
Exercices 2022

I) ENS
1) Algèbre

Exercice 1 ⋆ ⋆ [ENS 2022] Soient m,M, r ∈ N avec r ≥ 3, et k0, . . . , kM ∈ Z tels que
∑M

i=0 kir
i =

∑m
i=0 r

i. Montrer que∑M
i=0 |ki| ≥ m+ 1.

Démonstration. Unicité de la décomposition
∑
aib

i avec ai ∈ [[−b/2, b/2]] (problème b pair) + celle-ci minimise
∑

|ai|. Par récurrence,
regarder modulo b.
Plus simple : récurrence sur m ; regarder k0, qui s’écrit 1 + ur.

Exercice 2 ⋆⋆ [ENS 2022] Pour n ∈ N∗,on note cn le nombre de nombres premiers ≤ n, et πn =
∏

p≤n p.

1. Montrer que πn = O(4n).
2. Montrer que ccnn = O(rn).
3. En déduire que cn = O( n

lnn ).

Démonstration.

Exercice 3 ⋆⋆ [ENS 2022] On note φ la fonction indicatrice d’Euler.

1. a) Montrer que φ(nm) = φ(n)φ(m), pour n,m ∈ N∗ premiers entre eux.
b) Rappeler la formule explicite pour φ(n).
c) Calculer

∑
d|n φ(d), pour n ≥ 1.

2. Soient n,m ∈ N∗. Exprimer φ(nm) en fonction de φ(m), φ(n), φ(n ∧m) et n ∧m.
3. Pour n ∈ N∗, on note dn le nombre de diviseurs premiers de n, et µ(n) = (−1)dn si n n’est pas divisible par le carré d’un

nombre premier, 0 sinon. Montrer que µ est multiplicative, et calculer
∑

d|n
µ(d)
d .

Démonstration.

Exercice 4 ⋆⋆ [ENS 2022] On note Z[i
√
2] = {a+ ib

√
2, a, b ∈ Z}.

1. Montrer que A = Z[i
√
2] est un sous-anneau de C.

2. Montrer que A est euclidien, c’est-à-dire qu’il existe une fonction N : Z[i
√
2] → N telle que pour tout a ∈ A et b ∈ \{0}, il

existe un couple (q, r) ∈ A2 tel que a = bq + r et N(r) < N(b).
3. Énoncer et démontrer un théorème d’existence et d’unicité d’une décomposition en facteurs irréductibles dans A.

Démonstration.

Exercice 5 ⋆ [ENS 2022] Pour σ ∈ Sn, on note ν(σ) son nombre de points fixes. Calculer
∑

σ∈Sn

ε(σ)
ν(σ)+1 .

Démonstration. Considérer une matrice dont le déterminant est
∑

σ ε(σ)x
v(σ).

Exercice 6 ⋆⋆ [ENS 2022] Déterminer les inversibles de (Z/nZ) [X].

Démonstration. Si n est premier, seules les constantes le sont, car degPQ = degP + degQ.
Sinon, les constantes premières avec n le sont. Et si on est inversible, on l’est modulo tous les premiers qui divisent n. Donc tous les
coefficients sont divisibles par le radical.
On se ramène à n = pα, et même α = 2, avec P (0) = Q(0) = 1. Alors PQ = P + Q − 1. C’est tout à fait possible : ils sont tous
inversibles.
Pour α = 3. Il faut p | les coefficients, l’inverse a des coefficients modulo p2 qui sont les opposés. Q = 1 +

∑
((−bi)p + dip

2)Xi =
1− P ′ + p2Q′. Alors PQ = (1 + P ′)(1− P ′ + p2Q′) = −P ′2 + p2Q′. Tout à fait possible, tous inversibles.
Par récurrence, on montre que c’est possible, en partant d’une solution modulo pα−1.
Puis, lemme chinois, on est bon : il suffit d’être divisible par le radical.

Exercice 7 ⋆ ⋆ [ENS 2022] Une partie A ⊂ Rn est un L-groupe si c’est un sous-groupe de Rn tel que VectA = Rn et si pour tout
x ∈ Rn et r > 0, A ∩B(x, r) est fini.

1. Que dire dans le cas n = 1?
2. Soit e = (e1, . . . , en) une base de Rn. On pose Le = {a1e1 + · · ·+ anen, (a1, . . . , an) ∈ Zn}.

a) Montrer que Le est un L-groupe.
b) À quelle condition a-t-on Le = L′

e ?

Démonstration. 1.
2. a) C’est de l’équivalence des normes.

b) La matrice de passage est dans GLn(Z).

Exercice 8 ⋆⋆ [ENS 2022] Soit φ : SL2(R) → GLn(R) un morphisme. Montrer que φ est à valeurs dans SLn(R).
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Démonstration. SL2(R) est engendré par des commutateurs. Pourquoi ?

Exercice 9 ⋆⋆ Décomposition KAN [ENS 2022] Pour g =

(
a b
c d

)
∈ SL2(R), et h ∈ H , on pose g.z = az+b

cz+d .

1. Montrer que H est stable par l’action et que g′.(g.z) = (g′g).z.
2. Soit K = SO2(R), A le sous-groupe de SL2 formé de matrices diagonales, et N les unipotentes supérieures. Montrer que tout

élément g ∈ G se décompose de manière unique g = kan.
Indication : considérer g(i).

Démonstration.

Exercice 10 [ENS 2022] Pour G un groupe, on note sub(G) l’ensemble des sous-groupes de G. Soient G,H finis de cardinaux
premiers entre eux. Montrer que | sub(G×H)| = | sub(G)| × | sub(H)|.
Démonstration. On a une application injective. Réciproquement, si K est un sous-groupe de G ×H , de cardinal m, on a m = (m ∧
n1)×(m∧n2). p1(K) est un sous-groupe deG, et on est inclus dans le produit des projections. L’application x 7→ xn2 est une bijection
sur p1(K), et envoie K dans p1(K). Donc K = p1(K)× p2(K).

Exercice 11 ⋆⋆ [ENS 2022]

1. Soit (an) une suite sous-additive, montrer que an

n converge.
2. Soit G un groupe multiplicatif, S une partie génératrice finie de G, stable par passage à l’inverse. Pour x ∈ G, on pose LS(x) le

nombre d’éléments de S nécessaires pour l’engendrer. Pour Φ un endomorphisme deG, on pose ΛS(Φ) = max{LS(Φ(x)), x ∈
S}. Montrer que 1

n ln ΛS(Φ
n) converge vers une limite indépendante de S.

Démonstration. 1.
2. ΛS(Φ

p+q) = max{LS(Φ
p(Φq(x))), x ∈ S} ≤ ΛS(Φ

p)ΛS(Φ
q), d’où la convergence.

Pour l’indépendance, si S1, S2 sont deux parties génératrices, on peut écrire l’un dans l’autre etc, ce qui donne deux constantes.

Exercice 12 [ENS 2022] SiA est un anneau commutatif, et I un idéal deA, on dit que I est premier siA\I est stable par multiplication.

1. Montrer que tout idéal maximal est premier.
2. Soit n ≥ 3 premier, et A = Z[e2iπ/n]. Montrer que tout idéal premier de A est maximal.

Démonstration. 1. Si I est maximal, pour tout c, ⟨I, c⟩ = A, donc il existe b tel que bc+ i = 1, donc bc ̸ inI .
2. On a un polynôme annulateur : 1 +X + · · ·+Xn−1. Soit I un idéal premier. On a P (ω)Q(ω) ∈ I ⇒ P (ω) ∈ I ou Q(ω) ∈ I .

VectQ I = A, puisque c’est un idéal d’un corps (car irréductible).
Donc A/I est fini, et intègre donc c’est un corps. . .

Exercice 13 ⋆⋆ [ENS 2022, ENS 2019]

1. Pour n ≥ 1, montrer qu’il existe Pn ∈ R[X] tel que ∀θ ∈ R, sin(4nθ) = cos θ sin θPn

(
cos2 θ

)
.

2. Calculer
∏2n−1

k=1 cos
(
kπ
4n

)
puis

∏n
k=1 cos

( (2k−1)π
4n

)
, puis

∏n
k=1 cos

(
kπ

2n+1

)
.

Démonstration. 1. On a

sin
(
4nθ

)
= Im(ei4nθ) =

2n−1∑
k=0

(
4n

2k + 1

)
(−1)k sin2k+1 cos4n−2k−1

= sin cos

2n−1∑
k=0

sin2k cos4n−2(k+1) = sin cos

2n−1∑
k=0

(
4n

2k + 1

)
(−1)k(1− cos2)k

(
cos2

)2n−(k+1)
.

D’où Pn(X) =
∑2n−1

k=0

(
4n

2k+1

)
(−1)k(1−X)kX2n−(k+1)

2. Pn a une propriété de symétrie :

Pn(1−X) =

2n−1∑
k=0

(
4n

2k + 1

)
(−1)kXk(1−X)2n−1−k =

2n−1∑
ℓ=0

(
4n

2(2n− 1− ℓ) + 1

)
(−1)2n−1−kX2n−1−ℓ(1−X)ℓ =

2n−1∑
ℓ=0

(
4n

2ℓ− 1

)
(−1)(−1)ℓ

Les racines de Pn : sin(4nθ) = 0 ⇔ θ = kπ
4n , donc les cos2 kπ

4n sont racines de Pn, sauf pour sin θ = 0, ou cos θ = 0, donc pour
k ∈ [[1, 2n− 1]].
Pour le dernier : on trouve 1

2n .

Exercice 14 ⋆ ⋆ [ENS 2022] Soit P ∈ R[X] de degré n > 0. Montrer que P est scindé à racines simples sur R si et seulement si
∀i ∈ [[1, n− 1]], ∀x ∈ R,

(
P (i)(x)

)2 − P (i−1)(x)P (i+1)(x) > 0.
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Démonstration. Si scindé à racines simples, alors par récurrence : il suffit de vérifier i = 1 : a21− 2a0a2 > 0 ; En divisant par le produit
des racines : (

∑
1
xi
)2 > 2

∑
i<j

1
xixj

, ce qui est correct.

Réciproquement, par récurrence également. Si P vérifie les inégalités, on sait que P ′ est scindé à racines simples, et P ′(x)2 >
P (x)P ′′(x). En deux racines consécutives de P ′, on a P (x)P ′′(x) < 0, mais on sait que P ′′ change de signe, donc P change de
signe.

Exercice 15 [ENS 2022] On pose Φ1 = X − 1 et, pour n ≥ 2, Φn = Xn−1∏
d|n, d<n Φd(X) .

1. Montrer que Φn(X) =
∏

k∧n=1(X − e
2ikπ
n ).

2. Montrer que Φn(X) ∈ Z[X].
3. Montrer que pour p, q premiers distincts, Φpq est à coefficients dans [[−1, 1]].
4. Donner le coefficient en X7 dans Φ105.

Démonstration. •
•
• Φpq(X − 1)(

∑q−1
i=0 X

i)(
∑p−1

i=0 X
i) = Xpq − 1 Φpq = Xpq−1

Xq−1
X−1
Xq−1 = (X − 1)(1+Xq + · · ·+Xq(p−1))(1+Xq +X2q + . . . ).

Donc le coefficient k est moins le nombre de façons d’écrire k = αq+ βp, plus le nombre de k− 1 = αq+ βp, avec α, β petits.
• On a 105 = 3× 5× 7. On calcule Φ3,5,7, puis on fait la division euclidienne, en partant de la fin.

Exercice 16 ⋆⋆ [ENS 2022] Soit p un nombre premier. On pose Φp = Xp−1
X−1 .

1. Montrer que Φp est irréductible dans Q[X].

2. On note ζ = e
2iπ
p . Montrer que si Q ∈ Q[X] et R ∈ Q[X]

vérifient Q(ζ) = R(ζ), alors Φp | Q−R.
3. Montrer que Q[ζ] = {P (ζ), P ∈ Qp−1[X]} est un corps.
4. Montrer que si Q ∈ Q[X] et R ∈ Q[X] vérifient Q(ζ) =
R(ζ), alors pour tout entier k non multiple de p, Q(ζk) =
R(ζk).

5. Soient a0, . . . , ap−1 ∈ Qp. On pose C =
a0 a1 . . . ap−1

...
. . .

. . .
...

a2
. . . a1

a1 a2 . . . a0

.

Montrer que si C est inversible, son inverse est de la même
forme.

Démonstration.

Exercice 17 [ENS 2022] On admet que tout polynôme de C[X0, . . . , Xn−1] se factorise de manière unique comme produit de poly-
nômes irréductibles.

Calculer le déterminant D =

∣∣∣∣∣∣∣∣∣∣
X0 X1 . . . Xn−1

...
. . .

. . .
...

X2
. . . X1

X1 X2 . . . X0

∣∣∣∣∣∣∣∣∣∣
.

Démonstration. D =
∏

ω(X0 + ωX1 + · · · + ωn−1Xn−1) : par exemple, si la somme vaut 0, c’est nul. On utilise que si P s’annule
lorsque Q s’annule, et Q est irréductible, alors P = Q . . .. C’est faux, car certains polynômes ne s’annulent pas.

Exercice 18 ⋆ [ENS 2022] Soit n ≥ 2. On note Gn l’ensemble des polynômes de Rn−1[X] dont 0 est racine simple.

1. Pour P,Q ∈ Gn, montrer qu’il existe un unique T ∈ Gn tel que Xn | P ◦Q− T . On note alors P ⋆ Q = T .
2. Montrer que (Gn, ⋆) forme un groupe.

Démonstration. 1. Trivial.
2.

Exercice 19 ⋆⋆ [ENS 2022] Soit d ≥ 1 et 0 < a1 < . . . < ad des entiers. On pose Pn =
∏d

k=1(X − nak)− 1.

1. Montrer que pour n assez grand, Pn est scindé à racines simples sur R.

2. Pour tout n ≥ 1 pour lequel Pn est scindé à racines simples sur R, et tout k ≤ d, on note x(k)n la k-ième racine de Pn dans
l’ordre croissant. Déterminer, pour k ∈ [[1, n]], un équivalent de x(k)n .

3. Montrer que Pn est irréductible dans Z[X] pour tout n ≥ 1.

Démonstration. 1. On prend le polynôme Qn =
∏d

k=1(X − nak), et on le translate de 1. Il suffit de justifier que ses maximaux
sont > 1, quand la distance entre les racines consécutives est ≥ 2.

2. On a une info sur les racines de la dérivée, qui sont entre nak et nak+1 ; c’est inutile.

Les racines de Pn sont proches de celles de
∏d

k=1, donc x(k)n ∼ aak . Il suffit de justifier que Qn(nak(1 + ε)) > 1 : c’est
εnak

∏d
i ̸=k · · · ≥ εnak .

3. Si Pn = QnRn, on a Qn(nak) = ±1, et Rn +Qn a trop de racines.

Exercice 20 ⋆ [ENS 2022] Soient a, b réels et n ≥ 3 impair. Étudier, en fonction de n, a, b le nombre de racines réelles deXn+aX+b.

Démonstration.
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Exercice 21 ⋆ ⋆ [ENS 2022] Soit n ≥ 1 et (λ1, . . . , λn) ∈ Kn. À quelle condition existe-t-il M ∈ Mn(K) telle que M2 = M et
∀i, Mii = λi.

Démonstration. Nécessairement K =
∑
λi ∈ [[0, n]]. Les cas 0 et n sont rigides : tous les λi doivent être égaux à 0 ou 1.

Pour K = 1, en prenant (1 1 . . . 1)


λ1
. . .
λn

, ça marche.

Donc pour K = n− 1, ça marche : si p projecteur, In − p est un projecteur.
On peut obtenir n’importe quel (λ1, . . . , λn−1, 1), ou n’importe quel (λ1, . . . , λk, µ1, . . . , µn−k), si les sous-sommes valent 1 chacune.
On pourrait essayer de conjuguer un bloc, par SL2. On conjugue par une unipotente sup : c’est la fête, permet d’ajouter c à un
coefficient diagonal, et retirer c à l’autre.
On prend une projection quelconque, et on modifie les coefficients petit à petit.
Pour le premier, s’il n’y a que des 0 plus bas, à moins que tous les vecteurs suivants soient dans l’image, on peut mettre un coefficient
̸= 0 en dessous de a11, puis transformer a11 en ce qu’on veut.
Idem à chaque fois. Si tous les vecteurs suivants sont dans l’image, c’est qu’initialement, on pouvait découper les λi cherchés en groupe
dont la somme fait un entier, auquel cas, méthode précédente.

Exercice 22 ⋆ [ENS 2022] Soit n ≥ 2. On note Un l’ensemble des matrices diagonales de Mn(C), dont les coefficients diagonaux
sont de module 1, et Sn l’ensemble des matrices de permutation. On pose Nn = {AB ; (A,B) ∈ Un × Sn}.

1. Montrer que Nn est un sous-groupe de GLn(C).
2. Montrer que le commutant du commutant de Nn est égal à Mn(C).

Démonstration. 1.
2. Il contient VectNn.

Exercice 23 ⋆ [ENS 2022] Pour σ ∈ Sn, on note Pσ la matrice de permutation associée. On note Dn l’ensemble des matrices
diagonales complexes de taille n dont les coefficients sont de module égal à 1. Les ensembles M2 = {PσDPσ′ , σ, σ′ ∈ Sn, D ∈ Dn}
et M2 = {PσDPσ, σ ∈ Sn, D ∈ Dn} forment-ils des sous-groupes de GLn(C)?

Démonstration. Le premier oui, le second non, car l’ensemble des σ2 n’est pas un sous-groupe.

Exercice 24 [ENS 2022] Soit A une sous-algèbre de Mn(C) telle que pour tout M ∈ A, M
T ∈ A. Soit A′ le commutant de A, et

A′′ celui de A′. Montrer que A′′ = A.

Démonstration. Soit X0 ∈ Cn, et F = AX0. Alors F est stable par A. Mais M +M
T

et M −M
T

préservent l’orthogonalité. Donc
F⊥ l’est.
Si M ∈ A′′, M commute avec les matrices diagonales par blocs, donc M préserve aussi F et F⊥.
Méga astuce : on considère l’action diagonale, et X0 = (E1, . . . , En).
On remarque que siM ∈ A′′, alors Diag(M, . . . ,M) est dans le bicommutant de l’action diagonale. Car si U commute avec Diag(A),
alors tous les coefficients de U commutent avec A.
Cela signifie que si M ∈ A′′, A 7→ MA commute avec la projection orthogonale sur A. En particulier, M 7→ MA préserve A, d’où
M ∈ A.

Exercice 25 ⋆ ⋆ [ENS 2022] Soit E un R espace vectoriel de dimension finie et G un sous-groupe fini de GL(E). Montrer que si
F est un sous-espace vectoriel de E stable par tous les éléments de G alors F possède un supplémentaire stable par tous les éléments
de G.

Démonstration.

Exercice 26 [ENS 2022] Soit P1, . . . , Pr ∈ Mn(R) vérifiant ∀i, j, PiPj = δi,jPi et
∑r

i=1 Pi = In. Soient λ1, . . . , λr des réels
distincts. On pose A =

∑r
i=1 λiPi.

Montrer que pour toute matrice B ∈ Mn(R), il existe K ∈ Mn(R) telle que B =
∑r

i=1 PiBPi +AK −KA.

Démonstration. On peut conjuguer le tout, pour que les Pi soient des projections sur des blocs consécutifs de la base canonique. Alors∑
PiBPi est la partie diagonale par bloc de B, et A est une diagonale d’identité par blocs. On sait que A commute avec toutes les

diagonales par blocs, et uniquement avec eux, et l’image du crochet est inclus dans les non diagonales par blocs.

Exercice 27 [ENS 2022] Soit A ∈ Mn(C). On note q la multiplicité de 0 dans le polynôme caractéristique de A.

1. Montrer l’existence et l’unicité de X ∈ Mn(C) telle que AX = XA, Aq+1X = Aq et XAX = X .
2. Que dire si A ∈ Mn(R)?
3. L’application φ : A 7→ X est-elle continue?
4. Soit (Ak) une suite convergente de matrices complexes. CNS pour que φ(Ak) → φ(limAk).

Démonstration. 1. AqP (A) = 0 donc dans KerAq ⊕KerP (A), la matrice est diagonale par blocs.
Unicité : Si on commute, on stabilise les deux espaces. . .

2. La même. . .
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3. En On, non : l’inverse tend vers +∞, pour A = (0, . . . , 0, ε).
4. Si la multiplicité de 0 n’est pas constante APCR, non continue?

Si la multiplicité est constante, toute valeur d’adhérence de Xk est solution. Il faut exclure la possibilité que Xk tende vers +∞.
Mais si c’est le cas, il existe des vecteurs Ek tels que XkEk → +∞, avec Ek dans le bloc du bas, donc tel que AX = Id, on
obtient AkXkEk = Ek , ce qui est impossible.
Alternative : Expliciter Xk comme un polynôme en A, qui dépend du polynôme caractéristique.
Réciproquement, on peut supposer que la multiplicité de la limite est 1 de moins. Très simplement, utiliser la trace de AkXk .
Donc non continue.

Exercice 28 [ENS 2022] Soit n ≥ 1 impair,A,B ∈ Mn(R) telles queAB = BA. Montrer queA+ iB admet un vecteur propre réel.

Démonstration. AX + iBX = (λ + iµ)X , c’est-à-dire AX = λX et BX = µX : c’est un vecteur propre commun, possible car n
impair.A admet une valeur propre, dont l’espace caractéristique est de dimension impair. Dans cet espace,B admet une valeur propre,
et A a forcément un vecteur propre là-dedans.

Exercice 29 [ENS 2022] Soit P ∈ C[X]. On pose F = P (X)2.

1. Montrer que f : A ∈ Mn(C) 7→ F (A) n’est pas surjective.
2. Montrer qu’il existe N ∈ Mn(C) telle que f−1({N}) soit infini.
3. Montrer qu’il existe un ensemble E dense dans Mn(C) tel que pour tout M ∈ E, |f−1({M})| soit fini et indépendant de M .

Démonstration. 1. Toutes les matrices ne sont pas des carrés : prendre une nilpotente de rang n− 1.
2. Si P (0) = 0, N = On fonctionne. Mais même en général, on a (M −αIn)2 en facteur, et une infinité de matrices sont annulées

par cela.
3. Si D est diagonale, à coefficients distincts, P (M)2 = D implique M commute avec D, donc M diagonale, et P (mi)

2 = di, et
en évitant les points critiques, (racines de la dérivée), cela a toujours le même nombre de solutions.

Exercice 30 [ENS 2022] Soit p ≥ 1, K un sous-corps de C et A ∈ Mp(K). On dit que A est toute puissante si pour tout n ≥ 1, il
existe B ∈ Mp(K) telle que Bn = A.

1. Traiter le cas p = 1, pour K = C,R,Q.

2. On suppose que χA =
∏k

i=1(X − λi)
αi est scindé sur K.

a) Montrer qu’il existe N1, . . . , Nk nilpotentes telles que A soit semblable à Diag(λiIαi
+Ni).

b) Montrer que A est toute puissante si et seulement si les λiIαi
+Ni le sont.

3. On dit que M est unipotente si M − Ip est nilpotente.

Pour A unipotente, on pose lnA =
∑+∞

n=1
(−1)n−1

n (A− Ip)
n.

a) Justifier la définition de lnA. Montrer que exp réalise une bijection de l’ensemble des matrices nilpotentes sur les matrices
unipotentes.

b) Montrer que les matrices unipotentes sont toutes puissantes.

Exercice 31 [ENS 2022] 1. Quelle est la dimension maximale d’une sous-algèbre de Mn(C) engendrée par une matrice nilpo-
tente.

2. Soit m ≥ 1 et A1, . . . , Am ∈ Mn(C) nilpotentes qui commutent deux à deux. On note A l’algèbre engendrée par les Ai.
Montrer que dimA ≤ n(n−min rangAi).

Démonstration. 1. n : Cayley-Hamilton.
2. On note r le rang minimal. Dans une base qui commence par l’image, les matrices ont des matrices triangulaires supérieures,

donc on a déjà nr − r2 comme dimension de 0. D’autre part, les deux blocs diagonaux vérifient les mêmes hypothèses, et on
sait que la dimension d’une algèbre nilpotente qui commutent est ≤ n(n−1)

2 (puisque co-trigonalisables)

Exercice 32 ⋆⋆ [ENS 2022] Déterminer les morphismes d’algèbres de C∞(R,R) vers Mn(R).

Démonstration. C∞(R,R) est commutative. On prend un polynôme annulateur deφ(f), et sa partie scindée annule également, je crois,
donc diagonalisable, donc codiagonalisable, et on a des f(xi) sur la diagonale.

Exercice 33 ⋆ ⋆ [ENS 2022] On note E l’ensemble des suites u ∈ CN de carré sommable. On fixe a ∈ C∗ et b ∈ C et on considère
l’opérateur Ta,b : u ∈ E 7→ (aun+1 + bun)n∈N. Déterminer les λ ∈ C tels que Ta,b − λ Id ne soit pas bijectif.

Démonstration. Revient à déterminer les a, b tels que Ta,b ne soit pas bijectif.
Injectivité : si a = 0, si et seulement si b ̸= 0. Si a ̸= 0, si et seulement si

∣∣ b
a

∣∣ ≥ 1.

Surjectivité : Si a ̸= 0, on a |a| ≤ |b|. Soit (vn), on résout Ta,b(u) = v, équivalent à u1 = v0−bu0

a , u2 = v1
a − b

a2 v0 + b2

a2u0. Si
cette quantité tend vers 0, comme elle s’écrit bn

an

(
u0 − v0

b + v1a
b2 − . . .

)
, nécessairement u0 est la somme de cette série. Donc elle doit

converger, ce qui n’est pas le cas pour certains (vn) dans le cas |b| = |a|. Mais en prenant deux suites (vn) dont la série ait la même
somme, et qui ne diffèrent qu’en deux termes, les deux ne peuvent pas tendre vers 0, si | ba | > 1.

Exercice 34 Groupe SU(2) [ENS 2022] Soit G l’ensemble des matrices
(
a −b
b a

)
, où a, b ∈ C vérifient |a|2 + |b|2 = 1.
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1. Vérifier que G est un sous-groupe de GL2(C).
2. Montrer que G possède un unique sous-groupe distingué autre que G et {I2}.

Un sous-groupe H de G est distingué si pour tout g ∈ G, gHg−1 = H .

Démonstration. 1.
2. Il contient {±I2} comme sous-groupe distingué.

Réciproquement, si H est distingué. Il contient un élément e. Cet élément est diagonalisable, de valeurs propres dont la somme
est réelle, est le produit fait 1. Donc e appartient à un SO(2).(
a −b
b a

)(
eiθ 0
0 e−iθ

)(
a b

−b a

)
=

(
eiθ|a|2 + e−iθ|b|2 ab(eiθ − e−iθ)

. . . . . .

)
. Donc, si θ ̸= ±1, on peut trouver n’importe quel

coefficient sur l’antidiagonale, et si on le fixe, on a un autre paramètre pour faire varier a.

Exercice 35 [ENS 2022] On note Gn =
(
Z/2Z

)n
et V = F(Gn,R).

1. Dimension de V ?
2. Pour x ∈ Gn, on note vx = 1x. Pour x, y ∈ Gn, on note x ∼ y si la liste y − x a exactement un terme non nul. On définit un

endomorphisme ψ de V par ψ(vx) =
∑

y∈Gn|y∼x vy . Montrer que ψ est diagonalisable.

3. Montrer que tout morphisme de groupes de Gn vers (R∗,×) est un vecteur propre de ψ

Démonstration. 1.
2. ψ est symétrique.

Exercice 36 ⋆⋆ Pfaffien [ENS 2022]

1. Montrer que si n est impair, alors An ne contient aucune matrice inversible.
2. On suppose n pair. On note I = {(i, j) | 1 ≤ i < j ≤ n}. Montrer qu’il existe une fonction polynomiale P : RI → R telle que

detA = P 2
(
(aij)

)
pour tout A ∈ An.

Démonstration. 1. Déterminant.
2. On peut faire une récurrence : écrire le bloc 2-2 en haut à gauche, et faire le pivot pour annuler ce qui est en dessous, puis ce

n’est pas trivial, il faut discuter de l’homogénéité.
Sinon. Quand on développe il ne reste que les termes pour lesquels toutes les orbites sont de longueurs paires. Que l’on peut
regrouper par deux, l’un et son inverse, sauf si σ2 = 1. Ces termes donnent des carrés. On note P2 l’ensemble des partitions de
[[1, 2n]] en paires. On intuite P (A) =

∑
P2
s(P )

∏
(i<j)∈P aij , où s(P ) est un signe.

