
Exercices 2023

I) ENS MP-MPI

Exercice 1 [ 1] SoientS etT des ensembles finis non vides et f une application deS dansT . On poseX =
{
(x, y) ∈ S2, f(x) = f(y)

}
.

Montrer que |X| ≥ max

(
|S|2
|T | ,

(⌈
|S|
|T |

])2
+ |S| −

⌈
|S|
|T |

])
.

Démonstration. Pour le terme de gauche, il s’agit de montrer que
∑

y n
2
y ≥

(∑
y ny

)2∑
y 1 , c’est Cauchy-Schwarz.

Pour le terme de droite, c’est un principe des tiroirs, puis compter pour 1 les éléments qui ne sont pas dans le tiroir.

Exercice 2 [ 2] Soient n ∈ N∗ et (x1, . . . , xn) ∈ Rn. Montrer qu’il existe m ∈ Z et S un sous-ensemble non vide de 1, n tels que∣∣m−
∑

i∈S xi
∣∣ ≤ 1

n+1 .

Démonstration. S sera un sous-ensemble d’entiers consécutifs : considérer les sommes partielles S0, . . . , Sn.

Exercice 3 [ 3] Pour tout n ∈ N∗, on note E(n) la valuation 5-adique de
∏n

k=1 k
k . Donner un équivalent de E(n), quand n→ +∞.

sup

Exercice 4 [ 5] Soit n un entier premier > 1. Montrer que −1 est un carré modulo n si et seulement si n est somme de deux carrés
d’entiers.

Démonstration. Si p est somme de deux carrés d’entiers, p ≡ 1[4], et a est un carré si et seulement si a
p−1
2 ≡ 1[p].

Réciproquement, si n | m2 + 1, dur, dur. ! !

Exercice 5 [ 6] 1. Soit p un nombre premier impair. Montrer que
(
Z/pZ

)×
contient (p− 1)/2 carrés.

2. Montrer que tout élément de Z/pZ s’écrit comme la somme de deux carrés de Z/pZ.

3. Soit n un entier impair. Montrer que tout élément de
(
Z/nZ

)×
s’écrit comme somme de deux carrés.

Indication : Commencer par le cas où n est sans facteur carré.

Exercice 6 [ 7] Si n ∈ N∗, on pose Hn =
∑n

k=1
1
k . Si p est un nombre premier et si r ∈ Q∗ s’écrit a

b de manière irréductible, on
définit la p-valuation vp(r) comme vp(a)− vp(b).

1. Montrer que si p ≥ 3 est premier, alors vp(Hp−1) ≥ 1.
2. Montrer que si p ≥ 5 est premier, alors vp(Hp−1) ≥ 2.
3. Montrer que si p ≥ 5 est premier, alors vp(H(p−1)p) ≥ 1.
4. Pour n ∈ N∗, calculer v2( H ).

Exercice 7 [ 9] 1. Calculer
∑
d|n

φ(d) où φ est l’indicatrice d’Euler.

2. Calculer
∑
d|n

µ(d) où µ est la fonction de Möbius définie par µ(1) = 1, µ(p) = −1, µ
(
pk
)
= 0 pour k ≥ 2 si p est un nombre

premier et µ(nm) = µ(n)µ(m) si n ∧m = 1. On pose F : x ∈ R+ 7→
∣∣∣{p

q ∈ [0, 1]; q ≤ x
}∣∣∣.

3. Montrer que F (x) =
x→+∞

3
π2x

2 +O(x lnx).

Démonstration. 1.
∑

d|n φ(d) = n

2.
∑

d|n µ(d) = 0, ou 1 pour n = 1.

3. Par inversion de Möbius, on a φ(d) =
∑
d′|d

µ
(

d
d′

)
d′.

Exercice 8 [ 10] Soient p, q deux nombres premiers distincts. On note vp(n) la valuation p-adique d’un entier n. On pose, pour
m ∈ N∗, N(m) = (1− q)

(
1− q2

)
. . . (1− qm). Trouver une constante c > 0 telle que, pour tout m ∈ N∗, vp(N(m)) ≤ cm ln(m).

Démonstration. Relier à 423 (LTE).
On a vp(an − bn) = vp(a− b) + vp(n) (pour p ̸= 2).
Donc vp(N(m)) =

∑m
k=1 vp(1− q) + vp(m!), plus formule de Legendre.

Exercice 9 [ 11] Si X est un ensemble fini, on note X∗ =
⊔

k∈N X
k, c : (X∗)

2 → X∗ la concaténation et ℓ : X∗ → N la longueur.
Soient A et B deux ensembles finis et φ : A∗ → B∗ telle que, pour tous a, a′ ∈ A,φ (c (a, a′)) = c (φ(a), φ (a′)).

1. On pose A = {a, b, c, d} et B = {0, 1}. Étudier l’injectivité des applications définies sur les lettres de A puis étendues sur A∗

par φ : A → B∗ telles que φ(a) = 0, φ(b) = 01, φ(c) = 10, φ(d) = 10011, et ψ : A → B∗ telle que ψ(a) = 01, ψ(b) =
10, ψ(c) = 11, ψ(d) = 00.

2. Montrer que, si φ est injective, alors
∑

a∈A |B|−ℓ(φ(a)) ≤ 1.

Démonstration. 1. La première est non injective : 0100110 peut être lu de deux façons.
La seconde l’est.
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2. On note CN le nombre de choix possibles, de mots, dont la longueur totale N .
On doit avoir CN ≤ |B|N . Mais CN vérifie une relation de récurrence : CN =

∑
a∈A CN−ℓ(a.

Donc les racines de cette récurrence doivent être ≤ |B|, ce qui implique qu’en |B| la valeur est négative, d’où le résultat.

Exercice 10 [ 12] 1. Soit n ∈ N∗. Montrer que la transposition (1 2) et le cycle
(
1 2 · · · n

)
engendrent le groupe symé-

trique Sn.
2. La transposition (1 3) et le cycle (1 2 3 4) engendrent-ils S4 ?
3. Soient n ∈ N∗ et 1 ≤ a < b ≤ n tels que τ = (ab) et σ =

(
1 2 · · · n

)
engendrent Sn. Montrer que b − a et n sont

premiers entre eux.
4. Montrer la réciproque de la propriété précédente.

Démonstration. 1.
2. Non.
3. Si p | b− a ∧ n, alors σ(a)− σ(b) ≡ a− b[p].
4. Facile de se ramener à un cycle (uu+ 1)

Exercice 11 [ 14] Soit G un groupe fini. Si X et Y sont des parties non vides de G, on pose X−1 =
{
x−1, x ∈ X

}
et XY =

{xy, (x, y) ∈ X × Y }. Dans la suite, X désigne une partie non vide de G.

1. On suppose que |XX| < 2|X|. Montrer que XX−1 = X−1X .
2. On suppose que

∣∣XX−1
∣∣ < 3

2 |X|. Montrer que X−1X est un sous-groupe de G.

Démonstration. 1. Si X a un seul élément, ok. Sinon, alors pour tous a, b ∈ X , les ensembles aX et bX ne sont pas disjoints, donc
il existe u, v tels que au = bv ⇔ a−1b = uv−1. D’où le résultat.

2. X−1X contient l’élément neutre, et stable par inverse.
Si ce n’est pas un sous-groupe, c’est qu’il existe u−1va−1b qui ne s’écrit pas de cette forme.
! !
Quitte à translater, on peut supposer que e ∈ X . Alors XX−1 contient tous les éléments de X , et leurs inverses. Au moins la
moitié des éléments de X ont leurs inverses dans X !

Exercice 12 [ 15] Soient A un anneau et B ⊂ A finie non vide. On note E(B) =
∣∣{(a, b, c, d) ∈ B4 | ab = cd}

∣∣. Montrer que

E(B) ≥ |B|4
|BB| .

Exercice 13 [ 16] 1. Montrer que S =

(
0 −1
1 0

)
et T =

(
1 1
0 1

)
engendrent SL2(Z).

2. Soit m ≥ 2. Montrer que le morphisme π : SL2(Z) → SL2(Z/mZ) est surjectif.

Exercice 14 [ 17] Soit p un nombre premier. On admet qu’il existe un anneau commutatif A dans lequel p2.1A = 0A et il existe un
élément inversible x tel que :

• tout élément de A s’écrive P (x)x−k pour un P ∈ Z[X] et un k ∈ N ;
• pour deux polynômes P,Q dans Z[X] et deux entiers naturels k, l, l’égalité P (x)x−k = Q(x)x−ℓ équivaut à ce que XkQ et
XℓP aient même réduit modulo p2 (autrement dit, tous les coefficients de XkQ−XℓP sont des multiples de p2).

1. Soient P ∈ Z[X] et k ∈ N. Caractériser l’inversibilité de P (x)x−k dans A.
2. Montrer que le groupe multiplicatif A× ne possède pas de partie génératrice finie.

Démonstration.

Exercice 15 [ 18] Soit f ∈ Z[X]. On pose Sq =
∑

0≤a<q
a∧q=1

q−1∑
n=0

e
2iπaf(n)

q pour tout q ∈ N∗. Montrer que, si q∧ q′ = 1, alors Sqq′ = SqSq′ .

Démonstration. Les a ∈ [[1, qq′]] premiers avec q et q′ sont les bq + aq′, avec a premier avec q et b premier avec q′.

Exercice 16 [ 19] On dit qu’un ensembleX ⊂ C est intégrable si : ∀(x, y) ∈ X2, |x− y| ∈ N. Montrer que, pour tout n ∈ N, il existe
un ensemble intégrable X composé de n points tous sur un même cercle.

Démonstration. On veut que les sin( θi−θj
2 ) soient rationnels, c’est-à-dire les sin θi

2 cos
θj
2 − sin

θj
2 cos θi

2 .
Il suffit donc de prendre les doubles d’une infinité de points rationnels sur le cercle.

Exercice 17 [ 20] Soit z ∈ C annulé par un polynôme unitaire à coefficients entiers. Soit Q ∈ Z[X]. Montrer que Q(z) est annulé
par un polynôme unitaire à coefficients entiers.

Exercice 18 [ 21] Soit n = 2m + 1 ≥ 1 un entier impair. Expliciter un polynôme Pm de degré 2m tel que ∀x ∈ R \ Z, sin(nx) =
(sinx)nPm(cotanx).

1. Donner une expression simplifiée de
∑m

k=1 cotan
2
(
kπ
n

)
.

2. Donner une expression simplifiée de
∑m

k=1
1

sin2( kπ
n )

.

3. En déduire que
∑+∞

k=1
1
k2 = π2

6 .
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Démonstration. Easy.

Exercice 19 [ 22] Pour n ∈ N, on pose Pn =
∑n

k=0
Xk

k! . sup

1. Montrer que Pn est scindé à racines simples sur C.
2. Montrer que si n est impair, alors Pn possède exactement une racine réelle, et qu’elle appartient à [−n,−1].
3. On suppose n pair. Le polynôme Pn a-t-il une racine réelle ?
4. Déterminer les variations et la convexité de x 7→ Pn(x).

Exercice 20 [ 23] Soit P ∈ R[X] de degré n ≥ 1.

1. On suppose P scindé sur R. Montrer que ∀x ∈ R, nP (x)P ′′(x) ≤ (n− 1)P ′(x)2.
2. Donner un polynôme ne vérifiant pas le résultat de la question précédente, puis un polynôme non scindé le vérifiant.

Démonstration. 1.
2. Ajouter à un précédent.

Exercice 21 [ 24] Soit n ∈ N∗, P = Xn +
∑n−1

k=0 akX
k ∈ C[X]. On factorise P sous la forme P =

∏n
i=1(X − zi). Pour k ∈ N, on

note Sk =
∑n

i=1 z
k
i . Montrer que, si k > n, Sk+an−1Sk−1+ · · ·+a0Sk−n = 0 et que, si k ≤ n, Sk+an−1Sk−1+ · · ·+an−k+1S1 =

−kan−k .

Exercice 22 [ 25] Une suite d’entiers (an)n≥1 est un pseudo-polynôme si pour tous n,m ∈ N∗, m− n | am − an.

1. Soit P ∈ Z[X]. Montrer que
(
P (n)

)
n≥1

est un pseudo-polynôme.

2. Montrer que
(
⌊n!e⌋

)
n≥1

est un pseudo-polynôme.

3. Trouver un polynôme P ∈ Q[X] \ Z[X] tel que P (Z) ⊂ Z et que la suite
(
P (n)

)
n≥1

ne soit pas un pseudo-polynôme.

Exercice 23 [ 26] Montrer que, pour tout n ∈ N, il existe (a0, . . . , an) ∈ (R+∗)
n+1 tel que, pour tout (ε0, . . . , εn) ∈ {−1, 1}n+1, le

polynôme P (X) =
∑n

k=0 εkakX
k est scindé sur R.

Démonstration. Easy, à relier.

Exercice 24 [ 27] Deux polynômes P,Q ∈ R[X] sont entrelacées si

• −P et Q sont scindés à racines simples sur R,
• P et Q n’ont aucune racine réelle commune,
• entre deux racines consécutives de P (respectivement Q) il y a une unique racine de Q (respectivement P ).

Soient P,Q ∈ R[X]. Montrer que si, pour tout λ, µ ∈ R∗, λP + µQ est scindé à racines simples sur R, alors P et Q sont entrelacés.

Démonstration. À relier.

Exercice 25 [ 28] Soit P ∈ C[X] de degré n > 0 tel que P (0) = 0 et P ′(0) = 1. On note Dr le disque complexe ouvert de centre 0
et de rayon r. Montrer que D1/n ⊂ P (D1).

Démonstration. X +X2Q(X)− zi = 0 avec |zi| < 1
n admet toujours une racine, < 1.

Vient des relations coefficients-racines.

Exercice 26 [ 31] • CNS sur n pour que Z/nZ soit un corps.
• On suppose cette condition satisfaite. Combien y a-t-il de polynômes de degré d ∈ N fixé dans Z/nZ?
• Soit p premier. Montrer qu’il existe des polynômes irréductibles de degré 2 et 3 dans Z/pZ.

Exercice 27 [ 32] Soit n ∈ N∗, K un corps, et V un sous-espace vectoriel de Mn(K) dont tous les éléments sont de rang ≤ 1. Montrer
que V est de dimension ≤ n. Étudier le cas d’égalité.

Exercice 28 [ 33] Quelle est la dimension maximale d’un sous-espace vectoriel V de Mn(R) tel que pour tout (X,Y ) ∈ V 2, on ait
Tr(XY ) = 0.

Exercice 29 [ 35] Soient A,B ∈ Mn(R) de même rang telles que A2B = A. Montrer que B2A = B.

Démonstration.

Exercice 30 [ 38] Soient n ≥ 1 et E une partie de P([[1, n]]).

1. On suppose que E est stable par différence symétrique. Que dire de C = {m1A} comme partie de l’espace vectoriel
(
Z/2Z

)n
?

2. On ne fait plus l’hypothèse précédente, mais on suppose que A ∩ B est de cardinal pair pour tous A,B ∈ E. Montrer que
|E| ≤ 2⌊n/2⌋.

Exercice 31 [ 39] Soient (a1, . . . , an) ∈ Rn telle que |ai| ≥ 2, pour tout i ∈ [[1, n]].

1. Soit A ∈ Mn(R) telle que ∀i, aii = ai, aij = 1 si |i − j| = 1 et aij = 0 sinon. Montrer que A est inversible et que son
déterminant a le même signe que

∏
ak .

