AX (¢). En discutant suivant la matrice A, donner
Iallure des solutions de (x).
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Démonstration. Si 2 racines complexe conjuguées, ou bien un escargot, ou bien un cercle. Si deux racines distinctes, une espéce
, . . . . . . . . 2 1 C ,
d’hyperbole, si une seule racine, ou bien une droite, ou bien semblable a la trajectoire pour < 0 2), qui doit donner le graphe d’une

fonction exponentielle peut-étre. O

Exercice 110 [ENS 2022] Soit A € M,,(C). Soit ||-|| une norme sur C".
1. Déterminer £ = {m € Cm; et x—>0} et E_ = {Jc € C; et J;—>0}

t——+oo

2. Si Ey = C", montrer qu'existe C, § € R, tels que

(¥):  VzeC, ||| < Ce ||

3. Soit B une application continue de R dans M., (C) tendant vers 0 en +oc.
Sous la méme hypothése que la question précédente, montrer que les solutions de 1'équation différentielle 2’ () = (A+B(t))xz(t)
tendent vers 0 en +o0.
Démonstration. 1. C’est la somme des espaces caractéristiques de valeurs propres < 0, et de ’espace propre pour 0.
2. Nécessairement les parties réelles des valeurs propres de A sont
3. Siles valeurs propres de A sont < 0, utiliser la forme explicite.
Sinon, c’est faux : prendre A = Oz et B= -,onax =t. O

Exercice 111 [ENS 2022] Soient A > 0,7 > Oeta € C (R*,R"). Onsuppose I'existence de v > O tel que VI™ > T', sup;¢jo 7+ 1 f(f u?a(u) c
a.

1. Enoncer le théoréme de Cauchy linéaire. On admet que ’équation différentielle 2’ = \ + a(t)x? admet une unique solution sur
R s’annulant en 0.

2. On suppose que 1 > 4a. Soit 7% > T". On pose r: ¢ € 0,7 [ = sup,¢jo ¢ ”“'(;).
a) Montrer que r est positive, continue et prolongeable par continuité en 0.

b) Montrer qu’il existe p < o tel que V¢ € |0, T*[,7(t) < X + pr?(t).
c) Montrer que, soit = est bornée, soit T* = +o0.

Démonstration. Pas trés intéressant, énoncé pourri. Mais la méthode intérieure est ok.
1.
2. a) Positive, car x est positive au voisinage de 0. La continuité est classique.
_ (S 2 [ 1rs 2 t
b) Onaz(s) = [5 A+ a(t)a(t)?dt, dou 22 = X+ 1 [*a(1)2a(t) dt, et “8 < r(s).
c) Le second degré précédent admet deux racines, et en ¢ = 0, on est a gauche. On en déduit que 7 est bornée, donc x est

prolongeable... O

Exercice 112 [ENS 2022] STABILITE DE L’EQUATION DE DIFFUSION AVEC SOURCE LINEAIRE Soit @ < 2 un réel, et u: R} x R — R
une fonction de classe C3. On suppose que u(t,0) = u(t, 1) =0, pour tout £ > 0, et Ayu(t,z) = (82)° u(t, z) + au(t, z) pour tout

(t,z) € R% x R. Montrer, pour tout & € [0, 3], que fo ( ot x)) dz 5575 0.

Démonstration. On pose Go(t fo 2 dx. Dans le cas ot @ = 0, en utilisant le caractére C3, on a Gj) = —2G1, G| = —2Go,
Gl = —2G3 d’une part, d’ou la convexité et la décroissance de G et (. Cela implique que leurs dérivées tendent vers 0, donc G; — 0
et G2 — 0.

D’autre part, ona G; = [(82u)?, donc [ |dou| — 0, par Cauchy-Schwarz, et comme u est nul au bord, Gy — 0.
Pour (3, en fait on peut encore dériver, donc G4 = —2G4, G4 est convexe, et Gz — 0.
En général, on remplace les équations par

6 =—2G1 +2aGy et G| =—-2Gs+2aG; et Gy =—2G3+ 2aG2

En posant v(t,z) = u(t, z)e”*, la fonction v vérifie dyv(t,x) = d3v, donc tend vers 0. Il suffit de montrer une décroissance expo-
nentielle dans le cas @ = 0.

Mais [ |0u| < /Gy, donc u < /Gy, donc Gy < G4, mais Gy = —%6, donc Gy < —%E’, donc 2Gy + Gy < 0, donc la dérivée de

€2 Gy est < 0. O
Exercice 113 [ENS 2022] Soit n € N*. On considére des fonctions dérivables y1, ..., y, et des réels a; ; € R tels que, pour tout 1
<i<my = 2?21 a; ;y; etlim;_, 1 o y;(t) = 0. Montrer que (y1,...,Yn) est liée.

Démonstration. On écrit le systéme sous forme matricielle, avec une exponentielle. L’hypothése dit que A est a coefficients positives.
Si la famille est libre, alors il existe une base de valeurs en laquelle elle est libre (dur...), donc A n’a que des valeurs propres < 0. [

Exercice 114 [ENS 2022] On munit R d’une structure de groupe de loi notée *, et de neutre noté e. On suppose que la fonction f
définie sur R? par f(z,y) = x * y est de classe C'.

1. Rappeler la définition de la différentielle d’'une fonction f: R — R différentiable.
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2. Montrer que V(x,y) € R%, 02 f (z x y,€) = Oaf (2,9)02f (y, €).
3. Montrer l'existence de ®: R — Run Cl-difféomorphisme tel que ®(x * y) = ®(x) + ®(y) pour tout (z,y) € RZ.
Ind. On pourra chercher ® sous la forme ®(z) = a f azf(t o
Démonstration. 1.

2. Sion écrit f(z xy,e) = f(x,y), f(f(z,y),e) = f(x,y), on peut dériver, par rapport a z, on obtient

of of _of

= (0,9 5 (2 5y, €) = = (2,9)
Par rapport a y, on obtient

Loy, () = P ay)

axx Yy, e Ay z,y *ay T,y

Si on écrit plutdt f(x xy,z) = f(x,y * 2), et que 'on dérive par rapport a z, puis on prend z = e, on obtient g—i(x xy,e) =
el 9
5Ly, e) G (,y).

3. Justifier que 9 f (y, €) ne s’annule pas.

Ou bien faire des changements de variables, ou bien dériver ®(x * y) — ®(z), qui donne 0. O

Exercice 115 [ENS 2022] Soient A = (4;;), ,.,, € Sy (R), D = Diag (A11,...,Ann),b € R" et f lafonction de R™ dans R telle
queVz € R, f(z) = %(Ax,a:) — (b, ).
1. Montrer que f a un unique point critique, qui est un minimum global.
2. Montrer que D € GL,(R).
3. Soient (), _, une suite réelle, (21 ), , une suite d’éléments de R" telle que, pour tout k € N, 341 = x5 + apD71 (b — Axy).
Sik € N, soit wy, = D! (b — Axy). Déterminer le signe de (V f (zx) , wg).
4. On suppose que z n’est pas point critique de f. Montrer qu’il existe un unique réel S en lequel t € R — f (zy + twy,) est
minimal.

5. On suppose qu’aucun des x;, n’est point critique de f et que, pour tout & € N, a, = 3x. Montrer que (xy),_, converge.
Démonstration. 1. Vf=AX —bet f(X) = +o0

2. (AE, E;) >0

3. Onazyy1 = g + wi, et (Vf(ag),wr) <O0.

4. Trivial : f — +o0.

5. f(xx) décroit, donc si 2 est une valeur d’adhérence, on a (V f (2 ), weo) = 0, ce qui implique weo = 0, donc xo, = b. O

Exercice 116 [ENS 2022] Soit f: R™ — R de classe C>. On suppose que >, _, %'}72: > 0. Montrer que la restriction de f a la boule
unité euclidienne admet un maximum, atteint en un point de la sphere unité.
Exercice 117 [ENS 2022] Soit f: R™ — R continue et minorée. On note ||-|| la norme euclidienne.
1. Soit A > 0,& > O et 29 € R™. Montrer que g: = + f(x) + 5 ||z — z¢|| admet un minimum sur R".
2. On suppose [ différentiable. Montrer que pour tout £ > 0, il existe y. € R™ tel que f(y:) <€ f +cet|Vf(ye)|| < Ve.
Démonstration. 1. = +o0
2. On peut supposer f > 0.
Soit y. tel que f(y.) < inf +¢. On applique ce qui précéde a \/ et 9 = y.
On obtient un minimum =, 4 une distance < \/z de y..
En ce minimum, le laplacien est nulle, donc V f(z./) = —(z — y.), d’ou le résultat. O

Exercice 118 [ENS 2022] Soit f: R® — R de classe C! et L > 0. Montrer 'équivalence entre

« f est convexe et son gradient est L-lipschitzien.

s Y,y €R(Vf(2) = VF(y),w —y) > £ [Vf(2) = VI
Démonstration. L’inégalité donnée est équivalente a ||V f(z) — V f(y)|| < L{:BZ: HdVH ,T—Y)
Si elle est vérifiée, on obtient le caractére lipschitzien. D’autre part, en posant ¢g(t) = f(z + t(y — x)), ¢'(1) — ¢’(0) >
Réciproquement, si V f est L-lipschitzien,ona ||V f(y) — Vf(z)| < L |z —y (VIily) = Vf(x),y—z) <L Hx —y|%.
Plutot : f(y) — f(z) < (Vf(x),y —2) + 5 |ly
La fonction f,(z) = f(z) — (Vf(x), z) est convexe, de gradient nul en x, donc minimale en . Elle est aussi L-lips donc

fo(2) < fo(y) + (Vfaly),z —y) + L ||z — y||” Donc la partie de droite est > f(z) — (Vf(z), ) Mais elle est minimale pour z — y
anti-colinéaire a V f, (y), de taille que I'on peut déterminer, et vaut finalement quelque chose. On obtient stirement ce qu’on veut. [

Exercice 119 % % [ENS 2022] Soit V: x € R™ — det < = 1) . On note B la boule unité euclidienne fermée, S la sphére
1<4,j<n

unité, et H hyperplan d’équation 21 + - - - + x,, = 0. Montrer que V posséde un maximum sur B, atteint en un point de S N H.
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Démonstration. Sur B ok, il est sur .S par homogénéité, et ensuite il faut la différentielle, j’imagine. ..
- vV \% P . .
On vérifie 57— = > I — (dérivée logarithmique).
Donc ), gTVk =0. O

Exercice 120 [ENS 2022] 1. sV5 Montrer que pour tout BON (ey, ..., e,), et S symétrique, on a Tr(e%) > ") elSexex),
2. Montrer que S € S,,(R) ~ Tr(e®) est convexe

Démonstration. 1. C’est la convexité de exp.
2.5iS=XA+ puB,ona

)\(Ae;c,ek)-‘r(BEk,eU
Tred = Z e(Sek,ek> _ Z < Z >\6<Aek,ek> + Me<b€k7€k>. O

3) Géométrie
Exercice 121 [ENS 2022] 1. Soit un polygone régulier a n sommets inscrit dans un cercle de rayon 1. Calculer le produit des
longueurs des cordes reliant un sommet fixé a tous les autres.
2. Pour « et B réels, on pose £/ = {a( +p¢7LCe U}. Montrer que les points d’affixe dans E' décrivent une ellipse.
3. On s’intéresse a 'image des racines n-iémes de I'unité par le paramétrage précédent. Calculer le produit des longueurs des
cordes reliant 'une de ces images a toutes les autres.
Indication : Considérer un polynéme P, vérifiant P, (azeta + 3¢™1) = al™ + B¢

2ikm

Démonstration. 1. [[(1—e™n )
2. Clest 'image d’un cercle par une transformation affine simple : diagonale, de coefficients o + 5 et « — 3.
3. Il vérifie une relation de récurrence d’ordre 2. O

Exercice 122 s % [ENS 2022] Soient d € N*, S une partie de R? de cardinal > d + 2. Montrer qu’il existe deux parties disjointes
A et B de S telles que Conv(A) N Conv(B) # (.

Démonstration. 1l suffit de trouver un point qui s’écrit de 2 facons différentes comme barycentre (I’écrire). On peut supposer A fini, et
engendrant 'espace. Soit © € Conv(A), strictement. Alors on peut rajouter un combinaison linéaire qui vaut 0. O

Exercice 123 % % PoLYEDRES [ENS 2022] Une partie bornée P de R™ est un polyédre si et seulement s’il existe 1, ..., ¥y, € R" et
a1,...,am € Rtelsque P = {z e R™; Vi€ {1,...,m},(z,y;) < a;}.Si P est un polyédre, on dit que € P est un sommet de P si
et seulement si, pour touty, z € P,onay+ z = 2z si et seulement = y = z. Montrer qu'un polyédre a un nombre fini de sommets.

Démonstration. Si z est un sommet, 'ensemble des y; pour lesquels il y a égalité engendre I’espace (sinon, on peut se déplacer selon
un vecteur orthogonal). Alors z est entiérement déterminé par cet ensemble. O

Exercice 124 % % [ENS 2022]

1. Soitn > 3.Si A = (Ay,..., A,) est un n-uplet de points du plan, on note T'(A) = (B, ..., B,), ou B; désigne, si 1 < i < n,
le milieu de [A;A; 1] (en convenant que A, 1 = A;). Etudier la convergence de la suite (T’C (A)) o
2. Méme question en fixant un élément o de ]0,1[ et en considérant que, pour tout , B; est le barycentre de ((A4;, &) , (4;41,1 — «)).
Démonstration. La distance max a 0 diminue.