Compliqué, mais si P = (i1, j1), . . . (in, jn) on prend pour s(P ) la signature de la permutation 1 7→ i1, 2 7→ j1, 3 7→ i2, etc.
Quand on développe le carré, les carrés sont bons. Les autres termes sont de la forme s(P1)s(P2)

∏
(i<j)∈P1

aij
∏

(i<j)∈P2
aij .

À (P1, P2) on peut associer une classe d’équivalence de permutations, en suivant les orbites (mais chaque orbite peut aussi être
lue dans l’autre sens). On peut vérifier que les orbites sont paires. La signature de la permutation est bien égale à s(P1)s(P2) :
il y a 2m permutations dans la classe.
Réciproquement, si σ est une telle permutation, alors elle correspond à plusieurs couples (P1, P2) : 2m essentiellement : pour
chaque orbite, on peut choisir dans lequel de P1, P2 est-ce qu’on met le premier élément.
Autre approche : La méthode de Gauss permet de réduire une forme quadratique, comme somme/différence de carrés. On peut
de même réduire la matrice antisymétrique, en

∑
bi(xiyi+1 − yixi+1), autrement dit, il existe P orthogonale, tel que P−1AP

soit de cette forme. On obtient que detA est le carré d’une fraction rationnelle. Et si on admet la factorialité de R[aij ], comme
detA est un polynôme, c’est le carré d’un polynôme.

Exercice 37 [ENS 2022] Soit E un espace euclidien, G un sous-groupe fini d’ordre n > 1 de O(E) et v un vecteur unitaire de E tel
que ∥g(v)− v∥2 < 2n

n−1 pour tout g ∈ G. Montrer qu’il existe un vecteur w ∈ E \ {0} tel que g(w) = w pour tout g ∈ G.

Démonstration. Considérer 1
n

∑
g : c’est un projecteur, et comme ce sont des isométries, l’image est l’ensemble des points fixes com-

muns.
Sous l’hypothèse

∑
g = 0, on écrit

∑
gv = 0, et on isole l’identité.

Exercice 38 [ENS 2022] Soient A1, A2 ∈ M2(R). Montrer l’équivalence entre les conditions suivantes.

• Toute combinaison linéaire de A1, A2 est diagonalisable.
• Ou bien les matricesA1, A2 sont codiagonalisables, ou bien toute combinaison linéaire non nulle deA1, A2 admet deux valeurs

propres réelles distinctes.
• Il existe S ∈ S++

2 (R) telle que pour toute combinaison linéaire A de A1 et A2, on ait SA ∈ S2(R).

Démonstration. • (i) ⇒ (ii) : supposons qu’une combinaison linéaire non nulle des Ai admette deux valeurs propres égales
λ1A1 + λ2A2 = In, alors A1 et A2 commutent, donc sont codiagonalisables.

• (ii) ⇒ (iii) : Si A1 = PD1P
−1 et A2 = PD2P

−1, on a SA = SPDP−1, et cette matrice est symétrique si et seulement si
SPDP−1 = P−TDPTS, c’est-à-dire si et seulement si PTSP commute avec D. On peut donc bien choisir S qui convient.
Si A1 et A2 admettent toujours deux valeurs propres distinctes. Alors, en rajoutant In, on obtient un sous-espace vectoriel de
dimension 3 qui vérifie l’hypothèse. Il contient une matrice non inversible, que l’on peut conjuguer par une orthogonale en
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(
1 α
0 0

)
, et il contient une troisième matrice, que l’on peut écrire de la forme

(
0 β
1 0

)
. On obtient

(
λ λα+ µβ
µ 0

)
, de trace

λ, de déterminant −µλα− µ2β, et on doit avoir λ2 + 4µλα+ 4µ2β ≥ 0. Donc le discriminant en λ est ≤ 0 : µ2α2 − µ2β ≤ 0,
c’est-à-dire α2 ≤ β.

Si S, on a SA = (S1αS1), et SB = (S2βS1). donc S =

(
1 ∗
α β

)
=

(
1 α
α β

)
, et il faut que (1 + β)2 − 4(β − α2) ≥ 0,

c’est-à-dire 1− 2β + β2 + 4α2 ≥ 0, c’est bien le cas. Et la trace est positive, donc les valeurs propres le sont.
• (iii) ⇒ (i) : une matrice SS2 avec S def positive est toujours diagonalisable : écrire S = PPT , et SS2 est semblable à une

matrice symétrique.

Exercice 39 [ENS 2022] Soit n ≥ 1. Quand c’est défini, on pose f(B) = (In −B)(In +B)−1.

1. Si A ∈ An(R), montrer que f(A) est défini.
2. Si A ∈ An(R), montrer que f(A) ∈ SOn(R) et que −1 n’est pas valeur propre de f(A).
3. Réciproque de la question précédente.
4. Soit A ∈n (R). Que vaut f(f(A))? Qu’en déduire?
5. Expliciter f(A) pour n = 2.
6. Déduire de ce qui précède le théorème de réduction des matrices antisymétriques pour n pair.

Démonstration. 1. 0 est la seule valeur propre réelle possible.
2. f(A) + In = 2(In +A)−1 est inversible.
3. Pour U ∈ Mn(R) dont −1 n’est pas valeur propre, on résout f(A) = U ; On trouve A = f(U).
4. f(f(A)) = A : bijection de An sur SO+

n .

5. Si A =

(
0 t
−t 0

)
, on trouve f(A) =

(
cos θ − sin θ
sin θ cos θ

)
, où θ = 2arctan t.

6. Il existe P ∈ On tel que P−1f(A)P est diagonale par blocs : avec de l’identité et des rotations. En reprenant l’image par f , on
obtient A conjuguée, par P à des blocs 2− 2 antisymétriques.

Exercice 40 Soient A,B ∈ Mn(R). Montrer qu’il existe O ∈ On(R) tel que A = OBO−1 si et seulement s’il existe P tel que
A = PBP−1 et AT = PBTP−1

Démonstration. dans le sens dur, on obtient PPT qui commute avec B, mais P = OS, avec S un polynôme en PPT , d’où le O.

Exercice 41 [ENS 2022] Soient A,B ∈ Mn(R) telles qu’il existe U ∈ Mn(C) telle que UU
T
= In et A = UBU

T
. Montrer qu’il

existe O ∈ On(R) telle que A = OBOT .

Démonstration. On utilise la caractérisation : A = OBO−1, avec O ∈ On si et seulement s’il existe P tel que A = PBP−1 et
AT = PBTP−1 : dans le sens dur, on obtient PPT qui commute avec B, mais P = OS, avec S un polynôme en PPT , d’où le O.

Alors A = UBU
T

, et. . .

Exercice 42 [ENS 2022] Soit A ∈ Sn(R) et Ai la matrice obtenue en supprimant la i-ième ligne et la i-ième colonne de A. On note
λ1 ≤ · · · ≤ λn les valeurs propres de A et µ1 ≤ · · · ≤ µn−1 celles de Ai. Montrer que λ1 ≤ µ1 ≤ λ2 ≤ µ2 ≤ · · · ≤ µn−1 ≤ λn.

Démonstration. Principe du minimax.

Exercice 43 [ENS 2022] Pour A ∈ Sn(R), on note λ1(A) ≥ · · · ≥ λn(A) son spectre. Pour A,B ∈ Sn et i, j tel que i+ j ≤ n− 1,
comparer λi+j−1(A+B) et λi(A) + λj(B).

Démonstration. Minimax. Pour i = j = 1, on a λ1(A + B) ≤ λ1(A) + λ1(B). Puis on utilise λi = infEn−i+1 max⟨u(x), x⟩, et on
choisit Fn−(i+j−1)+1 = Fn−i−j en somme directe avec les i premiers vecteurs propres de A, et les j de B.

Exercice 44 [ENS 2022] Soit P = a2nX
2n + · · ·+ a1X + a0 ∈ R[X] de degré 2n. Montrer que la fonction associée à P est positive

sur R si et seulement s’il existe A = (Ai,j)0≤i,j≤n ∈ S+
n+1(R) telle que ak =

∑
i+j=k Aij .

Démonstration. Si A existe, pour X = (xi)0≤i≤n, on a XTSX = P (x) ≥ 0.
Réciproquement, pour n = 2 ça marche. Quitte à retirer une constante à P , on peut supposer qu’il s’annule, puis il faudrait pouvoir
le translater, pour se ramener au cas où 0 est racine. Alors on peut faire une récurrence.
Ou on fait la récurrence sans le translater, ça a l’air plus simple peut-être : Si P = Q(x+ a)2, on a ak = bk−2 + a2bk +2abk−1. Donc
si Q est associé à une matrice S, P est associé à a2S + 2aS1 + S2, où S1 est la matrice où on tronque la dernière ligne/colonne, puis
on met ajoute une première ligne/colonne nulle, S2 on recommence. Si a ≥ 0, les trois matrices sont positives. Si a ≤ 0, on peut se
ramener à l’autre cas en prenant x 7→ P (−x).
Plus simple : on peut écrire P = A2 +B2, ce qui donne une expression des coefficients de S.

Exercice 45 [ENS 2022] Soit A ∈ An et B ∈ S+
n . On suppose qu’il existe K ∈ Sn telle que le spectre de KA − AK + B soit > 0.

Montrer qu’il existe c, C > 0 tels que ∀t ≥ 0,
∥∥e−t(A+B)

∥∥
op

≤ Ce−ct, ou ∥·∥op est subordonnée à la norme euclidienne.
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Démonstration. KA−AK est symétrique de trace nulle. On a e−t(A+B) = e−t(A−(KA−AK))−t(KA−AK+B).
Supposons AK = KA (par exemple sur deux sous-espaces différents) et B ∈ S++

n . (En fait, revient à prendre K = On)
Alors l’hypothèse est B ∈ S++

n .
Avec Lie-Trotter, on peut traiter ce cas.
Via l’équation différentielle, c’est équivalent à montrer le résultat pour t = 1, ou pour t très petit en fait.

Supposons que ce soit faux. Alors il existe X tel que ⟨e−A+B
n X, e−

A+B
n X⟩ = 1, c’est-à-dire ⟨e−A+B

n e−
−A+B

n X,X⟩ = 1. Au premier
ordre, on obtient ⟨BX,X⟩ = 0, donc X ∈ KerB.
Non seulement, mais en plus,AX ∈ KerB. On en déduit qu’il existe un sous-espace vectoriel stable dans KerB, parA. Cela contredit
l’existence deK , en effet, on doit avoir ⟨(KA−AK)X,X⟩ > 0, mais la matrice deK dans une BON adaptée à KerB est symétrique,
donc et ce K ′ a la même propriété, mais K ′A−AK ′ est de trace nulle.

Exercice 46 [ENS 2022] Soit E euclidien et u ∈ L(E) symétrique. On munit L(E) de la norme subordonnée. Soit F un sous-espace
vectoriel et AF l’ensemble des projecteurs d’image F . Montrer que l’ensemble {∥u ◦ p− p ◦ u∥op , p ∈ AF } admet un minimum.

Démonstration. On prend une suite pn de projecteurs qui tend vers l’inf. On peut associer aux supplémentaires de F des BON, et en
extraire une suite convergente. On a un problème si la famille obtenue n’est pas en somme directe avec F . Supposons que ei → z,
avec x ∈ F . Alors ⟨up(x)− pu(x), y⟩ = ⟨p(x), u(y)⟩ − ⟨u(x), p∗(y)⟩.
On prend y ∈ F⊥, ce qui annule p∗(y). On prend x = ei−z

∥ei−z∥ . On obtient que nécessairement, ⟨p(x), u(y)⟩ = 0.

Donc ei → z dans une direction ⊥ à F⊥, ce qui est impossible, car on peut supposer ei − z ∈ F⊥.

Exercice 47 [ENS 2022] Soit n ∈ N∗. Déterminer les fonctions f de Sn dans R∗
+ possédant les propriétés suivantes :

• pour S ∈ Sn et O ∈ On, f(OTSO) = f(S)

• il existe une famille (fi,j)i≤j de fonctions R → R tel que ∀S, f(S) =
∏

i≤j fij(Sij)

Démonstration. Il suffit essentiellement de traiter le cas n = 2. On écrit f
((

a b
b c

))
= f1(a)f2(b)f3(c).

En conjuguant par
(
1 0
0 −1

)
, on obtient f2 paire. En conjuguant par

(
0 1
1 0

)
, on obtient f1 = f3.

On suppose f1(0) = 1.
On conjugue par une rotation. Si a, c = 0, on obtient f1(0)2f2(b) = f1(2b sin cos)f1(−2b sin cos)f2(b(sin

2 − cos2)) = f1(u)f1(−u)f2(v),
avec −u2 − v2 = −b2. En posant f̃1 = f1(x)f1(−x), on obtient f2(b) = f̃1(u)f2(v), avec la condition u2 + v2 = b2.
En fait, en posant g =

√
f(x)× f(−x), on peut supposer f1 paire, donc f̃1 = f21 .

En prenant a, b = 0, on obtient f1(c) = f1(c sin
2)f1(c cos

2)f2
(
c(sin2 − cos2)

)
, donc f1(u)f1(v) =

f1(u+v)
f2(w) , où uv − w2 = 0.

En prenant u = v, et en combinant avec le précédent, on obtient f2(
√
u2 + u2) = f1(2u) : f2(

√
2u) = f1(2u), donc f2(x) = f1(

√
2x)

Alors on réinjecte, en f1(
√
2b) = f1(u)

2f1(
√
2v), si u2 + v2 = b2 En posant h1 = ln f1(

√
x), on a h1(2b2) = 2h1(u

2)+h1(2v
2) ; En

prenant v = 0, on obtient h1(x+ y) = h1(x) + h1(y), donc h est un morphisme de R+ (n’importe lequel marchera), et f1 = eh1(x)
2

.
Ensuite, sans la parité : La fonction h2 précédente vérifie les mêmes hypothèses, donc quitte à multiplier par une des fonctions trouvées,
on peut supposer f2 = 1. Donc f1(−x) = f1(x)

−1, et f1(u)f1(v) = f1(u+ v) : donc f1 est un morphisme.

Finalement, les solutions sont les Ceh1(TrS)eh2(
∑

x2
ij), où h1, h2 sont des morphismes de R → R et R+ → R+.

Autre idée (RMS) :

Utiliser
(
x y
y x

)
semblable à

(
x+ y 0
0 x− y

)
et
(
x y
y −x

)
semblable à

(√
x2 + y2 0

0 −
√
x2 + y2

)
.

Cela donne f1(x2)f2(y) = f1(x+ y)f1(x− y) et f1(x)f1(−x)f2(y) = f1(
√
x2 + y2)f1(−

√
x2 + y2)

Exercice 48 [ENS 2022] On munit Mn(R) de la norme subordonnée à la norme euclidienne. Soit ε > 0. Montrer qu’il existe δ > 0
tel que pour tous n, d ≥ 1, et A,B ∈ On vérifiant Ad = In et

∥∥AkB −BAk
∥∥ ≤ δ pour tout k ∈ N, il existe B ∈ On telle que

∥B1 −B∥ ≤ ε et AB1 = B1A.

Démonstration. Considérer B′ = 1
d

∑
AkBA−k .

On a B′ qui commute avec A, et ∥B′ −B∥ ≤ δ.
Si A n’a que des valeurs propres distinctes, on est bon.
Sur un espace propre de A. On a, pour tout ∥X∥ = 1, ∥B′X∥ − ∥X∥ ≃ 0.
Décomposition polaire, sur l’espace propre, B′ = OS, et ∥S∥ = supSp ≤ ε, donc B′ est proche d’une matrice orthogonale.

On a S =
√
B′TB′, commute avec A, car B′ et B′T commutent avec A.

Exercice 49 [ENS 2022] Soient A,B ∈ Sn.

1. s Montrer que Tr
(
(AB)2

)
≤ Tr

(
A2B2

)
.

2. s Pour k ≥ 1, montrer que Tr
(
(AB)2

k
)
≤ Tr

(
(A2B2)2

k−1
)

.
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Démonstration. 1. On prendA diagonale. Pour k = 1, c’est a2+ b2 ≥ 2ab : on a à droite Tr((DB)TDB) =
∑

i,j λ
2
i b

2
ij et à gauche

Tr(DBDB) = Tr((BD)T (DB)) =
∑

i,j λiλjb
2
ij .

Alternative : Tr
(
(AB)2

)
= ⟨AB,BA⟩ ≤

√
∥AB∥ ∥BA∥, qui donne le résultat.

2. En général, on a, à gauche ∑
i1,...,i2k

bi1i2 . . . bi2k i1λi1 . . . λi2k

Et à droite, une somme sur les mêmes indices, et les mêmes b, mais λ2i1λ
2
i3
. . ..

On regroupe les termes de mêmes produit en b, étant donné un 2k-cycle, on peut le lire en partant de chaque point, et dans le
sens inverse.
Si le produit des b est positif, l’IAG permet de conclure.

Il faut rajouter les termes en b2
k−1

i1i2
λ2

k−1

i1
, qui donnent de la positivité. Ou faire demi-tour à la moitié : b2i1i2 . . . b

2
i
2k−1−1

i
2k−1

, qui

à gauche donnent λ21λ
2
2 + . . . λ2n/2 et à droite λ41λ

4
3 . . .

Alors à gauche, la somme est positive (en tout), et c’est (bi1i2 . . . bin/2−1inλ1 . . . λn/2−1 + bin/2in/2+1
. . . )2 qui devrait être ≤ à

la même chose, mais avec des λi au carré tous les deux termes. On a un problème si les deux sommandes n’ont pas le même
signe. . . Irréparable : le terme de droite pourrait être nul.

Plutôt : récurrence.Tr(AB)2
k

= Tr
(
(ABAB)2

k−1
)
≤ Tr

(
(ABAABAB2)2

k−2
)
= Tr

(
(ABA2BAB2)2

k−2
)
= Tr

(
(BA2BAB2A)2

k−2
)

.

Mais Tr
(
(ST )2

k−2
)
≤ TrS2k−2

T 2k−2 ≤
√∥∥S2k−2

∥∥√∥∥T 2k−2
∥∥, d’où le résultat.

Exercice 50 [ENS 2022] On note ∥·∥ la norme euclidienne sur Mn(R).

1. Montrer que S+
n est un convexe fermé de Sn, et préciser son intérieur dans Sn.

2. Soit A ∈ Sn. Montrer qu’il existe un unique P ∈ S+
n que l’on déterminera tel que ∀M ∈ S+

n , ∥A− P∥ ≤ ∥A−M∥.

Démonstration. 1.
2. Projection sur un convexe fermé.

Exercice 51 [ENS 2022] SoitA ∈ Sn et a, b > 0 tels que aIn−A etA− bIn soient positives. SoitX,Y dans Rn tels que ⟨X,Y ⟩ = 0.
Montrer que

⟨X,AY ⟩2 ≤
(
a− b

a+ b

)2

⟨X,AX⟩⟨Y,AY ⟩.

Démonstration. En conjuguant par O, on peut supposer que X = E1, et Y = E2. On obtient l’inégalité

a212 ≤
(
a− b

a+ b

)2

a11a22.

On est ramené au cas de dimension 2. Les racines sont celles du polynôme (X−a11)(X−a22)−a212 = X2−(a11+a22)X+a11a22−a212
On a pris un polynôme scindé, on le descend verticalement. Au bout d’un moment, les racines sont trop écartées.
Au pire des cas, on a a11 + a22 = a+b

2 , et même a11 = a22 = a+b
2 , et a12 la valeur pour laquelle on obtient a et b comme racines.

Exercice 52 ⋆ [ENS 2022] Pour A ∈ Mn(R), on note C(A) sa comatrice. Soient U, V ∈ Rn unitaires. On note P,Q les matrices
des projections orthogonales sur U⊥ et V ⊥. Montrer que C(P )C(Q)C(P ) = ⟨U, V ⟩2C(P ).
Démonstration. P est de rang n− 1, donc C(P ) est de rang 1, et son image est incluse dans VectU , et U⊥ est inclus dans le noyau de
C(P ), donc C(P ) est la projection sur U , ⊥U⊥. D’où le résultat.

Exercice 53 [ENS 2022] Une matrice H ∈ Mn(C) est dite hermitienne lorsque, pour tout i, j ∈ [[1, n]], hi,j = hj,i. Elle est positive
si toutes ses valeurs propres sont réelles positives.

1. Déterminer les formes linéaires f sur Mn(C) telles que f(In) = 1 et f(H) ∈ R+ pour tout H hermitienne positive.
2. Déterminer les formes linéaires f sur Mn(C) telles que f(In) = 1 et f(H) ∈ R∗

+ pour toutH hermitienne strictement positive.

Démonstration. 1. La trace marche, les M 7→Mii marchent. On peut supposer que f(Mii) =
1
n , en ajoutant celles qui marchent,

pour égaliser, puis en divisant.

Dans M2,
(
1 1
1 1

)
est symétrique, positive. Donc f(E12 + E21) + f(E11) + f(E22) ≥ 0. Et

(
1 i
−i 1

)
aussi, donc if(E12 −

E21) + · · · ≥ 0 On en déduit que f(Eij) = f(Eji).
(
a λ

λ b

)
est positive si et seulement si a + b ≥ 0 et ab ≥ |λ|2. Sous

cette condition, on doit avoir af(E11) + bf(E22) + 2Re
(
λf(E12

)
≥ 0. C’est-à-dire af(E11) + bf(E22)± 2

√
abf(E12) ≥ 0,

c’est-à-dire |f(E12)| ≤
√
f(E11)f(E22), c’est-à-dire

(
f(Eij)

)
i,j

est hemitienne.

Alors f(A) =
∑
aijf(Eij) = ⟨A,F ⟩. Si F1, F2 sont ≥ 0 (nécessite diagonalisation, semble-t-il. . .).

Réciproquement, toute forme linéaire s’écrit A 7→ ⟨A,F ⟩. On a vu que F était hermitienne. Et si on la diagonalise avec un
coefficient < 0, contradiction.
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2. D’après la question précédente, on correspond à une hermitienne, qui doit être non nulle. Cela suffit.

Exercice 54 [ENS 2022] Soit A ∈ Mn,p(R).

1. Justifier que AAT est diagonalisable à valeurs propres positives. On note σ1 ≥ · · · ≥ σr > 0 ses valeurs propres non nulles
(avec multiplicité), et S(A) =

(√
σ1, . . . ,

√
σr
)
.

2. Comparer S(A) à S
(
AT
)
.

3. Montrer qu’il existe U dans On(R) et V dans Op(R) telles que UTAV = R =

(
D 0
0 0

)
, avec D = diag (σ1, . . . , σr), où

S(A) = (σ1, . . . , σr).

4. On considère A⋆ = V R∗U⊤, avec R∗ =

(
D−1 0
0 0

)
∈ Mp,n(R). Interpréter géométriquement les matrices AA⋆ et A⋆A,

en commençant par examiner le cas particulier où A est inversible.

Démonstration. 1. Cours.
2. Elles ont les mêmes traces de puissances.

Ou, quitte à agrandir la matrice, on peut la supposer carrée, auquel cas AB et BA ont le même polynôme caractéristique.
Ou, si Eλ est un espace propre pour AAT , on a ATAATX = ATλX , donc l’image par AT est un espace propre pour ATA
(sauf λ = 0).

3. Il existe une BON telle que ⟨ATX,ATX⟩ = σ2
i , ce qui donne exactement le résultat.

4. On a A = URV T . Si A est inversible, A∗A = In. En général, c’est la matrice de projection orthogonale sur la somme des
sous-espaces vectoriels des valeurs propres ̸= 0.

2) Analyse
Exercice 55 [ENS 2022] Soit n ≥ 1.

1. Déterminer les plus petites constantes C et C ′ telles que

∀X ∈ Rn, ∥X∥2 ≤ C ∥x∥∞ et ∥X∥+∞ ≤ C ′ ∥X∥2 .

2. Soit A ∈ Mn(R) telle que ∀X ∈ Rn, ∥AX∥2 ≥ ∥X∥∞. Montrer qu’il existe X ∈ Rn tel que ∥AX∥2 ≥
√
n ∥X∥∞.

3. Pour deux espaces vectoriels normés E et F de dimension finie, et f ∈ L(E,F ), on note ∥f∥ = sup∥x∥E=1 ∥f(x)∥F . Lorsque
dimE = dimF , on note

d(E,F ) = inf{∥f∥
∥∥f−1

∥∥ , f ∈ L(E,F ) bijective}.

Déterminer d(E,F ) lorsque E = Rn est muni de ∥·∥2 et F = Rn est muni de ∥·∥∞.

Démonstration. 1. ∥X∥2 ≤
√
n ∥X∥∞ et ∥Xn∥i ≤ ∥x∥2.

2. Les colonnes de A sont unitaires. C’est la méthode probabiliste.
3. D’après la première question, d(E,F ) ≤

√
n. D’après la seconde, d(E,F ) ≥

√
n.

Exercice 56 ⋆⋆ Continuité des racines [ENS 2022] Soit n ∈ N∗.

1. Montrer que l’ensemble des polynômes de degré n scindé à racines simples sur C est un ouvert de Cn[X].
2. Pour t ∈ C, on pose Pt = Xn − tX − 1. Montrer qu’il existe n fonctions continues x1, . . . , xn définies sur un voisinage de 0

dans C sur lequel Pt =
∏n

i=1(X − xi(t)).

Démonstration.

Exercice 57 [ENS 2022] Soit f : x 7→ 2x − 1
x . On pose K =

⋂
n∈N f

−n([−1, 1]). Montrer que K est un compact d’intérieur vide
sans point isolé et que f(K) = K .

Démonstration. Compact : intersection de compacts.
Intérieur vide : la fonction est expansive sur [−1, 1], donc tout intervalle ouvert grossi.
Sans point isolé : on montre dense, par segments emboîtés.
f(K) = K semble clair.

Exercice 58 [ENS 2022] On note B([0, 1],R) l’ensemble des fonctions bornées, que l’on munit de la norme infinie. Montrer qu’il
n’existe pas d’application linéaire continue T de B([0, 1],R) dans C([0, 1],R) dont la restriction à C([0, 1],R) soit l’identité.

Démonstration. On postule l’existence d’une projection p continue, dont l’image est C([0, 1],R). C’est donc que C([0, 1],R) admet un
supplémentaire fermé.
Réciproquement, si C([0, 1],R) admet un supplémentaire fermé, pourquoi est-ce que la projection est continue? (c’est vrai dans un
espace de Banach mais dur).
On construit une suite ψn ∈ H et φn ∈ C([0, 1],R) tel que ψn → +∞ et ψn − φn = O(1).
On va prendre ψn continue par morceau, dont les sauts sont ≤ 1, sauf en un nombre fini de points.
Soit ea l’indicatrice de a. On écrit ea = ha + ca, ha a un unique point de discontinuité. Donc sur un voisinage, à droite ou à gauche
de a, ha est ≥ 1

3 .
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On construit une suite de telles fonctions, que l’on somme. On s’assure que la série des ψn − φn converge absolument.
si P est la projection sur le supplémentaire de C([0, 1],R), vx ◦P est une forme continue sur C([0, 1],R) donc représentée par une
mesure mx.
Mais 1x est limite d’une suite de fonctions fn continue, donc par convergence dominée (par rapport à mx), on a donc P1x = 0,
contradiction.
Cette convergence dominée, c’est le fait que si fn → f simplement, alors ↕(Pfn) → ↕(Pf).

Exercice 59 L’espace des suites qui tendent vers 0 n’a pas de supplémentaire fermé dans l’ensemble des suites bornées.

Démonstration. • Il existe une famille non dénombrable (Ua) de parties de N infinies, dont les intersections deux à deux sont
finies. (prendre des suites de rationnels qui convergent vers un irrationnel).

• On prend φa la fonction caractéristique de Ua. Si g est une application continue qui est nulle sur ⌋0, alors {a | |g(φa)| ≥ ε} est
fini. En effet, sinon, en les réorientant et les sommants et en rajoutant une suite qui tend vers 0, on obtient des suites de norme
1, pour lequel la valeur de g est ≥ mε, ce qui contredit la continuité.