2. Montrer que la conclusion tient encore si l’on suppose |aij | ≤ 1 si |i− j| = 1 au lieu de aij = 1.

Exercice 32 [ 40] On considère φ :
(
R4
)2 → M4(R) qui à (u, v) associe la matrice dont le coefficient en (i, j) vaut

∣∣∣∣ ui vi
uj vj

∣∣∣∣.
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1. Que peut-on dire si φ(u, v) = φ (u′, v′) ̸= 0?
2. Que dire de la réciproque?
3. Montrer que A s’écrit comme φ(u, v) avec (u, v) libre si et seulement si A ∈ A4(R), det(A) = 0 et A ̸= 0.
4. Décrire l’image et le noyau d’une telle matrice.

Démonstration.

Exercice 33 [ 41] Soient a, b,m, p des entiers naturels tels que a2 + b2 − pm = −1. On pose A =

(
p a+ ib

a− ib m

)
. Montrer

qu’il existe B ∈ GL2(Q(i)) telle que A = B∗B où B∗ = B̄T . Même question avec B dans GL2(Z[i]).

Démonstration. On a une matrice hermitienne, de déterminant 1. Donc diagonalisable?

Exercice 34 [ 42] Soient n ∈ N∗, φ1, . . . , φn des formes linéaires non nulles sur R2. Pour g ∈ SL2(R), soit fg : (x1, . . . , xn) ∈(
R2
)n 7→ φ1 (g (x1))× · · · × φn (g (xn)), application de

(
R2
)n

dans R. Montrer l’équivalence entre les propositions suivantes :

• il existe une suite (gk)k≥1 d’éléments de SL2(R) telle que, pour tous vecteurs x1, . . . , xn de R2, fgk (x1, . . . , xn) −→
k→+∞

0,

• il existe une droite vectorielle L telle que |{i, L ⊂ Ker (φi)}| > n
2 .

Démonstration. Si il existe une droite L, en prenant gk =

(
k 0
0 k−1

)
selon L et n’importe quel supplémentaire, ça devrait être bon.

Réciproquement, ! !

Exercice 35 [ 43] Soit G l’ensemble des matrices de GL2(Z) de la forme
(
a b
c d

)
, où ad− bc = 1 et a ≡ d ≡ 1− c ≡ 1 mod 3.

Montrer que G est le sous-groupe de GL2(Z) engendré par les matrices
(

1 1
0 1

)
et
(

1 0
3 1

)
Démonstration. Facile ? Attention : faux pour 2.

Exercice 36 [ 45] Soit A ∈ Mn(C) et CA : X ∈ Mn(C) 7→ AX − XA. Montrer que si la matrice A est diagonalisable, alors CA

l’est aussi.

Exercice 37 [ 46] Soient A et B deux matrices de GL2(R). On suppose que ABA−1B−1 commute avec A et B. Montrer que
BA = ±AB.

Démonstration. ⇐ Ok.
Si ABA−1B−1 commute avec un Vect de dimension 2. Si AB = λBA, c’est bon. Sinon, alors le commutant de ABA−1B−1 est
Vect(In, C), donc B = λA+ µIn, puis faire de la réduction.

Exercice 38 [ 47] Soit A ∈ Mn(C) et λ1, . . . , λr les valeurs propres distinctes de A et α1, . . . , αr leurs multiplicités. On note
Pk = (X − λk)

αk et Fk = KerPk(A).

1. Montrer que Cn =
⊕r

i=1 Fi.
2. Montrer que Pk est le polynôme caractéristique de l’endomorphisme induit par A sur Fk .
3. Montrer que A se décompose en D +N , avec D diagonalisable, N nilpotente et ND = DN .

Exercice 39 Soient A ∈ Mn(C) et m la multiplicité de 0 dans χA. Montrer l’équivalence entre

• KerA = KerA2.
• il existe M ∈ Mn(C) telle que Mm = A.
• pour tout k ≥ 1, il existe M ∈ Mn(C) telle que Mk = A.

Exercice 40 [ 49] SoitM ∈ GLn(Z) dont toutes les valeurs propres sont de module ≤ 1. Montrer qu’il existe k ≥ 1 tel queMk − In
soit nilpotente.

Exercice 41 [ 51] Soit n ≥ 1. Pour σ ∈ Sn, on note Pσ =
(
δi+1,j

)
i,j

la matrice de permutation associée. On note A l’ensemble
des fonctions polynomiales f : Mn(C) → C telles que ∀A,P ∈ Mn(C)GLn(C), f(PAP−1) = f(A). On note A l’ensemble des
fonctions polynomiales f : Dn(C) → C telles que f(PσDP

−1
σ ) = f(D). Expliciter un isomorphisme d’algèbres de A sur B.

Exercice 42 Décomposition de Jordan [ 52] SoientE un K-espace vectoriel non nul de dimension finie, f ∈ L(E) nilpotent d’indice
m,x ∈ E tel que fm−1(x) ̸= 0.

1. Montrer que la famille
(
fk(x)

)
0≤k≤m−1

est libre. On note V le sous-espace de E engendré par cette famille.

2. Soit φ ∈ E∗ telle que φ(fm−1(x)) ̸= 0,W le sous-espace de E∗ engendré par (φ ◦ f i)0≤i≤m−1,W
⊥ l’ensemble des y ∈ E tels

que ∀ψ ∈W⊥, ψ(y) = 0. Montrer que W⊥ est un supplémentaire de V dans E stable par f .
3. Montrer qu’il existe une base de E dans laquelle la matrice de f soit diagonale par blocs, les blocs diagonaux étant de la forme
Jk avec k ∈ N∗, où Jk ∈ Mk(K) est une matrice dont tous les coefficients sont nuls en dehors de ceux de la sur-diagonale qui
sont égaux à 1.

Démonstration.
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Exercice 43 [ 53] SoitE un K-ev de dimension n ≥ 1. Un élément u ∈ L(E) est dit cyclique s’il existe x ∈ E tel que (uk(x))0≤k≤n−1

soit une base de E.

1. Quels sont les endomorphismes de E diagonalisables et cycliques?
2. Montrer que si u est cyclique, le commutant de u est égale à K[u].
3. Montrer que si u ∈ L(E), il existe r ∈ N∗ et des sous-espaces E1, . . . , Er de E stables par u tels que E =

⊕r
i=1Ei et que,

pour tout i, uEi
soit cyclique.

Exercice 44 [ 54] Soient r ∈ N∗, d1, . . . , dr des entiers supérieurs ou égaux à 2 tels que d1 |d2| . . . | dr . Déterminer le plus petit
n ∈ N∗ tel que GLn(C) contienne un sous-groupe isomorphe à Z/d1Z × · · · × Z/drZ.

Démonstration. n = r convient. Réciproquement, si G contient un tel groupe, on peut codiagonaliser.

Exercice 45 [ 55] Le groupe GL2(Q) contient-il un élément d’ordre 5?

Exercice 46 [ 56] On note H l’ensemble des matrices de M2(R) de trace nulle.

1. Montrer que ∀M ∈ H, eM ∈ SL2(R).
2. Montrer que ∀M ∈ H, Tr eM ≥ −2.
3. A-t-on exp(H) = SL2(R)?
4. Montrer que toute matrice deSL2(R) est produit d’une matrice deSO2(R) et d’une matrice triangulaire supérieure à coefficients

diagonaux > 0.
5. En déduire que toute matrice de SL2(R) est produit de deux exponentielles de matrices de H .

Exercice 47 [ 57] Soient E un espace vectoriel réel de dimension finie, h1 et h2 deux éléments de L(E). On suppose qu’il existe une
norme sur E pour laquelle h1 et h2 sont des isométries et que [h1, h2] = h1h2h

−1
1 h−1

2 commute avec h1 et h2. Montrer que l’espace
des vecteurs de E fixes par h1 et h2 admet un supplémentaire dans E stable par h1 et h2.

Démonstration. On peut supposer que l’ensemble F des points fixes est de dimension 1. Donc est le noyau d’une forme linéaire φ. ! !
Notons C le commutateur. On a Ch2 = h1h2h

−1
1 .

Si h1 et h2 commutent.
Si h1 = h2.

Exercice 48 [ 58] Soit A ∈ Mn(C) et λ1, . . . , λn ses valeurs propres.

1. Montrer que
∑

|λi|2 ≤
∑

i,j |aij |2.

2. Montrer que |detA| ≤ nn/2 sup |aij |.
Exercice 49 [ 59] Soient (E, ⟨⟩) un espace euclidien, m ∈ N∗, u1, . . . , um, v1, . . . , vm des vecteurs de E tels que, pour tout (i, j) ∈
1,m2, ⟨ui, vj⟩ = δi,j . On note p le projecteur orthogonal deE sur Vect (u1, . . . , um). Montrer que ∀x ∈ E,

∑n
i=1 ⟨ui, x⟩ ⟨x, p (vi)⟩ =

∥p(x)∥2.

Démonstration. Easy, on a ⟨x, p(vi)⟩ = ⟨p(x), vi⟩ = ⟨ui, x⟩.

Exercice 50 [ENS 60] On munit R[X] du produit scalaire (P,Q) 7→ ⟨P,Q⟩ =
∫ +∞
0

P (t)Q(t)e−t dt. On poseF = Vect (X,X2, . . . , Xn)
et on note Q la projection orthogonale de 1 sur F .
On ecrit Q = −

∑n
k=1 akX

k et P = 1 +
∑n

k=1 ak(X + 1) . . . (X + k).

• Determiner
〈
Q− 1, Xk

〉
pour k ∈ [[1, n]] et montrer que P (k) = 0 pour k ∈ [[1, n]].

• Calculer inf(a1,...,an)∈Rn

∫ +∞
0

(1 + a1x+ · · ·+ anx
n)2e−x dx.

Exercice 51 [ 61] Soient (E, ⟨⟩,)unespaceeuclidien,m ∈ N∗, u, u1, . . . , um des vecteurs deE. Montrer que u ∈ R+u1+· · ·+R+um
si et seulement si pour tout x ∈ E, {x ∈ E;∀i ∈ 1,m, ⟨ui, x⟩ ≤ 0} ⊂ {x ∈ E; ⟨u, x⟩ ≤ 0}.

Démonstration. ⇒ : Easy.
⇐ : Si les vecteurs ui sont libres, on peut prendre un élément x orthogonal à tous sauf 1.
Sinon, si um est combinaison linéaire des précédents, avec un coefficient < 0. ! !

Exercice 52 [ENS 62] Montrer que, siM ∈ GLn(R),M s’ecrit d’une unique faconQR avecQ ∈ On(R) etR ∈ Mn(R) triangulaire
superieure a termes diagonaux dans R+∗.

Exercice 53 [ENS 63] [Rennes sur dossier] Soit M ∈ Mn(R) une matrice antisymetrique et inversible.

• Que peut-on dire de l’entier n?
• En considerantM2, montrer queM admet un plan stable puis qu’il existe une matrice orthogonaleO ∈ On(R) telle queOTMO

soit une matrice diagonale par blocs de la forme diag(Ra1
, ..., Rak

), avec Ra =

(
0 −a
a 0

)
.

• Qu’en est-il si M n’est plus supposee inversible ?

Exercice 54 [ENS 64] Soit n ≥ 1. Determiner les matrices A dans Mn(R) telles que A+Ak = AT pour tout entier k ≥ n.

Exercice 55 [ 65] Soient A ∈ On(R) et M une matrice de réflexion dans On+1(R). On pose A′ =M

(
1 0
0 A

)
. Calculer χA′(1)

en fonction de la première colonne de M et de χA.
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Démonstration. χA′(1) = det(In+1 −M

(
1 0
0 A

)
). ! !

Exercice 56 [ENS 66] Soit A ∈ Sn(R) ayant n valeurs propres distinctes. Soit v ∈ Rn. On suppose que A et A+ vvT n’ont pas de
valeur propre commune. Sous reserve d’existence, on pose F (x) = 1 + vT (A− xIn)

−1v pour x reel.

• Montrer que les zeros de F sont les valeurs propres de A+ vvT .
• On note λ1 < · · · < λn les valeurs propres de A. Montrer que chaque intervalle ]λ1, λ2[,. . ., ]λn−1, λn[, ]λn,+∞[ contient

exactement une valeur propre de A+ vvT .

Exercice 57 [ENS 67] Soient n ∈ N impair, M ∈ Mn(R) telle que, pour toute A ∈ An(R), A +M soit nonversible. Montrer que
M ∈ An(R).

Exercice 58 [ 68] Soient A,B deux matrices de On(R) qui n’ont pas -1 pour valeur propre et telles que AB n’ait pas 1 pour valeur
propre. Montrer que (A− In) (BA− In)

−1
(B − In) est antisymétrique.

Démonstration. Classique

Exercice 59 [ENS 69] Soit n ∈ N∗. On pose J =

(
0n −In
In 0n

)
.

• Determiner les valeurs propres de J et leur multiplicite.
• Soit A ∈ S++

n (R). Montrer qu’il existe une matrice B ∈ S++
n (R) telle que B2 = A.

• Que peut-on dire de la matrice BJB ?
• Lorsque A est diagonale, calculer les valeurs propres de JA.
• Montrer plus generalement que toute valeur propre d’une matrice antisymetrique reelle est imaginaire pure.

Exercice 60 [ 70] Soit A ∈ Sn(R). On note λ1 ≤ · · · ≤ λn les valeurs propres de A non nécessairement distinctes. Montrer que

∀k ∈
[
1, n,

∑k
i=1 λi ≤

∑k
i=1 ai,i ≤

∑k
i=1 λn+1−i .

Démonstration.

Exercice 61 [ 71] 1. SoientA ∈ S++
n (R) etB ∈ S+

n (R) Montrer queAB est diagonalisable à valeurs propres positives ou nulles.
2. Soient A,B ∈ S++

n (R). On pose fA,B : X ∈ S++
n (R) 7→ Tr(AX) + Tr

(
BX−1

)
. Montrer que fA,B admet un minimum µA,B

atteint en une unique matrice MA,B . Expliciter µA,B et MA,B .

Démonstration.

Exercice 62 [ENS 72] Soit A ∈ Sn(R). On definit p(A) comme la dimension maximale d’un sous-espace V sur lequel ∀x ∈ V \
{0}, ⟨Ax, x⟩ > 0. On definit de meme q(A) avec la condition ⟨Ax, x⟩ < 0.

• Montrer que p(A) + q(A) = rgA.
• Montrer que, si A est inversible, alors p et q sont constantes sur un voisinage de A dans Sn(R).
• Soit B ∈ Sn(R), on suppose que f : t 7→ det(A + tB) n’a que des racines simples sur R. Montrer que f admet au moins
|p(B)− q(B)| racines dans R.

Exercice 63 [ENS 73] On note λ1(M) ≤ · · · ≤ λn(M) le spectre ordonne d’une matrice S de Sn(R).

• Soient A et B dans Sn(R) telles que A + B ∈ S+
n (R). Si 1 ≤ i, j ≤ n et i + j ≥ n + 1, que dire du signe de λi(A) +

λj(B)?[MISSINGPAGEFAIL :1]# 80

Soient a ≤ b deux reels, et (O − i ∈ I une famille d’ouverts de R telle que [a, b] ⊂
⋃

i∈I Oi. On note X l’ensemble des x ∈ [a, b] tels
qu’il existe une partie finie J ⊂ I verifiant [a, x] ⊂

⋃
j∈J Oj . Montrer que X = [a, b].

Exercice 64 [ 74] Pour M ∈ Sn(R), on note λ1(M) ≤ · · · ≤ λn(M) le spectre ordonné de M .

1. On considère A,B ∈ Sn(R) telles que A+B ∈ S−−
n (R). Montrer que, si i+ j < n+ 2 alors λi(A) + λj(B) < 0.

2. Généraliser à A1, . . . , Ad ∈ Sn(R) telles que A1 + · · ·+Ad ∈ S−−
n (R). telle que B = PTAP .

Démonstration.

Exercice 65 [ 75] On note ∥·∥ la norme d’opérateur sur Mn(R) associée à la norme euclidienne. Soit S ∈ Sn. On suppose que
E = {M ∈ Mn(R) | S =MTM −MMT } est non vide. On note γ(S) = infM∈E ∥M∥2. Montrer que ∥S∥ ≤ γ(S) ≤ 2 ∥S∥.