Le centre de gravité est préservé, et la distance max diminue, donc on s’accumule sur un cercle, et... O

Exercice 125 [ENS 2022] On se place dans R?. Les éléments de Z2 sont les points entiers. On appelle polygone entier un polygone
dont les sommets sont des points entiers. Montrer que I'aire d’un polygone entier est égale a 7 + g — 1 ot ¢ est le nombre de points
entiers a 'intérieur (strict) du polygone et k le nombre de points entiers sur le bord du polygone.

Exercice 126 s % [ENS 2022] Soient F un espace euclidien, A une partie bornée non vide de F, d le diamétre de A, z un point de
I’enveloppe convexe de A,n € N*. Montrer qu’il existe (x1,...,2,) € A™ tel que Hac — % > J‘7H < %.

Démonstration. On peut supposer A fini, + méthode probabiliste. O

Exercice 127 [ENS 2022] 1. Soit (a,b,c,d, e, f) € R® tel que (a, b, c) # 0. On considére la partie C de R? définie par 'équation
az?+ bxy + cy? + dx + ey + f = 0. On suppose que C contient trois points non alignés et n’est pas incluse dans la réunion de
deux droites. Montrer que, dans un repére orthonormal approprié, C posséde une équation de 'une des trois formes suivantes :

i—j + };—22 =1 (ellipse), )5—22 — };—j = 1 (hyperbole) ou 2pX — Y2 = 0 (parabole).

2. On consideére un (vrai) triangle ABC de R?. On note A’ (respectivement, B, C”) le milieu de [B, C| (respectivement, de [C, A],
de [A, B]). Montrer qu'une et une seule ellipse contient A’, B’, C’ et est tangente a la droite (BC') (respectivement a (C'A), &
(AB)) en A’ (respectivement en B’, en C”).
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4) Probabilités

Exercice 128 Une urne comporte n bulletins. On effectue des tirages avec remise de loi uniforme. Déterminer I'espérance M,, du
nombre de tirages nécessaires pour avoir vu tous les bulletins. Donner un équivalent de M,,.

Démonstration. Probléme du collectionneur : M, est la somme de variables, qui ont des lois géométriques. O

Exercice 129 % % [ENS 2022] Soit n > 1, et (A;j)1<i,j<n des variables aléatoires indépendantes de méme loi B(1/2). Calculer
Iespérance de det(A — AT).
Démonstration. Donne une matrice antisymétrique, dont les coefficients suivent une loi 5/, symétrique.

On développe le déterminant. En prenant 'espérance, ne restent que les o qui n’ont que des orbites de taille 2, et les signatures sont
les mémes. Reste a les compter: (n — 1)(n —3).... O

Exercice 130 [ENS 2022] Onnote C), j le nombre de permutations de S,, qui ont & cycles & supports disjoints dans leur décomposition
(en comptant les points fixes).
1. Calculer C,, ,, et C, 1.
2. Montrer que Cy, 415 =nCh i + Cp 1.
3. On note X, la variable aléatoire qui donne le nombre de cycles d’'une permutation choisie uniformément. Calculer la série
génératrice de X,.
4. Soit (Y;)1<i<n des variables aléatoires de Bernoulli indépendantes de loi Y; ~ B(1/4). Montrer que X,, ~ S, 00 S, = > Y.
5. Calculer E(S,,) et V(Sy,). Que dire quand n — +00?

6. Etudier la convergence en probabilité de la suite (1)52)792'

Zn

7. On pose Z,, = ZZ:1 kY. Exprimer, pour A > 0, la limite, quand n — 400, de F (e_)‘T).

Démonstration. 1.
2. Trivial.
3. f(x) =5 Spa™ et S, = # 22:1 kCh O

Exercice 131 On définit la fonction de Moebius pi: N* — {0,1, —1} par u(1) = 1, u(n) = 0 pour n > 1 divisible par le carré d'un
nombre premier, et z(n) = (—1)% sinon, o1 d,, est le nombre de diviseurs premiers de .
1. Montrer que pourn > 2,3, u(d) = 0.
2. Soit a € ]0,1] et X,,,Y,, deux variables aléatoires indépendantes de méme loi G(«). Pour k& > 1, on note ¢;(«) = P(k | X4 ).
Déterminer lim,, ¢ g5 ().
3. On note f(a) = P(X, A Y, = 1). Montrer que f(a) = 325 u(d)ga()?.

Exercice 132 [ENS 2022] Soit « € |—1,1[. On pose fo: = — f_j(;"x. Soit w la suite définie par ug = 0 et up11 = fo(un).

1. Variations et points fixes de f,. Que dire de la limite éventuelle de la suite u selon la valeur de a?

2. Exprimer u,, en fonction de o Etudier la limite.
3. Soit (e, )n>0 une suite a valeurs dans |—1,1[. On pose ug = 0 et w41 = fa,, (Un). Que dire de la limite de u?
4. Soit (e, )nen une suite de variables aléatoires indépendantes de méme loi a valeurs dans |—1,1[. Que dire de la limite de u?

Démonstration. 1. f(—1) = —1, f(1) = 1, f croissante.

_ (4a)"(Ife)+(1-a)
= @Fa) @) +(1=a)

2. Enregardant les premiéres valeurs, on reconnait les coefficients du bindme de Newton, et on trouve finalement u,,
donc la limite de (u,,) dépend de la position de « par rapport & 0. Si & = 0, (u,,) est constante.
3. On ne peut rien dire, sauf si toutes les valeurs d’adhérence de la suite sont > 0.

4. Nécessairement la suite a comme valeur d’adhérence 1 ou —1 : si on est dans un compact, on a une probabilité strictement
positive d’atteindre 1 ou —1.

Ou bien la suite tend vers 1, ou bien elle tend vers —1, ou bien elle alterne indéfiniment. O

Exercice 133 [ENS 2022] Soit « € [0, 1]. Pour z € [0,1], on pose ¢, (z) =1 — (1 — 2)°.
1. Montrer I'existence d’un variable aléatoire X, a valeurs dans N* telle que ¢, (2) = E(zX«), pour 2z € [0, 1].
2. Soit (Ap)n>1 une famille d’événements indépendants telle que P(Ay) = #. Montrer que X, suit la méme loi que la variable
I(w) =inf{n e N* |w e A4, }.
3. Soit (E): Vz € [0,1], ¢a(2) = z¢(pq(2)) une équation d’inconnue ¢, fonction génératrice d’une variable aléatoire.
a) Montrer que sia = % I’équation (F) admet une unique solution.
b) Montrer que sia = %, I’équation (F) n’a pas de solution.
Démonstration. 1. DSE a coefficients positifs, de somme 1.
2. P(I>n) = [[(1- %)
3. Revient a chercher Y tel que X ~ Zky:l X + 1, ce qui donne I'unicité.
Pour l'existence, revient & avoir ¢(y) = W
a) Poura = %, on obtient ce qu’on veut.
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b) Pour a = %, on trouve un coefficient négatif en x°... O

1

g:

Exercice 134 1. Soitn > 1,0 > O et Xq,..., X, des variables aléatoires réelles telles que V¢, Vi € [1,n], E(etXi) < et’o?/2,
Montrer qu’il existe un réel C' > 0 indépendant de n et o tel que F(max;<,, |X;|) < Co+/In(2n).

2. Soit X a valeurs dans Z. On suppose que Vk € Z, P(X = k) = ae"/2 Montrer que V¢ € R, E(etX) < et’/2,

Démonstration. 1. (inutile) Si E(e!X#) < ¢!**/2 alors par DL en 0, on obtient E(X;) = 0 et V(X) < 2.

E(max|X;|) = %E(lneﬁmaxlxil) < %E(ln(z X)) < - E(Y e,

| =

par concavité du In.

D’autre part, E(e?1X:l) < 2¢8°7°/2 d’ot1 une majoration en % 111(277,6[3202/2) = % In(2n) + Bo? /2, dont la valeur minimale est

en 24/ g2 ln(2n) 12(2").

2. On écrit E(e'X), on obtient que la propriété est équivalente a ce que

o) = 3 e =012

kezZ

qui est 1-périodique soit maximale en 0.

En écrivant I'inégalité, il suffit de montrer que pour ¢ € [0,1], on a

ek /2 +ef(k71)2/2 > o(k—1)?/2 +e(k71+t)2/2'

Celle-ci découle de la convexité de la fonction de droite, qui admet donc son maximum en f(0) = f(1).

La RMS le fait en décomposant ¢ en série de Fourier : les coefficients ¢, (f) se calculent par dérivation d’une intégrale a para-
métres. Puis comme Y |¢,, (f)| converge, f est la somme de sa série de Fourier (elle existe, a les mémes coefficients de Fourier,
donc la différence est orthogonale aux polyndmes trigonométriques, qui sont denses). O

Exercice 135 1. Soient X7,...,X,, des variables aléatoires réelles centrées admettant un moment d’ordre 2. Montrer que la
matrice (Cov(X;, X;)) est symétrique positive.

2. Soit (X, )nen une suite de variables aléatoires réelles centrées, admettant un moment d’ordre 2 et telles que les Cov(X;, X))
ne dépendent que de i — j. On suppose que V(Xy) > 0 et Cov(X,,, Xog) — 0. Montrer que pour tout n > 1, la matrice
(Cov(X;, X;)) est symétrique définie positive.

Démonstration. 1. C’est une matrice de Gram

2. Enoncé trés bizarre.

Si le déterminant est nul, c’est qu'une combinaison linéaire des X; a une variance nulle, donc est presque siirement constante.

OnaV (> a;X;) =na?V(X1) + (n—1)Cov(X1, Xa) + - - + Cov(X1, X,,) O

Exercice 136 [ENS 2022] Soit f: Z — R, (Xj)r>1 une suite de variables aléatoires réelle admettant des moments d’ordre 2, de

mémes espérances m telles que Cov (X, Xy) = f(|k — £]).
n

1. On suppose que = >°1' | f(k) = 0.Pourn > 1, s0it Y;, = £ 3" | X}, Montrer que (Y;,),>1 converge en probabilité vers m.

>1 converge vers un réel a preciser.

2. On suppose (f(k)) 4>o €St sommable. Montrer que (nV(Yn))n

Démonstration. 1. P(|Y,, —m| > ¢) < w = =35> r_o(n — k) f(k). Cest la somme Y ;'_,; Si, et S, = o(k), implique
que la somme est négligeable devant n?.
2. OnanV(Y,) = f(0)+2>_, (1 — £)f(k), et par convergence dominée, on tend vers f(0) + 2 E',::i (k). O

Exercice 137 s [ENS 2022] On construit une permutation aléatoire o de S,, de la maniére suivante.
(¢) On choisit € [1,n] de maniére uniforme, et on pose (1) = x.
(it) Sio(1) # 1, on choisit de méme y € [1,n] \ {o(1)} et on pose o(c(1)) = y. On réitére ce procédé k — 1 fois en tout jusqu’a
retomber sur 1, de sorte que o*(1) = 1
(#3i) Si k < n, on répéte le processus, en partant du premier élément n’appartenant pas a {1, (1),...,o*"1(1)}.

Les tirages étant supposés indépendants, montrer que la permutation ¢ ainsi construite suit la loi uniforme sur S,,.

Démonstration. On trouve P(X = o), par récurrence sur la dimension. O

Exercice 138 [ENS 2022] Soit (X,,)nen une suite de variables aléatoires indépendantes de méme loi d’espérance finie strictement
positive. On note S,, = >, _; Xj. Montrer que P(Vn > 1, S, > 0) > 0.
Démonstration. « Si ce n’est pas le cas, presque slirement on retourne toujours en négatif.
Donc presque siirement, on devient arbitrairement petit.
+ Ca contredit la loi forte des grands nombres, avec hypotheses intégrables. ..

« On peut supposer X,, majorée, en tronquant, alors elle a un moment exponentiel, et on peut faire comme dans I’exercice suivant.
Non, c’est dans le mauvais sens : il faudrait ’existence d’un moment exponentiel négatif?
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« P(S, <0)=P(e % >1) < E(e™%) = [ E(e~*%).
Si X; est bornée, il existe t tel que E(e~*¢) < 1, et on a une majoration exponentielle.
Plus précisément, si | X;| < M, ona |e™™ — (1 — ta)| < t?z%e"™ < t2M?e'™ . On prend ¢ = 7.
E(Y?) = BE(X?1)x,)<i) = o(i?)
Sinon, on pose ¥; = X;1|x, <;. E(e™) <1 - 00 4 &
« Enposant Y, = X, 1|x,,|<n, ona ) P(Y, # X,,) qui converge.

V(S, V(Sn
o (IS0 — E(S)| > E(S,)) < & = Sl =

Exercice 139 Soit p € 0,1 ], et (X,,),en- une suite de variables aléatoires indépendantes de méme loi R(p). On pose S, = X1 +
o+ X

1. Montrer qu’il existe to > 0 tel que pe’® + (1 — p)e~" < 1.
2. Montrer qu’il existe «, 8 € ]0,1] tels que
Vn € N,Vk € Z, P(S, > k) < a®p".

3. Montrer que S,, tend vers —oo presque sQirement.
Démonstration. 1. La dérivéeenOest2p — 1 < 1.
2. P(S, > k)= P! > eF) < L), d’ou le résultat, avec t = tg. On a 8 < 1, d’aprés la premiére question.
3. Borel Cantelli. O

Exercice 140 % [ENS 2022] Soitn > 1 et X,Y deux variables aléatoires indépendantes de méme loi uniforme sur Z/nZ. Déterminer
P(XY =0).