• Donc {a | g(φa) ̸= 0} est dénombrable.
• Si ⌋0 avait un supplémentaire fermé H . Alors il réalise une bijection topologique entre les f

Pour k ∈ N, on considère l’application fk : u 7→ uk , qui est continue. On peut alors définir f̃k : x 7→ fk(p(x)), la projection sur
H (qui est continue, c’est dur vient de théorème sur les Banach : application ouverte qui découle de Baire).
D’après ce qui précède, la famille des f̃k est non nulle uniquement sur un ensemble dénombrable. Donc il existe a tel que
∀k, f̃k(a) = 0, donc p(a) = 0, contradiction.

Exercice 60 [ENS 2022] Soit f : M 7→ 2M −M2. On note Γ l’ensemble des N ∈ Mn(C) qui sont limites d’une suite de la forme
fk(M).

1. Déterminer Γ.
2. Pour N ∈ Γ, déterminer les X tels que fk(X) → N .

Démonstration. 1. Toute limite vérifie A = 2A−A2, donc projecteur.
2. Les valeurs propres réelles possibles de X sont des 0 (ou 2), et n’importe quelle autre valeur dans ]0,2[ qui tendra vers 1.

Si on autorise une valeur propre complexe, un+1 = un(2− un). On a un+1 − 1 = −(un − 1)2, ce qui permet de faire l’étude.
D’autre part, si on se restreint à un espace caractéristique. Sur F0, F2 on peut être quelconque, mais sur Fa, comme un(a) → 1,
il faut que l’on soit diagonale. En fait non. On peut être quelconque : l’application estN 7→ 2N−N2−2λN = (2−2λ)N−N2,
donc on tend vers 0 dans tous les cas.

Exercice 61 [ENS 2022] Dunford, par la méthode de Newton Soitm ∈ N∗. Pour u ∈ L(Qm), on pose sΨu(X) =
∏

λ∈SpC(u)
(X−

λ). Étudier la bonne définition et la convergence de la suite (un) définie par u0 = u et un+1 = un −Ψu(un) ◦Ψ′
u(un)

−1.

Démonstration. On a P ′(u0) inversible, car les valeurs propres de u0 ne sont pas racines de P .
Le polynôme est bien à coefficients dans Q, puisque c’est le quotient de χu avec le pgcd de sa dérivée.
Comme les ui sont des polynômes en u, les espaces caractéristiques sont préservés, et même valeurs propres (les racines de P ′ sont
̸= λi).
On a u− P (u)P ′(u)−1 − λk = Q(u), où λk est racine double de Q.
On en déduit que P (un) = P (u)2

n

H(u). En particulier, P (un) = 0 APCR, donc la suite est constante APCR. Diagonalisable sur C.
C’est la décomposition de Dunford de u.

Exercice 62 [ENS 2022] On munit GLn(C) de la norme subordonnée à la norme ∥·∥∞. Déterminer le plus petit a > 0 tel qu’il existe
un sous-groupe non trivial de GLn(C) inclus dans la boule fermée B(In, a).

Démonstration. Forcément que des valeurs propres de module 1. Dans le cas où il n’y a que des 1, c’est forcément l’identité. Si une
valeur propre est irrationnelle, on peut trouver un coefficient qui tend vers −1, auquel cas ∥M − In∥ ≥ 2.
De même, on est forcément diagonalisable.
Donc les valeurs propres sont rationnelles. En prenant D = Diag(j), on a a = |1 − j| = 1. On ne peut pas faire mieux, car on aura
une valeur propre à une distance > 1 de 1.

Exercice 63 ⋆⋆ [ENS 2022] Soit E euclidien, et A une partie bornée non vide de E.

1. Montrer qu’il existe une unique boule fermée de rayon minimal contenant A.
2. Qu’en est-il dans un evn quelconque?

Démonstration.

Exercice 64 [ENS 2022] On munit Rn d’une norme, et L(Rn,R) de la norme d’opérateur associée. Montrer qu’il existe une base de
vecteurs unitaires de Rn dans laquelle les formes linéaires coordonnées sont unitaires.
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Démonstration. ∥ℓ∥ = sup∥x∥=1 ∥ℓ(x)∥ = 1
inf∥ℓ(x)∥=1∥x∥

: on cherche des xj tel que ∥xi +
∑
αjxj∥ ≥ ∥xi∥, pour tout αj .

On choisit x1 unitaire. La boule unité admet (au moins) un plan tangent en xi, qui défini un espace L1 de dimension n − 1, supplé-
mentaire à x1. Alors si on complète en une base quelconque de L1, la forme coordonnée en x1 sera bien unitaire. D’autre part, en tout
y ∈ L1, on aura nécessairement x1 qui appartiendra à (au moins un) plan tangent à y.
On recommence, en choisissant x2 quelconque dans L1, etc.

Exercice 65 [ENS 2022] Soit (An)n≥1 une suite de matrices de déterminant 1 dans M2(R), ainsi qu’une norme arbitraire N sur
M2(R). On suppose que (An)n≥1 est bornée. On considère, pour tout k ≥ 1, la matrice produit Bk = AkAk−1 . . . A1. On suppose
enfin que 1

n lnN(Bn) tend vers un réel γ > 0 lorsque n tend vers +∞. Montrer qu’il existe un vecteur non nul v de R2 tel que
1
n ln ∥Bnv∥2 tende vers −γ lorsque n tend vers +∞.

Démonstration. On peut remplacer la norme par la norme subordonnée à la norme 2.
On a ∥AB∥2 ≤ ∥A∥2 ∥B2∥, mais également ∥AB∥2.
On note vn tel que Bnvn soit de norme minimale, wn telle que Bnwn soit maximale. En fait, vn et wn sont orthogonaux, sinon
cos twn + sin tvn est de norme 1 + 2 cos t sin t⟨u, v⟩ et son image, de norme cos2 tMn + sin2Mn + 2 cos t sin t. IDK.
Comme la suite (An) est bornée, on a ∥Bn+1vn∥ qui est égale à ∥Bn+1vn+1∥, à une constante multiplicative près. Donc si on écrit
vn = αvn+1 + βwn+1, β a une décroissance géométrique, donc ∥vn − vn+1∥ = O(cn), donc (vn) converge.

Exercice 66 ⋆⋆ Corps p-adique [ENS 2022] On fixe un nombre premier p. On note vp la fonction de valuation p-adique sur Z\{0}.

1. Pour r = a
b un rationnel avec a, b

entiers, on pose |r|p = pvp(a)−vp(b)

si a ̸= 0, et |r|p = 0 sinon. Mon-
trer que la quantité ainsi définie ne
dépend effectivement que de r et non
du couple (a, b) envisagé.

2. Montrer que | · |p vérifie |r + s|p ≤
max(|r|p, |s|p) ≤ |r|p + |s|p pour
tous r, s dans Q, que | − r|p = |r|p
pour tout r ∈Q, que |·|p est à valeurs
positives et ne s’annule qu’en 0. On
définit à partir de là, et comme pour
une norme sur un R-espace vectoriel,
la notion de convergence vers 0 pour
une suite à termes dans Q.

3. Une suite (an)n≥0 à termes dans Q
est dite de Cauchy lorsque, pour tout
réel ε > 0, il existe un entier n0 ≥ 0
tel que |an − am|p ≤ ε pour tous
n ≥ n0 et m ≥ n0. Montrer que
si une telle suite ne tend pas vers 0,
alors elle est à termes non nuls à par-

tir d’un certain rang et la suite in-
verse (1/an)n est de Cauchy.

4. Montrer que l’ensemble Cp des suites
de Cauchy à termes dans Q est un
sous-anneau de QN.

5. Deux suites de Cauchy (an)n≥0

et (bn)n≥0 sont dites équivalentes
lorsque leur différence converge vers
0. Montrer que l’on définit ainsi une
relation d’équivalence sur QN. On
considère l’ensemble quotient Qp de
l’ensemble des suites de Cauchy par
cette relation d’équivalence. Mon-
trer qu’il existe une unique structure
d’anneau sur Qp qui fasse de la pro-
jection canonique de Cp dans Qp un
morphisme d’anneaux.

6. Montrer que Qp est un corps, et
mettre en évidence un unique mor-
phisme injectif de Q dans Qp.

7. Soit (an)n≥0 une suite de Cau-
chy à termes dans Q. On appelle

norme de a le réel : N(a) =

limn→+∞ sup
{
|ak|p ; k ≥ n

}
.

Montrer que deux suites de Cauchy
équivalentes ont la même norme, et
en déduire une fonction ∥·∥ sur Qp

telle que N(a) = ∥a∥ pour toute
suite de Cauchy a à termes dans Q,
dont on note [a] la classe pour la re-
lation d’équivalence précédente.
Vérifier que N(x + y) ≤
max(N(x), N(y)) pour tous x, y
dans Qp, que N(−x) = N(x) pour
tout x ∈ Qp, et enfin que N est po-
sitive et ne s’annule qu’en l’élément
nul de Qp.

8. Soit
∑
an une série à termes dans

Qp. Montrer qu’elle converge au
sens deN si et seulement si (an)n∈N

converge vers 0 au sens de N .
9. Le corps R est-il isomorphe au corps

Qp ?

Démonstration.

Exercice 67 ⋆⋆ [ENS 2022] Soit u une suite réelle. Déterminer une CNS pour qu’il existe une réindexation de u qui soit monotone
APCR.

Démonstration. A une limite, et tous les termes sont du même côté de la limite APCR.

Exercice 68 ⋆⋆ Formule de Lie-Trotter [ENS 2022] Soit d ≥ 1 et A,B ∈ Md(C). Montrer que
(
eA/neB/n

)n → eA+B .

Démonstration.

Exercice 69 ⋆⋆ [ENS 2022] Pour x ∈ R, on note ⌈x⌉ le plus petit entier relatif supérieur ou égal à x. On pose u0 = 1 et un = 2un−1

pour tout entier n ≥ 2 qui est une puissance de 2, et un = ⌈un−1

3 ⌉ pour tout entier n ≥ 3 qui est une puissance de 3 et enfin un = un−1

sinon. Montrer que u tend vers +∞.

Démonstration. On a un ≥ 2nbpuissde2

3nbpuissde3 = 2⌊ln2(n)⌋

3⌊ln3(n)⌋ .
Notons vp la suite qui vaut 1 en p, puis suit une récurrence ∗2, /3. En notant xi les indices où on fait +1/3, ou +2/3, on a un =∑

X
1,2
3 vxi

.
Mais les vp sont minorées, par 1/3, (à partir de xi) et il y a une infinité de xi.
Alternative : par l’absurde, si on ne tend pas vers +∞, on est bornée, mais alors, dans chaque indice où on est divisé par 3, mais pas
parfaitement, on est multiplié par 1

3 (1 +
1
K ). On peut utiliser ça pour obtenir une minoration un ≥ uN

6 (1 + 1
K )nb de fois.

Exercice 70 ⋆ Règle de Raabe-Duhamel [ENS 2022]
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1. Soient (an), (bn) deux suites de réels > 0. On suppose qu’à partir d’un certain rang, an+1

an
≤ bn+1

bn
. Que dire des séries

∑
an et∑

bn ?
2. Soit (an) une suite de réels > 0. On suppose que an+1

an
= 1 + α

n + o
(
1
n

)
avec α > −1. Montrer que

∑
an converge.

3. Que dire si α < −1?

Démonstration.

Exercice 71 ⋆ [ENS 2022] Si a = (an)n∈Z est une famille sommable de complexes, on pose ∥a∥ =
∑

Z |an|.
Si (an) et (bn) sont sommables, on pose (a ∗ b)n =

∑
k∈Z akbn−k .

1. Montrer que a ∗ b est bien définie, sommable, et que
∥a ∗ b∥ ≤ ∥a∥ ∥b∥.

2. Montrer que ∗ est commutative, associative. Déterminer un
neutre pour ∗.
Si a est sommable, on pose, pour |z| ≤ 1, fa(z) =

∑
Z anz

n.

3. Montrer que fa est continue sur le disque unité fermé.
4. Si a est inversible pour ∗, montrer que fa ne s’annule pas

sur D.
5. On suppose que a est à support fini et que fa ne s’annule

pas sur D. Montrer que a est inversible pour ∗.

Démonstration. 1.
2.
3. Découper, avec un reste < ε.
4. Si a ∗ b = 1, on a fafb = 1.
5. fa est polynomiale, donc 1

fa

Exercice 72 ⋆ ⋆ [ENS 2022] Soit (an) ∈ ]0,1[
N. Donner une CNS pour que pour tout x ∈ ]0,1[, il existe une permutation σ de N∗

telle que x =
∑+∞

n=1
aσ(n)

2n .

Démonstration. 0 et 1 sont valeurs d’adhérences.

Exercice 73 [ENS 2022] Soient a, b, c ∈ R et f : x 7→ 4ax3 + 3bx2 + 2cx. Montrer qu’il existe x ∈ [0, 1] tel que f(x) = a+ b+ c.

Démonstration. C’est la FAF ; Facile.

Exercice 74 ⋆ [ENS 2022] Donner une fonction f : R → R continue en tout point de R \ Q et discontinue en tout point de Q.

Démonstration. p
q 7→ 1

q

Exercice 75 [ENS 2022] Soit f : R∗
+ → R∗

+ de classe C∞ telle que f(x)−−−−→
x→0

0 et f(x)−−−−−−→
x→+∞ 0 et dont la dérivée n-ième s’annule

en un unique xn > 0, pour tout n ≥ 1.

1. Montrer que (xn)n≥1 est strictement croissante.
2. Montrer que xnf (n)(x)−−−−→

x→0
0, pour tout n ≥ 0.

3. Soit g : x 7→ f(x)
x . Montrer que pour tout n ∈ N, il existe des coefficients cn,p tels que g(n)(x) =

∑n
p=0 cn,p

f(n−p)(x)

xp+1 . Montrer
alors que (−1)ng(n) est strictement positive.

Démonstration. 1. Étant monotone APCR, les dérivées admettent des limites, qui doivent être nulles. f doit être croissante, puis
décroissante. Donc f ′ est positive, puis négative, mais comme elle tend vers 0, donc elle est décroissante, puis croissante, vers 0.
Donc f ′′ est négative, puis positive, donc croissante, puis décroissante.
On obtient aussi la monotonie de (xn).

2. C’est une récurrence. On a
Si |xnf (n)(x)| ≥ ε, on a |f (n)(x)| ≥ ε

xn , et par monotonie,
∣∣f (n−1)(x)− f (n−1)(x/2)

∣∣ ≥ ε
2xn−1 . Cela contredit l’hypothèse au

rang n− 1.

3. On a g(n)(x) = 1
xn+1

(∑(
n
p

)
(−1)pp!f (n−p)(x)xn−p

)
, donc g(n)(x) = o0(

1
xn+1 ).

Pour n = 1, on a g′(x) = xf ′−f
x2 ≤ 0 pour x assez petit : si f ′ décroissante et positive, on a f(x) =

∫ x

0
f ′(t) dt (utiliser FAF

plutôt).
D’autre part, en un 0, on a f ′ du même signe que f , donc f ′ est encore de la bonne monotonie. Impossible !
L’expression trouvée permet de justifier que xn+1g(n)(x)−−−−→

0,+∞ 0. Par ailleurs, on a xg = f , donc xg(n) + g(n−1) = f (n), donc

(xg(n))′ = xg(n+1)+g(n) = f (n), donc s’annule une seule fois. On en déduit, par Rolle généralisé, que g(n) ne s’annule pas.

Exercice 76 ⋆ ⋆ [ENS 2022] Soient I un intervalle ouvert et f, g : I → R dont l’ensemble des points de continuité est dense dans
I . Montrer que f, g ont un point de continuité commun.

Démonstration. On part d’un point x0. Il existe un point x1 de continuité de f tel que |x− x1| ≤ δ ⇒ |f(x)− f(x1)| ≤ 1.
Il existe x2 de continuité de f tel que ∃δ2, |x− x2| ≤ δ2 ⇒ |f(x)− f(x2)| ≤ 1/2. Et on peut supposer δ2 ≤ δ

2 .

On continue, avec δ3 ≤ δ2
2 . Alors le point d’adhérence est un point de continuité de f .

En général, on reprend la construction, mais on alterne un point de continuité de f , et un de g.
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Exercice 77 ⋆ ⋆ Fonctions harmoniques [ENS 2022] Déterminer les fonctions f : R → R continues et bornées telles que
∀x ∈ R, 1

4

(
f(x+ 1) + f(x− 1) + f(x+ π) + f(x− π)

)
= f(x).

Démonstration. Si f admet un maximum, minimum, par continuité, elle est constante, car Z + πZ est dense.
Sinon, pour M assez grand, le maximum sur [−M,M ] est forcément atteint à π du bord.
La fonction M(x) = max[x,x+π] f(t) est croissante.
Soit y un point. Pour tout ε, on peut écrire f(y) comme un barycentre symétrique de valeurs de f de points qui, pour un poids d’un
moins 1− ε, sont dans [y + π, y + 2π], et [y − 2π, y − π].
Si M(x0) > ε1 +M(x0 − π), alors si on suppose que le maximum est atteint en x0, on a M(x0 + 2π) −M(x0) > ε1(1 − ε), si le
maximum est atteint en x1, on a M(x1)−M(x1 − 2π2π) > ε1(1− ε).
On peut recommencer. Il faut clarifier les constantes multiples de π, etc.

Exercice 78 ⋆ [ENS 2022] Soit f une fonction de classe C1 de [0, 1] dans R telle que (f(x), f ′(x)) ̸= (0, 0) pour x ∈ [0, 1].
Déterminer la limite, lorsque δ tend vers 0+, de 1

δ

∫ 1

0
1|f(t)|<δ|f ′(t)|dt.

Démonstration. Le nombre de zéros de f est fini. On devrait trouver 2 fois le nombre de zéros (compté une seule fois sur les bords).

Exercice 79 ⋆ [ENS 2022] Soit f ∈ C0([0, 1],R telle que ∀(x, y) ∈ [0, 1]2, xf(y) + yf(x) ≤ 1. Montrer que
∫ 1

0
f(x) dx ≤ π

4 .

Démonstration. NB : l’inégalité en conclusion est atteinte pour f(x) =
√
1− x2.

Écrire l’inégalité en (sin θ, cos θ) et intégrer entre 0 et π
2 . Par changement de variable, c’est l’intégrale de f (deux fois).

Exercice 80 ⋆ ⋆ [ENS 2022] Soit f ∈ C0([−π, π],R) monotone et continue par morceaux. On pose, pour n ∈ Z, cn(f) =
1
2π

∫ π

−π
f(x)e−inx dx. Montrer que la suite (ncn(f))n∈Z est bornée.

Démonstration. Rmq : Si f C1, ok. Si f constante, ok.

On définit (xn) de sorte que f(xn+1)− f(xn) =
1
n . On écrit la somme, comme

∑M/n
k=0

k
n

einxk+1−einxk

n , c’est bien borné.
Vrai pour des fonctions aux variations bornées.

Exercice 81 [ENS 2022] Calculer
∫ +∞
0

∫ +∞
x

e−
t2

2 dtdx.

Démonstration. On pose G(x) =
∫ +∞
x

e−t2/d dt. On a
∫ +∞
0

G(x) dx = [xG(x)]
+∞
0 +

∫ +∞
0

e−x2/2 dx.

Il faut quand même justifier l’IPP, par le fait que le crochet converge, par une majoration simple (xe−x2/2 par exemple).

Exercice 82 [ENS 2022] Soit f ∈ C0 (R+,R) strictement décroissante telle que f(x) → 0 quandx→ +∞. Montrer que
∫ +∞
0

f(x)−f(x+1)
f(x) dx =

+∞.

Démonstration. Intuitivement, c’est du f ′

f , donc en ln f . On montre que si f(x1) ≤ f(x0)
2 etx1 ≥ x0+1, l’intégrale

∫ x1

x0−1
f(x)−f(x+1)

f(x) dx ≥
C .
Cela revient à montrer que

∫ x1−1

x0−1
f(x+1)
f(x) dx est loin de (x1 − x0), mais par Cauchy-Schwarz

∫ x1−1

x0−1

f(x+ 1)

f(x)
≤

√∫ x1

x0

f(x)2
∫ x1−1

x0−1

1

f(x)2
≤ (x1 − x0)f(x0)

1

f(x1)
.

Exercice 83 [ENS 2022] Déterminer les suites croissantes u à termes positifs telles que, pour toute fonction f : R → R continue et
intégrable, on ait un

∫
R

∣∣f(x+ 1
n

)
− f(x)

∣∣dx−−−−−−→
n→+∞ 0.

Démonstration. On prend f avec des pics de base vk tout les k, de hauteur 1, avec
∑
vk qui converge. On a f ′ = 1

vk
.

L’intégrale en question est
∑

vk≥ 1
n

1
vkn2 ≤ Card(vk≥ 1

n )

n . +
∑

vk≤ 1
n
vk
∑

vk≥ 1
n

vk
vkn

+
∑

vk≤ 1
n
vk

Si (un) converge, par CVD, on tend vers 0.
On prend vk = 1

uk+1
− 1

uk

On obtient un
(

Card(uk≤n)
n + 1

un

)
, qui ne tend pas vers 0.

Exercice 84 [ENS 2022] Soit (a, b) ∈ R2 tel que a ≥ b > 0.

1. Montrer que 1 ≤ a+b
2
√
ab

≤
√

a
b , puis que 0 ≤

a+b
2 −

√
ab

a+b
2 +

√
ab

.

2. On pose I(a, b) =
∫ +∞
−∞

dx√
(x2+a2)(x2+b2)

. Calculer I(a, a), puis démontrer que I(a, b) = I
(

a+b
2 ,

√
ab
)

.

3. On définit deux suites réelles (an)nz0 et (bn)n20 par a0 = a, b0 = b et, pour n ∈ N, an+1 = an+bn
2 et bn+1 =

√
anbn. Étudier

la convergence de (an)n≥0 et (bn)n≥0.
4. En déduire I(a, b).

Démonstration. 1.
2. C’est du arctan. Partir de I

(
a+b
2 ,

√
ab
)
, poser t = 1

2

(
x− ab

x

)
.

3.
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4. Utilise la continuité par rapport aux paramètres.

Exercice 85 [ENS 2022] Soit f ∈ C0(]0,1],R) décroissante. On pose rn = 1
n

∑n
k=1 f

(
k
n

)
et I(x) =

∫ 1

x
f(t) dt pour n ∈ N∗ et

x ∈ ]0,1[.

1. Montrer que, pour tout n ∈ N∗, I
(
1
n

)
+ 1

nf(1) ≤ rn ≤ I
(
1
n

)
+ 1

nf
(
1
n

)
.

2. Trouver une condition suffisante pour que (rn) converge.

3. Soit f : x→ x2−1
4 − 1

2 lnx. Calculer rn et en déduire la limite de n!1/n

n sans utiliser Stirling.

Démonstration. 1. Trivial.
2. f intégrable en 0 et xf(x) = o(1).

3. On a rn = 1
n

∑n
k=1

k2

4n2 − 1
4 − 1

2n ln n!
nn . Or on sait que f est intégrable, et xf(x) = o(1). D’autre part, f(1) = 0, donc rn a la

même limite que I( 1n ), que l’on calcule par IPP.

Exercice 86 [ENS 2022] Soit f ∈ C0(R+,R) de carré intégrable et g : x 7→ f(x)−2e−x
∫ x

0
etf(t) dt. Montrer que

∫ +∞
0

g2 =
∫ +∞
0

f2.

Démonstration. On a g(x) = f(x)− u(x), où u′ + u = 2f . On écrit∫
g2 =

∫
f2 +

∫
u2 − 2fu =

∫
f2 +

∫
(uu′),

et
∫
(uu′) =

[
u2
]
, mais u(0) = 0, et on montre que u2(+∞) = 0.

Exercice 87 [ENS 2022] Soit f : R+ → R+ continue et intégrable sur R+ telle que
∫

R+ f = 1. On pose g(x) =
∫ +∞
x

f(t) dt pour
x ≥ 0.

1. Montrer que
∫ +∞
0

g =
∫ +∞
0

xf(x) dx (dans R). On suppose à présent que f est décroissante.

2. Montrer qu’il existe un unique m ∈ R+ tel que
∫m

0
f(x) dx = 1

2 .

3. Montrer que
∫ +∞
0

xf(x) dx ≥ m.

Démonstration. 1. IPP.
2. Simple, avec f décroissante.
3. La fonction g est décroissante, et g′ = −f , donc g est convexe, avec g(0) = 1 et g(+∞) = 0 et g(m) = 1

2 .
Dessiner le graphe de g, il s’agit de montrer que l’intégrale de g est ≥ qu’un rectangle.
Mais le graphe de g est au-dessus de sa tangente en ce point. Et l’inégalité découle de 2ab ≤ a2 + b2.

Exercice 88 [ENS 2022] 1. s Déterminer l’ensemble des fonctions réelles qui sont limites uniformes sur [0, 1] d’une suite de po-
lynômes à coefficients positifs.

2. s Déterminer l’ensemble des fonctions réelles qui sont limites uniformes sur [−1, 0] d’une suite de polynômes à coefficients
positifs.

Démonstration. 1. C’est les fonctions DSE à coefficients positifs.
2. Toutes les fonctions : il suffit de montrer que −X est dans cette adhérence, via le polynôme Pn = X

(
(1 +X)n − 1

)
.

Exercice 89 [ENS 2022] Pour N ∈ N∗, on pose gN : x ∈ R\Z →
∑N

n=−NN
1

x+n .

1. Montrer que (gN )N∈N converge simplement surR\Z. On note g sa limite.
2. Montrer que g est continue.
3. Montrer que g est impaire, 1-périodique et vérifie l’équation fonctionnelle :

∀x ∈ R \ Z, g(x) =
1

2

(
g
(x
2

)
+ g
(x+ 1

2

))
.

4. Montrer que g(x) = π cotan(πx) pour tout x ∈ R\Z.

Démonstration. 1.
2.
3.
4. On considère la différence, qui vérifie la même équation fonctionnelle, et un DL en 0 montrer qu’elle se prolonge de manière

continue, avec D(0) = 0.
Puis considérer un maximum.
On peut en déduire les valeurs de ζ , cf X MP B 2002.

Exercice 90 [ENS 2022] On considère une suite (λn)n∈N de réels positifs telle
∑
e−λ/t converge pour tout t > 0. On suppose en

outre que
∑+∞

j=0 e
−λ/t ∼t→0+ Bt−a pour des réels B > 0 et a > 0. On note E l’espace des fonctions f : R+ → R continues par

morceaux et telles que t 7→ f(t)et soit bornée, et pour f ∈ E on note N(f) = supt∈R |f(t)|et. On admet que (E,N) est un espace
vectoriel normé.
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Pour f ∈ E et t ∈ R∗
+, on note Ll(f) =

∑+∞
j=0 f (λjt) t

a. On note F le sous-espace vectoriel deE engendré par les fk : → exp(−kt),
pour k ∈ N∗.

Pour f ∈ E, on note L0(f) =
B

Γ(a)

∫ +∞
0

f(t)ta−1 dt où Γ(a) :=
∫ +∞
0

ta−1e−t dt.

1. Montrer que Lt est bien définie, linéaire et continue sur E.
2. Montrer que L0 est bien définie, linéaire, continue et que L1(f)−−−−−→t→0+

L0(f) pour tout f ∈ F .

3. Pour x > 0, on note Nx := |{j ∈ N∗, λj ≤ x}|. Montrer que Nx ∼x→+∞ B xa

aΓ(a) .

Démonstration. 1. On a |Lt(f)| ≤
∑+∞

j=0 N(f)e−λjtta = CN(f), d’où la convergence et continuité.
De plus, Ct = O(B)

2. Définition, linéarité, continuité sans problème.
La question se pose seulement pour f ∈ F . Pour f ∈ F , on va dire que c’est clair.
D’autre part, comme les Lt sont équicontinues, c’est bon.

3. On prend f = 1u≤1. On a L1/x(f) =
1
xaNx, d’où le résultat.

Exercice 91 [ENS 2022] Soient a, b ∈ R tels que a ∈ ]0,1[, b > 1 et ab > 1. On pose

fa,b : x 7→
+∞∑
n=1

an cos
(
bnπx

)
et α =

ln a

ln b
.

1. Montrer que fa,b est définie sur R, bornée et continue.

2. Montrer que fa,b(x) =
∑+∞

n=1 b
n−α cos

(
bnπx

)
pour tout x.