Exercice 66 [ 76] 1. Soient A,B ∈ S++
n . Montrer qu’il existe P ∈ GLn(R) telle que B = PTAP .

2. Soit f une fonction de R+∗ dans R. Proposer une définition naturelle de f(A) si A ∈ S++
n (R).

3. Pour A et B dans S++
n (R), on pose d(A,B) =

∥∥∥ln(√A−1B
√
A−1

)∥∥∥. Justifier la définition, et montrer que d est une distance

surS++
n (R).

4. Soient P ∈ GLn(R), A,B ∈ S++
n (R). Montrer que d

(
PTAP,PTBP

)
= d(A,B).

Démonstration.

Exercice 67 [ 77] Soit n ∈ N∗.

1. Montrer que (X,Y ) 7→ TrXTY est un produit scalaire sur Mn(R). On note ∥·∥ la norme associée.
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2. Si M ∈ Mn(R), soit L(M) : X ∈ Mn(R) 7→MX . Montrer que L est un morphisme d’algèbre injectif.
3. Soit ∥| · |∥2 la norme sur Mn(R) subordonnée à la norme euclidienne de Rn, et ∥| · |∥ la norme sur L(Mn(R)) subordonnée à

∥·∥. Si M ∈ Mn(R), montrer que ∥|L(M)|∥ ≤ ∥|M |∥2.
4. Montrer que

∥∥|MT |
∥∥
2
= ∥|M |∥2 pour tout M ∈ Mn(R).

Exercice 68 [ 78] On note ∥·∥ la norme d’opérateur sur Mn(C) associée à la norme X 7→
√
X̄TX .

1. Soient A,B dans Sn(R). Montrer que
∥∥eiA − eiB

∥∥ ≤ ∥A−B∥.
2. Démontrer le même résultat sous l’hypothèse que A et B sont deux matrices de Mn(C) telles que ĀT = A et B̄T = B.

Démonstration.

Exercice 69 [ 79] Soit p > 1. On pose, pour x ∈ Rn,
∥∥∥x = (

∑n
i=1 |xi|p)

1/p .

1. Montrer qu’il s’agit bien d’une norme.
2. Montrer l’inégalité de Hölder.
3. Dans R2, dessiner la boule unité de la norme p pour plusieurs valeurs de p.

Exercice 70 [ 80] Soient a ≤ b deux réels, et (Oi)i∈I une famille d’ouverts de R telle que [a, b] ⊂
⋃

iOi. On note X l’ensemble des
x ∈ [a, b] tels qu’il existe une partie finie J ⊂ I telle que [a, x] ⊂

⋃
j∈J Oj . Montrer que X = [a, b].

Exercice 71 [ENS 81] Soient K un compact convexe non vide d’un espace norme E, f un endomorphism continu de E tel que
f(K) ⊂ K . Montrer que f admet un point fixe dans K .

Exercice 72 [ 82] Peut-on écrire ]0,1[ comme réunion dénombrable disjointe de segments d’intérieurs non vides?

Démonstration. Non. Par l’absurde, on fait de la dichotomie, entre des segments, dont la distance tend vers 0, alors la limite n’appartient
à aucun segment.

Exercice 73 [ 83] Pour tout réel x dans [0,1[, on note 0, x1x2x3 . . . le développement décimal propre de x. On pose, pour tout
n ∈ N∗, Sn(x) =

∑n
i=1 xi. Soit a un réel tel que 0 < a < 9. On définit Pn = {x ∈ [0,1[;Sn(x) ≤ na} et P =

⋂
n∈N∗ Pn. Montrer

que P est compact, non vide, d’intérieur vide et sans point isolé.

Démonstration. P est borné et fermé, car Sn est continue inférieurement. Clairement non vide et d’intérieur vide. Si x ∈ P , en retirant
1 a un chiffre de x arbitrairement grand, on reste dans P . Possible sauf si x est décimal, auquel cas on peut ajouter 1.

Exercice 74 [ENS 84] Soit A ∈ Mn(K), ou K = R ou K = C. Montrer que la classe de similitude de A est fermee si et seulement si
A est diagonalisable sur C.

Exercice 75 [ENS 85] • On note D le disque unite du plan euclidien R2. Demontrer qu’il existe une suite (C − i ∈ N de parties
de D telle que :

▷ pour tout i ∈ N, l’ensemble Ci soit un carre de R2 dont les cotes sont paralleles aux axes ;
▷ les Ci soient d’interieurs deux a deux disjoints ;
▷
∑

i∈N Aire(Ci) = π.

• On note C = [−1, 1]2. Demontrer qu’il existe une suite (D − i ∈ N de parties de C telle que :

▷ pour tout i ∈ N, l’ensemble Di soit un disque ferme de R2 ;
▷ les Di soient d’interieurs deux a deux disjoints ;
▷
∑

i∈N Aire(Di) = 4.

Exercice 76 [ENS 2023 86] Soit d ≥ 1. On note P l’ensemble des polynômes unitaires de degré d de R[X].

1. On poseA = {(P, x) ∈ P×R;P (x) = 0} et P ′(x) ̸= 0}. Déterminer les composantes connexes par arcs deA dans Rd[X]×R.
2. On pose B = {P ∈ P;∀x ∈ R, P (x) ̸= 0 ou P ′(x) ̸= 0}. Déterminer les composantes connexes par arcs de B dans Rd[X].

Démonstration. 1. Par translation, on peut passer de (P, x) à (P̃ , 0). Alors P = Xn +Q+αX , avec α ̸= 0. On peut ramener Q à
0, et α à ±1. Deux composantes connexes, selon le signe de α = P ′(x).

2. B est l’ensemble des polynômes unitaires à racines simples. Le nombre de racines simples est un invariant, et réciproquement,
ces morceaux sont clairement connexes par arcs.

Exercice 77 [ 87] Soient (Mk)k≥1 une suite de matrices de Mn(C) semblables les unes aux autres, ∥·∥ une norme sur Mn(C).
On suppose que ∥Mk∥ → +∞. Montrer qu’il existe une matrice N ∈ Mn(C) nilpotente et une extractrice φ : N → N telles que
Mφ(k)

∥Mφ(k)∥ → N .

Démonstration. On peut extraire Mφ(k)

∥Mφ(k)∥ convergent, vers Π.

Si Π a une valeur propre complexe X , comme
∥∥∥∥ Mφ(k)

∥Mφ(k)∥ −Π

∥∥∥∥ ≤ ε, on a une valeur propre complexe proche de λ, donc Mφ(k) a une

valeur propre qui tend vers +∞.

Exercice 78 [ 88] Soit A ∈ Mn(C) dont toutes les valeurs propres sont de module < 1. Montrer qu’il existe une norme \|\| sur Cn

telle que, pour la norme d’opérateur associée, on ait ∥A∥ < 1.
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Démonstration. Trigonaliser, puis conjuguer par une matrice diagonale pour n’avoir que des petits coefficients hors de la diagonale.

Exercice 79 [ 89] SoientA ∈ Mn(R), de lignes L1, . . . , Ln, et ε ∈ R+∗. On suppose que, pour tout i ∈ 1, n, ∥Li∥2 = 1 et la distance
euclidienne canonique de Li au sous-espace engendré par les Lj , pour j ̸= i, est supérieure ou égale à ε. Montrer que A est inversible
et que sup

{∥∥A−1x
∥∥
2
;x ∈ Rn, ∥x∥1 = 1

}
≤ 1

ε .

Démonstration. A est inversible car aucune ligne n’est combinaison linéaire des autres.
Si x = Ei, on considère les colonnes de A−1, notées Ci. On ⟨Ci, Li⟩ = 1 et Ci orthogonal aux autres lignes, ce qui donne ∥Ci∥2 ≤ 1

ε ,
peut-être.
Ensuite, utiliser une convexité ?

Exercice 80 [ENS 90] On note B(R) l’espace vectoriel des fonctions bornees de R dans R, muni de la norme ∥ ∥ ∥∞. On fixe g ∈ B(R)
non nulle a support compact, et on note W (g) l’espace vectoriel engendre par les fonctions x 7→ g(x − n), n decrivant Z. Montrer

que l’ensemble des reels t lets que
{
x 7→ f(x− t), f ∈W (g)

}
=W (g) est un sous-groupe discret de R.

Exercice 81 [ 91] Soient (an) et (bn) deux suites réelles de limite 1 et (un) une suite réelle strictement positive telle que, pour tout
n, un+2 = an+1un+1 + bn+1un. On pose, pour n ∈ N, vn = un+1

un
et wn = ln(un)

n . Montrer que les suites (vn) et (wn) convergent.

Démonstration. Soit m. On peut écrire ua+n = Gnua + Gn+1ua−1 et ua+n+1 = Gn+1ua + Gn2ua−1, où Gn −−−−−−→
a→+∞ Fn, ce qui

devrait implique ce que l’on veut.
wn s’obtient à partir de vn par Cesàro.

Exercice 82 [ENS 2023 92] 1. Si n ≥ 2 est un entier, montrer que
∑n

k=2 ⌊logk(n)⌋ =
∑n

j=2⌊ j
√
n⌋.

2. Donner un équivalent lorsque n tend vers +∞ de
∑n

k=2 ⌊logk(n)⌋, puis un développement asymptotique à deux termes.

Démonstration. 1. Le premier compte les puissances de k inférieures à n, dont k1.
Le second compte les puissances j-èmes inférieures à n.

2. En coupant la somme en k =
√
n, on a du

√
n lnn+ (n−

√
n)n, d’où un équivalent à n.

En suite, on prend l’autre expression, on retire n. Le premier terme est
√
n. Les termes non nuls correspondent à j

√
n ≥ 2 ⇔

n ≥ 2j , donc les autres termes sont au plus en 3
√
n lnn, d’où le DSA n+

√
n+ o+∞(

√
n).

Exercice 83 [ENS 93] Soient α > 0 et (a−n ∈ N une suite strictement decroissante a valeurs dans ]0, 1[. Soit (u−n ∈ N une suite
definie par u0 > 0 et ∀n ∈ N, un+1 = un(u

α
n + an). Montrer qu’il existe un unique u0 > 0 tel que la suite (u− n ∈ N converge vers

un reel strictement positif.

Exercice 84 [ENS 94] Soit (un) une suite definie par : ∀n ∈ N∗, un = sin(lnn). On note V l’ensemble des valeurs d’adherence de
(un).

• Montrer que, pour tous x et y ∈ R, sinx− sin y = 2 sin x−y
2 cos x+y

2 .
• Montrer que un+1 − un → 0.
• Montrer que V est un intervalle inclus dans [−1, 1], puis que V = [−1, 1].

Exercice 85 [ENS 95] Si A est une partie de N∗, on dit que A admet une densite si la suite
(

|A∩1,n|
n

)
n≥1

admet une limite. Cette

limite est alors notee d(A).

• Si m ∈ N∗, quelle est la densite de l’ensemble des multiples de m dans N∗ ?
• Soient A et B deux parties disjointes de N∗ admettant une densite. Montrer que A ∪B admet une densite que l’on precisera.
• Donner un exemple de partie de N∗ n’admettant pas de densite.

Exercice 86 [ENS 96] On considere une suite a ∈ {2, 3}N∗
telle que a1 = 2 et, pour tout n ≥ 1, le nombre de 3 apparaissant dans

la suite a entre la n-ieme occurrence de 2 et la (n+ 1)-ieme occurrence de 2 soit egal a an.
Etudier la convergence de la suite de terme general 1

n

∣∣{k ∈ 1, n, ak = 3}
∣∣.

Exercice 87 [ 97] On considère une suite a ∈ {2, 3}N∗
telle que a1 = 2 et, pour tout n ≥ 1, le nombre de 3 apparaissant dans la

suite a entre la n-ième occurrence de 2 et la (n+ 1)-ième occurrence de 2 soit égal à an. Montrer qu’il existe un unique irrationnel α
tel que les indices n ≥ 1 tels que an = 2 soient exactement les entiers de la forme ⌊mα⌋+ 1 pour un m ∈ N.

Démonstration.

Exercice 88 [ 98] Une suite réelle (xn) est dite équirépartie modulo 1 si elle vérifie, pour tout entier k ∈ Z∗, limN→+∞
1
N

∑N
n=1 e

2ikπxn =
0.

1. Soit α ∈ R \ Q. Montrer que la suite (nα) est équirépartie modulo 1.
2. Soit (xn) ∈ RN∗

. On suppose que pour tout h ∈ N∗, la suite (xn+h − xn)n∈N∗ est équirépartie ; on veut montrer que (xn) est
équirépartie modulo 1.

a) Soit (an) une suite de complexes de module≤ 1. Montrer, pour tousN,H ∈ N∗ :
∣∣∣ 1N ∑N

n=1 an

∣∣∣ ≤ ∣∣∣ 1H ∑H−1
h=0

1
N

∑N
n=1 an+h

∣∣∣+
2H
N .
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b) Montrer que
∣∣∣ 1H ∑H−1

h=0
1
N

∑N
n=1 an+h

∣∣∣ ≤√ 1
N

∑N
n=1

∣∣∣∑H−1
h=0

an+h

H

∣∣∣2.

c) Conclure.
3. Soit P ∈ R[X] non constant et de coefficient dominant irrationnel. Montrer que (P (n))n≥1 est équirépartie modulo 1.
4. Soit (xn)n≥1 une suite réelle équirépartie modulo 1, et f : R → C une fonction continue 1-périodique. Montrer que 1

n

∑n
k=1 f (xk) −→

n→+∞∫ 1

0
f .

5. On reprend les hypothèses de la question 3. Montrer que la distance de P (Z) à Z est nulle.

Démonstration. 1.
2.
3.
4.
5. ? ?

Exercice 89 [ENS 99] Soit f : [0, 1] → R une fonction continue. Pourn ∈ N avecn ≥ 2, on noteAn la matrice



0 a1 0 · · · 0

a1 0 a2
. . .

...

0 a2 0
. . . 0

...
. . .

. . .
. . . an−1

0 · · · 0 an−1 0


ou, pour tout k ∈ 1, n− 1, ak = f

(
k
n

)
.

Soit q ∈ N∗. Determiner la limite de (tr (Aq
n))n≥2.

Exercice 90 [ 100] Montrer la convergence et calculer
∑+∞

k=1
(−1)k

k

⌊
ln(k)
ln(2)

⌋
.

Démonstration. Écrit quelque part. . .

Exercice 91 [ 101] On note ℓ2(R) l’ensemble des suites réelles de carré sommable indexées par N. On se donne une suite presque nulle
v ∈ R(N) ainsi qu’une suite (uk)k d’éléments de ℓ2(R) (l’élément uk est donc noté (uk,i)i∈N

)
. On suppose que, pour tout entier p ≥ 2,

la suite de terme général wk =
∑+∞

n=0 (uk,n)
p converge vers

∑+∞
n=0 (vn)

p. Montrer que infσ∈S(N)

∑+∞
n=0

(
uk,σ(n) − vn

)2 −→
k→+∞

0.

Démonstration. Écrit quelque part. . .
On peut supposer que les (vn) sont décroissants, par réordonnement.

Exercice 92 [ 102] Soit f la fonction de R dans R nulle sur R \ Q et telle que f
(

p
q

)
= 1

q si p ∈ Z et q ∈ N∗ sont premiers entre eux.
Quels sont les points de continuité de f ?

Démonstration. Facile.

Exercice 93 [ 103] Soient I un intervalle ouvert, f : I → R dérivable et [a, b] ⊂ I avec a < b. On suppose que f ′(a) = f ′(b). Montrer
qu’il existe c ∈ ]a,b[ tel que la tangente au graphe de f en c passe par le point (a, f(a)).