Démonstration. C’est Hpi P(p

)

et P(Xj, > k) = Jr, done P(X; +Yi > i) = X3 (55 — o )pf F Ij}iﬁ% (+-1) O
Exercice 141 %  [ENS 2022] Soient n > m > 0. On note A I'ensemble des injections [1,m] — [1,n] et B 'ensemble des
surjections [1,n] — 1,m. Comparer 4. a £

Démonstration. On compte le nombre de couples (S, ¢) tel que s o = Id.

D’un cté, a7 fixé, il y a (n — m)™ surjections.

m
De l'autre, c’est la somme Y. |O4], ot O; = s7*(i). Et [ [Oi] < (Zrlfi‘> = (ﬂ)m.
On obtient

14 _ (n/m)"
1B = n—m)m’

o (n/m)™ O

A comparer & T = L=

Exercice 142 DEFINITION DE VARIABLES SOUS-GAUSSIENNES Soit X une variable aléatoire réelle centrée. Montrer I’équivalence entre
. il existe a > 0 tel que YA € R, E(e*X) < e
« il existe b > 0 tel que V¢ > 0, P(|X] > t) < 2e7".
« il existe ¢ > 0O tel que E(ecxz) < 400

E(e"X)

E“'t

Démonstration. (i) — (i4) : le 2 vient de la séparation en deux. On écrit P(X > t) = P(e"X > e¥!) < , et on minimise
en u. ( 1) = (i4) : Ona E(Z) = >, P(X > k). Pour Z non a valeur dans Z, on est fini si et seulement si ¢a converge. Donc

Be) e S PN > k) ~ S P(X] 2 /125) ~ S/, ot e résultat

(#41) = (4) : On peut supposer A > 0. Quitte & multiplier X par une constante, on peut supposer E(eXQ) < 400.
On a, par DSE, e* < u + e“z, donc E(e*) < E(e*zxz). Si A € [0, 1], par concavité, on obtient c’\z, avec ¢ > 1.
Si A > 1, on utilise AX < A2 + X2, donc E(e*) < eAZE(exz) — e < e“’\z, pour un a... O

Exercice 143 Soient \, ¢ € ]0,1[. On considére une suite (X,,),>0 de variables aléatoires & valeurs dans [0, 1] telles que Xy = c et
pour toutn € N, et toutz € [0,1], P(Xp11 = A+ (1-NX, | X =2) =zet P(X,41 = (1—-N)X, | X,, =2) =1 — x. On note
un(p) = E(X3).

1. Montrer que pour tout n € N, il existe A,, C [0, 1] de cardinal au plus 2" tel que P(X,, € A,) =

2. Montrer que u, (1) = ¢ pour tout n € N.

3. Montrer qu’il existe Ay > 0 tel que Vn, |u,(2) — c| < e™2™,

4. Montrer que (1 — AP~ (1+ A(p — 1)) € ]0,1[ pour tout p > 2.

5. Montrer que pour tout p > 2, il existe A, > 0 tel que u,(p) — ¢ = O(e~*").
Démonstration. 1.

20naB(X,1 | Xpn=2)=2z0+1-No)+(1-a)1-Nz==z
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3. (un(2)?) vérifie une relation de récurrence affine, via
B(X2) = E( (Xm [ Xn =X )) = =cla® + BE(X2)(1 - \?).

4. C’est Bernoulli.

5. Ecrire la relation de récurrence vérifiée par X?, a voir. O

Exercice 144 [ENS 2022] 1. Soitn > 2 et k € [1,n]. Dénombrer les maniéres de choisir k¥ nombres dans [1, 7] sans prendre
deux nombres consécutifs.

2. On installe n couples autour d’une table ronde, en alternant hommes et femmes. Montrer que la probabilité que personne ne
soit assis a cOté de son partenaire est

2n 2n — k
2: k
Pn TL' 27’l— ( k )(’ﬂ—k)'

3. Déterminer la limite de (py,).

Démonstration. 1. Enutilisant (z1,...,zk) — (x1,22 — 1,..., 2 — k + 1), on trouve (TL_]’:+1).
2. On cherche la probabilité que k couples donnés soient assis cote a cote.
Sous I'hypothése que le premier élément d’un des couples soit assis a la place 1, donnée.
Les autres premiers éléments d’un couple n’ont que 2n — 3 possibilités. On choisit leurs places, avec (2" 3 (_kl 1)+1) =
(znl;kf 1) = (2",; k) ﬁ possibilités. On multiplie par k! (réorganisation des couples). On multiplie par n (choix de la place 1).
On divise par k (choix du couple singled out).
Puis on place les autres, avec 2(n — k)!? possibilités (le deux pour choisir femme homme du premier couple).
Pour obtenir la probabilité, on divise par 2(n!)2.
J’ai un probléme de facteur 2.
Ensuite, on fait de I'inclusion-exclusion, qui rajoute un facteur (Z)

7) (’I’L k?)' _ l
n! T kD?

3. On fixe k. Quand n — +00, le terme est équivalent a donc on trouve e 1. O

Exercice 145 % % [ENS 2022]

1. Montrer qu’il existe une constante C' > 0 telle que pour tout variable aléatoire X a valeurs dans [0, 1] non presque siirement
nulle, on ait

E(X)
iglo)tp(X >t) > Cm.

2. Montrer qu’il existe une constante C’ > 0 et une suite (X,,),>0 de variables aléatoires a valeurs dans [0, 1] non presque
sGrement nulles telle que F(X,,) — O et

Démonstration. 1. Ona E(X) ~ ZOO P(X € E(X)2*, E(X)2F 1) E(X)2*. Le nombre de termes est en In(E(X)), donc il y
enaun tel que P(X € E(X)2% B(X)2k+1)2k > —m.
EtsuptP(X > t) > BE(X)2FP(X > E(X)2F) > -2

In E(X)
2. O

II) X
1) Algebre

Exercice 146 VALEURS RATIONNELLES DE cos(7r) [X 2021, X 2022] Soit € Q. Pour n € N, on pose a,, = 2 cos(2"7r).

1. Montrer que (a,)nen est périodique a partir d’un certain rang.

2. On suppose que cos(nr) € Q. Montrer que Vn € N, a,, € Z. En déduire les valeurs possibles de 7.
3. Vérifier que Q[¢] est un sous-corps de C.

4. Déterminer les éléments d’ordre fini du groupe multiplicatif de Q[é].

Démonstration. 1. Onposer = %. Aprés avoir retiré la partie 2-adique de g (prendre n assez grand), prendre m tel que 2™ = 1]g].
2. Onacos®§ = 1420 donc 4 cos? § = 2 + 2 cos(26), donc a2 =2+ ap41.
Sia, = 1;" on obtlent Qn+1 = q2, or a, périodique APCR, donc (a,,) est entiére dés le début. On obtient 2 cos(mr) €
{~2,-1,0,1,2}.
O
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Exercice 147 [X 2021, 2022] 1. Montrer qu’il existe une infinité de nombres premiers congrus a 2 modulo 3.

Une partie X d’un sous-groupe abélien G est dite sans somme s’il n’existe pas z,y € X telque z +y € X.

1. Soit p un nombre premier de la forme 3k + 2. Montrer que Z/pZ contient une partie sans somme de cardinal k + 1.
reK* |A N "I/'B|
3. Soit A une partie finie non vide de Z*. Montrer qu’il existe une partie B de A sans somme et de cardinal strictement supérieur

5 1Al
-

2. Soient A, B deux parties d’un corps fini K. Calculer

Démonstration. 1. S’il n’y en a qu’un nombre fini, on considére N = 3p; ..., p, — 1, qui ne peut pas avoir que des diviseurs
premiers congrus a 1 modulo 3.

2. {k,..., 2k}

3. Si A, B C K*, on trouve |A||B|, puisque chaque paire (a, b) est comptée une fois dans la somme.
Ecrire |[ANaB| =Y, > lo—as.

4. On prend p tel que A C {0,,3k + 2}. On prend B un ensemble sans somme, de cardinal k. Puis on regarde tous les A N zB.
D’apreés ¢, 'un d’entre eux a un cardinal > |A|. O

Exercice 148 [X 2022] Soit d > 0. Pour a # Z[n], on pose T, = ! "4 tana
' (M onp @7 \—d"*tana 1 '
1. Donner une relation entre T, T} et Ty 4.

2. On suppose que d est un entier > 2 et qu’il n’est pas divisible par le carré d’'un nombre premier.
a) sV2O0nnote A = {a + bWd, a,b e Q}. Montrer que 0: a + bvV/d — a — b\/d est bien défini et un morphisme d’anneau.
Il s’étend & un morphisme de Mo (A).
1 tx
t7x 1

¢) Soit p, ¢ premiers entre eux, avec p # 0 et ¢ > 3 impair. Montrer que d-1/4 tan(%) est irrationnel.

b) sV1 Soit B = ( ) Déterminer deux vecteurs X1, Xo € R? non colinéaires tels que BX; soit colinéaire a X;.

1 —tanatanbd d~Y*tana + d~Y*tanb

Démonstration. Onal, T, = (d1/4 tana — dV/* tanb 1 — tanatanb

Q. Alors T, € M4 (Q[V/d)).

) = (1—tan atan b)T, . Supposons d~/* tan(a) €

, . . . . 1 —d~Y*tana
D’autre part, 9 est un scalaire, rationnel. Mais, en notant o le morphisme de Mo (Q[/d]),onac(T,) = dV4 tan a 1 .
On peut en trouver les valeurs propres, 1 + tana O
Exercice 149 % % ErRDOs-GINZBURG-Z1v [X 2022] Soit p premier et a1, ..., a,—1 des entiers quelconques. On veut montrer qu’il

existe une partie .J de cardinal p telle que p | >, ; a;. On pose K = Z /pZ.
1. Montrer que cela revient 2 montrer que les polynomes P(X1, ..., Xo, 1) = S0 XP et Q(Xu, ..., Xop1) = 20 ai X271
admettent une racine commune non triviale.
2. Conclure en considérant R = (1 — PP~1)(1 — QP~1).
On admettra que pour tout j < p —1,> 2l = 0.

Démonstration. 1. Valeur de P : le nombre de X; non nuls.

S’il y a une racine commune non triviale, alors il y a un multiple de p de z; qui sont non nuls et Q(x1, . .. z2p—1) vaut y_ a; = 0.
La réciproque est OK.

2. On veut montrer qu’il existe « tel que R(x) = 1, différent de 0. R vaut soit 0 soit 1. On a R(0) = 1, on montre qu’il y a une
autre telle valeur.
On montre que > 2,1 R(x) = 0.OnadegR = 2(p — 1)> < (2p — 1)(p — 1) dans chaque mondme de R, il y a un X; qui
est de degré < p — 1, donc la somme fait 0. Plus simple : clairement, il n’y a aucun mondme avec tous les X;. O

Exercice 150 [X 2022] Soient a,c,m € Navecm > 1. 29 = 0 et 2,11 = ax,, + ¢ dans Z/mZ.
1. Montrer que (x,,) est périodique APCR.
2. On suppose que (x,,) est m-périodique & partir d’un certain rang et que m = p®. Montrer que a = 1[p] et que cAp = 1.
3. s On suppose que m est une puissance d’un nombre premier impair p et que a = 1[p|. On pose P = Zz;é x*. Montrer que
P(a) est divisible par p, mais pas par p>.
Manque la fin de I’énoncé.
Démonstration. 1. Il s’agit d’un systéme dynamique qui prend un nombre fini de valeurs.
2. Si on réduit modulo p, on est forcément p périodique : la période divise m, et ne peut pas étre plus grande que p. Donc on peut
supposer m = p.
Ensuite on a une suite arithmético-géométrique, si a # 1[p], alors on est une suite géométrique, donc au plus p — 1-périodique,
impossible, donc a = 1.
3. 1 suffit d’écrire P(a). RAV. O
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Exercice 151 % % [X 2022] Soit p > 3 premier et t € N*. On considére p1, ..., p, des nombres premiers congrus a 1 modulo p’.
Onposea =2p;...,pretc= a?’’

1. Montrer que ¢ = 2[p].

2. Montrer que m = 1+ ¢+ --- + ¢~ et ¢ — 1 sont premiers entre eux.

3. Soit ¢ un facteur premier de m. Montrer que ¢ = 1[pf].

4. En déduire qu’il existe une infinité de nombres premiers congrus a 1 modulo p*.
Démonstration. 1. Onac=2°"" [p], et uP = u[p]
2. Si d est un diviseur commun, on a ¢ = 1[d],donc 1 + ¢+ -+ + c¢P~! = p|d], donc d | p, mais c A p = 1.

3. Onaq|l4c+ -+t ==L doncq|cP —1,donc ¢ = 1[g], donc a?" = 1[g] et a?’ ' % 1[q] donc I'ordre de a modulo

c—1"

q est pt, qui doit diviser ¢ — 1.
4, O

Exercice 152 [X 2022] Soit p premier. On considére K = F,[[X]] I'ensemble des séries formelles, c’est-a-dire F)} muni du produit
de Cauchy, qui en fait une algébre.

1. Montrer que (f + g)? = fP + ¢P.

2. Sif=>a, X" alors f? =5 a, X".

3. Pourr < p—1,onpose A.(f) = E::B anp+rX". Montrer que A,.(fPg) = fA,(g) pour tous f, g.

4. Soit f et k > 1. On suppose qu’il existe des polyndmes non tous nuls Q, . .., Q tel que > Qifpi = 0. Montrer qu’il existe

une telle famille avec Qg # 0.
5. ... Manque une suite.

Démonstration. 1. BinO6me.

2. Si un polyndme tend vers f, au sens que la différence est divisible par une grosse puissance de X, alors PQ — fg (d(F,G) =
2U(F—G)).