3. Montrer qu’il existe un réel C > 0 tel que ∀x, y, |fa,b(x)− fa,b(y)| ≤ C|x− y|α.

4. Soit n ∈ N et x ∈ R. Calculer
∫ x+h

x−h
fa,b(t) cos

(
bnπt

)
dt, pour h = 2b−n.

Démonstration. 1. Trivial.
2. Trivial.
3. NB : on a α < 1.

On a | cos(bnπx)−cos(bnπy)| ≤ min(bn|x−y|, 1) = ≤ bn min(|x−y|, 1
bn ) Donc |fa,b(x)−fa,b(y)| ≤

∑− lnb |x−y|
n=1 bn−nα(x−

y) +
∑+∞

− lnb |x−y| b
−nα = blnb |x−y|α = |x− y|α

Il faudrait identifier où on utilise α < 1. . .
4. On intervertit somme et intégrale, on obtient

∑
m am( 1

bn+bm + 1
bn−bm ) =

∑
m am 2bn

b2n−b2m . On DSE à droite et à gauche de
m?

Exercice 92 ⋆ ⋆ [ENS 2022] On pose p(n) =
∣∣{(k1, . . . , kN ) ∈ (N∗)N | k1 + · · ·+ kN = n

}∣∣, et p(0) = 1. Montrer que pour
|z| < 1,

+∞∑
n=0

p(n)zn =

+∞∏
k=1

1

1− zk
.

Démonstration. On sait gérer les produits finis, puis limite.

Exercice 93 [ENS 2022] Pour z ∈ C de module < 1, on pose f(z + 1) =
∑+∞

n=1
(−1)n

n zn.

1. Soient u, v ∈ C tels que |u|, |v| < 1 et |u+ v + uv| < 1. Montrer que f
(
(1 + u)(1 + v)

)
= f(1 + u) + f(1 + v).

2. Soit h(X) = (X − a1) . . . (X − an) ∈ C[X], avec ai ̸= 0. Montrer que

1

2π

∫ 2π

0

ln
∣∣h(reit)∣∣dt = ln |h(0)|+ ln

r

|a1 . . . an|

pour r > max(|ai|).
Démonstration. 1. Produit de Cauchy, éventuellement on peut regarder les coefficients pour x réel.

2. Cela revient à 1
2π

∫ 2π

0
ln |reit − a1|dt = ln r, pour r > 3|a1|.

On peut écrire cela comme
∫ 2π

0
ln |reit − a1|2 dt =

∫ 2π

0
f(reit − a) + f(re−it − a) dt f(reit − a) = reitf(1− a/re−it), puis

DSE.

Exercice 94 ⋆ ⋆ [ENS 2022] Soit (an) une suite réelle décroissante, positive de limite nulle telle que la suite (an − an+1) soit
décroissante.
Montrer que pour tous n ∈ N et x ∈ [0, 1],

∑+∞
k=2n(−1)k+1akx

k ≤ x2n
∑+∞

k=2n(−1)k+1ak .

Démonstration. Revient à montrer que
∑+∞

k=0(−1)kakx
k ≥

∑+∞
k=0(−1)kak . On se ramène à des choses positives :

∑
a2k+1(1 −

x2k+1) ≥
∑
a2k(1− x2k). On fait apparaître des différences :

(a1 − a2)(1− x) + (a3 − a4)(1− x3) + · · · ≥ a2(x− x2) + a4(x
3 − x4) + . . .
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On divise par 1− x :
(a1 − a2) + (a3 − a4)(1 + x+ x2) + (a5 − a6) · · · ≥ a2x+ a4x

3 + . . .

On a

(a1 − a2) + (a3 − a4)(1 + x+ x2) + (a5 − a6) · · · ≥
(a1 − a3)

2
+

1

2
(a3 − a5)(1 + x+ x2) +

1

2
(a5 − a7) . . .

≥ a1

2 + 1
2a3(x+ x2) + 1

2a5(x
3 + x4) + . . . Mais 1

2 (a1 + a3x) ≥ a2x, car la moyenne de a1 et a3 est ≥ a2.

Exercice 95 [ENS 2022] Soient C(x) =
∑+∞

k=0 ckx
k et D(x) =

∑+∞
k=0 dkx

k les sommes de deux séries entières à coefficients réels
de rayon de convergence infini. Soit a > 0 avec a ̸= 1. On suppose que, pour tout entier naturel n ∈ N, C (an) = D (an).

1. On suppose que ck = dk à partir d’un certain rang. A-t-on C = D ?
2. On suppose a ∈ ]0,1[. Montrer que C = D.
3. Donner un exemple de séries entières distinctes C et D, et de a > 1 pour lesquels la propriété est vérifiée.

4. On suppose que a > 1 et qu’il existe r ∈ ]0,1[ tel que ck < rk
2

et dk < rk
2

pour tout entier k ∈ N. Montrer que C = D.

Exercice 96 Valeurs du dilogarithme [ENS 2022] Pour x ∈ [−1,1[, on pose L(x) = −
∫ x

0
ln(1−t)

t dt.

1. Justifier la bonne définition de L sur [−1,1[ et montrer que L est prolongeable par continuité en 1.
2. Déterminer le développement en série entière de L en 0 et préciser son rayon de convergence.
3. Calculer L(1).
4. Calculer L(−1).
5. Exprimer à l’aide de L la somme

∑+∞
n=1

1
2nn2 .

6. Déterminer L(1/2).

Démonstration. 1. Prolongeable par L(1), qui existe.
2. L(x) =

∑
n≥1

xn

n2 .

3. Par continuité, π2

6 .
4. C’est L( 12 ).
5. On trouve L(x) + L(−x) = 1

2L(x
2).

6. Faire une IPP et un changement de variable, on trouve L(x) + L(1− x) = − lnx ln(1− x)− L(1− x) + L(1).

Exercice 97 [ENS 2022] Soient f(z) =
∑+∞

n=0 anz
n la somme d’une série entière de rayon de convergence infini et P ∈ C[X] un

polynôme de degré k ∈ N∗. Montrer l’existence d’une série entière de rayon de convergence infini et de somme g, et d’un polynôme
Q ∈ Ck−1[X] tel que ∀z ∈ C, f(z) = g(z)P (z) +Q(z).

Démonstration. On veut g = f−Q
P . On choisit Q par interpolation. On note fn la somme partielle. On fait la division euclidienne de

fn par Q, ses valeurs sont proches de celles de Q, et on peut dériver, donc cela converge vers Q.

Exercice 98 [ENS 2022] Soit f : R \ Z → R une fonction 1-périodique intégrable sur ]0,1[.

1. Soit n ≥ 1 et θ ∈ R. Montrer qu’il existe une subdivision (a0, . . . , aN ) de [0, 1] telle que chacune des intégrales

∫ ai+1

ai

(
n−1∑
k=0

f(t+ kθ)2

)1/2

dt

soit bien définie.

On admet alors que leur somme ne dépend pas du choix de la subdivision envisagée, et on la note
∫ 1

0

(∑n−1
k=0 f(t+ kθ)2

)1/2
dt.

2. Soit θ ∈ R. Déterminer la limite, quand n tend vers +∞, de 1
n

∫ 1

0

(∑n−1
k=0 f(t+ kθ)2

)1/2
dt.

Démonstration. 1. On découpe là où il faut, et si fi intégrable, (
∑
f2i )

1/2 est intégrable.
2. Si f est bornée c’est ok. La quantité considérée vérifie une inégalité triangulaire.

Si
∫
|f | ≤ ε, alors (

∑
f2i )

1/2 ≤
∑

|fi|. Donc on majore par ε.

Exercice 99 [ENS 2022] Soit d ∈ N∗. On munit Rd de la norme euclidienne canonique. Soit [a,b[ un intervalle de R, (fn)n≥0 une
suite de fonctions de [a,b[ dans Rd continues par morceaux. On suppose que (fn) converge uniformément sur tout compact vers
f : [a,b[ → Rd. On suppose de plus qu’il existe g : [a,b[ → R+ intégrable telle que ∀n ∈ N, ∀t ∈ [a,b[, ∥fn(t)∥ ≤ g(t).

1. Montrer que
∫ b

a
f et

∫ b

a
fn, pour n ∈ N, convergent. Montrer que

∫ b

a
fn −−−−−−→

n→+∞
∫ b

a
f .

2. On pose fn : t ∈ R+ 7→
(
1− t2

n

)n
1t∈[0,

√
n]. Montrer que (fn) converge uniformément sur tout compact vers une fonction f

que l’on déterminera. Montrer que
∫ +∞
0

fn →
∫ +∞
0

f .

3. Donner une expression exacte de
∫ +∞
0

fn et retrouver la limite à l’aide de Stirling.
4. Montrer la convergence uniforme de (fn) à l’aide du théorème de Dini (et en le démontrant dans le cas général).

Démonstration. 1. Trivial.
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2.
3. Wallis.
4. La convergence simple d’une suite monotone de fonctions implique l’uniformité, et la convergence simple d’une suite de fonc-

tions monotones implique l’uniformité.

Exercice 100 [ENS 2022] 1. Montrer que ∀u ∈ ]−1,1[,
∑+∞

n=0
(2nn )
4n u2n = 1√

1−u2
.

2. Montrer que l’application f : x ∈ [−1, 1] 7→
∫ π

0
ln
(
(cos(t) + x)2

)
dt est constante. On pourra poser x = cos(u) avec 0 ≤ u ≤

π.
3. Que déduit-on des deux questions précédentes?

Démonstration. 1.
2. On écrit x = cosu, puis somme de deux cosinus, on obtient

f(x) =

∫ π+u

u

ln(cos2(
y

2
)) +

∫ π−u

−u

ln(cos2(
y

2
)).

D’où la dérivabilité, pour u ∈ ]0,π[, et la continuité en 0 et π. La dérivée est bien nulle.

3. En posant u = cos t, on obtient f(x) =
∫ 1

−1

ln
(
(u+x)2

)
√
1−u2

.

En prenant x = 0, on obtient f(0) =
∫ 1

−1

∑+∞
n=0 ln(u

2)u2n
(2nn )
4n .∫ 1

−1
ln(u2)u2n se calcule. Donc on a d’une part une somme fixée.

D’autre part, f(1) + f(−1) =
∫ π

0
ln
(
cos2 t − 1

)2
dt = 2

∫ π

0
ln(sin t) dt. Qui se calcule classiquement en disant que sa valeur

est deux fois
∫ π/2

0
, puis la même que cos, puis calculer la somme.

Exercice 101 [ENS 2022] Soit f : R → C continue et π-périodique. Sous réserve d’existence, on définit, pour φ ∈ [−π, π] et t ∈ R,
It(f)(φ) =

∫ φ

−π
f(θ)

(1−cos(θ−φ))t−
1
2
dθ +

∫ π

φ
f(θ)

(1−cos(θ−φ))t−
1
2
dθ.

1. Pour quelles valeurs de t la quantité It(f)(φ) est-elle définie quelle que soit f : R → C continue π-périodique et quel que soit
φ ∈ [−π, π]?

2. Calculer, pour les réels t et φ en lesquels elle est définie, la quantité It(1)(φ) en fonction de
∫ 1

0
x−t(1− x)−

1
2 dx.

3. Montrer que It(f) est continue pour tout réel t < 1.

Démonstration. 1. En θ = φ, on est en θ2, on veut 2(t− 1/2) < 1, c’est-à-dire t < 1.

2. It(1)(φ) =
∫ 0

−π−φ
1

(1−cos(θ))t−1/2 +
∫ π−φ

0
1

(1−cos(θ))t−1/2 , puis c’est deux fois
∫ π

0
1

(1−cos(θ))t−1/2 dθ. Puis on pose u = 1− cos θ,

on obtient du = sin θ dθ =
√

1− (1− u)2 =
√
2u− u2, donc It(1)(φ) =

∫ 2

0
u−tu1/2 du

u1/2
√
2−u

, puis poser u = 2x.

3. Faire le même changement de variable, pour mettre la singularité en 0, et passer un terme dans l’autre, pour avoir des bornes
constantes, puis convergence dominée.

Exercice 102 [ENS 2022] On pose P (z, θ) = 1−|z|2

|eiθ−z|2 pour z ∈ C \ ∪ et θ ∈ [−π, π].

1. Calculer
∫ π

−π
P (z, θ)dθ pour |z| < 1.

2. Soit f : S1 → R continue sur S1 = {z ∈ C, |z| ≤ 1}.
On pose P (f)(z) = f(z) si |z| = 1 et P (f)(z) = 1

2π

∫ π

−π
f
(
eiθ
)
P (z, θ)dθ si |z| < 1. Montrer que P (f) est continue sur S1.

Démonstration. 1. On trouve 1 : développer en série entière 1
|eiθ−z|2 (c’est un produit de Cauchy de deux séries). Puis seuls les

termes sans θ restent.
2. Sur |z| < 1, on a la continuité par CVD.

Si zn → z∞ ∈ C1, on prend une boule de rayon η autour de z∞, et on montre que le poids en dehors → 0, ce qui est simple.

Exercice 103 [ENS 2022] Soit f : R → R continue et de limite nulle en ±∞.

1. Justifier qu’est correctement définie la fonction u : (t, x) ∈ R∗
+ × R −→ 1√

4πt

∫
R exp

(
− (x−y)2

4t

)
f(y)dy

2. Montrer que u est prolongeable en une fonction uniformément continue sur R+ × R.

Démonstration. 1.
2. On pose u(0, x) = f(x). Changement de variable : y′ − x = y−x

2
√
t
,

Exercice 104 [ENS 2022] Soit f : R → R+ continue à support compact d’intégrale 1. On note, pour g continue, T (g) : x 7→∫
R
f(t)g(x− t) dt.

1. s Montrer que T (g2) ≥ g2. Cas d’égalité ?
2. s Soit g : R → R continue telle que T (g) = g. On pose h = T (g2)− g2. Montrer que T (h) ≥ h.
3. Quelles sont les fonctions g continues et bornées telles que T (g) = g ?
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Démonstration. On note T (g) : x 7→
∫
f(t)g(x− t).

On considère h : x 7→
∫
t
f(t)

(
g(x− t)− g(x)

)2
, c’est-à-dire h(x) = T ((g − g(x))2)(x).

Sous l’hypothèse T (g) = g, on obtient h(x) = T (g2)− 2g(x)T (g) + g(x)2, donc h = T (g2)− g2.

On a T (h) : x 7→
∫
t
f(t)

∫
u
f(u)

(
g(x− u− t)− g(x− t)

)2
du T (h)(x) =

∫
u
f(u)

∫
t
f(t)

(
g(x− u− t)− g(x− t)

)2
dtdu. Comme f

est de moyenne 1, on a
∫
t
f(t)

(
g(x− u− t)− g(x− t)

)2
dt ≥

(∫
t
f(t)

(
g(x− u− t)− g(x− t)

)
dt
)2

= (T (g)(x− u)− T (g)(x))
2

Donc T (h)(x) =
∫
u
f(u) (T (g)(x− u)− T (g)(x))

2
du, mais T (g) = g, donc T (h)(x) ≥ h(x).

Comme T (h) ≥ h, on a T 2(h) ≥ T (h) ≥ h, mais Tn(h) = Tn+1(g2)− Tn(g2), donc en télescopant, Tn(g2) ≥ nh+ g2, impossible,
sauf si h = 0, ce qui donne g = 0.

Exercice 105 [ENS 2022] SoitA ∈ Mn(C). Soit r ∈ R∗
+ tel queA n’ait pas de valeur propre de module r. Donner une interprétation

simple de la matrice M(r) := 1
2π

∫ π

−π
reiθ

(
reiθIn −A

)−1
dθ en fonction de la matrice A (on montrera en particulier que M(r) est

un projecteur).

Démonstration. Par dunford, on peut se ramener au cas où A n’a qu’une valeur propre. Puis pour |λ| < r ou |α| > r, on DSE. On
trouve, pour |λ| < r, In, et pour |λ| > r on trouve 0.
Donc c’est la projection sur les espaces caractéristiques de valeurs propres < r.

Exercice 106 [ENS 2022] On note E l’espace vectoriel des fonctions continues et intégrables de R dans C. Pour f ∈ E, on note

f̂ : x 7→
∫

R f(t)e
−ixt dt. On admet que ˆ̂

f(x) = 2πf(−x) pour tout f ∈ E tel que f̂ ∈ E. Déterminer les complexes λ tels que
l’équation f̂ = λf ait une solution non nulle f ∈ E \ {0}.
Indication : On pourra introduire le sous-espace vectoriel des fonctions f : R → C de classe C∞ telles que f (p)(x) = x→±∞O (|x|−n)
pour tout (n, p) ∈ N2.

Démonstration. Si f̂ = λf , on a ˆ̂
f = 2πf(−x), puis λ4 = 4π.

L’espace donné S est stable par ·̂, on a T 4 = Id, donc il existe une valeur propre telle que T (f) = λif , puis les autres existent
également, puisque sinon, T − λj serait injectif, donc on aurait un polynôme annulateur de f de degré ≤ 3. Mais sur l’espace des
fonctions paires ont est annulé par X2 − 2π, donc le polynôme annulateur est un multiple de X2 − 2π, et sur les fonctions impaires,
on est annulé par X2 + 2π, donc on est multiple.

Exercice 107 [ENS 2022] 1. Soit x ∈ R+∗
. Montrer que ε →

∫ −ε

−x
e−x−t

t dt +
∫ +∞
ε

e−x−t

t dt possède une limite finie en 0+, que
l’on notera I(x).

2. Déterminer un équivalent de I en 0+.

Démonstration. 1. C’est un changement de variable sans guère d’intérêt (u = −t à gauche, et on découpe). À vérifier. . .

On obtient −
∫ x

ε
e−x+t

t +
∫ +∞
ε

e−x−t

t dt =
∫ x

ε
e−x−t−e−x+t

t +
∫ +∞
x

e−x−t

t dt

La partie de gauche est intégrable en 0.

2. On a I(x) =
∫ x

0
2 e−x sinh(t)

t dt+
∫ +∞
x

e−x−t

t dt. La partie de gauche tend vers 0 quand x→ 0, la partie de droite diverge.

Elle est en e−x fois
∫ +∞
x

e−t

t =
∫ 1

x
e−t

t dt+O(1), et on compare à
∫ 1

x
1
t , la différence est en O(1).

Exercice 108 [ENS 2022] 1. Montrer que la suite de terme général
∑n

k=1
1
k − ln(n) converge vers un réel strictement positif noté

γ. On pose Γ(x) :=
∫ +∞
0

tx−1e−t dt pour x > 0.
2. Montrer que Γ est une fonction de classe C1 sur R∗

+.

3. Montrer que Γ′(1) =
∫ +∞
0

ln(t)e−t dt

4. Établir successivement les expressions suivantes pour Γ′(1) :

Γ′(1) = lim
y→0+

[∫ +∞

y

e−x

x
dx+ ln y

]
=

∫ +∞

0

e−x

[
1

x
− 1

1− e−x

]
dx.

5. Montrer que Γ′(1) +
∑n

k=1
1
k = n→+∞

∫ +∞
0

e−u−e−(n+1)u

u du+ o(1), et conclure que Γ′(1) = −γ.

Démonstration. 1. Cours.
2. Intégrale à paramètre.

3. IPP sur l’expression précédente , qui est une limite quand y → 0. e−x

1−e−x se primitive, et l’intégrale obtenue converge en 0.

4. On a le
∫ +∞
0

e−x

x , et on écrit le
∫ +∞
0

e−x

1−e−x = e−x + e−2x + · · · + e−nx + e−(n+1)x

1−e−x La différence de Γ′(1) et de l’intégrale

donnée est −
∫ +∞
0

e−x

1−e−x − e−(n+1)x

x dx =
∫ +∞
0

e−x−e−(n+1)x

1−e−x + e−(n+1)x
(

1
1−e−x − 1

x

)
La première partie fait ce qu’on veut.

La seconde tend vers 0 par CVD.

Exercice 109 [ENS 2022] Soit A ∈ M2(R) et (∗) l’équation différentielle X ′(t) = AX(t). En discutant suivant la matrice A, donner
l’allure des solutions de (∗).
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Démonstration. Si 2 racines complexe conjuguées, ou bien un escargot, ou bien un cercle. Si deux racines distinctes, une espèce

d’hyperbole, si une seule racine, ou bien une droite, ou bien semblable à la trajectoire pour
(
2 1
0 2

)
, qui doit donner le graphe d’une

fonction exponentielle peut-être.

Exercice 110 [ENS 2022] Soit A ∈ Mn(C). Soit ∥·∥ une norme sur Cn.

1. Déterminer E+ =
{
x ∈ Cn; etAx−−−−−−→

t→+∞ 0
}

et E− =
{
x ∈ Cn; etAx−−−−−−→

t→−∞ 0
}

.

2. Si E+ = Cn, montrer qu’existe C, δ ∈ R∗
+ tels que

(∗) : ∀x ∈ Cn,
∥∥etAx∥∥ ≤ Ce−δt ∥x∥

.
3. Soit B une application continue de R+ dans Mn(C) tendant vers 0 en +∞.

Sous la même hypothèse que la question précédente, montrer que les solutions de l’équation différentielle x′(t) = (A+B(t))x(t)
tendent vers 0 en +∞.

Démonstration. 1. C’est la somme des espaces caractéristiques de valeurs propres < 0, et de l’espace propre pour 0.
2. Nécessairement les parties réelles des valeurs propres de A sont
3. Si les valeurs propres de A sont < 0, utiliser la forme explicite.

Sinon, c’est faux : prendre A = O2 et B = 1
t , on a x = t.

Exercice 111 [ENS 2022] Soientλ > 0, T > 0 et a ∈ C (R+,R+). On suppose l’existence deα > 0 tel que∀T ∗ > T , supt∈]0,T∗[
1
t

∫ t

0
u2a(u) du <

α.

1. Énoncer le théorème de Cauchy linéaire. On admet que l’équation différentielle x′ = λ+ a(t)x2 admet une unique solution sur
R+ s’annulant en 0.

2. On suppose que 1 > 4aλ. Soit T ∗ > T . On pose r : t ∈ ]0,T ∗[ 7→ sups∈]0,t[
x(s)
s .

a) Montrer que r est positive, continue et prolongeable par continuité en 0.
b) Montrer qu’il existe µ < α tel que ∀t ∈ ]0,T ∗[, r(t) < λ+ µr2(t).
c) Montrer que, soit x est bornée, soit T ∗ = +∞.

Démonstration. Pas très intéressant, énoncé pourri. Mais la méthode intérieure est ok.

1.
2. a) Positive, car x est positive au voisinage de 0. La continuité est classique.

b) On a x(s) =
∫ s

0
λ+ a(t)x(t)2 dt, d’où x(s)

s = λ+ 1
s

∫ s

0
x(t)2a(t) dt, et x(t)

t ≤ r(s).
c) Le second degré précédent admet deux racines, et en t = 0, on est à gauche. On en déduit que r est bornée, donc x est

prolongeable. . .

Exercice 112 [ENS 2022] Stabilité de l’équation de diffusion avec source linéaire Soit a < 2 un réel, et u : R∗
+ × R → R

une fonction de classe C3. On suppose que u(t, 0) = u(t, 1) = 0, pour tout t > 0, et ∂1u(t, x) = (∂2)
2
u(t, x) + au(t, x) pour tout

(t, x) ∈ R∗
+ × R. Montrer, pour tout k ∈ [[0, 3]], que

∫ 1

0

(
(∂2)

k
u(t, x)

)2
dx−−−−−−→

t→+∞ 0.

Démonstration. On pose G0(t) =
∫ 1

0
u(t, x)2 dx. Dans le cas où a = 0, en utilisant le caractère C3, on a G′

0 = −2G1, G′
1 = −2G2,

G′
2 = −2G3 d’une part, d’où la convexité et la décroissance deG0 etG1. Cela implique que leurs dérivées tendent vers 0, doncG1 → 0

et G2 → 0.
D’autre part, on a G1 =

∫
(∂2u)

2, donc
∫
|∂2u| → 0, par Cauchy-Schwarz, et comme u est nul au bord, G0 → 0.

Pour G3, en fait on peut encore dériver, donc G′
3 = −2G4, G2 est convexe, et G3 → 0.

En général, on remplace les équations par

G′
0 = −2G1 + 2aG0 et G′

1 = −2G2 + 2aG1 et G′
2 = −2G3 + 2aG2

En posant v(t, x) = u(t, x)e−at, la fonction v vérifie ∂1v(t, x) = ∂22v, donc tend vers 0. Il suffit de montrer une décroissance expo-
nentielle dans le cas a = 0.
Mais

∫
|∂2u| ≤

√
G1, donc u ≤

√
G1, donc G0 ≤ G1, mais G1 = −G′

0

2 , donc G0 ≤ −G′
0

2 , donc 2G0 + G′
0 ≤ 0, donc la dérivée de

e2tG0 est ≤ 0.

Exercice 113 [ENS 2022] Soit n ∈ N∗. On considère des fonctions dérivables y1, . . . , yn et des réels ai,j ∈ R∗
+ tels que, pour tout 1

≤ i ≤ n, y′i =
∑n

j=1 ai,jyj et limt→+∞ yi(t) = 0. Montrer que (y1, . . . , yn) est liée.

Démonstration. On écrit le système sous forme matricielle, avec une exponentielle. L’hypothèse dit que A est à coefficients positives.
Si la famille est libre, alors il existe une base de valeurs en laquelle elle est libre (dur. . .), donc A n’a que des valeurs propres ≤ 0.

Exercice 114 [ENS 2022] On munit R d’une structure de groupe de loi notée ∗, et de neutre noté e. On suppose que la fonction f
définie sur R2 par f(x, y) = x ∗ y est de classe C1.

1. Rappeler la définition de la différentielle d’une fonction f : Rn → R différentiable.
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2. Montrer que ∀(x, y) ∈ R2, ∂2f(x ∗ y, e) = ∂2f(x, y)∂2f(y, e).
3. Montrer l’existence de Φ: R → R un C1-difféomorphisme tel que Φ(x ∗ y) = Φ(x) + Φ(y) pour tout (x, y) ∈ R2.

Ind. On pourra chercher Φ sous la forme Φ(x) = a
∫ x

e
dt

∂2f(t,e)
.

Démonstration. 1.
2. Si on écrit f(x ∗ y, e) = f(x, y), f(f(x, y), e) = f(x, y), on peut dériver, par rapport à x, on obtient

∂f

∂x
(x, y)

∂f

∂x
(x ∗ y, e) = ∂f

∂x
(x, y)

Par rapport à y, on obtient
∂f

∂x
(x ∗ y, e)∂f

∂y
(x, y) =

∂f

∂y
(x, y)

Si on écrit plutôt f(x ∗ y, z) = f(x, y ∗ z), et que l’on dérive par rapport à z, puis on prend z = e, on obtient ∂f
∂y (x ∗ y, e) =

∂f
∂y (y, e)

∂f
∂y (x, y).

3. Justifier que ∂2f(y, e) ne s’annule pas.
Ou bien faire des changements de variables, ou bien dériver Φ(x ∗ y)− Φ(x), qui donne 0.

Exercice 115 [ENS 2022] SoientA = (Ai,j)i,j≤n ∈ S++
n (R), D = Diag (A1,1, . . . , An,n) , b ∈ Rn et f la fonction de Rn dans R telle

que ∀x ∈ Rn, f(x) = 1
2 ⟨Ax, x⟩ − ⟨b, x⟩.

1. Montrer que f a un unique point critique, qui est un minimum global.
2. Montrer que D ∈ GLn(R).
3. Soient (αk)k=0 une suite réelle, (xk)k>0 une suite d’éléments de Rn telle que, pour tout k ∈ N, xk+1 = xk+αkD

−1 (b−Axk).
Si k ∈ N, soit wk = D−1 (b−Axk). Déterminer le signe de ⟨∇f (xk) , wk⟩.

4. On suppose que xk n’est pas point critique de f . Montrer qu’il existe un unique réel βk en lequel t ∈ R 7→ f (xk + twk) est
minimal.

5. On suppose qu’aucun des xk n’est point critique de f et que, pour tout k ∈ N, αk = βk . Montrer que (xk)k=0 converge.

Démonstration. 1. ∇f = AX − b et f(X) → +∞
2. ⟨AEi, Ei⟩ > 0

3. On a xk+1 = xk + ωk , et ⟨∇f(xk), ωk⟩ ≤ 0.
4. Trivial : f → +∞.
5. f(xk) décroît, donc si x∞ est une valeur d’adhérence, on a ⟨∇f(x∞), ω∞⟩ = 0, ce qui implique ω∞ = 0, donc x∞ = b.