Démonstration. On peut supposer f ′(a) = f ′(b) = 0. À relier.

Exercice 94 [ENS 104] Construire une fonction continue de R dans R qui ne soit derivable en aucun point.

Exercice 95 [ 105] Déterminer les applications f de R dans R telles que, pour tout entier n ≥ 2, fn (puissance) soit polynomiale.

Démonstration. f2 et f3 polynomiales, donc f est une fraction rationnelle, f ∈ Q(x) et f2 ∈ Q[X] impliquent f ∈ Q[X].

Exercice 96 [ENS 106] Soit p > 1 un reel. Montrer qu’il existe une constante kp > 0 telle que, pour tout (x, y) ∈ R2 tel que
|x|p + |y|p = 2, on ait (x− y)2 ≤ kp (4− (x+ y)2).

Exercice 97 [ENS 107] Soit f : R → R. On note f∗(s) = supx∈R (sx− f(x)) et f∗(x) = sups∈R (sx− f∗(s)).
Montrer que f∗(x) = supa affine ≤f a(x).

Exercice 98 [ENS 108] Soient I un ensemble fini et (P − i ∈ I une famille de polynomes reels stable par derivation. On definit une
fonction signe par sign(x) =

x

|x|
si x ̸= 0 et sign(0) = 0.

Pour ε ∈ {−1, 1, 0}I , soient Aε = {t ∈ R ; ∀i ∈ I, sign(Pi(t)) = ε(i)} et
Bϵ = {t ∈ R ; ∀i ∈ I, sign(Pi(t)) ∈ {ε(i), 0}}.

• Montrer que Aε est soit vide, soit reduit a un point, soit un intervalle ouvert.
• Si Aε est non vide, montrer que Bε est l’adherence de Aε. Si Aε est vide, montrer que Bε est soit vide suit un singleton.

Exercice 99 [ENS 109] Soit I un intervalle de R et f : I → R de classe Cn.
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• Soient x0, . . . , xn des points de I . On note V (x0, . . . , xn) le determinant de Vandermonde associe a (x0, . . . , xn). Montrer qu’il
existe τ ∈ I tel que∣∣∣∣∣∣∣∣∣
1 x0 x20 · · · xn−1

0 f(x0)
1 x1 x21 · · · xn−1

1 f(x1)
...

...
...

...
...

1 xn x2n · · · xn−1
n f(xn)

∣∣∣∣∣∣∣∣∣ =
f (n)(τ)

n!
V (x0, x1, . . . , xn)

• On suppose que n = 2, que I est un segment et que f est strictement convexe. On note Γf = {(x, f(x));x ∈ I} ⊂ R2 le graphe
de f . Montrer qu’il existe une constante C , dependant uniquement de I et f , telle que le nombre de points de Γf ∩ 1

N Z2 soit
majore par C N2/3 pour tout entier N ≥ 1.

Exercice 100 [ENS 110] Pour n ∈ N, on pose wn =
∫ π/2

0
cosn(x) dx.

• Montrer que (w − n ≥ 0 est decroissante.
• Etablir une relation de recurrence entre wn+2 et wn.
• Sans utiliser la formule de Stirling, determiner un equivalent simple de wn.
• Determiner le rayon de convergence de la serie entiere

∑
wnx

n.

Exercice 101 Théorème de Rouché [ 111] Soit P ∈ C[X] ne s’annulant pas sur U.

1. Montrer que le nombre de racines deP de module strictement inférieur à 1 comptées avec multiplicité n’est autre que 1
2π

∫ π

−π

eitP ′(eit)
P (eit) dt.

2. Soit Q ∈ C[X] ne s’annulant pas sur U et tel que ∀z ∈ U, |P (z) −Q(z)| < |Q(z)|. Montrer que P et Q ont même nombre de
racines de module strictement inférieurs à 1 comptées avec multiplicité.

Démonstration.

Exercice 102 [ENS 112] Pour n ∈ N, on note An =
∫ π

2

0
cos2n(x) dx et Bn =

∫ π
2

0
x2 cos2n(x) dx. On admet que, pour n ∈ N∗,

2nAn = (2n− 1)An−1.

• Montrer que
∑n

k=1
1
k2 = 2B0

A0
− 2Bn

An
pour tout n ∈ N∗.

• En deduire que
∑+∞

k=1
1
n2 = π2

6 puis que
∑n

k=1
1
k2 = π2

6 +O
(
1
n

)
.

Exercice 103 [ 113] Soit f : R+ → R une fonction continue et presque périodique c’est-à-dire telle que, pour tout ϵ > 0, il existe
T > 0 tel que : ∀x ∈ R+,∀n ∈ N, |f(x+ nT )− f(x)| ≤ ϵ. Soit f : R+ → R continue et presque périodique.

1. Montrer que f est uniformément continue sur R+.

2. Montrer que t 7→ 1
t

∫ t

0
f possède une limite quand t→ +∞.

Démonstration. 1. Easy.
2. ! !

Exercice 104 [ENS 114] Soit f une fonction continue par morceaux et croissante de [0, 1] dans R. Montrer que
∫ 1

0
f(x)eiλxdx =

λ→+∞
O
(
1
λ

)
.

Exercice 105 [ENS 115] Soient f1, . . . , fn, g1, . . . , gn des fonctions de C0([0, 1],R). Soit A la matrice de terme general Ai,j =∫ 1

0
fi(x)gj(x) dx.

On poseB(x1, . . . , xn) = det
(
fi(xj)

)
etC(x1, . . . , xn) = det

(
gi(xj)

)
.Montrer que

∫
[0,1]n

B(x1, . . . , xn)C(x1, . . . , xn) dx1 . . . dxn =

n! det(A).

Exercice 106 [ENS 116 - La fonction f • Soit f une fonction de classe C1 de R+ dans R admettant une limite en +∞ et telle
que f ′ est uniformement continue. Est-ce que f ′ a une limite en +∞?

Exercice 107 [ENS 117] [Rennes sur dossier] Soient d,N ∈ N tels que N > d. Soient (P − n ∈ N une suite de polynomes a
coefficients reels de degre au plus d et x1, ..., xN des reels distincts. On suppose que pour tout j ∈ {1, ..., N}, la suite (Pn(xj))n∈N est
bornee. Montrer que l’on peut extraire de (P − n ∈ N une suite (Q− n ∈ N qui converge uniformement sur [0, 1] vers un polynome
de degre au plus d.

Exercice 108 [ENS 118] Montrer que la suite de fonctions de terme general fn : x 7→ (sinx)n cos(x) converge uniformement sur[
0, π2

]
.

Exercice 109 [ENS 119] On note I (resp. S) l’ensemble des fonctions f : [0, 1] → [0, 1] telles que, pour tout a ∈ R, l’ensemble
{x ∈ [0, 1], f(x) ≤ a} est ferme (resp. de meme avec l’inegalite dans l’autre sens).

• Montrer que S ∩ I est l’ensemble C des fonctions continues de [0, 1] dans [0, 1].
• Soit f : [0, 1] → [0, 1]. On pose fn : x 7→ inf({1} ∪ {f(y) + n|x − y|, y ∈ [0, 1]}) pour n ∈ N. Montrer que fn est continue

pour tout n, que la suite (fn) est croissante et que f ∈ I si et seulement si la suite (fn) converge simplement vers f .

Exercice 110 [ 120] Soit Λ : N → R telle que Λ(n) = ln(p) sin = pk avec p premier et k ∈ N∗, et Λ(n) = 0 sinon. On note P
l’ensemble des nombres premiers.

1. Montrer que, pour tout n ∈ N∗,
∑

d|n Λ(d) = ln(n).

2. Montrer que, pour tout s > 1,
(∑

n∈N∗
Λ(n)
ns

) (∑
n∈N∗

1
ns

)
=
∑

n∈N∗
ln(n)
ns .
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3. Montrer que, pour tout s > 1,
∑

p∈P
ln(p)
ps =

s→1+

1
s−1 +O(1).

4. Montrer que, pour tout s > 1,
∑

p∈P
1
ps =

s→1+
ln
(

1
s−1

)
+O(1). Qu’en déduire?

Démonstration.

Exercice 111 [ENS 121] Soit q ≥ 2 entier. On se donne un caractere non trivial χ sur le groupe des inversibles (Z/qZ)×, c’est-a-dire
un morphisme de groupes non constant χ : ((Z/qZ)×,×) −→ (U,×). Pour m ∈ Z, on pose alors χ̃(m) = 0 si q n’est pas premier
avec m, et χ̃(m) = χ(m) sinon (ou m designe la classe de m modulo q).

• Montrer que la serie
∑

n≥1
χ(m)
ms converge si et seulement si s > 0. - Montrrer que la fonction s 7→

∑+∞
n=1

χ(m)
ms est de classe

C1 sur R+∗.

Exercice 112 [ 122] Soient f : R+ → R de classe C1, décroissante de limite nulle en +∞ et g : x 7→
∑+∞

n=0(−1)nf(nx). Quelle est la
limite de g en 0+ ?

Démonstration. C’est
∑
f(2nx) − f((2n + 1)x) =

∑∫ (2n+1)x

2nx
f ′(t) dt. Cela tend vers 1

2f(0), en découpant sur un segment, et en
utilisant l’uniforme continuité de f ′.

Exercice 113 [ENS 123] Pour tout polynome trigonometrique P : θ 7→
∑

k∈Z ck(P )e
ikθ (somme a support fini) et pour tout d ∈ R,

on pose ∥P∥2hd =
∑

k∈Z |ck(P )|2(1 + |k|)2d.
On admet que ∥ ∥hd est une norme sur l’espace vectoriel T des polynomes trigonometriques pour tout d ∈ R. Soit E l’espace des
fonctions continues par morceaux et 2π-periodiques de R dans C. On definit le produit de convolution de deux fonctions f, g ∈ E
par : f ⋆ g : φ 7→

∫ π

−π
f(θ)g(φ− θ)dθ. Enfin, on pose, pour f ∈ E, ∥f∥22 =

∫ π

−π
|f(θ)|2dθ.

• Montrrer qu’il existe d ∈ R et c = c(d) ∈ R+ tels que, pour tous f , g ∈ T ,

∥f ⋆ g∥2 ≤ c(d)∥f∥hd∥g∥2.

• Determiner tous les reels d verifiant la condition de la question precedente.
• Soit f de classe C∞ et 2π-periodique. On pose, pour k ∈ Z, ck(f) = 1

2π

∫ π

−π
f(θ)e−ikθdθ et, pour tout d ∈ R, ∥f∥2hd =∑

k∈Z |ck(f)|2(1 + |k|)2d. Determiner les d ∈ R tels que ∥f∥hd < +∞.
• Soient f , g de classe C∞ et 2π-periodiques et d ∈ R. Calculer ∥f ⋆ g∥hd .

Exercice 114 [ENS 124] Soient p ≥ 2 et q ≥ 2 deux entiers tels que p ∧ q = 1. Pour tout z ∈ C tel que |z| < 1, on pose
f(z) = 1−zpq

(1−zp)(1−zq) . Ecrire f(z) sous la forme
∑+∞

n=0 cnz
n et trouver le plus grand n ≥ 0 tel que cn = 0.

Exercice 115 [ 125] Soient R ∈ R+∗, f et g deux fonctions développables en série entière sur ] − R,R[ telles que ∀x ∈] −
R,R

[
,
∫ x

0
f(t)g(x− t) dt = 0 . Montrer que l’une au moins des deux fonctions f et g est identiquement nulle sur ]−R,R[.

Démonstration.

Exercice 116 [ENS 126] Soient f : z 7→
∑+∞

n=0 z
n et g : z 7→

∑+∞
n=0 z

2n .

• Determiner les rayons de convergence de f et g.
• Trouver les complexes z ∈ S(0, 1) tels que f(z) converge.
• Montrrer que f admet un prolongement f̄ sur C \ {1}, developpable en serie entiere en tout point de C \ {1}.
• Montrrer que |g(r)| → +∞ quand r → 1 avec r ∈ R. - Montrrer que, si z ∈ B(0, 1), alors g(z2) = g(z)− z.
• Soient n ∈ N et α ∈ U2n . Montrrer que |g(rα)| → +∞ quand r → 1 avec r ∈ R.

• Soit h : z 7→
∑+∞

n=0
z2n+1

2n+1 . Montrrer que h est continue sur B(0, 1).
• Montrrer que, pour tout z0 ∈ S(0, 1), ε > 0 et h̃, prolongement de h sur B(0, 1)∪B(z0, ε), la fonction h̃ n’est pas developpable

en serie entiere en z0.

Exercice 117 [ENS 127] Soitα = (α−i ≥ 1 une suite de Z nulle a partir d’un certain rang. Pourn ≥ 1, on poseun =
∏

i∈N∗((in)!)αi .

• Determiner, selon la valeur de α, le rayon de convergence R de la serie entiere
∑

n≥1 unz
n.

Dans la suite, on note f la somme de cette serie entiere.

• Expliciter f si α = (−δi,1)i≥1.
• Pour une somme g de serie entiere sur un intervalle ]−a, a[ non trivial, on pose ∆(g) : z 7→ zg′(z). Expliciter P (∆)(g) lorsque
g : z 7→ zk avec k ∈ N et P ∈ R[X].

• Soit v ∈ CN∗
une suite complexe, et P ∈ R[X] sans racine dans N∗ tels que, pour tout n ≥ 1, vn+1 = vn

P (n+1) . Montrrer que∑
n≥1 vnz

n a un rayon de convergence non nul et donner une methode simple pour trouver une equation differentielle lineaire
non triviale a coefficients polynomiaux dont sa somme est solution.

• Resoudre le meme probleme qu’en (d) lorsqu’il existe P et Q dans R[X] sans racine dans N∗ telles que vn+1 = Q(n+1)
P (n+1) vn pour

tout n ≥ 1, et en supposant cette fois-ci que deg(Q) ≤ deg(P ).
• Justifier que le cadre de la question - s’applique bien a la suite (u− n ≥ 1 lorsque R > 0.

Exercice 118 [ENS 128] Pour n ∈ N, on pose un = n! (30n)!
(15n)! (10n)! (6n)! .

• Montrrer que, pour n ∈ N, un est un entier.
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• Determiner le rayon de convergence de la serie entiere
∑
unx

n.
• Trouver une equation differentielle verifiee par la somme de la serie entiere precedente.

Exercice 119 [ 129] Existe-t-il une partie A de N telle que
∑

n∈A
xn

n! ∼
x→+∞

e
√
x ?

Démonstration. Cf un précédent

Exercice 120 [ENS 130] • Soit f : z 7→
∑+∞

n=0 anz
n la somme d’une serie entiere de rayon R > 0. Montrrer que, pour tout

0 < r < R et pour tout n ∈ N, anrn = 1
2π

∫ 2π

0
f(reiθ)e−inθdθ.

▷ Soit f une fonction developpable en serie entiere de rayon de convergence egal a 1. On suppose que f est prolongeable
par continuite sur le disque ferme Df (0, 1). Expliquer pourquoi la formule de Cauchy ci-dessus reste vraie pour r = 1. -
Soit f : x ∈]− 1, 1[ 7→ 1√

1−x
e−

1−x
1+x . Montrer que f est developpable en serie entiere au voisinage de 0.

▷ On admet que le rayon de convergence du developpement de f en 0 vaut 1. Montrer que les coefficients du developpement
en serie entiere en 0 de f sont bornes par M > 0. Experimer M en fonction de f .

Exercice 121 [ENS 131] Calculer
∫ +∞
0

sin x
x dx a l’aide de la transformation de Laplace.

Exercice 122 [ 132] Soit (a, b) ∈ R × R− tel que ∀x ∈ [0, 1], 1 + ax+ bx2 ≥ 0.

1. Si a ∈ R+, montrer que n
∫ 1

0

(
1 + ax+ bx2

)n
dx −→

n→+∞
+∞.