3. Ecrire les produits de Cauchy...
4. Si Qg = 0, on le retire, et on prend le A,.. O

Exercice 153 [X 2022] Onnote G = SLy(Z), S = ((1) _01) etT = <(1) })
1. Montrer que G = (S, T).
2. Soit ¢: G — C* un morphisme. Montrer que Im ¢ C Ujs.

Démonstration. 1. Vérifier par exemple que est dans (S, T'). Alors, en multipliant une matrice par .S, T, on peut faire des

10
11
opérations entieres sur les lignes, ou les colonnes. Les deux coefficients de la premiére colonnes sont premiers entre eux, on

applique 'algorithme d’Euclide, pour se ramener a une colonne (é) .

2. (ST)3 = S?, donc ST est d’ordre 12, et S d’ordre 4. O

Exercice 154 % % [X 2022] Soit A un anneau commutatif non nul. On dit que b € A est un diviseur de 0 si b # 0 et s’il existe ¢ # 0
tel que bc = 0.

1. Montrer que si A est fini et n’admet aucun diviseur de 0 alors A est un corps.

2. On pose B = A[X]. Montrer que P € B\ {0} est un diviseur de 0 si et seulement s’il existe a € A\ {0} tel que aP = 0.

Démonstration. 1. Les applications x — ax sont injectives.

2. Sion peut écrire QP = 0, avec () de degré minimal. Le coefficient dominant doit étre nul, donc le coefficient dominant a4 de P
est un diviseur de zéro. Mais on a également ayQQ P = 0, avec deg ag@) < deg @, donc a4 annule tous les coefficients de ). De
méme, ag_1 annule tous les coefficients de (), etc. Au final, le coefficient dominant de () annule tous ceux de P. O

Exercice 155 % % [X 2022]

1. Décomposer X° — 1 en produit d’irréductibles de Q[X].
2. Soit p premier, décomposer XP — 1 en produit d’irréductibles de Q[X].

Démonstration. 1. cos Z = (/5 — 1), car cos(2m/5) est irrationnel.
2. 14+ X + -+ + XP~ ! est irréductible : appliquer le critére d’Eisenstein & P(X + 1). O

Exercice 156 % [X 2022] Existe-t-il un polynéme P € Z[X] tel que P(%) =32

Démonstration. Passer \/2 a droite, puis regrouper par parité des puissances, et utiliser (1, /2, /3) est Q-libre. O

Exercice 157 % % [X 2018, X 2022]

1. Déterminer 'ensemble des couples (f, g) de polynomes trigonométriques a coefficients réels tels que, pour tout = € R, f(x)? +
g9(x)* =1.
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2. Déterminer les polynémes trigonométriques h tels que cos h soit un polyndome trigonométrique.
Démonstration. 1. On se raméne a des polynomes complexes, et a f(r)? — g(x)? = 1. On regarde les coefficients de plus grand
degré : on trouve que dés que ces degrés sont > 0, ils doivent étre les mémes pour f et g. Idem pour les négatifs.
Aufinal f = %

2. Si cos h est un polynome trigonométrique, h’ sin h D'est également, et h'2 sin® h + h'2 cos® h = h'?, et considérer le degré. [

Exercice 158 s % ENTRELACEMENT DE RACINES [X 2022] Soit A, B € R[X]. On suppose que toute combinaison linéaire de A, B est
scindée sur R ou nulle. Soit z; < x5 deux racines de A. Montrer que [x7, 23] contient au moins une racine de B.

Démonstration. Par I'absurde, si on suppose A, B positifs sur [x1, 2], en considére A — xB, pour z — 0T ¢a a deux racines dans
|x1,22], et pour z — 400, aucune, donc les racines «disparaissent», c’est-a-dire deviennent complexes.

Pour la réciproque, quitte a factoriser par les racines communes, les racines de AP + u@) sont celles de % = % + %. O

Exercice 159 [X 2022] Soit V un sous-espace vectoriel de M, (K) dont tous les éléments sont de rang < r. Montrer que dim V' < nr-.

4 ¢ Comme on peut
L o) P
rajouter I, a A, il faut que les matrices C' et L vérifient que toutes les lignes de L sont orthogonales a toutes les lignes de C' (traiter
lecasour =n —1).

Démonstration. Par équivalence, on peut supposer que V' contient .J,.. Toutes les matrices s’écrivent alors

En considérant une somme Ly + L2 L. Cy + Cy, donc (L1, Ca) + (Lo, C1), au sens ou si on choisit une ligne quelconque et une colonne
quelconque, on a cela.

On considére (M) = (L, C). La condition précédente implique que I'image est de dimension au plus la moitié, puisqu’il est ortho-
gonal (en un certain sens) a 'ensemble des (C, L). O

Exercice 160 % % [X 2022] X un ensemble et n € N*.

1. Si (fi(x;)) est non inversible pour tout (1, ...,y ) alors (f1,..., fn) est liée.

2. Soient (fi,..., fn) et (g1,...,gn) telles que pour tout (x1,...,z,) on ait det(f;(z;)) = det(g;(z;)). Montrer que I'une des
deux conditions est vérifiée :

(@) Vect(f1,.--, fn)
(@) (f1,---, fn)et(g1,...,gn) sont liées
Démonstration. 1. Un sens trivial. L’autre sens par récurrence.
2. D’aprés la premiére question, si I'une des familles est libre, I’autre aussi.

Pour une autre fonction g, on regarde des déterminants de taille n + 1. En développant suivant la ligne des g, on obtient qu’ils
sont égaux pour f;, et pour les g;. Mais ils sont nuls si et seulement si g € Vect f;. O

Exercice 161 % s DISCRIMINANT D'UN POLYNOME [X 2022] Soit P = X" + ap, 1 X" 1+ -+ a1 X +ag = [[(X — \;) € C[X].
n(n—1)
On pose A(P) = (—1) [Tz (N = 25) = TLic; (N = A)%
1. Exprimer A(P) en fonction des ay, dans le casn = 2.
2. Montrer que A(P) = (—1)w [T, P'(N).
3. Soit A € M, (C) et P = x4.On pose M = (Tr(Ai+j_2))i7j§n. Montrer que det M = A(P).
4. Montrer que A(P) est un polyndme a coefficients entiers en les ay.

Démonstration. 1.
2.
3. Ecrire M comme le produit de deux matrices de Vandermonde.
4. Cest les sommes de Newton. O

Exercice 162 % % [X 2022] Soitn > 2et A, B,C, D € M,(R) telles que AC — BD = I,, et AD + BC = O,,.
1. Montrer que CA— DB =1,et DA+ CB = O,,.
2. Montrer que det(AC) > 0.
Démonstration. 1. L’hypothése donne (_AB ﬁ) (_CD g) = Iop.
2. Si C inversible, en posant U = CA,onaU = I,,+ DB = I,,— DC~*DA,donc I,,— DC~'DC~'U,donc U(I,,+(DC~1)?) =
I,,, et déterminant de I,, + B2 est toujours > 0, par factorisation.

Si C non inversible, le déterminant est nul. O

Exercice 163 [X 2022] Soit M € M,,+1(R) définie par M, ; = (z:})
1. M est-elle diagonalisable ?
2. Montrer que le sous-groupe de GL,,11(R) engendré par M est isomorphe a Z.
3. Quel est 'indice de nilpotence de M — I}, 11 ?
4. Expliciter M 1.
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Démonstration. 1. non, il y a des 1 sur la diagonale
2. Montrer que n — M™ est injectif.
3. L’indice est n.
4. pensera P — P(X +1) O

Exercice 164 [X 2022] Soit E = CN" et T 'endomorphisme de E qui & (Un)n>1 associe (vy,),>1 définie par v,, = % Soh Uk
1. Déterminer les éléments propres de 7.
2. Pour \ € C, déterminer Ker(T — \id)* pour k = 2, puis pour tout k > 2.
Démonstration. 1. Les valeurs propres sont les % ou n est le premier indice # 0.
Le vecteur propre pour % estVk > 0, Uptr = (n-s—llz—l).
2. On cherche v, tel que T'(vy) — “& = wuy,. Pour des k < n, on obtient par récurrence que v3, = 0. Puis ona 2= — “= = 1, ce qui
n’est pas possible.
Donc les Ker(T' — \id)” sont stationnaires, a k = 1. O

Exercice 165 [X 2022] Soient K un corps et E un K-ev de dimension finie n > 1 et u € L(E).
1. Quels sont les P € K[X] tels que P(u) € GL(E)?
2. A quelle condition sur u est-il vrai que K[u] C GL(E) U {0}?

Démonstration. 1. P premier avec .

2. Le polynéme minimal est irréductible. O

Exercice 166 [X 2022] THEOREME DE BRAUER Montrer que o, ¢’ € S,, sont conjuguées si et seulement si les matrices de permutation
M, et M, sont conjuguées.
Démonstration. Si o, o’ sont conjuguées dans S,,, comme o — M, est un morphisme, M, et M, sont conjuguées dans M,,(R).

Réciproquement, si M,, et M, sont conjuguées : on a en particulier Tr M, = Tr M-, ce qui implique que o et ¢’ ont le méme nombre
de points fixes.

Plus généralement, Vk € N*, Tr M¥ = Tr MP,, ce qui implique que " et o’* ont le méme nombre de points fixes. On en déduit par
récurrence forte que pour tout k, o et ¢’ ont le méme nombre d’orbites de longueur k.

Cela implique que o et ¢’ sont conjuguées. O

Exercice 167 [X 2022] Soit E de dimension finie et u € L(E).
1. On suppose u diagonalisable. A quelle condition a-t-on C'(u) = K]u]?
2. Dans le cas général, montrer que si K[u] est de dimension n alors C'(u) = K[u].
3. Réciproque?

Démonstration. 1. Vps distinctes.

2. Endomorphisme cyclique : yi,, le polyndme minimal d’un vecteur. ;1 ne prend qu’un nombre fini de valeur, et £ = | ., Ker fig (u),
donc il existe x tel que p, = p. Un endomorphisme qui commute avec u est déterminé par sa valeur sur z.

3. On a toujours dim C(u) > n : via résolution du systéme d’équations AX = X A dont les n coordonnées sur la diagonale sont
forcément égales. O

Exercice 168 [X 2022] Soit E un C-ev de dimension finie, et p,q € L(F). On pose ¢ = pq — ¢p et on suppose que ¢ commute avec
petgq.

1. Montrer que c est nilpotente.

2. Montrer que p, g, ¢ sont cotrigonalisables.

3. La conclusion de la premiére question subsiste-t-elle si E est de dimension infinie ?
Démonstration. 1. Siz est un vecteur propre de valeur propre A, alors px et gz le sont. Donc F est stable, et pg — gp est de trace

nulle, donc A = 0.
2. Ker est stable, et récurrence.
3. Est-il possible que pg — gp = Id en dimension infinie : oui, sur R[X], prendre p la dérivation, et définir ¢ petit a petit. O

Exercice 169 [X 2022] Soit V de dimension 2n, o une symétrie de V. On suppose qu’il existe (a, b) et (a’,b,) tels que ab = ba,
a'b =ba etbo =caetbo=od.
On suppose que a admet 2n — 1 valeurs propres distinctes, et que a’ admet 2n valeurs propres distinctes. On suppose que Ker(a — b)
est un espace propre de a de dimension 2 sur lequel o induit 'identité.

1. Calculer la trace de o.

2. On suppose qu’aucun vecteur propre de a’ n’appartient & Ker(o + Id). Calculer la dimension de Ker(a' — b').

Démonstration. 1. a,b sont conjugués, et commutent, et sont diagonalisables, donc co-diagonalisables.

Sur 'espace propre de dimension 2, o vaut 'identité. Sur chaque autre espace propre, a et b ont des valeurs propres distinctes,
et I’écrire ao = ob implique que le coefficient diagonal de o est nul, donc la trace vaut 2.
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2. Idem, o', b’ co-diagonalisables, Ker(a’ — ') est le nombre de coefficients diagonaux ot ils sont égaux. En tout autre coefficient,
le coefficient diagonal de o est nul.

En ces coefficients égaux, par unicité, on a o (e;) colinéaire a e;, donc o(e;) = *e;, et lautre est exclu.
On obtient dim Ker(a’ — b') = 2. O

Exercice 170 [X 2022] Soit f € L(E) ou E est un C-ev de dimension finie. On suppose que les valeurs propres de f sont simples.
Déterminer les u € L(F) telles que uwo f — fou =u™, oum > 2.
Démonstration. Si x est un vecteur propre de u o f — f o u, u(x) lest aussi, car u commute.

Si z valeur propre de u, on a u(f(z)) = Af(z) + A"z, donc (z, f(z)) est stable par u, puis u(f?(z)) = u"(f(x)) + f(u(f(z))), donc
(x, f(), f2(x)) est stable. Dans cette base : (z, f(z), ..., f¥(x)), u a une matrice triangulaire supérieure, avec des A sur la diagonale.
Donc 'espace caractéristique associé a A est stable par f, semble-t-il. Mais en passant a la trace sur cet espace, on obtient A = 0. Donc
la seule valeur propre de u est 0.

Le noyau de u est stable par f, donc c’est une somme d’espaces propres de f (car les valeurs propres de f sont simples).
On obtient que pour k < n, les Ker u* sont stables par f aussi (car u et f commutent dessus + récurrence).

Siz € Keru™t, Onau(f(z)) = f(u(x)) + u"(x), donc u(f(x)) € Ker u™ + ker u, donc f(x) € Ker u*1.

Donc tous les Ker u” sont stables par f.