Exercice 116 [ENS 2022] Soit f : Rn → R de classe C∞. On suppose que
∑n

k=1
∂2f
∂x2

k
≥ 0. Montrer que la restriction de f à la boule

unité euclidienne admet un maximum, atteint en un point de la sphère unité.

Exercice 117 [ENS 2022] Soit f : Rn → R continue et minorée. On note ∥·∥ la norme euclidienne.

1. Soit λ > 0, ε > 0 et x0 ∈ Rn. Montrer que g : x 7→ f(x) + ε
ℓ ∥x− x0∥ admet un minimum sur Rn.

2. On suppose f différentiable. Montrer que pour tout ε > 0, il existe yε ∈ Rn tel que f(yε) ≤∈ f + ε et ∥∇f(yε)∥ ≤
√
ε.

Démonstration. 1. → +∞
2. On peut supposer f ≥ 0.

Soit yε tel que f(yε) ≤ inf +ε. On applique ce qui précède à
√
ε et x0 = yε

On obtient un minimum x′ε, à une distance ≤
√
ε de yε.

En ce minimum, le laplacien est nulle, donc ∇f(xε′) = −(x− yε), d’où le résultat.

Exercice 118 [ENS 2022] Soit f : Rn → R de classe C1 et L > 0. Montrer l’équivalence entre

• f est convexe et son gradient est L-lipschitzien.
• ∀x, y ∈ Rn, ⟨∇f(x)−∇f(y), x− y⟩ ≥ 1

L ∥∇f(x)−∇f(y)∥2.

Démonstration. L’inégalité donnée est équivalente à ∥∇f(x)−∇f(y)∥ ≤ L⟨ D∇
∥d∇∥ , x− y⟩

Si elle est vérifiée, on obtient le caractère lipschitzien. D’autre part, en posant g(t) = f(x+ t(y − x)), g′(1)− g′(0) ≥ 0.

Réciproquement, si ∇f est L-lipschitzien, on a ∥∇f(y)−∇f(x)∥ ≤ L ∥x− y∥, donc ⟨∇f(y)−∇f(x), y − x⟩ ≤ L ∥x− y∥2.

Plutôt : f(y)− f(x) ≤ ⟨∇f(x), y − x⟩+ L
2 ∥y − x∥2,en intégrant.

La fonction fx(z) = f(z)− ⟨∇f(x), z⟩ est convexe, de gradient nul en x, donc minimale en x. Elle est aussi L-lips donc

fx(z) ≤ fx(y) + ⟨∇fx(y), z − y⟩+ L
2 ∥z − y∥2 Donc la partie de droite est ≥ f(x)− ⟨∇f(x), x⟩ Mais elle est minimale pour z − y

anti-colinéaire à ∇fx(y), de taille que l’on peut déterminer, et vaut finalement quelque chose. On obtient sûrement ce qu’on veut.

Exercice 119 ⋆ ⋆ [ENS 2022] Soit V : x ∈ Rn 7→ det
(
xj−1
i

)
1≤i,j≤n

. On note B la boule unité euclidienne fermée, S la sphère

unité, et H l’hyperplan d’équation x1 + · · ·+ xn = 0. Montrer que V possède un maximum sur B, atteint en un point de S ∩H .
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Démonstration. Sur B ok, il est sur S par homogénéité, et ensuite il faut la différentielle, j’imagine. . .
On vérifie ∂V

∂xk
=
∑

j ̸=k
V

xk−xj
(dérivée logarithmique).

Donc
∑

k
∂V
∂xk

= 0.

Exercice 120 [ENS 2022] 1. sV5 Montrer que pour tout BON (e1, . . . , en), et S symétrique, on a Tr(eS) ≥
∑n

k=1 e
⟨Sek,ek⟩.

2. Montrer que S ∈ Sn(R) 7→ Tr(eS) est convexe

Démonstration. 1. C’est la convexité de exp.
2. Si S = λA+ µB, on a

Tr eS =
∑

e⟨Sek,ek⟩ =

λ⟨Aek,ek⟩+⟨Bek,ek⟩∑
≤
∑

λe⟨Aek,ek⟩ + µe⟨bek,ek⟩.

3) Géométrie
Exercice 121 [ENS 2022] 1. Soit un polygone régulier à n sommets inscrit dans un cercle de rayon 1. Calculer le produit des

longueurs des cordes reliant un sommet fixé à tous les autres.
2. Pour α et β réels, on pose E =

{
αζ + βζ−1, ζ ∈ U

}
. Montrer que les points d’affixe dans E décrivent une ellipse.

3. On s’intéresse à l’image des racines n-ièmes de l’unité par le paramétrage précédent. Calculer le produit des longueurs des
cordes reliant l’une de ces images à toutes les autres.
Indication : Considérer un polynôme Pn vérifiant Pn(αzeta+ βζ−1) = αζn + βζ−n.

Démonstration. 1.
∏
(1− e

2ikπ
n )

2. C’est l’image d’un cercle par une transformation affine simple : diagonale, de coefficients α+ β et α− β.
3. Il vérifie une relation de récurrence d’ordre 2.

Exercice 122 ⋆ ⋆ [ENS 2022] Soient d ∈ N∗, S une partie de Rd de cardinal ≥ d + 2. Montrer qu’il existe deux parties disjointes
A et B de S telles que Conv(A) ∩ Conv(B) ̸= ∅.

Démonstration. Il suffit de trouver un point qui s’écrit de 2 façons différentes comme barycentre (l’écrire). On peut supposer A fini, et
engendrant l’espace. Soit x ∈ Conv(A), strictement. Alors on peut rajouter un combinaison linéaire qui vaut 0.

Exercice 123 ⋆⋆ Polyèdres [ENS 2022] Une partie bornée P de Rn est un polyèdre si et seulement s’il existe y1, . . . , ym ∈ Rn et
α1, . . . , am ∈ R tels que P = {x ∈ Rn;∀i ∈ {1, . . . ,m}, ⟨x, yi⟩ ≤ αi}. Si P est un polyèdre, on dit que x ∈ P est un sommet de P si
et seulement si, pour tout y, z ∈ P , on a y+ z = 2x si et seulement x = y = z. Montrer qu’un polyèdre a un nombre fini de sommets.

Démonstration. Si z est un sommet, l’ensemble des yi pour lesquels il y a égalité engendre l’espace (sinon, on peut se déplacer selon
un vecteur orthogonal). Alors z est entièrement déterminé par cet ensemble.

Exercice 124 ⋆⋆ [ENS 2022]

1. Soit n ≥ 3. Si A = (A1, . . . , An) est un n-uplet de points du plan, on note T (A) = (B1, . . . , Bn), où Bi désigne, si 1 ≤ i ≤ n,
le milieu de [AiAi+1] (en convenant que An+1 = A1). Étudier la convergence de la suite

(
T k(A)

)
k=0

.
2. Même question en fixant un élémentα de ]0,1[ et en considérant que, pour tout i, Bi est le barycentre de ((Ai, α) , (Ai+1, 1− α)).

Démonstration. La distance max à 0 diminue.
Le centre de gravité est préservé, et la distance max diminue, donc on s’accumule sur un cercle, et. . .

Exercice 125 [ENS 2022] On se place dans R2. Les éléments de Z2 sont les points entiers. On appelle polygone entier un polygone
dont les sommets sont des points entiers. Montrer que l’aire d’un polygone entier est égale à i + k

2 − 1 où i est le nombre de points
entiers à l’intérieur (strict) du polygone et k le nombre de points entiers sur le bord du polygone.

Exercice 126 ⋆ ⋆ [ENS 2022] Soient E un espace euclidien, A une partie bornée non vide de E, d le diamètre de A, x un point de
l’enveloppe convexe de A,n ∈ N∗. Montrer qu’il existe (x1, . . . , xn) ∈ An tel que

∥∥x− 1
n

∑n
i=1 xi

∥∥ ≤ d√
n

.

Démonstration. On peut supposer A fini, + méthode probabiliste.

Exercice 127 [ENS 2022] 1. Soit (a, b, c, d, e, f) ∈ R6 tel que (a, b, c) ̸= 0. On considère la partie C de R2 définie par l’équation
ax2+ bxy+ cy2 + dx+ ey+ f = 0. On suppose que C contient trois points non alignés et n’est pas incluse dans la réunion de
deux droites. Montrer que, dans un repère orthonormal approprié, C possède une équation de l’une des trois formes suivantes :
X2

α2 + Y 2

β2 = 1 (ellipse), X2

α2 − Y 2

β2 = 1 (hyperbole) ou 2pX − Y 2 = 0 (parabole).

2. On considère un (vrai) triangle ABC de R2. On note A′ (respectivement, B′, C ′) le milieu de [B,C] (respectivement, de [C,A],
de [A,B]). Montrer qu’une et une seule ellipse contient A′, B′, C ′ et est tangente à la droite (BC) (respectivement à (CA), à
(AB)) en A′ (respectivement en B′, en C ′).
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4) Probabilités
Exercice 128 Une urne comporte n bulletins. On effectue des tirages avec remise de loi uniforme. Déterminer l’espérance Mn du
nombre de tirages nécessaires pour avoir vu tous les bulletins. Donner un équivalent de Mn.

Démonstration. Problème du collectionneur : Mn est la somme de variables, qui ont des lois géométriques.

Exercice 129 ⋆ ⋆ [ENS 2022] Soit n ≥ 1, et (Aij)1≤i,j≤n des variables aléatoires indépendantes de même loi B(1/2). Calculer
l’espérance de det(A−AT ).

Démonstration. Donne une matrice antisymétrique, dont les coefficients suivent une loi B′, symétrique.
On développe le déterminant. En prenant l’espérance, ne restent que les σ qui n’ont que des orbites de taille 2, et les signatures sont
les mêmes. Reste à les compter : (n− 1)(n− 3) . . ..

Exercice 130 [ENS 2022] On noteCn,k le nombre de permutations deSn qui ont k cycles à supports disjoints dans leur décomposition
(en comptant les points fixes).

1. Calculer Cn,n et Cn,1.
2. Montrer que Cn+1,k = nCn,k + Cn,k−1.
3. On note Xn la variable aléatoire qui donne le nombre de cycles d’une permutation choisie uniformément. Calculer la série

génératrice de Xn.
4. Soit (Yi)1≤i≤n des variables aléatoires de Bernoulli indépendantes de loi Yi ∼ B(1/i). Montrer que Xn ∼ Sn, où Sn =

∑
Yi.

5. Calculer E(Sn) et V (Sn). Que dire quand n→ +∞?
6. Étudier la convergence en probabilité de la suite

(
Xn

lnn

)
n≥2

.

7. On pose Zn =
∑n

k=1 kYk . Exprimer, pour λ > 0, la limite, quand n→ +∞, de E
(
e−λZn

n

)
.

Démonstration. 1.
2. Trivial.
3. f(x) =

∑
Snx

n, et Sn = 1
n!

∑n
k=1 kCn,k

Exercice 131 On définit la fonction de Moebius µ : N∗ → {0, 1,−1} par µ(1) = 1, µ(n) = 0 pour n ≥ 1 divisible par le carré d’un
nombre premier, et µ(n) = (−1)dn sinon, où dn est le nombre de diviseurs premiers de n.

1. Montrer que pour n ≥ 2,
∑

d|n µ(d) = 0.

2. Soit α ∈ ]0,1[ et Xα, Yα deux variables aléatoires indépendantes de même loi G(α). Pour k ≥ 1, on note qk(α) = P (k | Xα).
Déterminer limα→0 qk(α).

3. On note f(α) = P (Xα ∧ Yα = 1). Montrer que f(α) =
∑+∞

d=1 µ(d)qd(α)
2.

Exercice 132 [ENS 2022] Soit α ∈ ]−1,1[. On pose fα : x 7→ x+α
1+αx . Soit u la suite définie par u0 = 0 et un+1 = fα(un).

1. Variations et points fixes de fα. Que dire de la limite éventuelle de la suite u selon la valeur de α?
2. Exprimer un en fonction de α. Étudier la limite.
3. Soit (αn)n≥0 une suite à valeurs dans ]−1,1[. On pose u0 = 0 et un+1 = fαn

(un). Que dire de la limite de u?
4. Soit (αn)n∈N une suite de variables aléatoires indépendantes de même loi à valeurs dans ]−1,1[. Que dire de la limite de u?

Démonstration. 1. f(−1) = −1, f(1) = 1, f croissante.

2. En regardant les premières valeurs, on reconnaît les coefficients du binôme de Newton, et on trouve finalementun = (1+α)n(1+x)+(1−α)n(x−1)
(1+α)n(x+1)+(1−α)3(1−x) ,

donc la limite de (un) dépend de la position de α par rapport à 0. Si α = 0, (un) est constante.
3. On ne peut rien dire, sauf si toutes les valeurs d’adhérence de la suite sont > 0.
4. Nécessairement la suite a comme valeur d’adhérence 1 ou −1 : si on est dans un compact, on a une probabilité strictement

positive d’atteindre 1 ou −1.
Ou bien la suite tend vers 1, ou bien elle tend vers −1, ou bien elle alterne indéfiniment.

Exercice 133 [ENS 2022] Soit α ∈ [0, 1]. Pour z ∈ [0, 1], on pose φa(z) = 1− (1− z)α.

1. Montrer l’existence d’un variable aléatoire Xa à valeurs dans N∗ telle que φa(z) = E(zXa), pour z ∈ [0, 1].
2. Soit (An)n≥1 une famille d’évènements indépendants telle que P (Ak) =

a
k . Montrer que Xa suit la même loi que la variable

I(ω) = inf{n ∈ N∗ | ω ∈ An}.
3. Soit (E) : ∀z ∈ [0, 1], φa(z) = zφ(φa(z)) une équation d’inconnue φ, fonction génératrice d’une variable aléatoire.

a) Montrer que si a = 1
2 , l’équation (E) admet une unique solution.

b) Montrer que si a = 1
3 , l’équation (E) n’a pas de solution.

Démonstration. 1. DSE à coefficients positifs, de somme 1.
2. P (I ≥ n) =

∏
(1− a

k )

3. Revient à chercher Y tel que X ∼
∑Y

k=1X + 1, ce qui donne l’unicité.
Pour l’existence, revient à avoir φ(y) = y

1−(1−y)1/a
.

a) Pour a = 1
2 , on obtient ce qu’on veut.
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b) Pour a = 1
3 , on trouve un coefficient négatif en x6. . .

Exercice 134 1. Soit n ≥ 1, σ > 0 et X1, . . . , Xn des variables aléatoires réelles telles que ∀t, ∀i ∈ [[1, n]], E(etXi) ≤ et
2σ2/2.

Montrer qu’il existe un réel C > 0 indépendant de n et σ tel que E(maxi≤n |Xi|) ≤ Cσ
√
ln(2n).

2. Soit X à valeurs dans Z. On suppose que ∀k ∈ Z, P (X = k) = αe−k2/2. Montrer que ∀t ∈ R, E(etX) ≤ et
2/2.

Démonstration. 1. (inutile) Si E(etXi) ≤ et
2σ2/2, alors par DL en 0, on obtient E(Xi) = 0 et V (X) ≤ σ2.

E(max |Xi|) =
1

β
E(ln eβmax |Xi|) ≤ 1

β
E(ln(

∑
eβ|Xi|)) ≤ 1

β
lnE(

∑
eβ|Xi|),

par concavité du ln.

D’autre part, E(eβ|Xi|) ≤ 2eβ
2σ2/2, d’où une majoration en 1

β ln(2neβ
2σ2/2) = 1

β ln(2n) + βσ2/2, dont la valeur minimale est

en 2
√

σ2 ln(2n)
2 .

2. On écrit E(etX), on obtient que la propriété est équivalente à ce que

φ(t) =
∑
k∈Z

e−(k−t)2/2

qui est 1-périodique soit maximale en 0.
En écrivant l’inégalité, il suffit de montrer que pour t ∈ [0, 1], on a

e−k2/2 + e−(k−1)2/2 ≥ e(k−t)2/2 + e(k−1+t)2/2.

Celle-ci découle de la convexité de la fonction de droite, qui admet donc son maximum en f(0) = f(1).
La RMS le fait en décomposant φ en série de Fourier : les coefficients cn(f) se calculent par dérivation d’une intégrale à para-
mètres. Puis comme

∑
|cn(f)| converge, f est la somme de sa série de Fourier (elle existe, a les mêmes coefficients de Fourier,

donc la différence est orthogonale aux polynômes trigonométriques, qui sont denses).

Exercice 135 1. Soient X1, . . . , Xn des variables aléatoires réelles centrées admettant un moment d’ordre 2. Montrer que la
matrice (Cov(Xi, Xj)) est symétrique positive.

2. Soit (Xn)n∈N une suite de variables aléatoires réelles centrées, admettant un moment d’ordre 2 et telles que les Cov(Xi, Xj)
ne dépendent que de i − j. On suppose que V (X0) > 0 et Cov(Xn, X0) → 0. Montrer que pour tout n ≥ 1, la matrice
(Cov(Xi, Xj)) est symétrique définie positive.

Démonstration. 1. C’est une matrice de Gram
2. Énoncé très bizarre.

Si le déterminant est nul, c’est qu’une combinaison linéaire des Xi a une variance nulle, donc est presque sûrement constante.
On a V (

∑
aiXi) = na2iV (X1) + (n− 1)Cov(X1, X2) + · · ·+ Cov(X1, Xn)

Exercice 136 [ENS 2022] Soit f : Z → R, (Xk)k≥1 une suite de variables aléatoires réelle admettant des moments d’ordre 2, de
mêmes espérances m telles que Cov(Xk, Xℓ) = f(|k − ℓ|).

1. On suppose que 1
n

∑n
k=1 f(k) → 0. Pour n ≥ 1, soit Yn = 1

n

∑n
k=1Xk . Montrer que (Yn)n≥1 converge en probabilité vers m.

2. On suppose
(
f(k)

)
k≥0

est sommable. Montrer que
(
nV (Yn)

)
n≥1

converge vers un réel à préciser.

Démonstration. 1. P (|Yn −m| ≥ ε) ≤ V (Yn−m)
ε2 = 1

n2ε2

∑n
k=0(n − k)f(k). C’est la somme

∑n
k=1 Sk , et Sk = o(k), implique

que la somme est négligeable devant n2.
2. On a nV (Yn) = f(0) + 2

∑n
k=1

(
1− k

n

)
f(k), et par convergence dominée, on tend vers f(0) + 2

∑+∞
k=1 f(k).

Exercice 137 ⋆ [ENS 2022] On construit une permutation aléatoire σ de Sn de la manière suivante.

(i) On choisit x ∈ [[1, n]] de manière uniforme, et on pose σ(1) = x.
(ii) Si σ(1) ̸= 1, on choisit de même y ∈ [[1, n]] \ {σ(1)} et on pose σ(σ(1)) = y. On réitère ce procédé k − 1 fois en tout jusqu’à

retomber sur 1, de sorte que σk(1) = 1

(iii) Si k < n, on répète le processus, en partant du premier élément n’appartenant pas à {1, σ(1), . . . , σk−1(1)}.

Les tirages étant supposés indépendants, montrer que la permutation σ ainsi construite suit la loi uniforme sur Sn.

Démonstration. On trouve P (X = σ), par récurrence sur la dimension.

Exercice 138 [ENS 2022] Soit (Xn)n∈N une suite de variables aléatoires indépendantes de même loi d’espérance finie strictement
positive. On note Sn =

∑n
k=1Xk . Montrer que P (∀n ≥ 1, Sn > 0) > 0.

Démonstration. • Si ce n’est pas le cas, presque sûrement on retourne toujours en négatif.
Donc presque sûrement, on devient arbitrairement petit.

• Ça contredit la loi forte des grands nombres, avec hypothèses intégrables. . .
• On peut supposerXn majorée, en tronquant, alors elle a un moment exponentiel, et on peut faire comme dans l’exercice suivant.

Non, c’est dans le mauvais sens : il faudrait l’existence d’un moment exponentiel négatif ?
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• P (Sn ≤ 0) = P (e−Sn ≥ 1) ≤ E(e−Sn) =
∏
E(e−tXi).

Si Xi est bornée, il existe t0 tel que E(e−tXi) < 1, et on a une majoration exponentielle.
Plus précisément, si |Xi| ≤M , on a |e−tx − (1− tx)| ≤ t2x2etx ≤ t2M2etM . On prend t = 1

M .
E(Y 2

i ) = E(X2
i 1|Xi|≤i) = o(i2)

Sinon, on pose Yi = Xi1|Xi|≤i. E(e−tYi) ≤ 1− E(Yi)
n + i2

n2

• En posant Yn = Xn1|Xn|≤n, on a
∑
P (Yn ̸= Xn) qui converge.

• P (|Sn − E(Sn)| > E(Sn)) ≤ V (Sn)
E(Sn)2

= V (Sn)
n2E(X1)2

Exercice 139 Soit p ∈
]
0, 12
[
, et (Xn)n∈N∗ une suite de variables aléatoires indépendantes de même loi R(p). On pose Sn = X1 +

· · ·+Xn.

1. Montrer qu’il existe t0 > 0 tel que pet0 + (1− p)e−t0 < 1.
2. Montrer qu’il existe α, β ∈ ]0,1[ tels que

∀n ∈ N,∀k ∈ Z, P (Sn ≥ k) ≤ αkβn.

3. Montrer que Sn tend vers −∞ presque sûrement.

Démonstration. 1. La dérivée en 0 est 2p− 1 < 1.

2. P (Sn ≥ k) = P (etSn ≥ etk) ≤ E(etSn )
etk

, d’où le résultat, avec t = t0. On a β < 1, d’après la première question.
3. Borel Cantelli.

Exercice 140 ⋆ [ENS 2022] Soit n ≥ 1 etX,Y deux variables aléatoires indépendantes de même loi uniforme sur Z/nZ. Déterminer
P (XY = 0).

Démonstration. C’est
∏

pi
P (pαi

i | XY )

et P (Xk ≥ k) = 1
pk , donc P (Xi + Yi ≥ αi) =

∑αi

k=0

(
1
pk
i

− 1

pk−1
i

)
pα−k
i = αi+1

p
αi−1

i

(
1
pi

− 1
)

Exercice 141 ⋆ ⋆ [ENS 2022] Soient n ≥ m ≥ 0. On note A l’ensemble des injections [[1,m]] → [[1, n]] et B l’ensemble des
surjections [[1, n]] → 1,m. Comparer A

nm à B
mn .

Démonstration. On compte le nombre de couples (S, i) tel que s ◦ i = Id.
D’un cté, à i fixé, il y a (n−m)m surjections.

De l’autre, c’est la somme
∑

s

∏
Oi

|Oi|, où Oi = s−1(i). Et
∏

Oi
|Oi| ≤

(∑
|Oi|
m

)m
=
(
n
m

)m
.

On obtient
|A|
|B|

≤
(
n/m

)m
(n−m)m

.

À comparer à nm

mn = (n/m)m

mn−m .

Exercice 142 Définition de variables sous-gaussiennes Soit X une variable aléatoire réelle centrée. Montrer l’équivalence entre

• il existe a > 0 tel que ∀λ ∈ R, E(eλX) ≤ eaλ
2

.

• il existe b > 0 tel que ∀t > 0, P (|X| ≥ t) ≤ 2e−bt2 .

• il existe c > 0 tel que E(ecX
2

) < +∞

Démonstration. (i) → (ii) : le 2 vient de la séparation en deux. On écrit P (X ≥ t) = P (euX ≥ eut) ≤ E(euX)
eut , et on minimise

en u. (ii) ⇒ (iii) : On a E(Z) =
∑
P (X ≥ k). Pour Z non à valeur dans Z, on est fini si et seulement si ça converge. Donc

E(ecX
2

) ∼
∑
P (ecX

2 ≥ k) ∼
∑
P (|X| ≥

√
ln k
c ) ∼

∑
e−b/c ln t, d’où le résultat.

(iii) ⇒ (i) : On peut supposer λ ≥ 0. Quitte à multiplier X par une constante, on peut supposer E(eX
2

) < +∞.

On a, par DSE, eu ≤ u+ eu
2

, donc E(eλX) ≤ E(eλ
2X2

). Si λ ∈ [0, 1], par concavité, on obtient cλ
2

, avec c > 1.

Si λ > 1, on utilise λX ≤ λ2 +X2, donc E(eλX) ≤ eλ
2

E(eX
2

) = Ceλ
2 ≤ eaλ

2

, pour un a. . .

Exercice 143 Soient λ, c ∈ ]0,1[. On considère une suite (Xn)n≥0 de variables aléatoires à valeurs dans [0, 1] telles que X0 = c et
pour tout n ∈ N, et tout x ∈ [0, 1], P (Xn+1 = λ+ (1− λ)Xn | Xn = x) = x et P (Xn+1 = (1− λ)Xn | Xn = x) = 1− x. On note
un(p) = E(Xp

n).

1. Montrer que pour tout n ∈ N, il existe An ⊂ [0, 1] de cardinal au plus 2n tel que P (Xn ∈ An) = 1.
2. Montrer que un(1) = c pour tout n ∈ N.
3. Montrer qu’il existe λ2 > 0 tel que ∀n, |un(2)− c| ≤ e−λ2n.
4. Montrer que (1− λ)p−1

(
1 + λ(p− 1)

)
∈ ]0,1[ pour tout p ≥ 2.

5. Montrer que pour tout p ≥ 2, il existe λp > 0 tel que un(p)− c = O(e−λpn).

Démonstration. 1.
2. On a E(Xn+1 | Xn = x) = x(λ+ (1− λ)x) + (1− x)(1− λ)x = x
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3. (un(2)
2) vérifie une relation de récurrence affine, via

E(X2
n+1) = E

(
E(X2

n1 | Xn = Xn)
)
= · · · = cla2 + E(X2

n)(1− λ2).

4. C’est Bernoulli.
5. Écrire la relation de récurrence vérifiée par Xp

n, à voir.

Exercice 144 [ENS 2022] 1. Soit n ≥ 2 et k ∈ [[1, n]]. Dénombrer les manières de choisir k nombres dans [[1, n]] sans prendre
deux nombres consécutifs.

2. On installe n couples autour d’une table ronde, en alternant hommes et femmes. Montrer que la probabilité que personne ne
soit assis à côté de son partenaire est

pn =
1

n!

n∑
k=0

(−1)k
2n

2n− k

(
2n− k

k

)
(n− k)!.

3. Déterminer la limite de (pn).

Démonstration. 1. En utilisant (x1, . . . , xk) 7→ (x1, x2 − 1, . . . , xk − k + 1), on trouve
(
n−k+1

k

)
.

2. On cherche la probabilité que k couples donnés soient assis côte à côte.
Sous l’hypothèse que le premier élément d’un des couples soit assis à la place 1, donnée.

Les autres premiers éléments d’un couple n’ont que 2n − 3 possibilités. On choisit leurs places, avec
(
2n−3−(k−1)+1

k−1

)
=(

2n−k−1
k−1

)
=
(
2n−k

k

)
k

2n−k possibilités. On multiplie par k! (réorganisation des couples). On multiplie par n (choix de la place 1).
On divise par k (choix du couple singled out).
Puis on place les autres, avec 2(n− k)!2 possibilités (le deux pour choisir femme homme du premier couple).
Pour obtenir la probabilité, on divise par 2(n!)2.
J’ai un problème de facteur 2.
Ensuite, on fait de l’inclusion-exclusion, qui rajoute un facteur

(
n
k

)
.

3. On fixe k. Quand n→ +∞, le terme est équivalent à nk

k!
(n−k)!

n! = 1
k! , donc on trouve e−1.

Exercice 145 ⋆⋆ [ENS 2022]

1. Montrer qu’il existe une constante C > 0 telle que pour tout variable aléatoire X à valeurs dans [0, 1] non presque sûrement
nulle, on ait

sup
t≥0

tP (X ≥ t) ≥ C
E(X)

ln
(
2/E(X)

) .
2. Montrer qu’il existe une constante C ′ > 0 et une suite (Xn)n≥0 de variables aléatoires à valeurs dans [0, 1] non presque

sûrement nulles telle que E(Xn) → 0 et

∀n ∈ N, sup
t≥0

tP (X ≥ t) ≤ C ′ E(X)

ln
(
2/E(X)

)
Démonstration. 1. On a E(X) ≃

∑+∞
k=−1 P (X ∈ E(X)2k, E(X)2k+1)E(X)2k . Le nombre de termes est en ln(E(X)), donc il y

en a un tel que P (X ∈ E(X)2k, E(X)2k+1)2k ≥ − 1
lnE(X) .