2. Si a ∈ R−∗, montrer que n
∫ 1

0

(
1 + ax+ bx2

)n
dx −→

n→+∞
− 1

a .

Démonstration.

Exercice 123 [ 133] Soit, pour x ∈ R+, f(x) =
∫ π

0
dt√

e2x cos2(t)+e−2x sin2(t)
. Montrer qu’il existe (a, b) ∈ (R+)

2 tel que ∀x ∈

R+, f(x) ≤ (ax+ b)e−x.

Démonstration.

Exercice 124 [ENS 134] Pour x reel, on pose J(x) =
∫ π

0
cos(x sin t) dt.

• Calculer J(0).
• Montrer que J est de classe C∞.

• En estimant
∫ π

2 +ε
π
2 −ε

cos(x sin t) dt pour un ε a choisir convenablement en fonction de x, etablir que J(x) = O(x−1/2) quand
x→ +∞.

Exercice 125 [ENS 135] Soient f et g deux fonctions de classe C∞ de R+ dans R. On pose f ⋆ g : x ∈ R+ 7→
∫ x

0
f(t) g(x − t) dt.

Montrer que f ⋆ g est derivable et donner une expression de sa derivee.

Exercice 126 [ENS 136] Soit f :]0, 1[→ R continue. Pour n ≥ 1 et s < t dans ]0, 1[, on pose

an(f, s, t) =
2

t−s

∫ t

s
f(u) cos

(
2nπ
t−s (u− s)

)
du.

• On suppose f strictement convexe. Montrer que a1(f, s, t) > 0 pour tous s < t dans ]0, 1[.
• On suppose f strictement convexe. Montrer que an(f, s, t) > 0 pour tous s < t dans ]0, 1[ et tout n ∈ N∗.
• Reciproquement, on suppose f de classe C2 et a1(f, s, t) > 0 pour tous s < t dans ]0, 1[. Montrer que f est strictement convexe.

Exercice 127 [ENS 137] Soit S l’ensemble des solutions de l’equation differentielle sur R :
∑n

k=0 y
(k) = 0.

A quelle condition sur n tout element de S possede-t-il une limite en +∞?

Exercice 128 [ 138] Soit I un (vrai) intervalle de R. Si r ∈ N∗ et f1, . . . , fr ∈ Cr−1(I,R), on poseWr (f1, . . . , fr) = det

((
f
(i−1)
j

)
1≤i,j≤r

)
.

Soient r ∈ N∗, f1, . . . , fr ∈ Cr−1(I,R).

1. Soit g ∈ Cr−1(I,R). Montrer que Wr (gf1, . . . , gfr) = grWr (f1, . . . , fr).
2. On suppose que, pour tout k ∈ 1, r,Wk (f1, . . . , fk) ne s’annule pas. Montrer que, pour tout (a1, . . . , ar) ∈ Rr non nul, la

fonction a1f1 + · · ·+ arfr s’annule au plus (r − 1) fois sur I .
3. On suppose queWr (f1, . . . , fr) est identiquement nul sur I et queWr−1 (f1, . . . , fr−1) ne s’annule pas. Montrer que (f1, . . . , fr)

est liée.

Démonstration.

Exercice 129 [ENS 139] On considere l’equation differentielle (Dλ) : y
′′
+ (λ − r)y = 0 avec λ ∈ R, r ∈ C∞(I,R), ou I un

intervalle contenant [0, 1]. On considere Eλ l’espaces des solutions y de (Dλ) telles que y(0) = 0, y(1) = 0.

• Quelles sont les dimensions possibles de Eλ ?
• Caracteriser le cas dim(Eλ) = 1. (On souhaite une condition portant sur yλ, solution du probleme de Cauchy (Dλ), yλ(0) = 0,
y′λ(0) = 1.)

• Montrer que, a r fixe, les Eλ sont orthogonaux pour le produit scalaire ⟨f, g⟩ =
∫ 1

0
fg.

• On note Nλ le nombre de zeros de yλ sur [0, 1]. Pourquoi est-il fini ?
• Calculer Nλ dans le cas r = 0, λ > 0.
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• Dans le cas general, etudier le comportement de Nλ.

Exercice 130 [ENS 140] Soient I un intervalle non trivial de R, et a, b deux fonctions continues de I dans R. On considere l’equation
differentielle (E) : x

′′
+ a(t)x′ + b(t)x = 0.

• Soit x une solution non nulle de (E). Montrer que les zeros de x sont isoles.
• On suppose a de classe C1. Montrer qu’il existe z de classe C2 de I dans R, et q : I → R continue telles que x 7→ [t 7→ x(t) ez(t)]

definisse une bijection de l’ensemble des solutions de (E) sur celui des solutions de y
′′
+ q(t) y = 0.

• Soient q1, q2 deux fonctions continues de I dans R telles que q1 ≤ q2. On considere l’equation differentielle (Ei) : y
′′
+qi(t) y = 0

pour i ∈ {1, 2}. Soient y1, y2 des solutions respectives de (E1) et (E2) sur I . Soient α < β deux zeros consecutifs de y1. Montrer
que y2 s’annule dans [α, β].

• Soient q : I → R continue, et m,M deux reels strictement positifs tels que m ≤ q ≤ M . Soient α < β deux zeros consecutifs
d’une solution non nulle de y

′′
+ q(t)y = 0. Montrer que π√

M
≤ β − α ≤ π√

m
.# 141

Soient A une application continue de R+ dans Mn(R), M l’unique application derivable de R+ dans Mn(R) telle que M(0) = In et

∀t ∈ R+, M ′(t) = A(t)M(t). Montrer que ∀t ∈ R+, det(M(t)) = exp
(∫ t

0
TrA

)
.

Exercice 131 [ENS 142] Soit p : R → R une fonction continue, non identiquement nulle, π-periodique et telle que
∫ π

0
p(t)dt ≥ 0

et
∫ π

0
|p(t)|dt ≤ π

4 . Montrer que l’equation u
′′
+ pu = 0 n’admet pas de solution u non nulle sur R telle qu’il existe λ ∈ R∗ tel que

∀t ∈ R, u(t+ π) = λu(t).

Exercice 132 [ENS 143] Soit A0 ∈ Mn(R) telle que Sp(A0 +AT
0 ) ⊂ R−.

On admet l’existence d’une unique fonction A : R+ → Mn(R) telle que A(0) = A0 et ∀t ≥ 0, A′(t) = (A(t))
2−
(
A(t)T

)2
. Montrer

que la fonction A a une limite en +∞ et expliciter cette limite.

Exercice 133 [ENS 144] Soit A ∈ M3(R). Decrire le comportement asymptotique en +∞ des solutions de l’equation differentielle
X ′(t) = AX(t).

Exercice 134 [ENS 145] On considere l’equation differentielle (1) : X ′(t) = P (t)X(t) ou P est une application continue et perio-
dique de R dans Mn(C).

• Resoudre (1) si $∀ t∈R,\ P(t)=
( )

.$Onrevientaucasgeneral.SoitT ∈ R+∗ une periode de P . On note X1, . . . , Xn une base
de l’espace des solutions de (1) et, si t ∈ R, M(t) = (X1(t), . . . , Xn(t)). Montrer qu’il existe C ∈ GLn(C) telle que ∀t ∈
R, M(t+ T ) =M(t)C .

•• Avec les notations de la question precedente, montrer qu’il existe A ∈ GLn(C) tel que l’application t ∈ R 7→ M(t)e−tA soit
T -periodique.

Exercice 135 [ENS 146] • Soit f : (x, y) 7→
(
ln
(
x2 + y2

)
, arctan

(
y
x

))
. Donner le domaine de definition Ω de f . Etudier la

continuite et la differentiabilite de f .

▷ On identifie naturellement R2 a C. Montrer que, si (x, y) ∈ Ω, df(x,y) est C-lineaire.

Exercice 136 [ENS 147] Calculer supa,b,c>1

(
1− 1

a

)b
+
(
1− 1

2b

)c
+
(
1− 1

3c

)a
.

Exercice 137 [ENS 148] Trouver supa,b,c≥1

(
1− 1

a

)b (
1− 1

2b

)c (
1− 1

3c

)a
.

Exercice 138 [ENS 149] [Rennes sur dossier] Soient q ∈ R+, D = {(x, y) ∈ R2 ; x ≥ 0, y ≥ 0, x + y = 1}, Determiner
min(x,y)∈D(xq + yq).

Exercice 139 [ENS 150] Soient A ∈ S++
n (R) et b ∈ Rn.

Determiner les extrema de x ∈ Rn 7→ 1
2 ⟨Ax, x⟩ − ⟨b, x⟩.

Exercice 140 [ 151] Soient f une application différentiable convexe de Rn dans R, L ∈ R+∗.

1. Montrer que ∀(x, y) ∈ Rn × Rn, ⟨∇f(y)−∇f(x), y − x⟩ ≥ 0.
2. On suppose que l’application ∇f est L-lipschitzienne.

Montrer que ∀(x, y) ∈ Rn × Rn, ⟨∇f(y)−∇f(x), y − x⟩ ≥ 1
L∥∇f(x)−∇f(y)∥2.

Exercice 141 [ENS 152] Soit p > 1. Montrer qu’il existe Kp ∈ R tel que, pour tous x, y ∈ R tels que |x|p + |y|p = 2, on a
(x− y)2 ≤ Kp(4− (x+ y)2).

Exercice 142 [ENS 153] Soient f une application de classe C1 de Rn dans Rm, x ∈ Rn telle que dfx soit injective. Montrer qu’il
existe un voisinage de x dans Rn sur lequel f est injective.

Exercice 143 [ENS 154] On identifie R2 a C. Soit f une fonction de R2 dans R, de classe C2 et telle que ∆f = 0. Montrer que
f(0) = 1

2π

∫ π

−π
f(eit)dt.

Exercice 144 [ 155] On munit Rn de la nome euclidienne canonique et on noteB unité fermée de cet espace. Soient f une application
de Rn dans Rn de classe C1 et telle que, pour tout (u, v) ∈ B2, ∥−f(0) + v − dfu(v)∥ ≤ 1

2 . Montrer que f s’annule exactement une
fois sur B.

Démonstration.
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1) Géométrie

Exercice 145 [ENS 156] • Montrer que, pour tout n ∈ N, il existe un unique Tn ∈ Z[X] tel que
∀θ ∈ R, Tn(2 cos(θ)) = 2 cos(nθ).

• Si n ∈ N∗, quel est le terme de plus haut degre de Tn ? En deduire les r ∈ Q tels que cos(πr) ∈ Q.
• Determiner les triangles du plan euclidien dont les cotes ont des longueurs rationnelles et les angles sont des multiples rationnels

de π.

Exercice 146 [ 157] Soit G un groupe d’isométries affines de R2 tel que, pour tout point x, il existe g ∈ G tel que g(x) ̸= x. Montrer
que G contient une translation autre que l’identité de R2.

Démonstration. Faux pour G = O2.

Exercice 147 [ 158] Soit S le groupe (pour la composition) des applications de C dans C de la forme z 7→ az+ b avec a ∈ U et b ∈ C.
Soit G un sous-groupe de S vérifiant les conditions suivantes :

• si g ∈ G, g(0) est nul ou de module supérieur ou égal à 1 ;
• l’ensemble des b ∈ C tels que z 7→ z + b appartienne à G contient deux éléments R linéairement indépendants.

Montrer que l’ensemble {a ∈ U | ∃b ∈ C, z 7→ az + b ∈ G} est fini.

Démonstration. Sinon, il existe une suite (an) qui s’accumule. On peut supposer qu’elle s’accumule sur 1, puis on peut borner les (bn),
puis extraire une suite convergence, donc elle est constante à partir d’un certain rang. Donc on a une infinité de z 7→ anz, ce qui est
impossible.

Exercice 148 [ENS 159] Soit L la courbe du plan complexe d’equation |z|2 = cos(2 arg(z)).

• Trouver une equation cartesienne reelle definissant L.
• En deduire une parametrisation de L ∩ (R+)2 sous la forme {(x(r), y(r)), r ∈ [0, 1]}. - Montrrer que la longueur de la courbe
L entre le point (0, 0) et le point (x(r), y(r)) s’ecrit : A(r) =

∫ r

0
1√
1−t2

dt.

• Montrre que A definit une bijection de [−1, 1] dans un intervalle de la forme [−w,w] ou w > 0.
• On definit B = A−1. Montrer que B verifie une equation differentielle du second ordre.

Exercice 149 [ENS 160] Soit (e1, e2) une famille libre de vecteurs de R2. On pose L =1 +2 et on note Vol(L) = |det(e1, e2)|.
• Soit A un disque ferme de R2, d’aire strictement superieure a Vol(L). Montrer qu’il existe deux elements distincts x et y de A

tels que x− y ∈ L.
• Soit ε > 0. Montrer qu’il existe dans L \ {0} un element ℓ tel que ∥ℓ∥ ≤ 2+ε√

π

√
Vol(L).

• Soit p un nombre premier congru a 1 modulo 4.
• Montrrer qu’il existe ω ∈ Z tel que p divise 1 + ω2.
• Montrrer qu’il existe (a, b) ∈ Z2 tel que p = a2 + b2.

Exercice 150 [ENS 161] • On noteD le disque unite du plan euclidien R2. Demontrer qu’il existe une suite (C−i ∈ N de parties
de D telle que :

▷ pour tout i ∈ N, l’ensemble Ci soit un carre de R2 dont les cotes sont paralleles aux axes ;
▷ les Ci soient d’interieurs disjoints ;
▷
∑

i∈N Aire(Ci) = π.
▷ On note C = [−1, 1]2. Demontrer qu’il existe une suite (D − i ∈ N de parties de C telle que :
▷ pour tout i ∈ N, l’ensemble Di soit un disque ferme de R2 ;
▷ les Di soient d’interieurs disjoints ;
▷
∑

i∈N Aire(Di) = 4.

2) Probabilités

Exercice 151 [ENS 162] On note A l’ensemble des parties de A de N telles que limn→+∞
|A∩[[1,n]]|

n existe. Est-ce que A est une
tribu?

Exercice 152 [ENS 163] On pose, pour toute permutation σ ∈ Sn, d(σ) =
∑n

k=1 |σ(k) − k| et on note, pour p ∈ N, qn,p = |{σ ∈
Sn, d(σ) = p}|. Montrer que, si p ≥ 2n, alors qn,p est pair.

Exercice 153 [ENS 164] Un derangement est une permutation σ ∈ Sn sans point fixe. On note Dn le sous-ensemble de Sn forme
des derangements.

• Soit X une variable aleatoire suivant la loi uniforme sur Dn. Calculer la probabilite que X soit une permutation paire.

Indications.

• On donne la formule d’inversion de Pascal : si (an) et (bn) sont deux suites telles que∀n ∈ N, an =
∑n

k=0

(
n
k

)
bk , alors ∀n ∈ N,

bn =
∑n

k=0(−1)n−k
(
n
k

)
ak .

• On pourra calculer la difference du nombre d’elements pairs et impairs de Dn.

▷ Soit Y une variable aleatoire suivant la loi uniforme sur Sn. Calculer la probabilite de (Y ∈ Dn) sachant que Y est paire.
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Exercice 154 [ 165] Soient m ≥ 1 et r ≥ 1 deux entiers. On munit l’ensemble des morphismes de groupes de (Z/mZ)r dans Z/mZ
de la loi uniforme. Donner une expression simple de la probabilité de l’événement «le morphisme φ est surjectif».

Démonstration. Le faire pour m = p, puis lemme Chinois.