Dans une base de diagonalisation de f, u est triangulaire supérieure, mais on vérifie que 'égalité uf — fu = u™ est impossible si
u # 0, en considérant un coefficient de u le plus proche de la diagonale possible. O

Exercice 171 [X 2022] Soitn > 1 et A € C,,_1[X]. On considére I’endomorphisme ¢4 qui a P € C,,_1[X] associe le reste de la
division euclidienne de AP par X" — 1. Est-ce que ¢ 4 est diagonalisable ?

Démonstration. La matrice dans la base canonique correspond a des permutations cycliques de la premiére colonne. Dans le cas ou
A = XP, on est diagonalisable.

On prend les polynémes L; de Lagrange en les racines de X™ — 1. Ils forment une base. Puis on remarque que ¢(L;) = A(w;)L; donc
diagonalisable et les valeurs propres sont les A(w;). O

Exercice 172 % [X 2022] Soit n > 3. caractériser les endomorphismes de K™ pour lesquels il existe une base dans laquelle u est

0 0 O
représenté par une matrice de laforme |0 M 0 ],ou M € M, _o(K).
0 0 0
Démonstration. La condition est dim Ker v > 2 + dim Ker v N Im w. ]

Exercice 173 [X 2022] Soient A, B € M,,(C). Montrer I’équivalence entre les conditions suivantes :

« Vm € My(C), XaMm+B = XAM
« B estnilpotente et BA = O,,.

Démonstration. (i) = (ii) : pour M = O,,, on obtient B nilpotente. Si 'image de A n’est pas incluse dans le noyau de B.
On écrit Tr(AM + B)? = Tr(AM)?, ce qui donne Tr(AM B) = 0, ou Tr(M BA) = 0, pour tout M, donc BA = O,,.
Réciproquement, on a pour tout K, et tout M, Tr(AM + B)* = Tr(AM)*, donc ils ont les mémes valeurs propres. O

Exercice 174 [X 2022] Soit S € S,,(R) dont les valeurs propres sont A\; > .-+ > A,. Soit k¥ € [1,n], montrer que Zle Sii <
k
i1 Aie

Démonstration. s; ; = (AE;, E;); C’est du minimax

par récurrence, \; = sup| ;=1 (4(x)|z) > (u(e1)|e1) puis par le min-max, ona A\, = mazymingey (Az|z) donesi F' = Vect(eq, .. ., ex),
Ak > (u(ex)|ex). Puis on compléte en (e;) base de F' et A’ matrice de | ’induit de u dans cette base. Par récurrence : Ay + -+ -+ g1 >
>_a;,; etavec larelation sur ex, Ay + -+ + A\p > Y ai, Or Y aj,; = > a;; en utilisant la trace. O

Exercice 175 [X 2022] SimpriciTE DE SO(E) Soit E un espace euclidien de dimension 3, et H un sous-groupe de SO(FE). On suppose
que Vg € SO(E),Vh € H, ghg™! € H.
1. On suppose que H contient une symétrie orthogonale par rapport & une droite. Montrer que H = SO(FE).
2. Montrer que si H contient une rotation r d’angle obtus alors H = SO(E).
Indication : Considérer = # 0 tel que (r(z), z) = 0, s la symétrie orthogonale par rapport & Vect z et u = srsr—1.
3. Montrer que SO(E) est simple.
Démonstration. 1. Dans un plan contenant la droite, c’est une symétrie axiale, que 'on peut conjuguer par des rotations pour
obtenir toutes les symétries axiales, puis on peut recommencer selon une autre droite. On obtient toutes les rotations comme
produit de symétries.

2. On vérifie qu'avec un angle obtus, il existe bien un tel x. On cherche qui est s7sr~! et on trouve que c’est une symétrie ortho-
gonale et on est ramené a a)

3. Si contient une rotation d’angle pas obtus, on la compose avec elle-méme pour avoir un angle obtus. (si I'angle est entre 7/2"
et /271, cest 2 fois). O

Exercice 176 [X 2022] Soit M € SL,(R).
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1. Montrer qu’il existe X € R™ tel que |[MX]||, = || X||, = 1.
2. Montrer qu’il existe O, O’ € O, (R) telles que OM O’ soit triangulaire supérieure a coeflicients diagonaux égaux a 1.
Démonstration. 1. Le déterminant inférieur au produit des normes 2 des colonnes (Hadamard), donc on a trouvé un X tel que
[MX]|, > 1. Puis utiliser M~*.
Alors || M X || — 1 prend des valeurs positives et négatives donc au moins une valeur nulle.

2. On choisit le X en question de norme 1 et on compléte en une BON, puis on compléte M X en une autre BON, avec les formules
de changement de bases, on arrive & OmO’ avec la premiére colonne avec un 1 en haut et des zéros en dessous. Ensuite on fait
une récurrence avec la matrice en dessous.

3. M O'E; convient. O
2) Analyse

Exercice 177 [X 2022] Soitp > let A, = {Z"“X’ en (g,) € {1}V } Montrer que A, est un compact de R.

n=1 pn>

Démonstration. Sion a une suite, on extrait €; constant, puis €5 constant etc, cela définit une suite limite. Et par extraction diagonale,
c’est une valeur d’adhérence. O

Exercice 178 [X 2022] Soit K = R, C et F un espace vectoriel de dimension finie. On note A, = {u € L(F) | rangu = r}.
1. L’ensemble A, est-il ouvert? fermé ?
2. Déterminer I'intérieur et ’adhérence de A,.

Démonstration. 1. Ni ouvert (sauf r = n), ni fermé (tend vers O,,) (sauf pour r = 0).
2. L’intérieur est vide, ’adhérence est 'ensemble des matrices de rang < r. O

Exercice 179 [X 2022] Pour H, K € M,,(C),onpose fyx: Z €C"+— HZ + KZ.
1. Montrer qu’il y a équivalence entre
*VZ, fuk o Fuk(Z)=-Z
« H*+ KK =—-I,et HK + KH =0
2. Montrer qu’il existe un voisinage de (il,, O,) tel que pour tout couple (H, K) la condition précédente soit équivalente a
Pexistence d’une unique matrice B telle que

1
fu,x = [k © fir,,0,° /5 K-

Démonstration. 1. Clest du calcul.
2. Si on est conjugué, c’est clair. Réciproquement, c’est faux : comme on peut le voir pour (H, K) = (il,, O,,), puisque les f4 0,
commutent avec f;r, o, -
En manipulant les équations, on peut montrer que I'unicité nécessite que H — il,, et K n’aient pas de noyau en commun. Mais
Ker K C Ker(H — il,,)(H +il,). Si ce produit est inversible, on a bien 'unicité.
On peut les voir comme des applications de R?" dans R?". Auquel cas on obtient le résultat, mais avec B, K'. Puis on peut changer
l'application qui conjugue, exactement en multipliant par du centre de f;1, o, , qui sont les U, O,,. On peut annuler K’ si on sait que
K est inversible. .. O

Exercice 180 [X 2022] Soit £ = {f € C°([0,1],R) | fol f= O}. Pour f € E, on pose A(f) € E définie par

T 1
AD@) = [ s+ [ o
0 0
1. Montrer qu’il existe C' > O tel que Vf € E, |[A(f)|l o < C|Ifll -
2. Déterminer la valeur optimale d’une telle constante C.

Démonstration. 1. Trivial.
2. La fonction A(f) est bien d’intégrale nulle. Cela revient a considérer H d’intégrale nulle, vérifiant H(0) = H(1). On suppose
||H'|| = 1, on veut maximiser || H || .
C’est obtenu pour A qui vade —1/2a1/2 en 1/2, puis redescend jusqu’'a —1/2 en 1.
Pour montrer que c’est optimal : si on suppose A(f)(0) < 0,
« d’une part elle ne peut pas atteindre de valeur < — 2, sinon I'intégrale totale serait forcément < 0, par une majoration
« d’autre part, elle ne peut clairement pas atteindre de valeur > % O

Exercice 181 % % [X 2022] Soit £ = C°([0,1],R). On dit qu'un endomorphisme 7 de E est positif si pour tout f € E, f > 0

implique T'(f) > 0. On pose, pour i € N, e;: z — z".
1. Soit f € E. Montrer que pour tout £ > 0, il existe § > 0 tel que

Ve.y € 0.1], 1£() - ) < e+ o 2
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2. Soit (T},)n>0 une suite d’endomorphismes positifs de E. On suppose que pour i € {0,1, 2}, la suite (7},(e;))nen convergence
uniformément vers e;. Montrer que pour tout f € F, la suite (7),(f)) converge uniformément vers f sur [0, 1].
Démonstration. 1. Prendre pour § un module e-UC de f.

2. Soit f une fonction, que 'on peut supposer positive. En tout point xg, on peut lui ajouter une parabole trés pointée, négative en
Zo, de valeurs — f (). On obtient une fonction qui est positive, qui est donc envoyée sur une fonction positive, ce qui implique

que T'(f)(zo) = f(o). O
Exercice 182 % % [X 2022] Soit f: [0,1]? — [0,1]¢ telle que || f(z) — f(y)||, < ||z — yl|, pour z,y distincts.

1. Montrer que f admet un unique point fixe.
2. Soit zg = (0, ...,0), montrer que la suite ©,,+1 = f(z,) converge.

Démonstration. 1. Unicité triviale.
Pour l'existence, considérer une suite u,, 11 = f(uy), et o une valeur d’adhérence.
La suite ||zp4+1 — @y, || est décroissante. Si elle tend vers 0, « est un point fixe. Sinon, elle tend vers c.

On considére, pour tout n, w, tel que ||u, — | < %, et 3 une valeur d’adhérence de w,,+1. On a nécessairement || — 3| = c.
L’hypothése de contraction appliquée a « et 3 donne une contradiction.

2. O

Exercice 183 [X 2022] On munit C([0, 1], R) de la norme infinie. On note B sa boule unité fermée. Soit ' un sous-espace vectoriel
de C([0, 1], R).
1. Soit N € N*. Soit (z1,...,zx) € [0,1]V.Onpose ®: f N E (f(xk>)1<k<N'
Montrer que pour tout 6 > 0,ilexistep € N* et f1, ..., f, € BNE telles que pour tout g € BNE, r?inﬂ |1®(g) — 2(fi)ll oo <
i€lp

2. On suppose que tout élément de E de classe C*. On suppose de plus qu’il existe C' > O tel que Vf € E, || f'||.. < C|fll
Montrer que E est de dimension finie.

Démonstration. 1. Supposons que ce ne soit pas le cas. On construit une suite de fonctions de B N E. Mais B N E est compact,
donc elle converge.
2. Prendre z; une subdivision réguliére, de sorte que si [|®(g)| < 4, alors ||g||., < 3 (en utilisant le caractére C-lip).

Prendre g € E N B, lui retirer le f; proche, alors ||g — f;|| < J, et on réapplique ce procédé a 2(g — f;). On obtient que g est la
somme d’une série convergente, donc appartient a Vect f;. O

n
Exercice 184 % % [X 2022] Montrer que la distance de (HT‘E) a Z tend vers 0, lorsque n — +o0.
Démonstration. O

Exercice 185 % % [X 2022] On considére la suite de Fibonacci, de premiers termes Fy = F; = 1.
1. On pose rr = ngg = 0,00010102030508132134 . . .. Démontrer une relation entre ce développement décimal et la suite (F},).
2. Soit n € N*. Une configuration est une partition de {0, 1} x [0, 2n] en sous-ensembles de I'une des formes suivantes : {} X
{i,7 + 1} ou {0,1} x {i}. Calculer, en fonction des termes de (F),), la proportion ¢, parmi les configurations, de celles qui
contiennent {0, 1} x {n}. Montrer que (¢,,)»>1 converge, et préciser sa limite.
3. La suite des classes de (F},) modulo 100 est-elle périodique ?

. . _ 1 1 1 . ~ . . . _
Démonstration. 1. Onar = {57=100=7 = 1002 e s , puis DL. Pour le voir apparaitre, on peut ou bien faire une décompo

sition en éléments simples.
2. Le nombre de configurations est la suite de Fibonacci, on tend vers ¢.
3. O

Exercice 186 [X 2022] Pour n € N*, on note i(n) et p(n) le nombre de diviseurs positifs impairs et pairs de n. Déterminer la limite,
’ . . ’ . . 1 n .
un équivalent, puis un développement asymptotique de la suite u, = = > | (i(k) — p(k))

Démonstration. Sin est impair, tous ses diviseurs sont impairs. Sin = 2%m, onad(n) = i(n) + i(n) + - - - +i(n) = @i(n). Dans ce
cas, i(k) — p(k) = —(a — 1)i(n), ce qui est encore valable pour av = 0.
En regroupant les termes, on a

[ [Iny(n/d)|(|Ing(n/d)] — 1)
> (ilk) - =Y > —(a=1)=> [Iny(n/d)] — > :

k=1 dimp a|d2*<n dimp

On regroupe alors suivant la valeur de Ins(n/d) O

|l anq, n]]|
n

Exercice 187 [X 2022] Si A C N, on note d(A) = inf,,~

1. Soit A contenant O et telle que d(A) > % Montrer que tout élément de N s’écrit comme somme de deux éléments de A.
2. Soient A, B contenant 0. Montrer que 1 — d(A + B) < (1 — d(A))(1 — d(B)).
3. Si0 € Aetd(A) > 0, montrer qu’il existe r € N* telque N= A+ A+ --- + A (r fois).
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Démonstration. 1. n peut s’écrire 0 + n, 1 + (n — 1), etc. Si ¢a ne marchait jamais, on contredit.
2. Soitn.Ona|(A+ B)N[L,n]| > ....Onnote {ay,...,a,} = A, et on écrit

[(A+ B)Nlaj,ais1[| = d(B)(ait1 —a; — 1)

3. Trivial.

Exercice 188 [X 2022] Soit A C N*.