Et sup tP (X ≥ t) ≥ E(X)2kP (X ≥ E(X)2k) ≥ C E(X)
lnE(X)

2.

II) X
1) Algèbre

Exercice 146 Valeurs rationnelles de cos(πr) [X 2021, X 2022] Soit r ∈ Q. Pour n ∈ N, on pose an = 2 cos(2nπr).

1. Montrer que (an)n∈N est périodique à partir d’un certain rang.
2. On suppose que cos(πr) ∈ Q. Montrer que ∀n ∈ N, an ∈ Z. En déduire les valeurs possibles de r.
3. Vérifier que Q[i] est un sous-corps de C.
4. Déterminer les éléments d’ordre fini du groupe multiplicatif de Q[i].

Démonstration. 1. On pose r = p
q . Après avoir retiré la partie 2-adique de q (prendre n assez grand), prendre m tel que 2m ≡ 1[q].

2. On a cos2 θ = 1+cos 2θ
2 , donc 4 cos2 θ = 2 + 2 cos(2θ), donc a2n = 2 + an+1.

Si an = pn

qn
, on obtient qn+1 = q2n, or an périodique APCR, donc (an) est entière dès le début. On obtient 2 cos(πr) ∈

{−2,−1, 0, 1, 2}.
3.
4.
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Exercice 147 [X 2021, 2022] 1. Montrer qu’il existe une infinité de nombres premiers congrus à 2 modulo 3.
Une partie X d’un sous-groupe abélien G est dite sans somme s’il n’existe pas x, y ∈ X tel que x+ y ∈ X .

1. Soit p un nombre premier de la forme 3k + 2. Montrer que Z/pZ contient une partie sans somme de cardinal k + 1.
2. Soient A,B deux parties d’un corps fini K. Calculer

∑
x∈K∗ |A ∩ xB|.

3. Soit A une partie finie non vide de Z∗. Montrer qu’il existe une partie B de A sans somme et de cardinal strictement supérieur
à |A|

3 .

Démonstration. 1. S’il n’y en a qu’un nombre fini, on considère N = 3p1 . . . , pn − 1, qui ne peut pas avoir que des diviseurs
premiers congrus à 1 modulo 3.

2. {k, . . . , 2k}
3. Si A,B ⊂ K∗, on trouve |A||B|, puisque chaque paire (a, b) est comptée une fois dans la somme.

Écrire |A ∩ xB| =
∑

a

∑
b 1a=xb.

4. On prend p tel que A ⊂ {0, , 3k + 2}. On prend B̃ un ensemble sans somme, de cardinal k. Puis on regarde tous les A ∩ xB̃.
D’après c, l’un d’entre eux a un cardinal > |A|.

Exercice 148 [X 2022] Soit d > 0. Pour a ̸≡ π
2 [π], on pose Ta =

(
1 d−1/4 tan a

−d1/4 tan a 1

)
.

1. Donner une relation entre TaTb et Ta+b.
2. On suppose que d est un entier ≥ 2 et qu’il n’est pas divisible par le carré d’un nombre premier.

a) sV2 On note A = {a+ b
√
d, a, b ∈ Q}. Montrer que σ : a+ b

√
d 7→ a− b

√
d est bien défini et un morphisme d’anneau.

Il s’étend à un morphisme de M2(A).

b) sV1 Soit B =

(
1 tx

t−1x 1

)
. Déterminer deux vecteurs X1, X2 ∈ R2 non colinéaires tels que BXi soit colinéaire à Xi.

c) Soit p, q premiers entre eux, avec p ̸= 0 et q ≥ 3 impair. Montrer que d−1/4 tan(pπq ) est irrationnel.

Démonstration. On aTaTb =
(

1− tan a tan b d−1/4 tan a+ d−1/4 tan b
−d1/4 tan a− d1/4 tan b 1− tan a tan b

)
= (1−tan a tan b)Ta+b. Supposons d−1/4 tan(a) ∈

Q. Alors Ta ∈ M2(Q[
√
d]).

D’autre part,T q
a est un scalaire, rationnel. Mais, en notantσ le morphisme deM2(Q[

√
d]), on aσ(Ta) =

(
1 −d−1/4 tan a

−d1/4 tan a 1

)
.

On peut en trouver les valeurs propres, 1± tan a

Exercice 149 ⋆ ⋆ Erdős-Ginzburg-Ziv [X 2022] Soit p premier et a1, . . . , a2p−1 des entiers quelconques. On veut montrer qu’il
existe une partie J de cardinal p telle que p |

∑
i∈J ai. On pose K = Z/pZ.

1. Montrer que cela revient à montrer que les polynômesP (X1, . . . , X2p−1) =
∑2p−1

i=1 Xp−1
i etQ(X1, . . . , X2p−1) =

∑2p−1
i=1 aiX

p−1
i

admettent une racine commune non triviale.
2. Conclure en considérant R = (1− P p−1)(1−Qp−1).

On admettra que pour tout j < p− 1,
∑

x∈K x
j = 0.

Démonstration. 1. Valeur de P : le nombre de Xi non nuls.
S’il y a une racine commune non triviale, alors il y a un multiple de p de xi qui sont non nuls etQ(x1, . . . x2p−1) vaut

∑
ai = 0.

La réciproque est OK.
2. On veut montrer qu’il existe x tel que R(x) = 1, différent de 0. R vaut soit 0 soit 1. On a R(0) = 1, on montre qu’il y a une

autre telle valeur.
On montre que

∑
x∈K2p−1 R(x) = 0. On a degR = 2(p− 1)2 < (2p− 1)(p− 1) dans chaque monôme de R, il y a un Xi qui

est de degré < p− 1, donc la somme fait 0. Plus simple : clairement, il n’y a aucun monôme avec tous les Xi.

Exercice 150 [X 2022] Soient a, c,m ∈ N avec m > 1. x0 = 0 et xn+1 = axn + c dans Z/mZ.

1. Montrer que (xn) est périodique APCR.
2. On suppose que (xn) est m-périodique à partir d’un certain rang et que m = pα. Montrer que a ≡ 1[p] et que c ∧ p = 1.

3. s On suppose que m est une puissance d’un nombre premier impair p et que a ≡ 1[p]. On pose P =
∑p−1

k=0 x
k . Montrer que

P (a) est divisible par p, mais pas par p2.
Manque la fin de l’énoncé.

Démonstration. 1. Il s’agit d’un système dynamique qui prend un nombre fini de valeurs.
2. Si on réduit modulo p, on est forcément p périodique : la période divise m, et ne peut pas être plus grande que p. Donc on peut

supposer m = p.
Ensuite on a une suite arithmético-géométrique, si a ̸≡ 1[p], alors on est une suite géométrique, donc au plus p− 1-périodique,
impossible, donc a = 1.

3. Il suffit d’écrire P (a). RAV.
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Exercice 151 ⋆ ⋆ [X 2022] Soit p ≥ 3 premier et t ∈ N∗. On considère p1, . . . , pr des nombres premiers congrus à 1 modulo pt.
On pose a = 2p1 . . . , pr et c = ap

t−1

.

1. Montrer que c ≡ 2[p].
2. Montrer que m = 1 + c+ · · ·+ cp−1 et c− 1 sont premiers entre eux.
3. Soit q un facteur premier de m. Montrer que q ≡ 1[pt].
4. En déduire qu’il existe une infinité de nombres premiers congrus à 1 modulo pt.

Démonstration. 1. On a c ≡ 2p
t−1

[p], et up ≡ u[p]

2. Si d est un diviseur commun, on a c ≡ 1[d], donc 1 + c+ · · ·+ cp−1 ≡ p[d], donc d | p, mais c ∧ p = 1.

3. On a q | 1 + c+ · · ·+ cp−1 = cp−1
c−1 , donc q | cp − 1, donc cp ≡ 1[q], donc ap

t ≡ 1[q] et ap
t−1 ̸≡ 1[q] donc l’ordre de a modulo

q est pt, qui doit diviser q − 1.
4.

Exercice 152 [X 2022] Soit p premier. On considère K = Fp[[X]] l’ensemble des séries formelles, c’est-à-dire FN
p muni du produit

de Cauchy, qui en fait une algèbre.

1. Montrer que (f + g)p = fp + gp.
2. Si f =

∑
anX

n, alors fp =
∑
anX

np.
3. Pour r ≤ p− 1, on pose Λr(f) =

∑+∞
n=0 anp+rX

n. Montrer que Λr(f
pg) = fΛr(g) pour tous f, g.

4. Soit f et k ≥ 1. On suppose qu’il existe des polynômes non tous nuls Q0, . . . , Qk tel que
∑
Qif

pi

= 0. Montrer qu’il existe
une telle famille avec Q0 ̸= 0.

5. . . . Manque une suite.

Démonstration. 1. Binôme.
2. Si un polynôme tend vers f , au sens que la différence est divisible par une grosse puissance de X , alors PQ → fg (d(F,G) =

2v(F−G)).
3. Écrire les produits de Cauchy. . .
4. Si Q0 = 0, on le retire, et on prend le Λr .

Exercice 153 [X 2022] On note G = SL2(Z), S =

(
0 −1
1 0

)
et T =

(
1 1
0 1

)
.

1. Montrer que G = ⟨S, T ⟩.
2. Soit φ : G→ C∗ un morphisme. Montrer que Imφ ⊂ U12.

Démonstration. 1. Vérifier par exemple que
(
1 0
1 1

)
est dans ⟨S, T ⟩. Alors, en multipliant une matrice par S, T , on peut faire des

opérations entières sur les lignes, ou les colonnes. Les deux coefficients de la première colonnes sont premiers entre eux, on

applique l’algorithme d’Euclide, pour se ramener à une colonne
1
0

.

2. (ST )3 = S2, donc ST est d’ordre 12, et S d’ordre 4.

Exercice 154 ⋆⋆ [X 2022] Soit A un anneau commutatif non nul. On dit que b ∈ A est un diviseur de 0 si b ̸= 0 et s’il existe c ̸= 0
tel que bc = 0.

1. Montrer que si A est fini et n’admet aucun diviseur de 0 alors A est un corps.
2. On pose B = A[X]. Montrer que P ∈ B \ {0} est un diviseur de 0 si et seulement s’il existe a ∈ A \ {0} tel que aP = 0.

Démonstration. 1. Les applications x 7→ ax sont injectives.
2. Si on peut écrire QP = 0, avec Q de degré minimal. Le coefficient dominant doit être nul, donc le coefficient dominant ad de P

est un diviseur de zéro. Mais on a également adQP = 0, avec deg adQ < degQ, donc ad annule tous les coefficients de Q. De
même, ad−1 annule tous les coefficients de Q, etc. Au final, le coefficient dominant de Q annule tous ceux de P .

Exercice 155 ⋆⋆ [X 2022]

1. Décomposer X5 − 1 en produit d’irréductibles de Q[X].
2. Soit p premier, décomposer Xp − 1 en produit d’irréductibles de Q[X].

Démonstration. 1. cos 2π
5 = 1

4 (
√
5− 1), car cos(2π/5) est irrationnel.

2. 1 +X + · · ·+Xp−1 est irréductible : appliquer le critère d’Eisenstein à P (X + 1).

Exercice 156 ⋆ [X 2022] Existe-t-il un polynôme P ∈ Z[X] tel que P
(

1√
2

)
=

√
3?

Démonstration. Passer
√
2 à droite, puis regrouper par parité des puissances, et utiliser (1,

√
2,
√
3) est Q-libre.

Exercice 157 ⋆⋆ [X 2018, X 2022]

1. Déterminer l’ensemble des couples (f, g) de polynômes trigonométriques à coefficients réels tels que, pour tout x ∈ R, f(x)2+
g(x)2 = 1.
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2. Déterminer les polynômes trigonométriques h tels que cosh soit un polynôme trigonométrique.

Démonstration. 1. On se ramène à des polynômes complexes, et a f(x)2 − g(x)2 = 1. On regarde les coefficients de plus grand
degré : on trouve que dès que ces degrés sont ≥ 0, ils doivent être les mêmes pour f et g. Idem pour les négatifs.

Au final f = enx±e−nx

2 .

2. Si cosh est un polynôme trigonométrique, h′ sinh l’est également, et h′2 sin2 h+ h′2 cos2 h = h′2, et considérer le degré.

Exercice 158 ⋆⋆ Entrelacement de racines [X 2022] SoitA,B ∈ R[X]. On suppose que toute combinaison linéaire deA,B est
scindée sur R ou nulle. Soit x1 < x2 deux racines de A. Montrer que [x1, x2] contient au moins une racine de B.

Démonstration. Par l’absurde, si on suppose A,B positifs sur [x1, x2], en considère A − xB, pour x → 0+ ça a deux racines dans
]x1,x2[, et pour x→ +∞, aucune, donc les racines «disparaissent», c’est-à-dire deviennent complexes.
Pour la réciproque, quitte à factoriser par les racines communes, les racines de λP + µQ sont celles de λP+µQ

PQ = λ
Q + µ

P .

Exercice 159 [X 2022] Soit V un sous-espace vectoriel de Mn(K) dont tous les éléments sont de rang ≤ r. Montrer que dimV ≤ nr.

Démonstration. Par équivalence, on peut supposer que V contient Jr . Toutes les matrices s’écrivent alors
(
A C
L O

)
. Comme on peut

rajouter Ir à A, il faut que les matrices C et L vérifient que toutes les lignes de L sont orthogonales à toutes les lignes de C (traiter
le cas où r = n− 1).
En considérant une somme L1+L2⊥C1+C2, donc ⟨L1, C2⟩+ ⟨L2, C1⟩, au sens où si on choisit une ligne quelconque et une colonne
quelconque, on a cela.
On considère φ(M) = (L,C). La condition précédente implique que l’image est de dimension au plus la moitié, puisqu’il est ortho-
gonal (en un certain sens) à l’ensemble des (C,L).

Exercice 160 ⋆⋆ [X 2022] X un ensemble et n ∈ N∗.

1. Si (fi(xj)) est non inversible pour tout (x1, . . . , xn) alors (f1, . . . , fn) est liée.
2. Soient (f1, . . . , fn) et (g1, . . . , gn) telles que pour tout (x1, . . . , xn) on ait det(fi(xj)) = det(gi(xj)). Montrer que l’une des

deux conditions est vérifiée :
(i) Vect(f1, . . . , fn)

(ii) (f1, . . . , fn) et (g1, . . . , gn) sont liées

Démonstration. 1. Un sens trivial. L’autre sens par récurrence.
2. D’après la première question, si l’une des familles est libre, l’autre aussi.

Pour une autre fonction g, on regarde des déterminants de taille n+ 1. En développant suivant la ligne des g, on obtient qu’ils
sont égaux pour fi, et pour les gi. Mais ils sont nuls si et seulement si g ∈ Vect fi.

Exercice 161 ⋆ ⋆ Discriminant d’un polynôme [X 2022] Soit P = Xn + an−1X
n−1 + · · ·+ a1X + a0 =

∏
(X − λi) ∈ C[X].

On pose ∆(P ) = (−1)
n(n−1)

2

∏
i ̸=j(λi − λj) =

∏
i<j(λi − λj)

2.

1. Exprimer ∆(P ) en fonction des ak dans le cas n = 2.

2. Montrer que ∆(P ) = (−1)
n(n−1)

2

∏n
i=1 P

′(λi).
3. Soit A ∈ Mn(C) et P = χA. On pose M =

(
Tr(Ai+j−2)

)
i,j≤n

. Montrer que detM = ∆(P ).

4. Montrer que ∆(P ) est un polynôme à coefficients entiers en les ak .

Démonstration. 1.
2.
3. Écrire M comme le produit de deux matrices de Vandermonde.
4. C’est les sommes de Newton.

Exercice 162 ⋆⋆ [X 2022] Soit n ≥ 2 et A,B,C,D ∈ Mn(R) telles que AC −BD = In et AD +BC = On.

1. Montrer que CA−DB = In et DA+ CB = On.
2. Montrer que det(AC) ≥ 0.

Démonstration. 1. L’hypothèse donne
(
A B
−B A

)(
C D
−D C

)
= I2n.

2. SiC inversible, en posantU = CA, on aU = In+DB = In−DC−1DA, donc In−DC−1DC−1U , doncU(In+(DC−1)2) =
In, et déterminant de In +B2 est toujours > 0, par factorisation.
Si C non inversible, le déterminant est nul.

Exercice 163 [X 2022] Soit M ∈ Mn+1(R) définie par Mi,j =
(
j−1
i−1

)
.

1. M est-elle diagonalisable?
2. Montrer que le sous-groupe de GLn+1(R) engendré par M est isomorphe à Z.
3. Quel est l’indice de nilpotence de M − In+1 ?
4. Expliciter M−1.
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Démonstration. 1. non, il y a des 1 sur la diagonale
2. Montrer que n 7→Mn est injectif.
3. L’indice est n.
4. penser à P 7→ P (X + 1)

Exercice 164 [X 2022] Soit E = CN∗
et T l’endomorphisme de E qui à (un)n≥1 associe (vn)n≥1 définie par vn = 1

n

∑n
k=1 uk .

1. Déterminer les éléments propres de T .
2. Pour λ ∈ C, déterminer Ker(T − λ id)k pour k = 2, puis pour tout k ≥ 2.

Démonstration. 1. Les valeurs propres sont les 1
n , où n est le premier indice ̸= 0.

Le vecteur propre pour 1
n est ∀k ≥ 0, un+k =

(
n+k−1

k

)
.

2. On cherche vn tel que T (vk)− vk
n = uk . Pour des k < n, on obtient par récurrence que vk = 0. Puis on a vn

n − vn
n = 1, ce qui

n’est pas possible.
Donc les Ker(T − λ id)k sont stationnaires, à k = 1.

Exercice 165 [X 2022] Soient K un corps et E un K-ev de dimension finie n ≥ 1 et u ∈ L(E).

1. Quels sont les P ∈ K[X] tels que P (u) ∈ GL(E)?
2. À quelle condition sur u est-il vrai que K[u] ⊂ GL(E) ∪ {0}?

Démonstration. 1. P premier avec χ.
2. Le polynôme minimal est irréductible.

Exercice 166 [X 2022] Théorème de Brauer Montrer que σ, σ′ ∈ Sn sont conjuguées si et seulement si les matrices de permutation
Mσ et Mσ′ sont conjuguées.

Démonstration. Si σ, σ′ sont conjuguées dans Sn, comme σ 7→Mσ est un morphisme, Mσ et Mσ′ sont conjuguées dans Mn(R).
Réciproquement, siMσ etMσ′ sont conjuguées : on a en particulier TrMσ = TrMσ′ , ce qui implique que σ et σ′ ont le même nombre
de points fixes.
Plus généralement, ∀k ∈ N∗, TrMk

σ = TrMk
σ′ , ce qui implique que σk et σ′k ont le même nombre de points fixes. On en déduit par

récurrence forte que pour tout k, σ et σ′ ont le même nombre d’orbites de longueur k.
Cela implique que σ et σ′ sont conjuguées.

Exercice 167 [X 2022] Soit E de dimension finie et u ∈ L(E).

1. On suppose u diagonalisable. À quelle condition a-t-on C(u) = K[u]?
2. Dans le cas général, montrer que si K[u] est de dimension n alors C(u) = K[u].
3. Réciproque?

Démonstration. 1. Vps distinctes.
2. Endomorphisme cyclique :µx le polynôme minimal d’un vecteur.µx ne prend qu’un nombre fini de valeur, etE =

⋃
µx

Kerµx(u),
donc il existe x tel que µx = µ. Un endomorphisme qui commute avec u est déterminé par sa valeur sur x.

3. On a toujours dim C(u) ≥ n : via résolution du système d’équations AX = XA dont les n coordonnées sur la diagonale sont
forcément égales.

Exercice 168 [X 2022] Soit E un C-ev de dimension finie, et p, q ∈ L(E). On pose c = pq − qp et on suppose que c commute avec
p et q.

1. Montrer que c est nilpotente.
2. Montrer que p, q, c sont cotrigonalisables.
3. La conclusion de la première question subsiste-t-elle si E est de dimension infinie?

Démonstration. 1. Si x est un vecteur propre de valeur propre λ, alors px et qx le sont. Donc Eλ est stable, et pq − qp est de trace
nulle, donc λ = 0.

2. Ker est stable, et récurrence.
3. Est-il possible que pq − qp = Id en dimension infinie : oui, sur R[X], prendre p la dérivation, et définir q petit à petit.

Exercice 169 [X 2022] Soit V de dimension 2n, σ une symétrie de V . On suppose qu’il existe (a, b) et (a′, b, ) tels que ab = ba,
a′b′ = b′a′ et bσ = σa et b′σ = σa′.
On suppose que a admet 2n− 1 valeurs propres distinctes, et que a′ admet 2n valeurs propres distinctes. On suppose que Ker(a− b)
est un espace propre de a de dimension 2 sur lequel σ induit l’identité.

1. Calculer la trace de σ.
2. On suppose qu’aucun vecteur propre de a′ n’appartient à Ker(σ + Id). Calculer la dimension de Ker(a′ − b′).

Démonstration. 1. a, b sont conjugués, et commutent, et sont diagonalisables, donc co-diagonalisables.
Sur l’espace propre de dimension 2, σ vaut l’identité. Sur chaque autre espace propre, a et b ont des valeurs propres distinctes,
et l’écrire aσ = σb implique que le coefficient diagonal de σ est nul, donc la trace vaut 2.
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2. Idem, a′, b′ co-diagonalisables, Ker(a′ − b′) est le nombre de coefficients diagonaux où ils sont égaux. En tout autre coefficient,
le coefficient diagonal de σ est nul.
En ces coefficients égaux, par unicité, on a σ(ei) colinéaire à ei, donc σ(ei) = ±ei, et l’autre est exclu.
On obtient dimKer(a′ − b′) = 2.

Exercice 170 [X 2022] Soit f ∈ L(E) où E est un C-ev de dimension finie. On suppose que les valeurs propres de f sont simples.
Déterminer les u ∈ L(E) telles que u ◦ f − f ◦ u = um, où m ≥ 2.

Démonstration. Si x est un vecteur propre de u ◦ f − f ◦ u, u(x) l’est aussi, car u commute.
Si x valeur propre de u, on a u(f(x)) = λf(x) + λnx, donc (x, f(x)) est stable par u, puis u(f2(x)) = un(f(x)) + f(u(f(x))), donc
(x, f(x), f2(x)) est stable. Dans cette base : (x, f(x), . . . , fk(x)), u a une matrice triangulaire supérieure, avec des λ sur la diagonale.
Donc l’espace caractéristique associé à λ est stable par f , semble-t-il. Mais en passant à la trace sur cet espace, on obtient λ = 0. Donc
la seule valeur propre de u est 0.
Le noyau de u est stable par f , donc c’est une somme d’espaces propres de f (car les valeurs propres de f sont simples).
On obtient que pour k ≤ n, les Keruk sont stables par f aussi (car u et f commutent dessus + récurrence).
Si x ∈ Kerun+1, On a u(f(x)) = f(u(x)) + un(x), donc u(f(x)) ∈ Kerun + keru, donc f(x) ∈ Kerun+1.
Donc tous les Keruk sont stables par f .
Dans une base de diagonalisation de f , u est triangulaire supérieure, mais on vérifie que l’égalité uf − fu = un est impossible si
u ̸= 0, en considérant un coefficient de u le plus proche de la diagonale possible.

Exercice 171 [X 2022] Soit n ≥ 1 et A ∈ Cn−1[X]. On considère l’endomorphisme φA qui à P ∈ Cn−1[X] associe le reste de la
division euclidienne de AP par Xn − 1. Est-ce que φA est diagonalisable?

Démonstration. La matrice dans la base canonique correspond à des permutations cycliques de la première colonne. Dans le cas où
A = Xp, on est diagonalisable.
On prend les polynômes Li de Lagrange en les racines deXn− 1. Ils forment une base. Puis on remarque que φ(Li) = A(ωi)Li donc
diagonalisable et les valeurs propres sont les A(ωi).

Exercice 172 ⋆ [X 2022] Soit n ≥ 3. caractériser les endomorphismes de Kn pour lesquels il existe une base dans laquelle u est

représenté par une matrice de la forme

0 0 0
0 M 0
0 0 0

, où M ∈ Mn−2(K).

Démonstration. La condition est dimKeru ≥ 2 + dimKeru ∩ Imu.

Exercice 173 [X 2022] Soient A,B ∈ Mn(C). Montrer l’équivalence entre les conditions suivantes :

• ∀m ∈ Mn(C), χAM+B = χAM

• B est nilpotente et BA = On.

Démonstration. (i) ⇒ (ii) : pour M = On, on obtient B nilpotente. Si l’image de A n’est pas incluse dans le noyau de B.
On écrit Tr(AM +B)2 = Tr(AM)2, ce qui donne Tr(AMB) = 0, ou Tr(MBA) = 0, pour tout M , donc BA = On.
Réciproquement, on a pour tout K , et tout M , Tr(AM +B)k = Tr(AM)k , donc ils ont les mêmes valeurs propres.

Exercice 174 [X 2022] Soit S ∈ Sn(R) dont les valeurs propres sont λ1 ≥ · · · ≥ λn. Soit k ∈ [[1, n]], montrer que
∑k

i=1 si,i ≤∑k
i=1 λi.

Démonstration. si,i = ⟨AEi, Ei⟩ ; C’est du minimax
par récurrence,λ1 = sup∥x∥=1(u(x)|x) ≥ (u(e1)|e1) puis par le min-max, on aλk = maxVminx∈V (Ax|x) donc siF = V ect(e1, . . . , ek),
λk ≥ (u(ϵk)|ϵk). Puis on complète en (ϵi) base de F etA′ matrice de l ’induit de u dans cette base. Par récurrence : λ1+ · · ·+λk−1 ≥∑
a′i,i et avec la relation sur ϵk , λ1 + · · ·+ λk ≥

∑
a′i,i Or

∑
a′i,i =

∑
ai,i en utilisant la trace.

Exercice 175 [X 2022] Simplicité de SO(E) SoitE un espace euclidien de dimension 3, etH un sous-groupe de SO(E). On suppose
que ∀g ∈ SO(E),∀h ∈ H, ghg−1 ∈ H .

1. On suppose que H contient une symétrie orthogonale par rapport à une droite. Montrer que H = SO(E).
2. Montrer que si H contient une rotation r d’angle obtus alors H = SO(E).

Indication : Considérer x ̸= 0 tel que ⟨r(x), x⟩ = 0, s la symétrie orthogonale par rapport à Vectx et u = srsr−1.
3. Montrer que SO(E) est simple.

Démonstration. 1. Dans un plan contenant la droite, c’est une symétrie axiale, que l’on peut conjuguer par des rotations pour
obtenir toutes les symétries axiales, puis on peut recommencer selon une autre droite. On obtient toutes les rotations comme
produit de symétries.

2. On vérifie qu’avec un angle obtus, il existe bien un tel x. On cherche qui est srsr−1 et on trouve que c’est une symétrie ortho-
gonale et on est ramené à a)

3. Si contient une rotation d’angle pas obtus, on la compose avec elle-même pour avoir un angle obtus. (si l’angle est entre π/2n

et π/2n−1, c’est 2n fois).

Exercice 176 [X 2022] Soit M ∈ SLn(R).
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1. Montrer qu’il existe X ∈ Rn tel que ∥MX∥2 = ∥X∥2 = 1.
2. Montrer qu’il existe O,O′ ∈ On(R) telles que OMO′ soit triangulaire supérieure à coefficients diagonaux égaux à 1.

Démonstration. 1. Le déterminant inférieur au produit des normes 2 des colonnes (Hadamard), donc on a trouvé un X tel que
∥MX∥2 ≥ 1. Puis utiliser M−1.
Alors ∥MX∥ − 1 prend des valeurs positives et négatives donc au moins une valeur nulle.

2. On choisit leX en question de norme 1 et on complète en une BON, puis on complèteMX en une autre BON, avec les formules
de changement de bases, on arrive à OmO′ avec la première colonne avec un 1 en haut et des zéros en dessous. Ensuite on fait
une récurrence avec la matrice en dessous.

3. MO′E1 convient.

2) Analyse

Exercice 177 [X 2022] Soit ρ > 1 et Aρ =
{∑+∞

n=1
εn
ρn , (εn) ∈ {±1}N∗

}
. Montrer que Aρ est un compact de R.