Exercice 155 [ENS 166] Deux joueurs A et B lancent une piecee truquee donnant pile avec une probabilite egale a 5/9. Les regles
de gain sont les suivantes : pile rapporte 5 euros et face 4 euros. Pour n ∈ N∗, chacun des joueurs effectue 9n lancers independants ;
on note An (resp. Bn) la variable aleatoire donnant le gain du joueur A (resp. B).*

• Trouver un equivalent, lorsque n tend vers +∞, de $P
(
An = Bn).$MontrerqueP (An ≥ Bn) ≥ 1

2 . Vers quoi tend P (An < Bn)?

Exercice 156 [ENS 167] On joue a pile ou face avec une piecee pipee : la probabilite de tomber sur pile est p < 1/2. On effectue
plusieurs lancers a la suite. Le score est le nombre de fois ou l’on est tombe sur pile. On gagne le jeu si, au bout de 2n lancers, le score
est superieur a n+ 1. Trouver n qui maximise la probabilite de gagner le jeu au bout de 2n lancers.*

Exercice 157 [ 168] Soit X une variable aléatoire à valeurs dans N telle que E(X) = 1, E
(
X2
)
= 2 et E

(
X3
)
= 5. Quelle est la

valeur minimale de P(X = 0)?

•• Démonstration. ! !
On a E(X)E(X3) ≥ E(X2)2. En fait, mieux, E(X)E(X2) ≥ (

On a (
∑
pix

2
i )(
∑
pi) ≥ (

∑
pixi)

2, donc 2
∑
pi ≥ 1, donc

∑
pi ≥ 1

2 : p0 ≤ 1
2 .

Exercice 158 [ENS 169] Soient n ∈ N un entier impair ≥ 3, (X −m ≥ 0 une suite de variables aleatoires a valeurs dans Z/nZ telle
que X0 = 0, et pour m ∈ N, P(Xm+1 = k + 1 |Xm = k) = P(Xm+1 = k − 1 |Xm = k) = 1

2 . Montrer que (X −m ≥ 1 converge
en loi vers la loi uniforme sur Z/nZ.*

Exercice 159 [ENS 170] Pour σ ∈ Sn on note I(σ) le nombre d’inversions de σ c’est-a-dire le nombre de couples (i, j) avec i < j
et σ(i) > σ(j).

• Montrer que Pn =
∑

σ∈Sn
XI(σ) =

∏n−1
k=1(1 +X + · · ·+Xk).

• On pose f(n) = |{σ ∈ Sn, (n+ 1) divise I(σ)}|. Exprimer f(n) a l’aide de Pn.

• Montrer qu’il existe une infinite de nombres premiers p tels que f(p−1) < (p−1)!
p et de meme une infinite de nombres premiers

p tels que f(p− 1) > (p−1)!
p .

Exercice 160 [ENS 171] Soient p un nombre premier, n ∈ N∗, P une variable aleatoire suivant la loi uniforme sur l’ensemble des
polynomes unitaires de degre n de Fp[X], N le nombre de racines de P dans Fp (sans tenir compte des multiplicites). Calculer E(N)
et V(N).

Exercice 161 [ 172] Dans tout l’exercice, les variables aléatoires considérées sont supposées réelles, discrètes et à loi de support fini.
Pour deux telles variables X et Y , on note X ≤c Y pour signifier que E(f(X)) ≤ E(f(Y )) pour toute fonction convexe f : R → R.

1. Soient X une variable aléatoire vérifiant les conditions de l’exercice et f : R → R convexe. Montrer que f(E(X)) ≤ E(f(X)).
2. Donner un exemple de couple (X,Y ) pour lequel X ≤c Y mais X ̸= Y .
3. Montrer que si X ≤c Y alors E(X) = E(Y ) et V(X) ≤ V(Y ).
4. Montrer que X ≤c Y si et seulement si E(X) = E(Y ) et

∀a ∈ R,
∫ +∞

a

P(X ≥ x) dx ≤
∫ +∞

a

P(Y ≥ x) dx.

Démonstration.

Exercice 162 [ 173] On fixe N ∈ N∗. On choisit de façon équiprobable u1 ∈ 1, N , puis u2 ∈ 1, u1 − 1, et ainsi de suite jusqu’à
arriver à uℓ = 1 avec nécessairement ℓ ≤ N . On note EN = {uj , 1 ≤ j ≤ ℓ}.

1. Calculer P (k ∈ EN ) pour 1 ≤ k ≤ N .
2. Calculer P (2 ∈ EN | 3 ̸∈ EN ).
3. Calculer E (|EN |) et V (|EN |).

Démonstration. 1. P (k ∈ Ek+1) = 1
k , puis P (k ∈ En) = 1

n−1 + 1
n−1

(
P (k ∈ EN−1) + · · · + P (k ∈ Ek+1)

)
. On trouve

P (k ∈ EN ) = 1
k .

2. On a P (2 ∈ EN | 3 ∈ EN ) = 1
2 .

3. Semble facile.

Exercice 163 [ENS 174] Dans tout l’enonce, on fixe un entier p ≥ 1.

• Developpper (x1 + · · ·+ xN )p pour toute liste (x1, . . . , xN ) de nombres reels.
• Soient X1, . . . , Xn des variables aleatoires i.i.d. suivant la loi uniforme sur {−1, 1}. Soit (a1, . . . , an) ∈ Rn. On pose X =∑n

i=1 aiXi. Montrer que E(X2p) ≤ (2p)p(E(X2))p.
• Montrer que E(X2p) ≤ pp(E(X2))p.

• Soit (a− k ≥ 1 une suite reelle telle que
∑+∞

k=1 a
2
k = 1. Soient x ∈ R et Yx =

∑n
k=1 ak cos(kx)Xi.

Montrer que ω 7→
∫ 2π

0
Yx(ω)

2p dx prend au moins une valeur inferieure ou egal a 2πpp.
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Exercice 164 [ENS 175] suivant la loi uniforme sur {1,−1}. Soient X1, . . . , Xn des variables aleatoires i.i.d. suivant la loi de
Rademacher, et a1, . . . , an des reels. On pose Y =

∑n
k=1 akXk .

• Montrer que E(|Y |)2 ≤ E(Y 2).
• Montrer que E(Y 2) =

∑n
k=1 a

2
k .

• Montrer que si
∑n

k=1 a
2
k = 1 alors E(Y 2) ≤ eE(|Y |)2.

• Montrer que E(Y 2) ≤ eE(|Y |)2 en toute generalite.

Exercice 165 [ENS 176] Une variable aleatoire discrete reelle X est dite decomposable s’il existe deux variables aleatoires discretes
reelles non presque surement constantes et independantes X1 et X2 telles que X ∼ X1 +X2. - Une variable aleatoire de Bernoulli
est-elle decomposable? Une variable aleatoire binomiale est-elle decomposable?

• Montrer que le polynome T 4 + 2T + 1 ne peut se factoriser comme produit de deux polynomes de degre 2 a coefficients dans
R+. En deduire une variable aleatoire reelle discrete decomposable X telle que X2 ne soit pas decomposable.

• Soient n ∈ N∗ et X une variable aleatoire suivant la loi uniforme que [[0, n− 1]]. Donner une condition necessaire et suffisante
sur n pour que X soit decomposable.

Exercice 166 [ENS 177] Soit p ∈ ]0, 1/2[. Soit (X − k ≥ 1 une suite de variables de Bernoulli i.i.d. de parametre p. On pose $
Sn=
∑

k=1
nX

k$ pour n ∈ N∗. Determiner la plus grande valeur prise par la suite (P(S2n > n))n≥1.

Exercice 167 [ENS 178] On fixe n ∈ N∗ et on pose $ X=[\ ![1,n]\ !]$. Soient A et B des variables aleatoires independantes unifor-
mement distribuees sur l’ensemble P(X) des parties de X .

• Determiner la loi, l’esperance et la variance de la variable aleatoire |A| (cardinal de A).
• Montrer que, pour tout ε > 0, P

(
|A| ≥

(
1
2 + ε

)
n
)

−→
n→+∞

0.

• Pour i ∈ [[1, n]], on note 1{i} la fonction indicatrice du singleton {i}. Determiner la loi de 1{i}(A).
• Calculer P(A ⊂ B). Commenter.

Exercice 168 [ENS 179] Soient n ∈ N∗ et p ∈ [0, 1]. On considere un echiquier n × n. On calorie chaque case en rouge (resp. en
bleu) avec probabilite p (resp. 1 − p). On note Q(p) la probabilite pour qu’il existe un chemin joignant le bord gauche au bord droit
constite uniquement de cases rouges (il est entendu que les deplacements ne se font pas en diagonale). Que dire de la fonction Q?

Exercice 169 [ENS 180] Soit (X−n ≥ 1 une suite de variables aleatoires independantes de loi de Rademacher. On pose $ Sn=X1+· · · +Xn$
pour n ≥ 1.

• Calculer l’esperance du nombre R de retour en zero de la suite (S − n ≥ 1.
• Soit I un intervalle de R distinct de R. Montrer que la probabilite qu’il existe n ≥ 1 tel que Sn /∈ I est egale a 1.
• Montrer que l’evenement (R = +∞) est presque sdr.

Exercice 170 [ENS 181] Soient (Ω,A,P) un espace probabilise et (m−k ∈ N une suite de reels positifs de somme 1. On considere un
arbre aleatoire sur cet espace tel que chaque noeud ait un nombre aleatoire X de successive avec, pour tout k ∈ N, P(X = k) = mk .
Ces variables aleatoires correspondant au nombre de succcesseurs sont mutuellement independantes. On noteX1 la variable aleatoire
comptant le nombre de succcesseurs de la racine. Caracteriser le fait que la longueur de l’arbre soit presque surement finie.

Exercice 171 [ENS 182] On construit iterativement et aleatoirement un arbre aleatoire sur l’ensemble de sommets [[1, n]] (graphe
oriente) selon le procede suivant : a l’etape k, on choisit aleatoirementun point dans 1, k (avec probabilite uniforme) et on rajoute une
arete orientee de ce point vers k + 1. Ces choix s’effectuent de maniere independante les uns des autres.

• On note Xn la variable aleatoire donnant le nombre d’aretes partant du point 1. Determiner l’esperance et la variance de Xn.
• On suppose n ≥ 2. On note Sn la variable aleatoire donnant le nombre de descendants (directs ou non) du sommet 2. Determiner

la loi de Sn.
• Calculer l’esperance du nombre de feuilles de l’arbre.

Exercice 172 [ 183] Soient E un ensemble fini, V : E → P(E) une fonction de E vers les parties de E et f : E → R une fonction.
Un point a ∈ E est un minimum local si f(a) ≤ f(b) pour tout b ∈ V (a). Soit M un entier tel que M ≥

√
|E|. Soient b1, . . . , bM des

variables aléatoires indépendantes et uniformément distribuées dans E. Soit k tel que f (bk) = min1≤i≤M f (bi). Soit (un)n≥0 une
suite de E telle que u0 = bk et, pour tout n ≥ 0 :

• si un est un minimum local, alors un+1 = un ;
• sinon un+1 ∈ V (un) et f (un+1) < f (un).

Montrer que uM est un minimum local avec probabilité au moins 1/2.

Démonstration. La donnée est celle d’un graphe. Étant donné l’algorithme, on peut retirer des arêtes, de sorte que les voisins de a
vérifient f(b) < f(a). Auquel cas il n’y a plus de cycles.
Alors on choisit

√
n sommets du graphe, puis le minimum. On veut montrer la plus longue chaîne décroissante à partir de celui-ci est

de longueur ≤
√
n avec probabilité 1

2 .
On peut attribuer à chaque sommet sa valeur par f , et on peut supposer que c’est injectif.
Puis on peut ajouter des arêtes, vers ceux qui sont < s. Puis on peut retirer les arêtes, sauf celle juste en dessous. On est ramené à un
graphe n→ n− 1 → . . .→ 1.

16



Exercice 173 [ENS 184] Une variable aleatoire reelle X est infiniment divisible si X admet un moment d’ordre 2, et si, pour tout
n ≥ 2, il existe (Xi,n)i∈1,n i.i.d. et admettant des moment d’ordre 2 telles que X ∼

∑n
i=1Xi,n. Montrer que si X est bornee et

infiniment divisible, alors X est presque surement constante.

Exercice 174 [ENS 185] On se donne une suite (X − i ≥ 1 de variables aleatoires independantes. On suppose que pour tout i ≥ 1,
il existe ai ∈ ]0, 2] et pi ∈ [0, 1] tels que Xi soit a valeurs dans {0, ai,−ai} et P(Xi = ai) = P(Xi = −ai) = pi

2 .

• Quelle relation doivent verifier ai et pi pour que V(Xi) = 1? Dans toute la suite, on suppose cette relation verifiee et on pose
Sn =

∑n
i=1Xi.

• Calculer la variance de n−1/2Sn.
• Montrer que E(cos(n−1/2tSn)) =

∏n
i=1 E(cos(n−1/2tXi).

• En deduire que E(cos(n−1/2tSn)) −→
n→+∞

e−t2/2.

Exercice 175 [ENS 186] On fixe un entier n ≥ 1. On considere la relation d’ordre partielle ≼ sur Rn definie par x ≼ y ⇔ ∀i ∈
1, n, xi ≤ yi. Une fonction f : {0, 1}n → R est dite croissante lorsque f(x) ≤ f(y) quels que soient x, y dans {0, 1}n tels que x ≼ y.

• Donner un exemple de fonction croissante non constante de {0, 1}n dans R.
• Dans la suite, on se donne une liste (X1, . . . , Xn) de variables aleatoires i.i.d. suivant B(1/2). Soit f : {0, 1}n → R croissante.

On suppose n ≥ 2.

Montrer que E(f(X1, . . . , Xn)) =
1
2

(
E(f(X1, . . . , Xn−1, 0) + E(f(X1, . . . , Xn−1, 1))

)
. - Soit f : {0, 1}n → R et g : {0, 1}n → R

croissantes.
Montrer que E((fg)(X1, . . . , Xn)) ≥ E(f(X1, . . . , Xn))E(g(X1, . . . , Xn)).

Exercice 176 [ENS 187] Soit n ∈ N∗. On munit Sn de la distribution uniforme de probabilite. On note Ai = {σ ∈ Sn, σ(i) = i} et
N la variable aleatoire donnant le nombre de points fixes d’une permutation.

• Soit I ⊂ 1, n. Calculer P
(⋂

i∈I

Ai

)
.

• Exprimer N avec des indicatrices. Calculer E(N) et V(N).
• Soient k ∈ 1, n et F ⊂ 1, n. Calculer

∑
I⊂1,n, |I|=k

∏
i∈I

1F (i).

• Soit k ∈ 1, n. Calculer E(N(N − 1) · · · (N − k + 1)).
• Soient X ∼ P(1) et k ∈ N. Calculer E(X(X − 1) · · · (X − k + 1)).
• Calculer P(N = 0).

Exercice 177 [ENS 188] On considere une suite i.i.d. (X − n ≥ 1 de variables aleatoires suivant toutes la loi uniforme sur {1, 2}.
On definit (S − n ≥ 0 par S0 = 0 et ∀n ∈ N, Sn+1 = Sn +Xn+1.
a) i) Determiner l’esperance et la variance de Sn.

• Soit ε > 0. Montrer que P(|Sn − 3n/2| ≥ εn) tend vers 0 quand n tend vers +∞.
• Soit ε > 0. Montrer que P(|Sn − 3n/2| ≥ εn2/3) tend vers 0 quand n tend vers +∞.
• On considere la variable aleatoire Tn : ω 7→ min{k ∈ N, Sk(ω) ≥ n}. Determiner l’ensemble des valeurs prises par Tn.
• Soit k ≥ 2. Montrer que P(Tn = k) = 1

2P(Tn−1 = k − 1) + 1
2P(Tn−2 = k − 1).

• Calculer l’esperance de Tn.