1. Montrer que si la famille (%) est sommable, alors A est de densité nulle, c’est-a-dire %|A N1, n]]| — 0.

keA
2. Montrer que si les éléments de A sont deux a deux premiers entre eux, alors A est de densité nulle.

Exercice 189 % % [X 2022] Soit A C N* telle qu’il existe d > 0 tel que F'(n) = |A N1, n]]‘ ~ nd. On pose Q) = {%, a,b € A}.

1. Montrer que () est dense dans R.
2. On suppose que d = 1. Montrer que @ = Q.
3. Soit ¢ > 0. Montrer qu’il existe A C N* telle que Q # Q% et F(n) ~ nd,avecd > 1 —&.

Démonstration. 1. Pour tout e, AN [n,n(1 + €)] est non vide.
2. 11 suffit de montrer que 1% € Q.SiVx € A, pxr inA, on perd de la densité.
3. Prendre p premier, et A les éléments sans p dans leur décomposition.

Exercice 190 [X 2022] Soit A C N* et f, g définies pour n > 2 par

1 & lica
f(n)zg;lkeA et g(n)=_— =

Pour ¢ > 0, comparer les assertions f(n) — £ et g(n) — £.

Exercice 191 % % [X 2022] Soient (uy,), (v,) deux suites réelles, vérifiant, pour tout n € N, 1,11 = fol max(x, v,) dx et v, =

1 f .
fo max(x, u, ) dz. Etudier la convergence des deux suites.

Démonstration. Siv, € [0,1] : up41 = %’Ufl + % Sivy, 2 1, upy1 = vpetsivy, <0, Upp1 = % Dans le cas intéressant, on a donc
Upy1 > Up, €t Vpt1 > Uy, donc le minimum des suites est croissant, s’il tend vers 400, c’est fini. Sinon, il tend vers ¢, on prend un

rang tel que u,, >~ f,ona v, = f(£), etv, > £, donc up1 > f(€), min(vyy1, unt1) > f(€), donc f(£) = £.

Exercice 192 % % [X 2022] Soitn > 2. On note P(k,n) = Hf:() (1 — %), pour 0 < k < n.
1. Montrer qu’il existe un plus petit & € [0,n — 1] tel que P(k,n) < 1. On le note ky,.
2. Montrer que k,, tend vers l'infini.

3. Montrer que k;, = 0400(n)
Démonstration. 1. Quand k = n — 1, un des facteurs est < %
2. (k) est croissant. Si k,, est majorée, on tend vers 1.
3. 1l faut montrer que [, (1 — £) < 1. C’est une somme de Riemann.

Exercice 193 [X 2022] Pour @ > 0 on dit que f: [0, 1] — R est a-Holdérienne si elle vérifie | f(s) — f(¢)| < C|s — t]*.
1. Quedirede f danslescasa=0eta > 17?
2. Soient 0 < a < 3. Montrer que si f vérifie (Hg), elle vérifie (H,).
3. Soient «, 8 > 0, f vérifiant H,, et g vérifiant [ g. Montrer que la suite suivante converge.
SIS ) (9(52) — a(3))-
Démonstration. 1. a > 1 elle est forcément constante.

2.
3. On peut supposer que o = f3.

On commence par montrer que cette suite est bornée.

Considérer I, — Ip1 = (f(45) — F(ZEH)) (9(BEL) — 9(2+2)), < 50, dont la série converge.

Exercice 194 % [X 2022] Soit P,Q € R[X] de méme degré d > 1,av P = > a;, X* et Q = >_ by X*. On suppose que *<=*

Unt1 P(n)
Un

O

O

ba_1

Soit (u,,) une suite strictement positive vérifiant —2++ = O(ny bour 1 assez grand. Montrer qu’il existe trois constantes a, b, ¢ telles

que Uy ~ anbc™ eta > 0.

Démonstration. Développement asymptotique de ) In SEZ;

Exercice 195 % [X 2022]
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1. Montrer que pour tout 7 > 1, il existe un couple (z,,, ) € ]0,1[° tel que

400 400 k n+1
1 1 -1 -1
MY = ey UM GV
k=n+1 n+In k=n-+1 ’ +n+ Yn
2. Montrer qu’il n’existe pas de triplet (a,b,c) € Z3\ {(0,0,0)} tel que a + be + ce? = 0.
Démonstration. 1. Inégalité simple ?

_q\n+1
2. On aurait ae + be~! € Z, on multiplie par n!, et on obtient anJrlmn +0 L}Lyn e’z O

Exercice 196 % % [X 2022]

1. Construire une fonction croissante de R dans R dont ’ensemble des points de discontinuité est Q.

2. Montrer qu’il n’existe pas de fonction croissante de R — R dont 'ensemble des points de discontinuité est R \ Q.

Démonstration. 1. Soit (u,) une énumération de Q, et f: z +— > L,<q, 5.

2. Dénombrabilité. O
Exercice 197 % % [X 2022] Soit f: =+ e~*". En combien de points de R la dérivée n-ieme de f s’annule-t-elle ?

Démonstration. Ona P,.1 = —2X P, + P/, donc degré, et s’annule également en +o0. O

Exercice 198 [X 2022] Soit f: [0,1] — R de classe C! telle que f(0) = f(1) = 0. Montrer que pour tout A € R, il existe ¢ € [0, 1]
tel que f'(¢) + Af(c) = 0.

Démonstration. (e f)' O

Exercice 199 [X 2022] Soit E I'ensemble des fonctions f: R, — R telles que

1. Déterminer les éléments de E' dérivables en 0.
2. Montrer que si un élément de £ est dérivable en un point de R, il est dérivable sur tout R .
3. Déterminer les éléments de F dérivable en un point.

Démonstration. 1. yf'(xy) = f(y) + yf'(x), puis = 0, on obtient f nulle.

1)
y

3. On obtient yf'(y) = f(y) + yf’(1), on résout I’équation diff. O

2. Si on est dérivable en o > 0, alors en fixant y # 0, on est dérivable en xqy, de dérivée %(f(y) +yf'(z0)) = f'(x0) +

Exercice 200 [X 2022] Soit f: R — R une fonction C* telle que f(0) = 0. Montrer que g: = f(;) se prolonge en 0 en une
fonction de classe C*°.

Exercice 201 [X 2022] Soit f: R — R dérivable. On note Ey = Vect(z — f(x + a), a € R). Montrer 'équivalence entre
+ I¢ est de dimension finie.
« llexiste n et ag,...,a,—1 € R tels que f soit n fois dérivable et f =q, 1 f=D 4. 4 apf.
Démonstration. Si f est n fois dérivable, I'espace engendré par ses translatés est inclus dans ’ensemble des solutions.
Réciproquement. Si E¢ est de dimension finie, on en considére une base. On peut écrire, pour chaque j,Vz, a, fj(z+a) = >, Xi j(a) fi(z).

On veut montrer que les \; ; sont dérivables. Cela découle du lemme d’inversion : prendre des z; tels que (f;(x;)) soit inversible. On
obtient f}(x +a) = >, A] ;(a)fi(x), donc f] est dérivable, donc les f; sont C.
En fait surtout, elles restent dans le méme espace vectoriel. Prendre un polynéme annulateur de I’endomorphisme de dérivation. [

Exercice 202 % THEOREME DES CORDES [X 2022] Soita < bet f: [a,b] — R continue telle que f(a) = f(b).
1. Soit n > 2. Montrer qu’il existe a’, b’ € [a, ] tels que f(a’) = f(V') etb—a=n(b —a’).
2. Redémontrer le théoréme de Rolle a ’aide de cette propriété.

Démonstration. 1. Théoréme des cordes.

2. O
Exercice 203 [X 2022] Soient &, > &,—1 > ... > & > Oeta,...,a, des réels non nuls. On pose f: t — > ;'_, ajsin(&t). On
suppose que la suite (Hf(N) ||OO) est bornée, que f'(0) = 1 et que || f||, < 1. L’objectif est de montrer que f = sin.

1. Montrer que &, < 1.

2. Onpose g = >, arli_¢, ¢,]. Montrer que

ft)

e :
Vt € R*, = 5/_19(96)6”” da.

Démonstration. 1. Découle de ||f(”)||Oo < 1.



2. C’est un calcul simple.

La fonction g vérifie fol g(t)dt = 1, décroissante, g(0") = Oet |1 f_ll g(z)e’™® dz| < 1, utile pour ¢ grand.

On veut montrer que g est constante égale a 1. O

Exercice 204 [X 2022] Existe-t-il f: R? — R continue telle que :
« f s’annule un nombre fini de fois sur chaque droite verticale,
« f s’annule un nombre infini de fois sur toutes les autres droites ?

Démonstration. Oui, considérer une réunion de demi-droites horizontales, aux ordonnées entiéres positives, a 'extérieur de la parabole
y = x2. Cela ne marche pas avec les droites horizontales, donc appliquer une petite rotation a une demi-droite sur deux. O

Exercice 205 [X 2022] 1. Montrer qu’il existe une unique fonction dérivable v: Ry — Ry telle que v(0) = 0 et V¢ > 0, v'(¢) =
fol (v(tz) + 1 — v(t)) da.

2. On suppose qu’il existe une fonction dérivable v: Ry — R, telque v(0) = 0etVt > 0, v'(t) = fol max (0, v(tz)+1—v(t)) dz.
On pose a = max{t > 0 | v(t) < 1}. Justifier 'existence de a. Montrer que pour tout ¢ > a, il existe un unique réel positif f(t)
tel que v(f(t)) + 1 = v(¢).

3. On admet que f est dérivable sur ]a,+o0| et que pour tout ¢ > a, f/(t)v’'(f(t)) = v'(t). Montrer que v est de classe C2.

Démonstration. 1. En posant h = fg v(t), onath” +th’ — h = t. Avec les conditions h(0) = 0 et A’ (0) = 0.
h=1—=1,h=t— 0.
On peut résoudre ’équation homogéne. Si on écrit h(t) = C(t)t, on obtient C” (t)t? + tC’(t) + t2C’(t) = 0, donc C"' ()t +
(14+t)C'(t) = 0,donc C'(t) = e! ™"t = tet. On a donc une paire de solutions de I’équation homogéne, nulles en 0.
Dongc, si on trouve une solution particuliére, il faut montrer qu’elle se prolonge en 0, avec h(0) = 0.
On cherche une solution de la forme ¢(A(t)e! + p(t)), avec (variation des constantes), X' (t)e! + p/(t) = 0, X' (t)e! = ¢, donc
A= fg ue % du, et p(t) = —%, d’ou le résultat.
Mangque la positivité (certaines ne sont pas positives...) : Au voisinage de 0, v > 0, donc v croissant, donc v au-dessus de sa
moyenne, donc v’ < 1.
On a toujours v au-dessus de sa moyenne, puisque si v est égal a sa moyenne, on a v’(t) = 1, donc il repasse au-dessus.

Cela implique toujours v positive. Cela contredit I'unicité.

2. Sivt, v(t) < 1,v'(t) > % fg v(u) du, et comme v est positive, on obtient une minoration de la forme v’ (t) > %, donc v diverge.
Pour la deuxiéme partie, on a v strictement croissante, c’est donc trivial.
3. Le faire a la main : séparer I'intégrale a la cassure, etc. O

Exercice 206 [X 2022] Soit f: R4 — R uniformément continue. On suppose qu’il existe m > 0 tel que Vz,y > 0, Uf f| < met
Va > 0, |f(2)] < 2072 [ (x — )| f(y)] dy (hapothese (H)).
1. Montrer que f est bornée.
2. Montrer que g: x + sup,>, | f(y)| a une limite finie K' > 0 en +o0.
3. Soit £ > 0. Montrer qu’il existe ¢’ € ]0,/] tel que pour tout intervalle I C R de longueur /, il existe un intervalle I’, de longueur
¢ ,non disjoint de I, tel que supy, | f(z)] < 2.

pk (p+1k

4. On suppose K > 0. En considérant, pour un £ > 0 bien choisi, la suite d’intervalles ({ T dm

diction de I’hypothése (H).
5. Conclure que f tend vers 0 en +oc.

Démonstration. 1. Ona fUC+ |[” f| <m.
2. On a g décroissante, positive.

D , déduire une contra-
pEN

. / . 5. 5 . . . 2m Yy
3. Sn;on, on prend ¢’ assez petit pour qu’il n’y ait pas de chgmt de signe, donc sur tout interval de longueur > = — ¢, fx >
m
4. (H) est une hypothése de moyennage, avec un poids fort en 0, mais néanmoins. La question précédente donne une proportion
non nulle sur laquelle f est petite.

5. Trivial. O

Exercice 207 [X 2022] Soit a > 0 et E I'ensemble des fonctions f: Ry — R de classe C? telles que f2 +a(f’)? soit intégrale sur R .
1. Montrer que E est un sous-espace vectoriel.
2. Montrer que pour tout v € R, il existe f € E tel que f(0) = v.
3. Soit v € R. Déterminer

inf{/0+oc (f>+a(f)?); f € Eet f0) :v}.

4. Pour A,B € S,,onpose A < B< B— A€ S Soient A, B € S, telle que A < B. En utilisant les questions précédentes,
montrer que \/Z < \/E

Démonstration. 1. Trivial.
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2. ve *

3. f24af? = (f ++af)? — Va2ff', et £ a une limite nulle en + o0, donc la partie de droite s’intégre en y/av?, et la partie de
gauche est minimale pour ve~%/Ve,

Autre possibilité : existence par compacité, puis on rajoute £g.