Démonstration. Si on a une suite, on extrait ε1 constant, puis ε2 constant etc, cela définit une suite limite. Et par extraction diagonale,
c’est une valeur d’adhérence.

Exercice 178 [X 2022] Soit K = R,C et E un espace vectoriel de dimension finie. On note Ar = {u ∈ L(E) | rang u = r}.

1. L’ensemble Ar est-il ouvert ? fermé?
2. Déterminer l’intérieur et l’adhérence de Ar .

Démonstration. 1. Ni ouvert (sauf r = n), ni fermé (tend vers On) (sauf pour r = 0).
2. L’intérieur est vide, l’adhérence est l’ensemble des matrices de rang ≤ r.

Exercice 179 [X 2022] Pour H,K ∈ Mn(C), on pose fH,K : Z ∈ Cn 7→ HZ +KZ .

1. Montrer qu’il y a équivalence entre

• ∀Z, fH,K ◦ FH,K(Z) = −Z
• H2 +KK = −In et HK +KH = 0

2. Montrer qu’il existe un voisinage de (iIn, On) tel que pour tout couple (H,K) la condition précédente soit équivalente à
l’existence d’une unique matrice B telle que

fH,K = fB,K ◦ fiIn,On ◦ f−1
B,K .

Démonstration. 1. C’est du calcul.
2. Si on est conjugué, c’est clair. Réciproquement, c’est faux : comme on peut le voir pour (H,K) = (iIn, On), puisque les fA,On

commutent avec fiIn,On .
En manipulant les équations, on peut montrer que l’unicité nécessite que H − iIn et K n’aient pas de noyau en commun. Mais
KerK ⊂ Ker(H − iIn)(H + iIn). Si ce produit est inversible, on a bien l’unicité.

On peut les voir comme des applications de R2n dans R2n. Auquel cas on obtient le résultat, mais avec B,K ′. Puis on peut changer
l’application qui conjugue, exactement en multipliant par du centre de fiIn,On , qui sont les U,On. On peut annuler K ′ si on sait que
K est inversible. . .

Exercice 180 [X 2022] Soit E =
{
f ∈ C0([0, 1],R) |

∫ 1

0
f = 0

}
. Pour f ∈ E, on pose A(f) ∈ E définie par

A(f)(x) =

∫ x

0

f(t) dt+

∫ 1

0

tf(t) dt.

1. Montrer qu’il existe C > 0 tel que ∀f ∈ E, ∥A(f)∥∞ ≤ C ∥f∥∞.
2. Déterminer la valeur optimale d’une telle constante C .

Démonstration. 1. Trivial.
2. La fonction A(f) est bien d’intégrale nulle. Cela revient à considérer H d’intégrale nulle, vérifiant H(0) = H(1). On suppose

∥H ′∥ = 1, on veut maximiser ∥H∥∞.
C’est obtenu pour A qui va de −1/2 à 1/2 en 1/2, puis redescend jusqu’à −1/2 en 1.
Pour montrer que c’est optimal : si on suppose A(f)(0) < 0,

• d’une part elle ne peut pas atteindre de valeur ≤ − 1
2 , sinon l’intégrale totale serait forcément ≤ 0, par une majoration

• d’autre part, elle ne peut clairement pas atteindre de valeur > 1
2 .

Exercice 181 ⋆ ⋆ [X 2022] Soit E = C0([0, 1],R). On dit qu’un endomorphisme T de E est positif si pour tout f ∈ E, f ≥ 0
implique T (f) ≥ 0. On pose, pour i ∈ N, ei : x 7→ xi.

1. Soit f ∈ E. Montrer que pour tout ε > 0, il existe δ > 0 tel que

∀x, y ∈ [0, 1], |f(x)− f(y)| ≤ ε+
2 ∥f∥∞
δ2

(x− y)2.

32



2. Soit (Tn)n≥0 une suite d’endomorphismes positifs de E. On suppose que pour i ∈ {0, 1, 2}, la suite (Tn(ei))n∈N convergence
uniformément vers ei. Montrer que pour tout f ∈ E, la suite (Tn(f)) converge uniformément vers f sur [0, 1].

Démonstration. 1. Prendre pour δ un module ε-UC de f .
2. Soit f une fonction, que l’on peut supposer positive. En tout point x0, on peut lui ajouter une parabole très pointée, négative en
x0, de valeurs −f(x0). On obtient une fonction qui est positive, qui est donc envoyée sur une fonction positive, ce qui implique
que T (f)(x0) ≥ f(x0).

Exercice 182 ⋆⋆ [X 2022] Soit f : [0, 1]d → [0, 1]d telle que ∥f(x)− f(y)∥∞ < ∥x− y∥∞ pour x, y distincts.

1. Montrer que f admet un unique point fixe.
2. Soit x0 = (0, . . . , 0), montrer que la suite xn+1 = f(xn) converge.

Démonstration. 1. Unicité triviale.
Pour l’existence, considérer une suite un+1 = f(un), et α une valeur d’adhérence.
La suite ∥xn+1 − xn∥ est décroissante. Si elle tend vers 0, α est un point fixe. Sinon, elle tend vers c.
On considère, pour tout n, um tel que ∥um − α∥ ≤ 1

n , et β une valeur d’adhérence de um+1. On a nécessairement ∥α− β∥ = c.
L’hypothèse de contraction appliquée à α et β donne une contradiction.

2.

Exercice 183 [X 2022] On munit C([0, 1],R) de la norme infinie. On note B sa boule unité fermée. Soit E un sous-espace vectoriel
de C([0, 1],R).

1. Soit N ∈ N∗. Soit (x1, . . . , xN ) ∈ [0, 1]N . On pose Φ: f ∩ E 7→
(
f(xk)

)
1≤k≤N

.

Montrer que pour tout δ > 0, il existe p ∈ N∗ et f1, . . . , fp ∈ B∩E telles que pour tout g ∈ B∩E, min
i∈[[1,p]]

∥Φ(g)− Φ(fi)∥∞ ≤ δ.

2. On suppose que tout élément de E de classe C1. On suppose de plus qu’il existe C > 0 tel que ∀f ∈ E, ∥f ′∥∞ ≤ C ∥f∥∞.
Montrer que E est de dimension finie.

Démonstration. 1. Supposons que ce ne soit pas le cas. On construit une suite de fonctions de B ∩ E. Mais B ∩ E est compact,
donc elle converge.

2. Prendre xi une subdivision régulière, de sorte que si ∥Φ(g)∥ ≤ δ, alors ∥g∥∞ ≤ 1
2 (en utilisant le caractère C-lip).

Prendre g ∈ E ∩B, lui retirer le fi proche, alors ∥g − fi∥ ≤ δ, et on réapplique ce procédé à 2(g − fi). On obtient que g est la
somme d’une série convergente, donc appartient à Vect fi.

Exercice 184 ⋆⋆ [X 2022] Montrer que la distance de
(

1+
√
5

2

)n
à Z tend vers 0, lorsque n→ +∞.

Démonstration.

Exercice 185 ⋆⋆ [X 2022] On considère la suite de Fibonacci, de premiers termes F0 = F1 = 1.

1. On pose r = 1
9899 = 0, 00010102030508132134 . . .. Démontrer une relation entre ce développement décimal et la suite (Fn).

2. Soit n ∈ N∗. Une configuration est une partition de {0, 1} × [[0, 2n]] en sous-ensembles de l’une des formes suivantes : {ε} ×
{i, i + 1} ou {0, 1} × {i}. Calculer, en fonction des termes de (Fn), la proportion qn parmi les configurations, de celles qui
contiennent {0, 1} × {n}. Montrer que (qn)n≥1 converge, et préciser sa limite.

3. La suite des classes de (Fn) modulo 100 est-elle périodique?

Démonstration. 1. On a r = 1
1002−100−1 = 1

1002
1

1− 1
100+

1
1002

, puis DL. Pour le voir apparaître, on peut ou bien faire une décompo-

sition en éléments simples.
2. Le nombre de configurations est la suite de Fibonacci, on tend vers φ.
3.

Exercice 186 [X 2022] Pour n ∈ N∗, on note i(n) et p(n) le nombre de diviseurs positifs impairs et pairs de n. Déterminer la limite,
un équivalent, puis un développement asymptotique de la suite un = 1

n

∑n
k=1

(
i(k)− p(k)

)
Démonstration. Si n est impair, tous ses diviseurs sont impairs. Si n = 2αm, on a d(n) = i(n) + i(n) + · · ·+ i(n) = αi(n). Dans ce
cas, i(k)− p(k) = −(α− 1)i(n), ce qui est encore valable pour α = 0.
En regroupant les termes, on a

n∑
k=1

(
i(k)− p(k)

)
=
∑
d imp

∑
α|d2α≤n

−(α− 1) =
∑
d imp

⌊ln2(n/d)⌋ −
⌊ln2(n/d)⌋(⌊ln2(n/d)⌋ − 1)

2
.

On regroupe alors suivant la valeur de ln2(n/d)

Exercice 187 [X 2022] Si A ⊂ N, on note d(A) = infn>0

∣∣A∩[[1,n]]
∣∣

n .

1. Soit A contenant 0 et telle que d(A) ≥ 1
2 . Montrer que tout élément de N s’écrit comme somme de deux éléments de A.

2. Soient A,B contenant 0. Montrer que 1− d(A+B) ≤ (1− d(A))(1− d(B)).
3. Si 0 ∈ A et d(A) > 0, montrer qu’il existe r ∈ N∗ tel que N = A+A+ · · ·+A (r fois).
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Démonstration. 1. n peut s’écrire 0 + n, 1 + (n− 1), etc. Si ça ne marchait jamais, on contredit.
2. Soit n. On a |(A+B) ∩ [[1, n]]| ≥ . . .. On note {a1, . . . , an} = A, et on écrit

|(A+B) ∩ ]ai,ai+1[| ≥ d(B)(ai+1 − ai − 1)

3. Trivial.

Exercice 188 [X 2022] Soit A ⊂ N∗.

1. Montrer que si la famille
(
1
k

)
k∈A

est sommable, alors A est de densité nulle, c’est-à-dire 1
n

∣∣A ∩ [[1, n]]
∣∣→ 0.

2. Montrer que si les éléments de A sont deux à deux premiers entre eux, alors A est de densité nulle.

Exercice 189 ⋆⋆ [X 2022] Soit A ⊂ N∗ telle qu’il existe d > 0 tel que F (n) =
∣∣A ∩ [[1, n]]

∣∣ ∼ nd. On pose Q =
{

a
b , a, b ∈ A

}
.

1. Montrer que Q est dense dans R+.
2. On suppose que d = 1. Montrer que Q = Q∗

+.
3. Soit ε > 0. Montrer qu’il existe A ⊂ N∗ telle que Q ̸= Q∗

+ et F (n) ∼ nd, avec d ≥ 1− ε.

Démonstration. 1. Pour tout ε, A ∩ [n, n(1 + ε)] est non vide.
2. Il suffit de montrer que 1

p ∈ Q. Si ∀x ∈ A, px ̸ inA, on perd de la densité.
3. Prendre p premier, et A les éléments sans p dans leur décomposition.

Exercice 190 [X 2022] Soit A ⊂ N∗ et f, g définies pour n ≥ 2 par

f(n) =
1

n

n∑
k=1

1k∈A et g(n) =
1

lnn

n∑
k=1

1k∈A

k
.

Pour ℓ ≥ 0, comparer les assertions f(n) → ℓ et g(n) → ℓ.

Exercice 191 ⋆ ⋆ [X 2022] Soient (un), (vn) deux suites réelles, vérifiant, pour tout n ∈ N, un+1 =
∫ 1

0
max(x, vn) dx et vn+1 =∫ 1

0
max(x, un) dx. Étudier la convergence des deux suites.

Démonstration. Si vn ∈ [0, 1] : un+1 = 1
2v

2
n + 1

2 . Si vn ≥ 1, un+1 = vn et si vn ≤ 0, un+1 = 1
2 . Dans le cas intéressant, on a donc

un+1 ≥ vn, et vn+1 ≥ un, donc le minimum des suites est croissant, s’il tend vers +∞, c’est fini. Sinon, il tend vers ℓ, on prend un
rang tel que un ≃ ℓ, on a vn+1 ≃ f(ℓ), et vn ≥ ℓ, donc un+1 ≥ f(ℓ), min(vn+1, un+1) ≥ f(ℓ), donc f(ℓ) = ℓ.

Exercice 192 ⋆⋆ [X 2022] Soit n ≥ 2. On note P (k, n) =
∏k

i=0

(
1− i

n

)
, pour 0 ≤ k < n.

1. Montrer qu’il existe un plus petit k ∈ [[0, n− 1]] tel que P (k, n) ≤ 1
2 . On le note kn.

2. Montrer que kn tend vers l’infini.
3. Montrer que kn = o+∞(n)

Démonstration. 1. Quand k = n− 1, un des facteurs est ≤ 1
2 .

2. (kn) est croissant. Si kn est majorée, on tend vers 1.
3. Il faut montrer que

∏αn
i=0

(
1− i

n

)
≤ 1

2 . C’est une somme de Riemann.

Exercice 193 [X 2022] Pour α ≥ 0 on dit que f : [0, 1] → R est α-Höldérienne si elle vérifie |f(s)− f(t)| ≤ C|s− t|α.

1. Que dire de f dans les cas α = 0 et α > 1?
2. Soient 0 ≤ α ≤ β. Montrer que si f vérifie (Hβ), elle vérifie (Hα).
3. Soient α, β > 0, f vérifiant Hα et g vérifiant Hβ . Montrer que la suite suivante converge.∑2n−1

k=0 f
(

k
2n

)(
g
(
k+1
2n

)
− g
(

k
2n

))
.

Démonstration. 1. α > 1 elle est forcément constante.
2.
3. On peut supposer que α = β.

On commence par montrer que cette suite est bornée.
Considérer In − In+1 =

(
f( k

2n )− f( 2k+1
2n+1 )

)(
g(k+1

2n )− g( 2k+2
2n+1 )

)
, ≤ 1

22nα , dont la série converge.

Exercice 194 ⋆ [X 2022] Soit P,Q ∈ R[X] de même degré d ≥ 1, av P =
∑
akX

k et Q =
∑
bkX

k . On suppose que ad−1

ad
̸= bd−1

bd
.

Soit (un) une suite strictement positive vérifiant un+1

un
= P (n)

Q(n) pour n assez grand. Montrer qu’il existe trois constantes a, b, c telles
que un ∼ anbcn et a > 0.

Démonstration. Développement asymptotique de
∑

ln P (n)
Q(n) .

Exercice 195 ⋆ [X 2022]

34



1. Montrer que pour tout n ≥ 1, il existe un couple (xn, yn) ∈ ]0,1[
2 tel que

n!

+∞∑
k=n+1

1

k!
=

1

n+ xn
et n!

+∞∑
k=n+1

(−1)k

k!
=

(−1)n+1

1 + n+ yn
.

2. Montrer qu’il n’existe pas de triplet (a, b, c) ∈ Z3 \ {(0, 0, 0)} tel que a+ be+ ce2 = 0.

Démonstration. 1. Inégalité simple?

2. On aurait ae+ be−1 ∈ Z, on multiplie par n!, et on obtient a 1
n+xn

+ b (−1)n+1

1+n+yn
∈ Z.

Exercice 196 ⋆⋆ [X 2022]

1. Construire une fonction croissante de R dans R dont l’ensemble des points de discontinuité est Q.
2. Montrer qu’il n’existe pas de fonction croissante de R → R dont l’ensemble des points de discontinuité est R \ Q.

Démonstration. 1. Soit (un) une énumération de Q, et f : x 7→
∑

n 1x≤un

1
2n .

2. Dénombrabilité.

Exercice 197 ⋆⋆ [X 2022] Soit f : x 7→ e−x2

. En combien de points de R la dérivée n-ième de f s’annule-t-elle ?

Démonstration. On a Pn+1 = −2XPn + P ′
n, donc degré, et s’annule également en ±∞.

Exercice 198 [X 2022] Soit f : [0, 1] → R de classe C1 telle que f(0) = f(1) = 0. Montrer que pour tout λ ∈ R, il existe c ∈ [0, 1]
tel que f ′(c) + λf(c) = 0.

Démonstration. (eλtf)′

Exercice 199 [X 2022] Soit E l’ensemble des fonctions f : R+ → R telles que

∀x, y ∈ R+, f(xy) = xf(y) + yf(x).

1. Déterminer les éléments de E dérivables en 0.
2. Montrer que si un élément de E est dérivable en un point de R∗

+, il est dérivable sur tout R∗
+.

3. Déterminer les éléments de E dérivable en un point.

Démonstration. 1. yf ′(xy) = f(y) + yf ′(x), puis x = 0, on obtient f nulle.

2. Si on est dérivable en x0 > 0, alors en fixant y ̸= 0, on est dérivable en x0y, de dérivée 1
y (f(y) + yf ′(x0)) = f ′(x0) +

f(y)
y

3. On obtient yf ′(y) = f(y) + yf ′(1), on résout l’équation diff.

Exercice 200 [X 2022] Soit f : R → R une fonction C∞ telle que f(0) = 0. Montrer que g : x 7→ f(x)
x se prolonge en 0 en une

fonction de classe C∞.

Exercice 201 [X 2022] Soit f : R → R dérivable. On note Ef = Vect(x 7→ f(x+ α), α ∈ R). Montrer l’équivalence entre

• Ef est de dimension finie.
• Il existe n et a0, . . . , an−1 ∈ R tels que f soit n fois dérivable et f (n) = an−1f

(n−1) + · · ·+ a0f .

Démonstration. Si f est n fois dérivable, l’espace engendré par ses translatés est inclus dans l’ensemble des solutions.
Réciproquement. SiEf est de dimension finie, on en considère une base. On peut écrire, pour chaque j, ∀x, a, fj(x+a) =

∑
i λi,j(a)fi(x).

On veut montrer que les λi,j sont dérivables. Cela découle du lemme d’inversion : prendre des xj tels que (fi(xj)) soit inversible. On
obtient f ′j(x+ a) =

∑
i λ

′
i,j(a)fi(x), donc f ′j est dérivable, donc les fj sont C∞.

En fait surtout, elles restent dans le même espace vectoriel. Prendre un polynôme annulateur de l’endomorphisme de dérivation.

Exercice 202 ⋆ Théorème des cordes [X 2022] Soit a < b et f : [a, b] → R continue telle que f(a) = f(b).

1. Soit n ≥ 2. Montrer qu’il existe a′, b′ ∈ [a, b] tels que f(a′) = f(b′) et b− a = n(b′ − a′).
2. Redémontrer le théorème de Rolle à l’aide de cette propriété.

Démonstration. 1. Théorème des cordes.
2.

Exercice 203 [X 2022] Soient ξn > ξn−1 > . . . > ξ1 > 0 et a, . . . , an des réels non nuls. On pose f : t 7→
∑n

k=1 ak sin(ξkt). On
suppose que la suite

(∥∥f (N)
∥∥
∞

)
est bornée, que f ′(0) = 1 et que ∥f∥∞ ≤ 1. L’objectif est de montrer que f = sin.

1. Montrer que ξn ≤ 1.
2. On pose g =

∑n
k=1 ak1[−ξk,ξk]. Montrer que

∀t ∈ R∗,
f(t)

t
=

1

2

∫ 1

−1

g(x)eitx dx.

Démonstration. 1. Découle de
∥∥f (n)∥∥∞ ≤ 1.
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2. C’est un calcul simple.

La fonction g vérifie
∫ 1

0
g(t) dt = 1, décroissante, g(0+) = 0 et

∣∣∣ 12 ∫ 1

−1
g(x)eitx dx

∣∣∣ ≤ 1
t , utile pour t grand.

On veut montrer que g est constante égale à 1.

Exercice 204 [X 2022] Existe-t-il f : R2 → R continue telle que :

• f s’annule un nombre fini de fois sur chaque droite verticale,
• f s’annule un nombre infini de fois sur toutes les autres droites ?

Démonstration. Oui, considérer une réunion de demi-droites horizontales, aux ordonnées entières positives, à l’extérieur de la parabole
y = x2. Cela ne marche pas avec les droites horizontales, donc appliquer une petite rotation à une demi-droite sur deux.

Exercice 205 [X 2022] 1. Montrer qu’il existe une unique fonction dérivable v : R+ → R+ telle que v(0) = 0 et ∀t ≥ 0, v′(t) =∫ 1

0

(
v(tx) + 1− v(t)

)
dx.

2. On suppose qu’il existe une fonction dérivable v : R+ → R+ tel que v(0) = 0 et ∀t ≥ 0, v′(t) =
∫ 1

0
max

(
0, v(tx)+1−v(t)

)
dx.

On pose a = max{t ≥ 0 | v(t) ≤ 1}. Justifier l’existence de a. Montrer que pour tout t ≥ a, il existe un unique réel positif f(t)
tel que v(f(t)) + 1 = v(t).

3. On admet que f est dérivable sur ]a,+∞[ et que pour tout t > a, f ′(t)v′(f(t)) = v′(t). Montrer que v est de classe C2.

Démonstration. 1. En posant h =
∫ t

0
v(t), on a th′′ + th′ − h = t. Avec les conditions h(0) = 0 et h′(0) = 0.

h = 1 7→ 1, h = t 7→ 0.
On peut résoudre l’équation homogène. Si on écrit h(t) = C(t)t, on obtient C ′′(t)t2 + tC ′(t) + t2C ′(t) = 0, donc C ′′(t)t +
(1 + t)C ′(t) = 0, donc C ′(t) = et+ln t = tet. On a donc une paire de solutions de l’équation homogène, nulles en 0.
Donc, si on trouve une solution particulière, il faut montrer qu’elle se prolonge en 0, avec h(0) = 0.
On cherche une solution de la forme t(λ(t)et + µ(t)), avec (variation des constantes), λ′(t)et + µ′(t) = 0, λ′(t)et = t, donc
λ =

∫ t

0
ue−u du, et µ(t) = − t2

2 , d’où le résultat.
Manque la positivité (certaines ne sont pas positives. . .) : Au voisinage de 0, v′ ≥ 0, donc v croissant, donc v au-dessus de sa
moyenne, donc v′ ≤ 1.
On a toujours v au-dessus de sa moyenne, puisque si v est égal à sa moyenne, on a v′(t) = 1, donc il repasse au-dessus.
Cela implique toujours v positive. Cela contredit l’unicité.

2. Si ∀t, v(t) ≤ 1, v′(t) ≥ 1
t

∫ t

0
v(u) du, et comme v est positive, on obtient une minoration de la forme v′(t) ≥ C

t , donc v diverge.
Pour la deuxième partie, on a v strictement croissante, c’est donc trivial.

3. Le faire à la main : séparer l’intégrale à la cassure, etc.

Exercice 206 [X 2022] Soit f : R+ → R uniformément continue. On suppose qu’il existe m > 0 tel que ∀x, y ≥ 0,
∣∣∫ y

x
f
∣∣ ≤ m et

∀x > 0, |f(x)| ≤ 2x−2
∫ x

0
(x− y)|f(y)|dy (hapothèse (H)).

1. Montrer que f est bornée.
2. Montrer que g : x 7→ supy≥x |f(y)| a une limite finie K ≥ 0 en +∞.
3. Soit ℓ > 0. Montrer qu’il existe ℓ′ ∈ ]0,ℓ[ tel que pour tout intervalle I ⊂ R+ de longueur ℓ, il existe un intervalle I ′, de longueur
ℓ′,non disjoint de I , tel que supI′ |f(x)| ≤ 2m

ℓ .

4. On suppose K > 0. En considérant, pour un k > 0 bien choisi, la suite d’intervalles
([

pk
4m ,

(p+1)k
4m

])
p∈N

, déduire une contra-

diction de l’hypothèse (H).
5. Conclure que f tend vers 0 en +∞.

Démonstration. 1. On a f UC +
∣∣∫ y

x
f
∣∣ ≤ m.

2. On a g décroissante, positive.
3. Sinon, on prend ℓ′ assez petit pour qu’il n’y ait pas de chgmt de signe, donc sur tout interval de longueur ≥ 2m

ℓ − ε,
∫ y

x
≥

ℓ( 2mℓ − ε).
4. (H) est une hypothèse de moyennage, avec un poids fort en 0, mais néanmoins. La question précédente donne une proportion

non nulle sur laquelle f est petite.
5. Trivial.

Exercice 207 [X 2022] Soit a > 0 etE l’ensemble des fonctions f : R+ → R de classe C2 telles que f2+a(f ′)2 soit intégrale sur R+.

1. Montrer que E est un sous-espace vectoriel.
2. Montrer que pour tout v ∈ R, il existe f ∈ E tel que f(0) = v.
3. Soit v ∈ R. Déterminer

inf

{∫ +∞

0

(
f2 + a(f ′)2

)
; f ∈ E et f(0) = v

}
.

4. Pour A,B ∈ Sn, on pose A ≤ B ⇔ B − A ∈ S+
n . Soient A,B ∈ S+

n telle que A ≤ B. En utilisant les questions précédentes,
montrer que

√
A ≤

√
B.

Démonstration. 1. Trivial.

36



2. ve−x

3. f2 + af ′2 = (f +
√
af ′)2 −

√
a2ff ′, et f2 a une limite nulle en +∞, donc la partie de droite s’intègre en

√
av2, et la partie de

gauche est minimale pour ve−x/
√
a.

Autre possibilité : existence par compacité, puis on rajoute εg.

4. Si A,B sont strictement positives, on considère fS = e−t
√
S

−1

, on a alors
∫ +∞
0

f2S + f ′TS Sf ′S =
√
S (on est ramené au cas

diagonal).
Si B ≥ A, on a f ′BBf

′
B ≥ f ′BAf

′
B .

Donc
√
B ≥

∫ +∞
0

f2B + f ′TB AfB .

Pour X , on considère la quantité
∫ +∞
0

∥fBX∥2 + ⟨Af ′BX, f ′BX⟩dt, et on montre qu’elle est minimale pour fA, comme dans
la question précédente.

Exercice 208 [X 2022] Soit P ∈ C[X] tel que P (0) ̸= 0 et r > 0. Justifier la convergence de l’intégrale 1
2π

∫ π

−π
ln
(∣∣P (reit)∣∣) dt,

puis la calculer en fonction de P (0) et des racines de P de module strictement inférieur à r.

Démonstration. On sépare les racines, puis c’est du DSE, séparer selon la position par rapport à r. Pour le cas où |xi| = r, c’est de la
CVD.

Exercice 209 [X 2022] Soient U un ouvert de C contenant 0, f développable en série entière sur D(0, R), avec R > 0, p ≥ 1.
On suppose que f(z) = O0(z

p). Montrer que pour r > 0 assez petit, on peut trouver 2p nombres complexes z vérifiant |z| = r et
f(z) ∈ R.

Démonstration. On a f(z) = apz
p(1 + . . . ), arg(f(reiθ))−−−→

r→0
g(θ). Prendre 2p+ 1 valeurs θi.

Exercice 210 [X 2022] Soit (an)n≥0 une suite réelle, et f : x 7→
∑+∞

n=0 anx
n. On suppose que

∑+∞
n=0 |an|2n =M < +∞.

1. Montrer que pour tout n ∈ N et tout x ∈ [−1, 1], |f(n)(x)|
n! ≤M .

2. Soit n ≥ 1. on suppose que ∀k ∈ [[−n, n]], f(k/n) = 0. Montrer qu’il existe une constante absolue C telle que ∀x ∈
[−1, 1], |f(x)| ≤ CM

√
n

en .
3. s Soit n ≥ 1. on suppose que ∀k ∈ [[−n, n]], f(k/n) = 0. Montrer qu’il existe une constante absolue C telle que ∀x ∈

[−1, 1], |f(x)| ≤ CM
(
2
e

)n
.

Démonstration. 1. Découle de
(
n
k

)
≤ 2n.

2. On peut écrire |f(x)| =
∏2n+1

k=1 (x− ak)
f(2n+1)(cx)
(2n+1)! .

D’ailleurs, se contenter de prendre uniquement des ak tels que |x− ak| ≤ 1.

Alors, au pire des cas, f est maximale en un produit n!
nn ≃

√
n

en .
3. Énoncé d’origine.

Exercice 211 [X 2022] Soient α1, . . . , αn ∈ ]−1,1[ distincts non nuls et β1, . . . , βn ∈ R. Montrer qu’il existe une suite bornée (ck)
d’entiers relatifs telle que f : t 7→

∑+∞
k=0 ckt

k vérifie ∀i, f(αi) = βi.