Exercice 178 [ 189] Soient d ∈ N∗ et n ≥ 3. On pose G = (Z/nZ)d et S = {±ei, 1 ≤ i ≤ d}, où ei désigne l’élément de G dont
toutes les coordonnées sont nulles sauf la i-ème, égale à 1. Soient enfin f : G→ R une fonction quelconque etX une variable aléatoire
uniformément distribuée sur G.
Montrer que E(|f(X)−E(f(X))|) ≤ nd

2 maxs∈S E(|f(X)− f(X + s)|).

Démonstration. C’est simple : On peut passer d’un somme à un autre en au plus nd
2 pas.

II) ENS PSI

1) Algebre

Exercice 179 [ENS PSI 191] SoitE un espace vectoriel de dimension n. Soit u ∈ L(E), annule par un polynomeQ tel queQ(0) = 0
et Q′(0) ̸= 0. Montrer que Keru et Imu sont supplementaires.

Exercice 180 [ENS PSI 192] • Soit A ∈ Mn(R) dont tous les coefficients diagonaux sont nuls et les autres valent 1 ou −1.
Montrer que si n est pair alors A est inversible.

▷ Soit B = (x1, . . . , x2n+1) ∈ R2n+1. On suppose que, pour toute partie P de B de cardinal 2n, on peut trouver Q1 et Q2

contenues dans P , chacune de cardinal n, telles que
∑

x∈Q1
x =

∑
x∈Q2

x. Montrer que tous les xi sont eaux.

Exercice 181 [ENS PSI 193] SoientE un C espace vectoriel de dimension finien, f ∈ L(E). On pose ∀g ∈ L(E),φf (g) = f◦g−g◦f .

• Calculer φn
f (g) pour g ∈ L(E).

• Montrer que fn+1 ◦ g − g ◦ fn+1 =
∑n

k=0 f
k(f ◦ g − g ◦ f)fn−k .

• On suppose f non inversible. Montrer que f est nilpotente si et seulement si φf l’est.

17



• Montrer que, si f possede une unique valeur propre, alors φf est nilpotente. Etudier la reciproque.

Exercice 182 [ENS PSI 194] Soient n ∈ N∗, c0, c1, · · · , c2n−1 ∈ R tels que cn = 1 et cn+1 = · · · = c2n−1 = 0. SoitQ =
∑n

k=0 ckX
k .

On definit les matrices A,B, P de Mn(R) par

ai,j =

{
1 si i+ 1 = j

−ci−1 si j = n
, bi,j = ci+j−1 et pi,j =

{
1 si i+ j − 1 = n

0 sinon
.

• Montrer que Q(A) = 0 en calculant Ake1 ou e1 = (1, 0, . . . , 0)T .
• Soit R(A) = {M ∈ Mn(R) ; ∃P ∈ R[X], P (A) =M}. Montrer que R(A) est de dimension n.
• Montrer que PB est triangulaire puis en deduire que B est inversible.
• Montrer que AB = BAT .
• Montrer que AT est semblable a A.
• Montrer que A s’ecrit comme le produit de deux matrices symetriques.

Exercice 183 [ENS PSI 195] • Soit A ∈ Mn(C) diagonalisable. Montrer que, pour tout polynome P a coefficients complexes,
la matrice P (A) est diagonalisable. - Soit A ∈ Mn(C) diagonalisable. Decrire l’ensemble des matrices inversibles P telles que
P−1AP soit diagonale.

▷ Soient A et B deux matrices codiagonalisables. On suppose que B a des valeurs propres deux a deux distinctes. Montrer
qu’il existe un polynome P ∈ C[X] tel que A = P (B).

▷ On suppose toujoursA etB codiagonalisables mais on ne suppose plusB a valeurs propres distinctes. Montrer qu’il existe
une matrice C et deux polynomes P et Q tels que A = P (C) et B = Q(C).

▷ La matrice
(

−1 0
0 −4

)
est-elle le carre d’une matrice reelle ?

Exercice 184 [ENS PSI 196] Soit A ∈ Mn(R). Montrer qu’il existe P ∈ R[X] tel que P (A) = Com(A)T .
Ind. Commencera par A inversible.

Exercice 185 [ENS PSI 197] Soient E un R-espace vectoriel de dimension d ∈ N∗ et f ∈ L(E) telle que $fˆ f=-$id.

• Donner un exemple d’application f verifiant les hypotheses en dimension 2.
• Montrer que f n’a pas de valeur propre reelle. Montrer que E est de dimension paire.
• Montrer qu’il existe (e1, . . . , ep) telle que (e1, f(e1), . . . , ep, f(ep)) soit une base de E avec d = 2p. Donner la matrice de f

dans cette base.

Exercice 186 [ENS PSI 198] Soient A,B ∈ Mn(C) telles que AB −BA = A.

• Montrer que AkB −BAk = kAk pour k ∈ N.
• On definit l’application φB :M 7→MB −BM .
• Verifier que φB est un endomorphisme et caracteriser son noyau.
• Montrer que, si Ap ̸= 0, alors p est une valeur propre de φB .
• La matrice A est-elle nilpotente? Justifier.

Exercice 187 [ENS PSI 199] Soit A ∈ Mn(C). Montrer que Sp(A) ⊂
⋃n

i=1

{
z ∈ C, |z − ai,i| ≤

∑
1≤j≤n

j ̸=i
|ai,j |

}
.

Exercice 188 [ENS PSI 200] On note S ⊂ Mn(R) l’ensemble des matrices stochastiques : M = (mi,j) ∈ S si ∀(i, j) ∈ [[1, n]]2,
mi,j ≥ 0 et

∑n
k=1mi,k = 1. Pour tout A ∈ Mn(R), on note Sp(A) l’ensemble de ses valeurs propres.

• Montrer que les elements de S ont tous une valeur propre commune.
• Montrer que S est convexe, ferme, borne dans Mn(R), et qu’il est stable pour le produit.

c) i) Montrer que, pour tout A ∈ S , on a Sp(A) ⊂ {z ∈ C, |z| ≤ 1}.
Ind. Si X = (x1, · · · , xn) ∈ Cn est un vecteur propre, considerer |xi| = max1≤j≤n |xj |.

• Soient λ ∈ SpA telle que |λ| = 1. Montrer que λ est une racine ℓ-ieme de l’unite avec ℓ ≤ n.
• On suppose que A = (ai,j) ∈ S est telle que ai,j > 0 pour tout (i, j) ∈ [[1, n]]2.
• Montrer que 1 est une valeur propre de A et que dimker (A− In) = 1.
• Montrer que si λ ∈ Sp(A)\{1} alors |λ| < 1. - On dit queB ∈ Mn(R) verifie (P) si : ∀(i, j) ∈ 1, n2, bi,j ≥ 0 et

∑n
k=1 bi,k ≤ 1.

• Montrer que si B = (bij) ∈ Mn(R) verifie (P) alors |detB| ≤ 1.
• Determiner l’ensemble des matrices B ∈ Mn(R) qui verifient (P) ainsi que |detB| = 1.
• Determiner l’ensemble des matrices stochastiques dont la valeur absolue du determinant vaut 1.

Exercice 189 [ENS PSI 201] Soient (E, ⟨ ⟩) un plan euclidien, V = (v1, . . . , vn) une famille de vecteurs de E de norme 1 telle
que ⟨v1, v2⟩ = ⟨v2, v3⟩ = . . . = ⟨vn, v1⟩. Soit D2n l’ensemble des isometries vectorielles de E qui laissent invariantes la famille V ,
c’est-a-dire :
D2n = {σ ∈ O(E) ; ∀i ∈ 1, n σ(vi) ∈ V}.

• Trouver, pour 1 ≤ i < j ≤ n, la valeur de l’angle ⟨vi, vj⟩.
• Montrer que D2n est un sous-ensemble finie de O(E).
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• Montrer que D2n est stable par composition et passage a l’inverse.
• Exprimer D6 et D8.
• Si σ ∈ D2n verifie σ(v1) = vi, montrer que σ(v2) = vi−1 ou σ(v2) = vi+1.
• En deduire que le cardinal de D2n est 2n.
• Montrer que D2n = {id, r, sr, r2, sr2, r3, sr3, . . .} ou s est une reflexion et r une rotation d’angle Arccos (⟨v1, v2⟩).
• On note D =

⋃
n≥3D2n. Montrer que pour tout σ ∈ O(E), il existe une suite (σ − k ≥ 0 ∈ DN telle que σ = limk→+∞ σk .

Exercice 190 [ENS PSI 202] • On note φ l’application M 7→MT de Mn(R) dans Mn(R).

▷ Montrer que φ est un automorphisme.
▷ Determiner les valeurs propres de φ.
▷ L’application φ est-elle diagonalisable? Justifier.
▷ On fixe un reel µ > 0. Soit f l’application t 7→ (4µt2, 2µt) de R dans R2. On suppose que t0 et t1 sont deux reels tels que

les tangentes au support de la courbe parametree definies par f sont orthogonales.
▷ Montrer que 4t0t1 + 1 = 0.
▷ Montrer que le point d’intersection des tangentes en f(t0) et f(t1) appartient a une droite fixe.
▷ Soient Q ∈ On(R) et X,Y ∈ Mn,1(R).
▷ Montrer que (QX)T (QY ) = XTY .
▷ Determiner les valeurs propres reelles de Q puis montrer que deux vecteurs propres associés a des valeurs propres reelles

distinctes sont orthogonaux.
▷ Soit M ∈ O2(R) diagonalisable sur R. Montrer, qu’a similitude pres, M peut prendre exactement trois formes distinctes.

Pour chacune d’entre elles donner la transformation geometrique du plan correspondante.

Exercice 191 [ENS PSI 203] • Soit A ∈ S+
n (R) de rang k. Montrer qu’il existe des vecteurs U1, . . . , Uk lineairement indepen-

dants dans Rn tels que A =
∑k

j=1 UjU
T
j .Soient A,B ∈ Mn(R). Leur produit d’Hadamard A ◦ B ∈ Mn(R) est la matrice de

terme general aijbij .

▷ Montrver que, si A et B sont des matrices symetriques de rang 1, alors A ◦B est symetrique de rang au plus 1.
▷ Montrver que, si A et B sont symetriques positives, alors A ◦B est symetrique.
▷ Si A et B sont symetriques positives, montrer que A ◦B est symetrique positive.

Exercice 192 [ENS PSI 204] On note (e1, . . . , en) la base canonique de Mn,1(R). Soit (c0, . . . , c2n−1) ∈ R2n tel que cn = 1 et
cn+1 = . . . = c2n−1 = 0. On pose Q =

∑n
k=0 ckX

k . On considere enfin les matrices de Mn(R) suivantes : A = (ai,j), ou ai,j = 1
si j = i− 1, ai,j = −ci−1 si j = n et ai,j = 0 sinon ; B = (ci+j−1) et C = (δi+j,n+1).

• Montrver que Q(A) = 0. Ind. Calculer Ake1 pour tout k ∈ {0, . . . , n}.
• On pose R[A] = {M ∈ Mn(R) ; ∃P ∈ R[X], M = P (A)}. Montrer : dimR[A] = n.
• Montrver que CB est triangulaire. En deduire que B est inversible.
• Montrver que AB = BAT .
• Montrver que A est semblable a sa transposee.
• Montrver que A s’ecrit comme le produit de deux matrices symetriques.

Exercice 193 [ENS PSI 205] a) i) Soit m un entier ≥ 2. Montrer que
∫m−1

1
dx√

x(m−x)
≤
∑m−1

k=1
1√

k(m−k)
.

• Calculer
∫m−1

1
dx√

x(m−x)
l’aide du changement de variables x = m

1+t2 .

• Soit An ∈ Mn(R) la matrice de terme general 1
i+j−1 .

• Montrver que An ∈ S++
n (R).

• Soit λn la plus petite des valeurs propres de An. Montrer qu’il existe a, b > 0 tels que ∀n ≥ 1, 0 ≤ λn ≤ 1
n

(
a+ b ln(n)

)
.

• Soientµn la plus grande valeur propre deAn etX = (1/
√
1, 1/

√
2, . . . , 1/

√
n)T ∈ Rn. Montrer que ⟨AnX,X⟩ ≥ 2

∑n
i=1

1
i arctan(

√
i− 1)

ou ⟨ ⟩ designe le produit scalaire canonique sur Rn.

• Montrer que, pour tout P ∈ R[X],
∫ 1

−1
P (t) dt = −i

∫ π

0
P (eiθ)eiθ dθ. En deduire que, pour tout Q =

∑d
k=0 akX

k ∈ R[X],∫ 1

0
Q2(t) dt ≤

∫ 1

−1
Q2(t) dt ≤ π

∑d
k=0 a

2
k .

• En deduire que limn→+∞ µn = π.

Exercice 194 [ENS PSI 206] On munit Rn de sa structure euclidienne canonique. On considere des reels λ1, . . . , λn tels que :
0 < λ1 ≤ λ2 ≤ · · · ≤ λn, et, pour tout entier i tel que 1 ≤ i ≤ n, on pose Mi = (λi, λ

−1
i ).On considere y = (y1, . . . , yn) ∈ Rn tel

que ∥y∥2 = 1 et on note M le barycentre des Mi pondere par les coefficients y2i .

• Montrver que M = (a, b) ou a = ⟨Dy, y⟩ et b = ⟨D−1y, y⟩ ou D = diag(λ1, . . . , λn).

• Montrver que a−1 ≤ b ≤ − a

λ1λn
+ λ−1

1 + λ−1
n .

• En deduire que 1 ≤ ab ≤ 1

4

(√
λ1
λn

+

√
λn
λ1

)2

.

• On considere A ∈ S++
n (R), x ∈ Rn.
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Montrer que ∥x∥42 ≤ ⟨Ay, y⟩⟨A−1y, y⟩ ≤ 1

4

(√
λ1
λn

+

√
λn
λ1

)2

∥x∥42.

• Soient b ∈ Rn et c ∈ R. Soit f : x 7→ 1

2
⟨Ax, x⟩ − ⟨b, x⟩+ c. Montrver que f admet un minimum atteint en un unique point, et

determiner sa valeur.

2) Analyse

Exercice 195 [ENS PSI 207] On pose An =
∫ +∞
0

tne−t sin(t)dt, Bn =
∫ +∞
0

tne−t cos(t)dt et Xn =

(
An

Bn

)
pour tout n ∈ N.

• Montrver que An et Bn existent et que |An|2 + |Bn|2 ≤ (2n)!.
• Trouver A0 et B0.
• Montrver qu’il existe une matrice de rotation R(θ0) telle que (n+ 1)Xn =

√
2R(θ0)Xn+1.

• Exprimer An et Bn en fonction de n.
• Trouver une condition pour que An = Bn.
• Montrver qu’il existe g1, g2 ∈ C0(R+,R+) distinctes telle que

∀n ∈ N,
∫ +∞
0

tng1(t)dt =
∫ +∞
0

tng2(t)dt

Exercice 196 [ENS PSI 208] Soient E = C0([0, 1],C) et F = D1([0, 1],C). On definit T comme l’operateur qui, a tout f ∈ E
associe : On note Eλ le sous-espace propre de T pour une valeur propre λ.
a) i) : Montrver que T est un endomorphisme.

• Soit f ∈ E. Pour n ∈ N∗, exprimer Tn(f) a l’aide d’une somme.
• Montrver que (Tn(f))n≥1 converge simplement vers une fonction ℓ.

b) i) : Montrver que E1 est l’ensemble des fonctions constantes.

• Montrver que Eλ = {0} si |λ| ≥ 1 et λ ̸= 1.
• Soit λ tel que |λ| < 1.
• Montrver que fλ : x 7→

∑+∞
k=0 λ

k cos(2kπx) est definie et continue sur [0, 1].
• Montrver que fλ ∈ Eλ.
• On note Dλ = Eλ ∩ F .

• Montrver que, si |λ| < 1

2
, Dλ ̸= {0}. - Comparer T (f ′) et (Tf)′ pour f ∈ F .

iii) : Montrrer que, si |λ| ≥ 1
2 et λ ̸= 1

2 , Dλ = {0}.