—1
4. Si A, B sont strictement positives, on considére fg = e~tVS™" on a alors fo f2+ fFsf. = V'S (on est ramené au cas

diagonal).

SiB> A, onaf,ng]’3 > f]’gAfI’3

Donc VB > f T Afp.

Pour X, on c0n51dere la quantité | X7 + (Afp X, fpX) dt, et on montre qu’elle est minimale pour f4, comme dans

la question précédente. O
Exercice 208 [X 2022] Soit P € C[X] tel que P(0) # 0 et r > 0. Justifier la convergence de I'intégrale 5- In (|P(re')]) dt,

puis la calculer en fonction de P(0) et des racines de P de module strictement inférieur a r.
Démonstration. On sépare les racines, puis c’est du DSE, séparer selon la position par rapport a r. Pour le cas ou |z;| = r, c’est de la
CVD. O

Exercice 209 [X 2022] Soient U un ouvert de C contenant 0, f développable en série entiére sur D(0, R), avec R > 0,p > 1.
On suppose que f(z) = Og(zP). Montrer que pour r > 0 assez petit, on peut trouver 2p nombres complexes z vérifiant |z| = r et

f(z) eRr
Démonstration. On a f(2) = apzP(1 +...), arg(f(re?)) ~——¢ 9(0). Prendre 2p + 1 valeurs 0;. O

Exercice 210 [X 2022] Soit (ay, ), >0 une suite réelle, et f: z — Zn 0 @nx™. On suppose que Z:i% |an|2™ = M < 4o0.

1. Montrer que pour toutn € N et tout z € [—1, 1], @) )(‘r)‘ <M.
2. Soit n > 1. on suppose que Yk € [—n,n], f(k‘/n) = 0. Montrer qu’il existe une constante absolue C telle que Vz €
3. s Soit n > 1. on suppose que Yk € [—n,n], f(k/n) = 0. Montrer qu’il existe une constante absolue C' telle que Vz €

—1,1], [f(a)| < OM (2)".

Démonstration. 1. Découle de ( ) < 2™,

, . 2n+1 @nt1) (¢,
2. On peut écrire | f(z)| = [T} (Jc—ak)f(T_‘_l()cl).
D’ailleurs, se contenter de prendre uniquement des ak tels que |z — ag| < 1.
Alors, au pire des cas, f est maximale en un produit = preliat ?\/ﬁ
3. Enoncé d’origine. O
Exercice 211 [X 2022] Soient ay, ..., ay, € |—1,1[ distincts non nuls et 31, ..., 5, € R. Montrer qu’il existe une suite bornée (cx)

d’entiers relatifs telle que f: ¢ — Z::OB it vérifie Vi, f(a;) = Bi.

Démonstration. Partir d’un polyndme d’interpolation, et lui ajouter un multiple de [[(X — ;). O

on

Exercice 212 % % [X 2022] Soit f(z) = Zn o 2

1. Déterminer les réels en lesquels f est définie.
2. Pour k € N*, on écrit f(z)* = : 1 an k2" Montrer que pour tout n > 1, il existe k tel que ay, j # 0.
3. Montrer que pour tous k,n > 1, a, < (1 + Ing n)*.
4. Soient p,m € N* et k € [1,p]. Onpose N = (2P — 1)2™. Soitn € Ntelque N — 2™ +1 < n < N + 2™ — 1. Montrer que
an, = 0,saufsik =petn=N.
Démonstration. 1.
2. Pour tout n, il existe k tel que n s’écrive comme somme de k puissances de 2.
3. Le nombre de facon d’écrire n comme somme de k puissances de 2 est < (1 + Iny n)*.

4. N = 111110000,, avec p uns et m zéros. Toute décomposition d’un entier n comme somme de puissance de 2 en nécessite
strictement plus que sa décomposition en base 2, puisqu’on peut se ramener a sa décomposition en regroupant des termes. [J
Exercice 213 [X 2022] Soit (a,) complexe, C' > 0 et R le rayon de convergence de ) | %4 2". Montrer I'équivalence entre
« Ve > 0,3ng € N,Vn > ng, |a,| < (C +e)™.
« R=+ooetVe > 0,3Ry > 0,V]z| > Ro, |f(2)] < exp ((C +¢)|z]).

Démonstration. = : pas de difficulté.

<« : Formule de Cauchy : |a,| < e“;ﬂ La fonction x »—1> ele a pour dérivée ;fjl (K — L;D), elle s’annule en x = (n;(U, qui
est > Ry pour n assez grand. Et elle vaut alors e("~1) K T Knt,

En prenant un peut de marge sur ¢, on s’en sort. O
Exercice 214 [X 2022] Soit (a,) réelle telle que 3" a,, " soit de rayon 1. Pour z € ]—1,1[, on pose f(z) = > a,z™
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+oo

1. On suppose que Y . a,, converge. Montrer que f(x) —= 2n—o 0n-

—1"
. Donner un exemple de suite (a,,) telle que f(z) admette une limite finie quand * — 1~ et que ) a,, diverge.

2
3. On suppose les a,, positifs et que f(x) —= £. Montrer que ZJFOO an = 4.
4.

On suppose que a,, = 0+Oo( ) et f(z) P £. Montrer que Zn 0 an = L.

Démonstration. 1. Sommation d’Abel.
2. 3 (=1)"2%" ? Plus simple ?
3. Simple.
4. Taubérien... O

Exercice 215 [X 2022] On pose g: x +—
d’un segment.

W.Pour y > 0, on pose g,: z +— ig(x/y) Soit f: R — C continue, nulle en dehors

1. Montrer que pour tout z, y — [; f(z —t)g,(t) dt tend vers f(z) en 0.
2. Montrer que pour tout € > 0, il existe § > 0 tel que

Vz € R,y €]0,6],

[ 1o~ ta,t)dt - )| < =

Exercice 216 [X 2022] Soitn > letJ = ( On I ) Soit S € Sy, définie positive.

*In On
1. Montrer que toute solution du systéme différentiel X’ = JSX est bornée.
2. Montrer qu’il existe (A1, ..., A,) € R™ tel que JS soit semblable & Diag(i\1, —iA1, ..., i\, —i)\,).

Démonstration. 1. Ecrire § = PTP, alors PX' = PJPTPX, et J' = PJPT est antisymétrique, donc e’ est orthogonale.

2. Par absurde. D’une part les valeurs propres de J.S ne peuvent pas avoir de partie réelle non nulle. D’autre part, si X appartient
aKer(JS — \I,,)? mais pas a Ker(JS — \I,,), on contredit également la premiére question. O

Exercice 217 [X 2022] Soit (E): 2/ (t) = cos(z(t)) + cos(t). On admet que pour tout a € [0, 7], il existe une unique solution ¢, de
(E) telle que ¢, (0) = a. On admet également que s’il existe a, b € [0, 7], tg € R tels que @, (to) = ¢u(to), alors a = b. Montrer qu’il
existe une unique solution de (F) a valeurs dans [0, 7] et 27-périodique.

Démonstration. O

Exercice 218 [X 2022] Pour n € N, on note (E,,) 'équation différentielle —y” + 2%y = (2n + 1)y, dont on cherche les solutions sur
R. On considére également, sur C*° (R, R) les opérateurs A: f +— (z — f'(z) + af(z)) et B: f = (x — —f'(z) + zf(x)).
1. Qeu dire de 'espace des solutions de (E,,) sur R?
2. Résoudre (Ep) al’aide des opérateurs A, B.
3. Déterminer les solutions de (Fy) qui sont de carré intégrable sur R.
4. On pose fo: = — e~%"/2. Montrer que pour tout n, la fonction f,, = B™(f) est solution de (E,,).
Indication : Commencer par donner une expression simplifiée de AB™ — B™A.
5. Montrer que les solutions de carré intégrable de (E,,) sont les éléments de Vect f,,.

6. Montrer que ( f,) est orthogonale pour le produit scalaire (f, g) = [; fg.
3) Probabilités
Exercice 219 % % [X 2022]

1. Soit A, B, C un triangle du plan. On construit D tel que ABD soit isocéle en D avec un angle orienté en D égal & < et de
méme E, F relativement aux cétés BC et C'A. Montrer que le triangle DEF est équilatéral.

2. Soitn > 3 etk € [1,n — 2]. on note T}, I'application qui & un polgone A; A, ... A, associe le polygone Bj ... B, tel que pour
tout ¢, A; A; 1B, soit isocéle en B; avec un angle de 2]” . Montrer que, quel que soit le polygone initial, lorsqu’on lui applique
tous les Ty, pour 1 < k < n—2, on obtient un polygone régulier et que celui-ci ne dépend pas de I'ordre dans lequel on compose
les T},.

Démonstration. 1. Onécrit D = A + zﬁezi%, EF=B+ B?ezl%, etc, puis on écrit Pangle.
2. O

Exercice 220 % % [X 2022] Soit n > 2. Dénombrer les vrais triangles rectangles de R™ dont les trois sommets sont dans {0, 1}".

Démonstration. O

Exercice 221 % % [X 2022] Soitn > 3. Quel est le cardinal du groupe des isométries affines du plan euclidien stabilisant un polygone
régulier a n sommets ?
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Démonstration. Si on stabilise le polygone, le centre est un point fixe. A une translation prés, on peut le supposer centré en 0, donc
Papplication est linéaire.

On sait qu’il existe 2n tels transformations. En composant par 'une, on peut supposer que f(1) = 1, et que 'on préserve 'orientation.
Mais alors on est 'identité, puisque 2'% ne peut étre envoyé que sur lui-méme, ou son symétrique. O

Exercice 222 % % [X 2022] Une urne contient des boules bleues rouges, noires. A chaque étape on retire deux boules de couleurs
différentes, et on ajoute une boule de la troisieme couleur.

1. Montrer que si a la fin du procédé il ne reste qu'une seule boule, sa couleur est déterminée par la configuration initiale.
2. A quelle condition est-il possible de finir avec une seule boule ?

Démonstration. 1. En notant ngy, ny, et ny,, le nombre d’opérations a faire. On obtient un systéme 1y, + 1y, — Ny, = , ... avec
0
z — 1. Si deux de ces systémes avaient des solutions entiéres, on peut considérer la différence, AZ = | 1 | aurait une solution
-1

entiére, ce n’est pas le cas (dans Z/2/7).

2. S’il y a plusieurs couleurs au début c’est bon. Si t’as deux couleurs, et si t’as au moins trois boules, tu peux toujours faire une
opération apres laquelle il y a au moins deux couleurs.

110
L’inverse de A est % 1 0 1].Doncsiz,y,z ontlaméme parité, pas de solution.
0 1 1

De méme, si y = z = 0, on ne peut rien faire.

Réciproquement, si z, y, z n’ont pas tous la méme parité. Cette propriété est préservée. Tant que tu as deux couleurs et au moins
trois boules, on peut toujours faire une opération qui préserve le fait d’avoir au moins deux couleurs. On répéte, jusqu’a avoir
trois boules, et comme la propriété de parité est préservée, ce n’est pas trois boules de couleurs différentes. O

Exercice 223 [X 2022] Pour A > 0, on note X, une variable suivant une loi P()). Etudier le comportement de P(X, > E(X,)),
quand A — +o0.

n 7)\ n k
Démonstration. Ceste " o\ % ~ /\ 2 k>0 2_&'),

k
o
Reste a trouver un équivalent du reste, >, - Par I'inégalité harmonique > <Z;“> , plutot.

1
GESSMN(EN L

Ct—
Ona P(X > Aa) = P(etX > ) < E(f;f) = eke(ﬂum = eMe'—1-ta) — A(l=a)t+oo(t) En particulier, si on prend a = 1 + X on
aP(X >\+K)<e XK
D’autre part, la somme d’un nombre fini de termes (K) de la somme considérée tend vers 0. Donc P(X > A) 5575 0. O
Exercice 224 [X 2022] Soient m,n > 2,p € ]0,1[ et ¢ = 1 — p. Soit (X,,) une suite de variables aléatoires indépendantes de méme
loi B(p). On note A,, I'événement «m divise X; + - - - + X, ».

1. Montrer que pour tout n > 1,
1

" 1 '— 2imj n
k_n—k s

> (3t =0 X (o)

k=0 7=0

m|k

2. Montrer que P(A,,) converge vers une limite ¢ a préciser.
3. Montrer que |P(A,) — (| < e min,

Démonstration. 1. Ok.
2. Tends vers .

3. En majorant par la valeur pour j = 1, on obtient |P(A,) — £|*/" < p? + ¢* + 2cos (2)pg = 1 —2(1 — cos (22))pq =
2 cos (m))pq +1—2pq

Comme pq peut étre arbitrairement petit, pour que 'inégalité cherchée soit vérifiée, il faut que 1 —2pg(1 —cos (2 )) < 1—16pg

m2
& cos2 <1 — —2, ce qui découle d’une inégalité cosx < 1 — “;2 (parabole qui s’annule en 0 et en 7) O
Exercice 225 % % [X 2022]

1. Soientn > 2, 0,7 € S,, avec T une transposition. Comparer le nombre de cycles a supports disjoints de o et de o o 7.

2. On munit S,, d’une distribution uniforme de probabilité. Soient i, j € [1,n], avec i # j. Calculer la probabilité que i et j soient
dans un méme cycle.

Démonstration. 1.
2. 4, j sont dans le méme cycle pour o si et seulement si ils sont dans deux cycles différents pour o o (i j). Donc la probabilité vaut
1 O
5

Exercice 226 % % [X 2022] Soit 0, une variable aléatoire suivant la loi uniforme sur S,,.