Démonstration. Partir d’un polynôme d’interpolation, et lui ajouter un multiple de
∏
(X − αi).

Exercice 212 ⋆⋆ [X 2022] Soit f(x) =
∑+∞

n=0 x
2n .

1. Déterminer les réels en lesquels f est définie.
2. Pour k ∈ N∗, on écrit f(x)k =

∑+∞
n=1 an,kx

n. Montrer que pour tout n ≥ 1, il existe k tel que an,k ̸= 0.
3. Montrer que pour tous k, n ≥ 1, an,k ≤ (1 + ln2 n)

k .
4. Soient p,m ∈ N∗ et k ∈ [[1, p]]. On pose N = (2p − 1)2m. Soit n ∈ N tel que N − 2m + 1 ≤ n ≤ N + 2m − 1. Montrer que
an,k = 0, sauf si k = p et n = N .

Démonstration. 1.
2. Pour tout n, il existe k tel que n s’écrive comme somme de k puissances de 2.
3. Le nombre de façon d’écrire n comme somme de k puissances de 2 est ≤ (1 + ln2 n)

k .
4. N = 1111100002, avec p uns et m zéros. Toute décomposition d’un entier n comme somme de puissance de 2 en nécessite

strictement plus que sa décomposition en base 2, puisqu’on peut se ramener à sa décomposition en regroupant des termes.

Exercice 213 [X 2022] Soit (an) complexe, C > 0 et R le rayon de convergence de
∑ an

n! z
n. Montrer l’équivalence entre

• ∀ε > 0,∃n0 ∈ N,∀n ≥ n0, |an| ≤ (C + ε)n.
• R = +∞ et ∀ε > 0,∃R0 > 0,∀|z| ≥ R0, |f(z)| ≤ exp

(
(C + ε)|z|

)
.

Démonstration. ⇒ : pas de difficulté.

⇐ : Formule de Cauchy : |an| ≤ e(C+ε)RR
Rn La fonction x 7→ eKx

xn−1 a pour dérivée eKx

xn−1 (K − (n−1)
x ), elle s’annule en x = (n−1)

K , qui
est > R0 pour n assez grand. Et elle vaut alors e(n−1) Kn−1

(n−1)n ≃ Kn−1.

En prenant un peut de marge sur ε, on s’en sort.

Exercice 214 [X 2022] Soit (an) réelle telle que
∑
anx

n soit de rayon 1. Pour x ∈ ]−1,1[, on pose f(x) =
∑+∞

n=0 anx
n.
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1. On suppose que
∑
an converge. Montrer que f(x)−−−−−→

x→1−

∑+∞
n=0 an.

2. Donner un exemple de suite (an) telle que f(x) admette une limite finie quand x→ 1− et que
∑
an diverge.

3. On suppose les an positifs et que f(x)−−−−−→
x→1−

ℓ. Montrer que
∑+∞

n=0 an = ℓ.

4. On suppose que an = o+∞
(
1
n

)
et f(x)−−−−−→

x→1−
ℓ. Montrer que

∑+∞
n=0 an = ℓ.

Démonstration. 1. Sommation d’Abel.
2.
∑

(−1)nx2
n

? Plus simple?
3. Simple.
4. Taubérien. . .

Exercice 215 [X 2022] On pose g : x 7→ 1
π(1+x2) .Pour y > 0, on pose gy : x 7→ 1

y g(x/y). Soit f : R → C continue, nulle en dehors
d’un segment.

1. Montrer que pour tout x, y 7→
∫

R f(x− t)gy(t) dt tend vers f(x) en 0+.
2. Montrer que pour tout ε > 0, il existe δ > 0 tel que

∀x ∈ R,∀y ∈ ]0,δ[,

∣∣∣∣∫
R
f(x− t)gy(t) dt− f(x)

∣∣∣∣ ≤ ε

Exercice 216 [X 2022] Soit n ≥ 1 et J =

(
On In
−In On

)
. Soit S ∈ S2n définie positive.

1. Montrer que toute solution du système différentiel X ′ = JSX est bornée.
2. Montrer qu’il existe (λ1, . . . , λn) ∈ Rn tel que JS soit semblable à Diag(iλ1,−iλ1, . . . , iλn,−iλn).

Démonstration. 1. Écrire S = PTP , alors PX ′ = PJPTPX , et J ′ = PJPT est antisymétrique, donc eJ
′

est orthogonale.
2. Par l’absurde. D’une part les valeurs propres de JS ne peuvent pas avoir de partie réelle non nulle. D’autre part, siX appartient

à Ker(JS − λIn)
2 mais pas à Ker(JS − λIn), on contredit également la première question.

Exercice 217 [X 2022] Soit (E) : x′(t) = cos(x(t)) + cos(t). On admet que pour tout a ∈ [0, π], il existe une unique solution φa de
(E) telle que φa(0) = a. On admet également que s’il existe a, b ∈ [0, π], t0 ∈ R tels que φa(t0) = φb(t0), alors a = b. Montrer qu’il
existe une unique solution de (E) à valeurs dans [0, π] et 2π-périodique.

Démonstration.

Exercice 218 [X 2022] Pour n ∈ N, on note (En) l’équation différentielle −y′′ +x2y = (2n+1)y, dont on cherche les solutions sur
R. On considère également, sur C∞(R,R) les opérateurs A : f 7→ (x 7→ f ′(x) + xf(x)) et B : f 7→ (x 7→ −f ′(x) + xf(x)).

1. Qeu dire de l’espace des solutions de (En) sur R?
2. Résoudre (E0) à l’aide des opérateurs A,B.
3. Déterminer les solutions de (E0) qui sont de carré intégrable sur R.

4. On pose f0 : x 7→ e−x2/2. Montrer que pour tout n, la fonction fn = Bn(f0) est solution de (En).
Indication : Commencer par donner une expression simplifiée de ABn −BnA.

5. Montrer que les solutions de carré intégrable de (En) sont les éléments de Vect fn.
6. Montrer que (fn) est orthogonale pour le produit scalaire ⟨f, g⟩ =

∫
R fg.

3) Probabilités
Exercice 219 ⋆⋆ [X 2022]

1. Soit A,B,C un triangle du plan. On construit D tel que ABD soit isocèle en D avec un angle orienté en D égal à 2π
3 et de

même E,F relativement aux côtés BC et CA. Montrer que le triangle DEF est équilatéral.
2. Soit n ≥ 3 et k ∈ [[1, n− 2]]. on note Tk l’application qui à un polgone A1A2 . . . An associe le polygone B1 . . . Bn tel que pour

tout i, AiAi+1Bi soit isocèle en Bi avec un angle de 2kπ
n . Montrer que, quel que soit le polygone initial, lorsqu’on lui applique

tous les Tk , pour 1 ≤ k ≤ n−2, on obtient un polygone régulier et que celui-ci ne dépend pas de l’ordre dans lequel on compose
les Tk .

Démonstration. 1. On écrit D = A+
−−→
ABe2i

π
3 , E = B +

−−→
BCe2i

π
3 , etc, puis on écrit l’angle.

2.

Exercice 220 ⋆⋆ [X 2022] Soit n ≥ 2. Dénombrer les vrais triangles rectangles de Rn dont les trois sommets sont dans {0, 1}n.

Démonstration.

Exercice 221 ⋆⋆ [X 2022] Soit n ≥ 3. Quel est le cardinal du groupe des isométries affines du plan euclidien stabilisant un polygone
régulier à n sommets?
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Démonstration. Si on stabilise le polygone, le centre est un point fixe. À une translation près, on peut le supposer centré en 0, donc
l’application est linéaire.
On sait qu’il existe 2n tels transformations. En composant par l’une, on peut supposer que f(1) = 1, et que l’on préserve l’orientation.
Mais alors on est l’identité, puisque e2i

π
n ne peut être envoyé que sur lui-même, ou son symétrique.

Exercice 222 ⋆ ⋆ [X 2022] Une urne contient des boules bleues rouges, noires. À chaque étape on retire deux boules de couleurs
différentes, et on ajoute une boule de la troisième couleur.

1. Montrer que si à la fin du procédé il ne reste qu’une seule boule, sa couleur est déterminée par la configuration initiale.
2. À quelle condition est-il possible de finir avec une seule boule?

Démonstration. 1. En notant nxy , nyz et nxz , le nombre d’opérations à faire. On obtient un système nxy +nxz −nyz = x, . . . avec

z− 1. Si deux de ces systèmes avaient des solutions entières, on peut considérer la différence, AZ =


0
1
−1

 aurait une solution

entière, ce n’est pas le cas (dans Z/2/Z).
2. S’il y a plusieurs couleurs au début c’est bon. Si t’as deux couleurs, et si t’as au moins trois boules, tu peux toujours faire une

opération après laquelle il y a au moins deux couleurs.

L’inverse de A est 1
2

1 1 0
1 0 1
0 1 1

. Donc si x, y, z ont la même parité, pas de solution.

De même, si y = z = 0, on ne peut rien faire.
Réciproquement, si x, y, z n’ont pas tous la même parité. Cette propriété est préservée. Tant que tu as deux couleurs et au moins
trois boules, on peut toujours faire une opération qui préserve le fait d’avoir au moins deux couleurs. On répète, jusqu’à avoir
trois boules, et comme la propriété de parité est préservée, ce n’est pas trois boules de couleurs différentes.

Exercice 223 [X 2022] Pour λ > 0, on note Xλ une variable suivant une loi P(λ). Étudier le comportement de P (Xλ > E(Xλ)),
quand λ→ +∞.

Démonstration. C’est e−λ
∑

n≥λ
λn

n! ≃ e−λλn

n!

∑
k≥0

λkn!
(n+k)! .

Reste à trouver un équivalent du reste,
∑

k≥0
1

(1+ 1
λ )...(1+ k

λ )
. Par l’inégalité harmonique ≥

(∑
λ

λ+k

n

)k

, plutôt.

On a P (X > λa) = P (etX > etλa) ≤ E(etX)
etλa = eλ(et−1)

etλa = eλ(e
t−1−ta) = eλ(1−a)t+o0(t). En particulier, si on prend a = 1 + K

λ , on
a P (X > λ+K) ≤ e−K .
D’autre part, la somme d’un nombre fini de termes (K) de la somme considérée tend vers 0. Donc P (Xλ > λ)−−−−−−→

λ→+∞ 0.

Exercice 224 [X 2022] Soient m,n ≥ 2, p ∈ ]0,1[ et q = 1− p. Soit (Xn) une suite de variables aléatoires indépendantes de même
loi B(p). On note An l’évènement «m divise X1 + · · ·+Xn».

1. Montrer que pour tout n ≥ 1,
n∑

k=0
m|k

(
n

k

)
pkqn−k =

1

m

m−1∑
j=0

(
e

2iπj
m p+ q

)n
.

2. Montrer que P (An) converge vers une limite ℓ à préciser.

3. Montrer que
∣∣P (An)− ℓ

∣∣ ≤ e−
8pq

m2 n.

Démonstration. 1. Ok.
2. Tends vers 1

m .

3. En majorant par la valeur pour j = 1, on obtient |P (An) − ℓ|2/n ≤ p2 + q2 + 2 cos
(
2π
m

)
pq = 1 − 2(1 − cos

(
2π
m

)
)pq =

2 cos
(
2π
m

)
)pq + 1− 2pq

Comme pq peut être arbitrairement petit, pour que l’inégalité cherchée soit vérifiée, il faut que 1−2pq(1−cos
(
2π
m

)
) ≤ 1− 16pq

m2 ,
⇔ cos 2 π

m ≤ 1− 8
m2 , ce qui découle d’une inégalité cosx ≤ 1− 2x2

π2 (parabole qui s’annule en 0 et en π)

Exercice 225 ⋆⋆ [X 2022]

1. Soient n ≥ 2, σ, τ ∈ Sn avec τ une transposition. Comparer le nombre de cycles à supports disjoints de σ et de σ ◦ τ .
2. On munit Sn d’une distribution uniforme de probabilité. Soient i, j ∈ [[1, n]], avec i ̸= j. Calculer la probabilité que i et j soient

dans un même cycle.

Démonstration. 1.
2. i, j sont dans le même cycle pour σ si et seulement si ils sont dans deux cycles différents pour σ ◦ (i j). Donc la probabilité vaut

1
2 .

Exercice 226 ⋆⋆ [X 2022] Soit σn une variable aléatoire suivant la loi uniforme sur Sn.

1. Soit Ln la longueur du cycle de σn contenant 1. Déterminer l’espérance de Ln.
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2. Quelle est la probabilité que 1 et 2 soient dans un même cycle de σn ?
3. On note cn le nombre de cycles de σn. Montrer que E(cn) ∼ lnn.

Démonstration. 1. P (Ln = k) = 1
n , par dénombrement.

E(Ln) =
∑

k
n = n+1

2

2. On a E(Ln) = 1 + (n− 1)p, p = 1
2 .

3. E(cn) =
∑

c
(n−|c|)!

n! =
∑n

k=1

(
n
k

)
(k − 1)!.

Exercice 227 [X 2022] Soient G un groupe fini de neutre e, n ∈ N∗, (Xk)1≤k≤n indépendantes de même loi uniforme sur G \ {e}.
Déterminer la loi de Yn = Xn . . . X1.

Démonstration. an = P (Yn = e) ; bn = P (Yn = x), où x ̸= e. a1 = 0 ; b1 = 1
m−1 .

a2 = m−1
(m−1)2 = 1

m−1 ; b2 = m−2
(m−1)2

an = bn−1 ; bn = an−1
1

m−1

Exercice 228 [X 2022] Pour X,Y deux variables aléatoires à valeurs dans N, on note

d(X,Y ) =
∑
n∈N

∣∣P (X = n)− P (Y = n)
∣∣.

Soit Sn ↪→ B(n, 1
n ) et P de loi P(1). Montrer que d(Sn, P ) → 0.

Démonstration. C’est ∑
k∈N

∣∣∣∣e−1

k!
−
(
n

k

)( 1
n

)k(n− 1

n

)n−k
∣∣∣∣ .

Classiquement, chaque sommande tend vers 0, et on peut espérer avoir une domination. . .

Exercice 229 [X 2022] Soit Xn suivant une loi uniforme sur [[1, n]]. On note Rn le reste de la division euclidienne de n par Xn et
Yn = Rn

Xn
. Montrer que P (Yn ≥ 1/2) → 2 ln 2− 1.

Démonstration. Si n = qXn + rn, on a n
q = xn + rn

q , donc n
q ∈ [xn + 1/2, xn + 1[.

Plutôt : (q + 1/2)xn ≤ n < (q + 1)xn, donc xn > n
q+1 et xn ≤ n

q+1/2 , c’est-à-dire xn ∈
]

n
q+1 ,

n
q+1/2

]
. On peut ignorer les cas

d’égalités, qui sont en o(n).

DoncP (Yn ≥ 1/2) =
∑n

q=1⌊
n

q+1/2⌋−⌊ n
q+1⌋=

∑n
q=1⌊

2n
2q+1⌋−⌊ 2n

2q+2⌋. Si on peut retirer les parties entières, on obtient 2
∑+∞

k=3
(−1)k+1

k ,
ce qu’il faut.
On peut négliger l’erreur pour q ≤

√
n, et même q ≤ n

lnn , et alors n
2q+1 − n

2q+2 ≤ n
q2 , et idem sur les suivants, donc la plupart sont

nuls.

Exercice 230 ⋆ ⋆ [X 2022] Soit d ∈ N∗, et ε1, . . . , εp−1 des variables aléatoires indépendantes de même loi B( 12 ). On note pd la

probabilité que le polynôme Xd +
∑d−1

i=1 εiX
i + 1 possède une racine rationnelle. Montrer que pd ∼

√
2
πd .

Démonstration. C’est la probabilité queP (−1) = 0. Revient à choisir uniformément une partie de [[1, d− 1]] et à chercher la probabilité
que le nombre d’éléments impairs soit égal au nombre d’éléments pairs plus deux. C’est donc

1

2d−1

∑
k

(
⌊(d− 1)/2⌋

k

)(
⌈(d− 1)/2⌉

k + 2

)
=

1

2d−1

∑
k

(
⌊(d− 1)/2⌋

⌊(d− 1)/2⌋ − k

)(
⌈(d− 1)/2⌉

k + 2

)

C’est le coefficient en ⌊(d− 1)/2⌋+ 2 de (X + 1)⌊(d−1)/2⌋(X + 1)⌈(d−1)/2⌉, puis Stirling.

Exercice 231 [X 2022] 1. Soit n ≥ 3 un entier. Montrer que l’équation x = n lnx admet deux solutions > 0, que l’on note
an < bn.

2. Trouver une suite strictement croissante (pk)k≥2 d’entiers telle que p2 ≥ 2, que
∑

2−(pk+1−pk) diverge et qu’il existe C > 2
tel que pour k ≥ 2,

∑pk+1

j=pk

1
ln j ≥ C .

3. Soit (Xn)n≥2 une suite de variables aléatoires indépendantes de même loi de Rademacher. Que dire de la convergence de
∑ Xn

lnn .

Démonstration. 1. Pour x = 2, on a 2 < n ln 2, donc il y a une solution dans [1, ln 2], qui tend vers 1, une autre dans [ln 2,+∞[,
qui tend vers +∞, de l’ordre de n lnn.

2. On veut pk+1 − pk ≃ C ln(pk) et ln 2(pk+1 − pk) ≃ lnn

Il suffit de prendre pn ∼ n lnn ; On a pn+1 − pn = lnn et
∑

2− lnn diverge.

3. On considère la suite précédente, et les évènements Ak =
⋂pk+1−1

i=pk
(Xi = 1). Alors

∑
P (Ak) diverge, et les Ak sont indépen-

dantes, donc presque sûrement, Ak se réalise une infinité de fois, donc presque sûrement la série diverge.

Exercice 232 ⋆ ⋆ [X 2022] Soit n ∈ N∗, et X,Y, Z, σ telle que X,Y, Z ↪→ U([[1, n]]) et σ ↪→ U(Sn). On note LX le cardinal de
l’orbite de X par σ.
Montrer que P (LX = LY = LZ) ≥ P (LX = LY )

2.
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Démonstration. Si X,Y, Z sont indépendantes, P (X = Y = Z) ≥ P (X = Y )2, par Cauchy-Schwarz.
Les L... ne sont pas indépendantes.
Mais, conditionné à la valeur de σ, elles le sont. Alors

P (LX = LY = Lz | σ = τ) ≥ P (LX = LY | σ = τ)2.

Puis

P (LX = LY = Lz) =
∑
τ

1

n!
P (LX = LY = Lz | σ = τ) ≥

∑
τ

1

n!
P (LX = LY | σ = τ)2 ≥ (

∑ 1

n!
P (LX = LY | σ = τ))2

où la dernière inégalité est Cauchy-Schwarz.

Exercice 233 [X 2022] Soit p ∈ ]0,1[. X1, . . . , Xn variables aléatoires indépendantes de même loi de même loi G(p). On note
Mn = max(X1, . . . , Xn) et Nn : ω 7→ Card{k | Xk(ω) =Mn(ω)}.

1. Pour k ∈ N et a ≥ 1, exprimer P (Mn = k,Nn = a).
2. On suppose 1− p = 1

t pour un entier t ≥ 4. Limite de P (Ntm = 1,Mtm = m), quand m→ +∞.

Démonstration. 1. P (Mn = k,Nn = a) =
(
n
a

)
P (X = k)aP (X < k)n−a.

2. tmP (X = m)P (X < m)n−1

Exercice 234 [X 2022] Soient n, b ≥ 2, X1, . . . , Xn indépendantes de même loi uniforme sur [[0, b− 1]].

1. Déterminer P (Xi+1 < Xi).
2. Déterminer P (Xi+j < Xi+j−1 < . . . < Xi)

Démonstration. 1. 1− 1
b

2

2. Par dénombrement, c’est trivial.

Exercice 235 [X 2022] Soit (Xn)n≥1 indépendantes de même loi centrée et bornée, et Sn = X1 + · · ·+Xn.

1. Montrer qu’il existe C > 0 tel que E(S4
n) ≤ Cn2, pour tout n ∈ N∗.

2. Soit ε > 0. Montrer que P
(⋃

n≥N

(∣∣Sn

n

∣∣ > ε
))

−−−−−−→
N→+∞ 0.

3. Donner une interprétation à l’évènement
⋃

k≥1

⋂
N∈N

⋃
n≥N

(∣∣Sn

n

∣∣ > 1
k

)
, et calculer sa probabilité.

Démonstration. 1.
2. On majore par la somme des probabilités, et P

(∣∣Sn

n

∣∣ > ε
)
= P

(
S4
n > ε4n4

)
≤ E(S4

n)
ε4n4 = 1

ε2n2 , dont la série converge.

3. C’est l’évènement que Sn

n ne tend pas vers 0. Sa probabilité est nulle.

Exercice 236 [X 2022] Soient A1, . . . , An des évènements, x1, . . . , xn ∈ ]0,1[ et D1, . . . , Dn des parties de [[1, n]]. On suppose que
pour tout i, 1Ai est indépendante de la variable conjointe (1Aj )j∈[[1,n]]\Di

. On suppose aussi que P (Ai) ≤ xi
∏

Di\{i}(1− xj), pour
tout i.
Soit E ⊂ [[1, n]] et i ∈ [[1, n]] \ E. On pose BE =

⋂
E Aj , que l’on suppose non négligeable. Montrer que P (Ai | BE) ≤ xi.

Démonstration. P (Ai | BE) = P (Ai | ∩EAj) = P (Ai | ∩E∩Di
Aj ∩E∩Di

Aj)

On a

P (Ai | BE) =
P (Ai ∩ . . . )
P (∩EAj)

,

Si Di = {i}, l’inégalité découle de P (Ai) ≤ xi(1− xi) ⇒ P (Ai) ≤ xi.

Si Di = E, on a P (Ai | BE) =
P (Ai∩BE)

P (BE) , et attention, les évènements de BE ne sont pas indépendants.

D’une part, au numérateur, on peut majorer la probabilité par celle de P (Ai ∩E∩Di
Aj).

D’autre part, on montre que le dénominateur est ≥
∏

E(1−xj). Pour cela, si dans l’intersection, il y a deux évènements indépendants
ℓ,m, on les regroupe en un seul AL = Aℓ ∩ Am, associé à x = min(xℓ, xm). D’une part, ces nouveaux A vérifie l’hypothèse : pour
AL, cela vient de xL ≥ xℓxm. D’autre part pour les Aj : si Aj était dépendant de Al, on avait du P (Aj) ≤ . . . (1− xℓ) ≤ (1− xL),
car xL ≤ xℓ.
D’autre part, on obtient comme conclusion que P (∩Ak) ≥ . . . (1− xL) ≥ . . . (1− xm)(1− xℓ).
On a besoin d’avoir P (∩Aj) ≥

∏
(1 − xj), c’est-à-dire P (∪Ai) ≤ 1 −

∏
(1 − xj) S’ils sont tous non indépendants, cela découle

exactement des inégalités données sur les xi.
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III) Centrale
Exercice 237 Soit A ∈ Mn(R). Étudier la limite de la suite

((
In + A

p

)p)
p∈N

.

Exercice 238 [Centrale 2022] Yn+1 =
∑Y

i=0 nXi,n+1 ; P (X > 1) > 0 et d’espérance finie. G la fonction génératrice de X ; Gn

celle de Yn.

1. Montrer que G et G′ sont strictement croissantes sur [0, 1].
2. Montrer que Gn+1 = Gn ◦G. En déduire une expression de E(Yn).
3. On pose Z = inf{n | Yn = 0} ∈ N ∪ {+∞}. Montrer que P (Z < +∞) est le plus petit point fixe d G.
4. Montrer que P (Z < +∞) = 1 si et seulement si m ≤ 1.

Démonstration. 1.
2.
3. (Z < +∞) =

⋃
(Yn = 0) ; P (Yn = 0) = Gn(0)

Exercice 239 [Centrale 2022] Soit f ∈ C∞(R,R). Montrer l’équivalence entre

• f est développable en série entière sur un voisinage de 0.
• il existe α > 0, M > 0 et a > 0 tels que ∀n ∈ N, ∀x ∈ [−α, α], |f (n)(x)| ≤Mann!.

Démonstration. Si f est DSE, ok.
Si on a la majoration, écrire Taylor avec reste intégral.

Exercice 240 [Centrale 2022] Soient , b, c ∈ C non entiers. Pour n ∈ N∗, on pose un = 1
n!

∏n−1
k=0

(a+k)(b+k)
c+k .

1. Déterminer le rayon de convergence R de
∑
unz

n.
2. Donner une CNS pour que la série entière converge absolument sur le cercle de centre 0 et de rayon R.

Démonstration. 1. On peut encadrer |a+ k| ≤ |a|+ k et |a+ k| ≥ k− |a|, donc le comportement est le même que des factorielles
décalées, donc le rayon est 1.

2. C’est-à-dire pour que la série
∑

|un| converge. On a

un+1

un
=

∣∣∣∣ (a+ n)(b+ n)

(n+ 1)(c+ n)

∣∣∣∣ =
∣∣∣∣∣ (1 + a

n )(1 +
b
n )

(1 + 1
n )(1 +

c
n )

∣∣∣∣∣ =
∣∣∣∣1 + a+ b− 1− c

n
+O(

1

n2
)

∣∣∣∣ .
Donne 1 + Re

(
a+b−1−c

n

)
+O( 1n ). Si on a pas de chance, Re c = Re(a+ b), auquel cas, c’est la merde. . .

IV) Mines
Exercice 241 [Mines 2022] Soit α ∈ ]1,+∞[. Pour n ∈ N∗, on pose an =

(
sinn
α + α sin

(
1
n

))n
.

1. Nature de la série
∑
an ?

2. Racon de convergence de la série entière
∑
anx

n ?

Exercice 242 Montrer que les fonctions f ∈ C1(R2,R) vérifiant ∀x, y ∈ R2, 2xy ∂f
∂x (x, y)+(1+y2)∂f∂x (x, y) = 0 sont les applications

de la forme f(x, y) = g
(

x
1+y2

)
, où g est C1.

Démonstration. On pose φ(x, y) =
(

x
1+y2 , y

)
, qui est de classe C1, d’inverse C1.

Exercice 243 [Mines 2022] Soit A ∈ Mn(R). Étudier la limite de la suite
((
In + A

p

)p)
p∈N

.

Exercice 244 [Mines 2022] Soitm ≥ 1 et (Xn)n≥1 indépendantes de même loi B(p), avec p ∈ ]0,1[. On poseM = inf{n | Sn ≥ m}.

1. Montrer que M est une variable aléatoire et évaluer P (M = +∞).

2. Montrer que P (M ≥ n) =
∑m−1

k=0

(
n−1
k

)
pkqn−1−k .

3. Montrer que M est d’espérance finie et la calculer.
4. Calculer la variance de M .

Démonstration. 1.
2.
3. On a

E(M) =
∑
n≥1

m−1∑
k=0

(
n− 1

k

)
pkqn−1−k =

m−1∑
k=0

pk
∑
n≥1

(
n− 1

k

)
qn−1−k =

m−1∑
k=0

pk

(1− q)k
= m,

car 1
(1−q)k

=
∑
qn
(
n+k
k

)
Exercice 245 [Mines 2022] Soit n ≥ 2. On pose J =

(
Ji,j
)
, où ∀i, Ji+1,i = J1,n = 1, et les autres coefficients sont nuls.

1. Déterminer le polynôme caractéristique, le polynôme minimal et les vecteurs propres de J .
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2. E Soient X0, . . . , Xn−1 des variables aléatoires indépendantes de même loi uniforme sur {−1, 1}. On considère la matrice
M =

(
Xi−j[n]

)
i,j≤n

.

3. Exprimer M en fonction de J .
4. Pour n = 2, calculer P (M ∈ GLn(R)).
5. Déterminer le spectre complexe de M .
6. On suppose n premier, et on admet que le polynôme

∑n−1
k=0 X

k est irréductible sur Q. Calculer P (M ∈ GLn(R)).

Démonstration. 1.
2.
3.
4.
5. On est non inversible si et seulement si le polynôme aléatoire P

annule l’une des racines n-ième de l’unité. On sait trouver la probabilité qu’il annule 1 : il faut que n soit pair, et que P ait autant de
coefficients 1 que−1. S’il annule une autre racineω, alors d’après la propriété de l’énoncé, c’est que c’est±Q = 1+X+· · ·+Xn−1.
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