1. Soit L,, la longueur du cycle de o, contenant 1. Déterminer 'espérance de L.
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2. Quelle est la probabilité que 1 et 2 soient dans un méme cycle de o,, ?
3. On note ¢, le nombre de cycles de o,,. Montrer que E(c,) ~ Inn.

Démonstration. 1. P(L, = k) = X, par dénombrement.

B(L) =5k =251
2.0naE(Ln)—1—|—(n—1)p,p_l

3. Blen) =3, U =0, (1) (k= 1)L m

Exercice 227 [X 2022] Soient G un groupe fini de neutre e, n € N*, (X)1<x<n indépendantes de méme loi uniforme sur G \ {e}.
Déterminer laloide Y,, = X,, ... X;.

’ . ) 71
Démonstration. an =P(Y,=¢);bp, =P, =x),0ux #ea =0;b = .

m—1 bQ —2

2 = o 1)2*m 15 *(m 1)2

n_bn—lab = Qp— 1,1

Exercice 228 [X 2022] Pour X,Y deux variables aléatoires a valeurs dans N, on note

=) |P(X =n) - P(Y =n)|.

neN

Soit Sy, < B(n, 1) et P de loi P(1). Montrer que d(S,, P) — 0.

Démonstration. C’est )
e~ n\,1.xg,n—1n-k
>l - (e

keN
Classiquement, chaque sommande tend vers 0, et on peut espérer avoir une domination. .. O

Exercice 229 [X 2022] Soit X, suivant une loi uniforme sur [1,n]. On note R,, le reste de la division euclidienne de n par X,, et
Y, = &= Montrer que P(Y,, > 1/2) — 2In2 — 1.

Démonstration. Sin = ¢X,, +r,,ona % =z, + %, donc % € [zn+1/2,2, + 1].

Plutét : (¢ + 1/2)zn, < n < (¢ + 1)y, donc z,, > A5 etz <

d’égalités, qui sont en o(n).

c’est-a-dire z,, € } = } On peut ignorer les cas

_n _n_ n
q+1/2° q+1’q+1/2

Donc P(Y,, > 1/2) = Z Lq+1/2j LqilJ =37 522 |—| 522 |. Sion peut retirer les parties entiéres, on obtlentQZ %,

q=1L2¢g+1 2q+2
ce qu’il faut.

On peut négliger I'erreur pour ¢ < \/n, et méme q < -, et alors 2q T 2(}% < q%, et idem sur les suivants, donc la plupart sont

nuls. O

Exercice 230 % % [X 2022] Soit d € N*, et €1,...,e,—1 des variables aléatoires indépendantes de méme loi B(%) On note py la

probabilité que le polynéme X ¢ + Z -1 e X1 possede une racine rationnelle. Montrer que pg ~ %.

Démonstration. C’estla probabilité que P(—1) = 0. Revient a choisir uniformément une partie de [1, d — 1] et a chercher la probabilité
que le nombre d’éléments impairs soit égal au nombre d’éléments pairs plus deux. C’est donc

2d ! ( e >(H k_+1)2/2 > 2d I < —; }2/% k) (de_j)zm)

Cest le coefficient en | (d — 1)/2] + 2 de (X + 1)L@=D/21(X 4 1)[(@=1)/21 puis Stirling. O
Exercice 231 [X 2022] 1. Soit » > 3 un entier. Montrer que I’équation £ = nlnz admet deux solutions > 0, que 'on note
an < by.

2. Trouver une suite strictement croissante (py)x>2 d’entiers telle que po > 2, que ) 2~ (Pr+1-Pr) diverge et qu'il existe C' > 2
Pr+1

tel que pour k > 2,5 /10" m >C.

3. Soit (X, )n>2 une suite de variables aléatoires indépendantes de méme loi de Rademacher. Que dire de la convergence de > l)r%

Démonstration. 1. Pour z = 2,0na 2 < nln2, donc il y a une solution dans [1,1n 2], qui tend vers 1, une autre dans [In 2, +o0],

qui tend vers +00, de 'ordre de n Inn.

2. Onveut ppy1 — pr =~ Cln(pk) et In2(pr41 — pr) ~ lnn
1l suffit de prendre p,, ~ nlnn;Onap,+1 —p, =Ilnnet> 2~ Inn diverge.

3. On considére la suite précédente, et les événements Aj = ﬂfi;;_l(Xi =1). Alors > P(Ay) diverge, et les Ay, sont indépen-

dantes, donc presque slirement, Ay, se réalise une infinité de fois, donc presque stirement la série diverge. O

Exercice 232 Y % [X 2022] Soitn € N*, et X, Y, Z, 0 telle que X,Y,Z — U([1,n]) et 0 < U(S,). On note Lx le cardinal de
Porbite de X par o.

Montrer que P(LX =Ly = Lz) > P(LX = Ly)2.
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Démonstration. Si X,Y, Z sont indépendantes, P(X =Y = Z) > P(X = Y)?, par Cauchy-Schwarz.
Les L . ne sont pas indépendantes.

Mais, conditionné a la valeur de o, elles le sont. Alors
P(LX:LY:LZ|U:T)ZP(LX:Ly|U:T)2,

Puis
1 1 ) 1 )
P(LX:Ly:LZ):E HP(LX:LY:LZ|O—:T)ZE mP(LX:Ly‘CT:T) Z(E EP(LX:LY|U:T))

ou la derniere inégalité est Cauchy-Schwarz. O

Exercice 233 [X 2022] Soit p € ]0,1[. X3,..., X, variables aléatoires indépendantes de méme loi de méme loi G(p). On note
M, = max(Xy,...,X,) et Ny w— Card{k | Xi(w) = Mp(w)}.

1. Pour k € Neta > 1, exprimer P(M,, = k, N, = a).

2. On suppose 1 —p = % pour un entier ¢ > 4. Limite de P(Nym = 1, Mym = m), quand m — +o0.

Démonstration. 1. P(M,, =k, N, =a) = (?)P(X = k)*P(X < k)"~

a

2. t"P(X =m)P(X <m)"~! O

Exercice 234 [X 2022] Soientn,b > 2, X, ..., X,, indépendantes de méme loi uniforme sur [0, b — 1].
1. Déterminer P(X;11 < X;).
2. Déterminer P(X;1; < X;1,-1 < ... < X))

1

Démonstration. 1 — b

2. Par dénombrement, c’est trivial. O

Exercice 235 [X 2022] Soit (X,,)n>1 indépendantes de méme loi centrée et bornée, et S, = X1 + - -- + X,,.
1. Montrer qu’il existe C' > 0 tel que E(S2) < Cn?, pour tout n € N*.

2. Soit € > 0. Montrer que P (UnZN (|%‘ > 6)) el U

3. Donner une interprétation a I'événement | J,~, Nyen Unsn (|22] > £), et calculer sa probabilité.
Démonstration. 1.
2. On majore par la somme des probabilités, et P( 57“ > 5) = P(Sﬁ > 54714) < ’iﬁfﬁ) = ﬁ, dont la série converge.
3. Clest’événement que % ne tend pas vers 0. Sa probabilité est nulle. O

Exercice 236 [X 2022] Soient A4, ..., A, des événements, x1,...,2, € |0,1[ et Dy,..., D,, des parties de [1,n]. On suppose que
pour tout 4, 14, est indépendante de la variable conjointe (14;);e[1,n]\ D,- On suppose aussi que P(A;) < @; [[ . ;3 (1 — @), pour
tout <.

Soit £ C [1,n] eti € [1,n] \ E.Onpose Bg = () A4;, que I'on suppose non négligeable. Montrer que P(4; | Bg) < ;.
Démonstration. P(A; | Bg) = P(A; | NgA;) = P(A; | Ngap, A Ngrp: 4j))

On a
PA;N...)

Si D; = {i}, l'inégalité découle de P(A;) < x;(1 —x;) = P(A;) < ;.
SiD; =FE,onaP(A; | Bg) = %, et attention, les événements de Bg ne sont pas indépendants.

D’une part, au numérateur, on peut majorer la probabilité par celle de P(4; N END; Aj).

D’autre part, on montre que le dénominateur est > [ (1 — ;). Pour cela, si dans I'intersection, il y a deux événements indépendants
£, m, on les regroupe en un seul Ay, = Ay N A,,, associé a x = min(xy, Z,,). D’une part, ces nouveaux A vérifie I’hypothése : pour
Ap, celavient de x1, > x¢x,,. D’autre part pour les A; : si A; était dépendant de A;, on avait du P(A4;) <...(1 —x¢) < (1 —zp),
car ry, < xy.

D’autre part, on obtient comme conclusion que P(NAy) > ... (1 — 1) > ... (1 — z,)(1 — z¢).

On a besoin d’avoir P(NA;) > [[(1 — x;), cest-a-dire P(UA;) < 1 — [[(1 — x;) S’ils sont tous non indépendants, cela découle
exactement des inégalités données sur les ;. O
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III) Centrale

, p
Exercice 237 Soit A € M,,(R). Etudier la limite de la suite ((In + %) ) .
pe

Exercice 238 [CENTRALE 2022] Y, ;1 = E};O nXint+1; P(X > 1) > 0 et d’espérance finie. G la fonction génératrice de X ; G,
celle de Y,,.

1. Montrer que G et G’ sont strictement croissantes sur [0, 1].

2. Montrer que G, +1 = G, o G. En déduire une expression de F(Y},).

3. Onpose Z = inf{n | Y,, = 0} € NU {+o00}. Montrer que P(Z < +00) est le plus petit point fixe d G.

4. Montrer que P(Z < +00) = 1 si et seulement si m < 1.
Démonstration. 1.

2.

3. (Z < 400) =Y, =0); P(Y,, =0) = G,(0) =
Exercice 239 [CENTRALE 2022] Soit f € C*°(R, R). Montrer I’équivalence entre

« f est développable en série entiére sur un voisinage de 0.

. ilexiste a >0, M > 0eta > 0tels que Vn € N, Vo € [~a, a], | f™(z)| < Ma™n!.
Démonstration. Si f est DSE, ok.
Si on a la majoration, écrire Taylor avec reste intégral. O

Exercice 240 [CENTRALE 2022] Soient , b, ¢ € C non entiers. Pour n € N*, on pose u,, = 5, Z é %.

1. Déterminer le rayon de convergence R de Y u,z

2. Donner une CNS pour que la série entiere converge absolument sur le cercle de centre 0 et de rayon R.

Démonstration. 1. On peut encadrer |[a + k| < |a| + ket|a+ k| >k —
décalées, donc le rayon est 1.

2. Clest-a-dire pour que la série > |u,| converge. On a

n b 1+9)(1+ 2 h—1— 1
Un+1 _ (a+n)( +n> _ ( n)( n) =11+ a+ ¢ _A'_O(i)
Un, (n+1)(c+n) 1+ )0+ ¢ n n
Donne 1 + Re (%t2=1=¢) 4 O(1). Si on a pas de chance, Re ¢ = Re(a + b), auquel cas, c’est la merde.... O

IV) Mines

Exercice 241 [MINEs 2022] Soit « € |1,+00][. Pour n € N*, on pose a,, = (Sm” + asin ( 1 ))n
1. Nature de la série > _ a,, ?

2. Racon de convergence de la série entiére »  a,z™?

Exercice 242 Montrer que les fonctions f € C!(R?,R) vérifiant Vz,y € R?, 22y a£ (z,y)+(1+y? ) (ac y) = 0 sont les applications
de la forme f(x,y) = g(ﬁ), ou g estCl.

Démonstration. On pose @(x,y) = (#, y), qui est de classe C1, d’inverse C!. O

. p
Exercice 243 [Mines 2022] Soit A € M,,(R). Etudier la limite de la suite ((In + %) ) .
pEN

Exercice 244 [MINEs 2022] Soitm > 1et (X,,),,>1 indépendantes de méme loi B(p), avecp € ]0,1[. Onpose M = inf{n | S, > m}.
1. Montrer que M est une variable aléatoire et évaluer P(M = +00).
2. Montrer que P(M >n) = S 7t (" )pkg» 1 F.
3. Montrer que M est d’espérance finie et la calculer.
4. Calculer la variance de M.

Démonstration. 1.

2.

3. Ona

m—1 n—1 m—1 n—1 m—1 pk
k n—1— k: k n—1—-k __ _
< ) g < > N
n>1 k=0 k=0 n>1 k=0
+k
car (1_1q)k > q" (n ) O

Exercice 245 [MiNEs 2022] Soit n > 2. On pose J = (Ji,j), ouVi, Jit1,; = J1,n = 1, et les autres coefficients sont nuls.

1. Déterminer le polynéme caractéristique, le polynéme minimal et les vecteurs propres de J.
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N

. E Soient Xy, ..., X,_1 des variables aléatoires indépendantes de méme loi uniforme sur {—1,1}. On considére la matrice
M = (Xi*j[”])i,jgn'

3. Exprimer M en fonction de J.

4. Pour n = 2, calculer P(M € GL,(R)).

5. Déterminer le spectre complexe de M.

6

. On suppose n premier, et on admet que le polynéme ZZ;S XF est irréductible sur Q. Calculer P(M € GL,(R)).

Démonstration. 1.
2.
3.
4.
5. On est non inversible si et seulement si le polynéme aléatoire P

annule I'une des racines n-iéme de I'unité. On sait trouver la probabilité qu’il annule 1 : il faut que n soit pair, et que P ait autant de
coefficients 1 que —1. S’il annule une autre racine w, alors d’apres la propriété de I’énoncé, c’est que c’est £Q = 1+ X +---+X""1 [
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