Exercice 197 [ENS PSI 209] Soit (u− n ≥ 0 la suite de fonctions definie par :
∀x ∈ R u0(x) = 0 et ∀n ∈ N∗, ∀x ∈ R, un(x) = x

n(1+nx2) .

• Etudier la convergence de
∑
un.

• Sur quel domaine a-t-on (
∑
un)

′
=
∑
u′n ?

• La fonction
∑+∞

n=0 un est-elle derivable en 0 ?

Exercice 198 [ENS PSI 210] On fixe p > 1. On note q l’unique reel tel que 1
p + 1

q = 1.

Soit f : R+ → R+ continue et non identiquement nulle tel que
∫ +∞
0

f(t)pet dt converge.

• Soient t ∈]0, 1[ et (u, v) ∈ (R+)2. Montr re que utv1−t ≤ tu+ (1− t)v.

Ind. Utiliser un argument de convexite ou une etude de fonction.
b) i) : Soit A > 0, et soient g et h deux fonctions continues de [0, A] dans R.
Montr re que la suite (un) est bien definie et qu’il existe K ∈ R+∗ telle que

∀n ∈ N , |un| ≤ K
(

p
q

)n
(I(nq))1/q .

• En deduire que
∑

|un|−1/n diverge.
• On suppose que p = 1. Montr re que

∑
|un|−1/n diverge.

Exercice 199 [ENS PSI 211] Soit α ∈ R. On pose gα : t ∈ ]0,+∞[7→ e−ttα.

• Donner les valeurs de α tels que
∫ +∞
0

gα(t)dt converge.

• Calculer I(p) =
∫ +∞
0

e−pt dt, avec p ∈]0,+∞[.

• Justifier l’existence de dkI
dpk pour tout k ∈ N.

• En deduire
∫ +∞
0

gn(t)dt pour tout n ∈ N.

• Retrouver ce resultat en integrant par parties
∫ x

ε
gn(t)dt pour 0 < ε < x.# 212

Soit a > 0. On pose I(a) =
∫ +∞
0

e−t2−a2/t2 dt et J(a) = a
∫ +∞
0

e−t2−a2/t2

t2 dt.

• Montrrer que ces integrales convergent.
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• Montrver que I(a) = J(a),

• En deduire que I(a) = e−2a

2

∫ +∞
0

(
1 + a

t2

)
e−(t−a/t)2dt

• Montrver que I(a) =
√
π
2 e

−2a. La valeur de l’integrale de Gauss etait donnee.

Exercice 200 [ENS PSI 213] Soient a > 0 et q ∈ C2([a,+∞[,R+∗) telle que
∫ +∞
a

√
q(t) dt = +∞. Soit (E) l’equation differentielle

y
′′
+ qy = 0.

• Soient y1 et y2 deux fonctions de classe C1 qui n’ont pas de zeros en commun. On pose Φ = y1+ iy2 et Φ(a) = r0e
iθ0 . Montrver

que ∀x ≥ a, Φ(x) = eΨ(x) ou Ψ(x) =
∫ x

a
Φ′(t)
Φ(t) dt+ ln(r0) + iθ0.

• Montrver que l’on peut ecrire y1(x) = r(x) cos(θ(x)) et y2(x) = r(x) sin(θ(x)) ou r(x) =
√
y21(x) + y22(x) et θ(x) =

θ0 +
∫ x

a
y1y

′
2−y2y

′
1

y2
1+y2

2
.

• On pose x 7→ f(x) =
∫ x

a

√
q(t) dt. Montrver que f realise une bijection de [a,+∞[ sur R+.

• Soit y une solution de (E), non identiquement nulle. On pose Y = y ◦ f−1. Montrver que Y
′′
+ vY ′ + Y = 0 ou v : t 7→

q′(f−1(t))
2(q(f−1(t)))3/2

.

• Montrver que Y et Y ′ n’ont pas de zero en commun et que l’on peut ecrire Y = r cos(θ) et Y ′ = r sin(θ) ou r, θ sont des
fonctions de classe C1.

• Montrver que (r2)′ = −2vr2 sin2(θ). En deduire que y et y′ sont bornees.

Exercice 201 [ENS PSI 214] On considere une solution u de l’equation de transport :
∂u
∂t (x, t) + c∂u∂x (x, t) = f(x, t) ou u(x, 0) = u0(x).

• Montrver alors que si u est solution de l’equation homogene, alors u est constante le long de la droite x = x0 + ct. En deduire
qu’il existe une unique solution de l’equation homogene, et que celle-ci est : u(x, t) = u0(x− ct).

• On suppose f non nulle. Montrver que pour une solution u, on a :

u(x, t) = u0(x0) +
∫ t

0
f(x0 + cθ, θ) dθ.

• En deduire que : u(x, t) = u0(x − ct) +
∫ t

0
f(x − c(t − θ), θ) dθ. On considere maintenant une solution u de l’equation des

ondes :
∂2u
∂2t (x, t)− c2 ∂2u

∂2x (x, t) = 0 ou u(x, 0) = g(x) et ∂u
∂t (x, 0) = h(x).

b) i) : On suppose u de classe C2. Montrver que :$
(

∂
∂t + c ∂

∂x

) (
∂u
∂t − c∂u∂x

)
= ∂2u

∂2t − c2{∂2u}{∂2x}.$

• En deduire qu’une solution u de l’equation s’ecrit : u(x, t) = u1(x+ ct) + u2(x− ct).
• On pose v(x, t) = ∂u

∂t (x, t) + c∂u∂x (x, t). Montrer que v est solution d’une equation de transport dont on precisera le parametre
c ainsi que les conditions initiales.

• Experimer u en fonction de v et deduire :

u(x, t) = 1
2 (g(x− ct) + g(x+ ct)) + 1

2c

∫ x+ct

x−ct
h(τ) dτ .

c) i) Trouver toutes les solutions C2 de l’equation d’onde a variables separees, de la forme : u(x, t) = φ(t)ψ(x)

• Soit n ∈ N. On pose : g : x 7→
∑n

k=1 ak sin(kπx) et h = 0. Determiner u(x, t).

Exercice 202 [ENS PSI 215] On munit Rd de sa structure euclidienne canonique. On dit que f est differentiable sur l’ouvert Ω si ∇f
existe et est continu.

• Soient C ouvert convexe non vide de Rd, f : C → R differentiable. On suppose que ∇f est L-lipschitzien. Soient w, v ∈ C et
g : t 7→ f(v + t(w − v)).

• Experimer g′(t).

• Montrer que f(w)− f(v) =
∫ 1

0
⟨∇f(v + t(w − v)), w − v⟩dt.

• Montrer que f(w) ≤ f(v) + ⟨∇f(v), w − v⟩+ L
2 ∥w − v∥.

• Soit f : Rd → R differentiable. Montrer que f est convexe si et seulement si

∀w, v ∈ Rd, f(w) ≥ f(v) + ⟨∇f(v), w − v⟩. Ind. Commencer par d = 1.

• Soit f : Rd → R differentiable. On pose v0 = 0 et vn+1 = vn − 1
2L∥∇f(vn)∥

2 pour n ∈ N. Montrer que f(vn+1) ≤ f(vn) −
1
2L∥∇f(vn)∥

2 pour n ∈ N.
• On suppose de plus f convexe.
• Montrer que ∀w ∈ Rd, f(vn+1) ≤ f(w) + ⟨∇f(vn), vn − w⟩ − 1

2L∥∇f(vn)∥
2.

• Montrer que f(vn)− f(w) ≤ L
2 (∥vn − w∥2 − ∥vn+1 − w∥2).

• Montrer que f(vn)− f(w) ≤ L
2n∥w∥

2.
• Soit v∗ un point critique de f . Montrer que v∗ est un minimum local de f et que la suite (vn) converge vers v∗.
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3) Probabilites

Exercice 203 [ENS PSI 216] Soit n ≥ 2. On note n = ps11 . . . psrr sa decomposition en facteurs premiers. On munit Ω = {1, . . . , n}
de la loi uniforme. Pour tout diviseur d de n, on note Ad l’ensemble des multiples de d contenus dans $Ω :Ad= \kd\„\ k≤nd\.$
a) i) Montrer que si d et d′ sont deux entiers premiers entre eux alorsAd∩Ad′ = Add′ , et en deduire queAd etAd′ sont independants.
- On note B = {k ∈ Ω, k ∧ n = 1}. Exprimer B en fonction des Api et en deduire une expression de P(B) puis de |B|. Cette valeur
sera notee φ(n).

• Soient n et m deux entiers premiers entre eux. Montrer que φ(mn) = φ(m)φ(n).
• On note U =

⋃
n∈N Un ou Un designe l’ensemble des racines n-iemes de l’unite. Pour z dans U , on note nz = inf{n ∈ N z ∈

Un}.
• Pour z ∈ C tel que |z| = 1, montrer qu’il existe une suite (z − k ∈ N a valeurs dans U telle que limk→+∞ zk = z.
• Pour tout entier naturel n on note Pm = {z ∈ U , nz = m}. Montrer que Pm est fini et de cardinal φ(m), et que si n et m sont

distincts Pm ∩ Pn = ∅.
• Montrer que U =

⋃
m∈N Pm.

Exercice 204 [ENS PSI 217] Soit X une variable aleatoire definie sur (N,P(N)). Soient P1 et P2 deux probabilites sur (N,P(N)).
On suppose que, pour tout n ∈ N, P1({n}) > 0, P2({n}) > 0, P1(X = n) > 0 et P2(X = n) > 0. Soit A = {n ∈ N,
P1({n}) ≤ P2({n})}.

On pose, pour n ∈ N, un(X) = P2(X = n) ln
(

P2(X=n)
P1(X=n)

)
.

Enfin, on pose ℓ(X) =
∑+∞

n=0 un(X) si cette serie converge, ℓ(X) = +∞ sinon.

• Soit C ∈ P(N) avec C ̸= N et C ̸= ∅. Montrer que 0 < P1(C) < 1 pour i = 1, 2.
• On suppose que X suit la loi de Poisson de parametre λ1 pour P1 et de parametre λ2 pour P2.
• Calculer un(X) en fonction de n, λ1, λ2.
• Montrer que

∑
un(X) converge et exprimer sa somme ℓ(X) en fonction de λ1, λ2.

• Montrer que ℓ(X) ≥ 0.
• Montrer que {n ∈ N, n ≥ max(λ1, λ2)} ⊂ A ⊂ {n ∈ N, n ≤ min(λ1, λ2)}.
• On revient au cas general. Montrer que

∑
un(X) converge et que ℓ(X) ≥ 0.

• Montrer que
∑+∞

n=0 |P2(X = n)−P1(X = n)| = 2(P2(X ∈ A)−P1(X ∈ A)).

Exercice 205 [ENS PSI 218] Soient X1, . . . , Xn des variables aleatoires a valeurs reelles, identiquement distribuees, centres, de
variance finie σ2 et independantes. On suppose de plus P(|X1| > 1) = 0. On note Sn =

∑n
k=1Xk .

• Soient Y1, . . . , Yn des variables aleatoires independantes suivant la loi binomiale B(m, p) avec m ∈ N∗ et p ∈ ]0, 1[. Pour a ̸= 0
et b ∈ R, on note Xi = aYi + b. A quelle condition sur a et b les Xi verifient-elles les conditions precedentes?

• Montrer ∀u ∈ ]−∞, 2], eu ≤ 1 + u+ u2

2 (1 + max(0, u)).

• Dans le cas general, montrer ∀t ∈ [0, 2], E(etX1) ≤ 1 + σ2t2

2 (1 + t) ≤ eσ
2t2(1+t)/2. - En deduire que ∀t ∈ [0, 2], E(etSn) ≤

enσ
2t2(1+t)/2,

• Soit α tel que 0 < α < 6σ2. Montrer P(Sn/n ≥ α) ≤ e−nα2/6σ2

.

III) ENS PC

1) Algebre

Exercice 206 [ENS PC 219] ⋆ Soit A une partie de cardinal n de R. On pose B = A + A = {a + a′, a, a′ ∈ A}. Montrer que

2n− 1 ≤ card(B) ≤ n(n+ 1)

2
. Generaliser a B = kA = A+A+ · · ·+A (k fois).

Exercice 207 [ENS PC 220] Soient a, b ∈ Z deux entiers distincts. Trouver tous les polynomes P ∈ Z[X] tels que P (a) = b et
P (b) = a.

Exercice 208 [ENS PC 221] ⋆ Soient P1, P2, P3, P4 ∈ R[X]. Montrer qu’il n’existe aucun voisinage ouvert de 0 sur lequel on ait
simultanement i) ∀x < 0, P1(x) < P2(x) < P3(x) < P4(x)

ii) ∀x > 0, P2(x) < P4(x) < P1(x) < P3(x).

Exercice 209 [ENS PC 222] [PL] Soit E = Mn(R). Calculer le determinant de l’application Φ: M ∈ E 7→MT ∈ E.

Exercice 210 [ENS PC 223] Considerons des reels 0 ≤ x0 < x1 < · · · < xn ≤ 1. Montrer qu’il existe des reels α0, . . . , αn tels que
∀P ∈ Rn[X],

∫ 1

0
P (t) dt =

∑n
k=0 αkP (xk).

Exercice 211 [ENS PC 224] Soient A,B ∈ Mn(R).

• Si A+ iB ∈ GLn(C), montrer qu’il existe t ∈ R tel que A+ tB ∈ GLn(R).
• Si A et B sont semblables dans Mn(C), montrer qu’elles sont semblables dans Mn(R).

Exercice 212 [ENS PC 225] Soit M ∈ M2(Z). On suppose qu’il existe k ∈ N∗ tel que Mk = I2. Montrer que M12 = I2.
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Exercice 213 [ENS PC 226] Soient ε ∈
]
0 ;

1

4

[
et M la matrice M =


1−2ε ε 0 ··· 0 ε

ε 1−2ε ε
. . .

... 0

0 ε
. . .

. . . 0
...

...
. . .

. . .
. . . ε 0

0 ··· 0 ε 1−2ε ε
ε 0 ··· 0 ε 1−2ε

 ∈ Mk(R)

• Quel est le spectre de M ?
• Determiner la limite de la suite (Mn)n∈N.

Exercice 214 [ENS PC 227] Soit f : Rn → Rn qui preserve le produit scalaire canonique :
∀(x, y) ∈ (Rn)2, ⟨f(x), f(y)⟩ = ⟨x, y⟩. Montrer que f est une isometrie lineaire.# 228 SoitA ∈ S3(R) telle que tr(A) = 3, tr(A2) = 5,
tr(A3) = 9. Determiner la borne inferieure de tr(M2) lorsque M decrit

{
M ∈ S3(R) ; tr(AM) = 1 et tr(A2M) = 1

}
,

Exercice 215 [ENS PC 229] Soient A et B deux matrices de S+
2 (R) telles que, pour tout s ∈ R+∗,

tr
(
(sI2 +A)

−1
)
= tr

(
(sI2 +B)

−1
)

. Montrer que A et B sont semblables. Est-ce toujours vrai en dimension n?

2) Analyse

Exercice 216 [ENS PC 230] On note ∥ ∥1 la norme sur Rn definie par :
∀x = (x1, . . . , xn) ∈ Rn, ∥x∥1 =

∑n
k=1 |xk|.

• Soit (x, y) ∈ (Rn)
2. Montrer que ∥x+ y∥1 + ∥x− y∥1 = 2(∥x∥1 + ∥y∥1) si et seulement si ∀k ∈ 1, n, xkyk = 0.

• Soit f ∈ L(Rn) qui preserve la norme ∥ ∥1 : ∀x ∈ Rn, ∥f(x)∥1 = ∥x∥1. Montrer que la matrice A = (ai,j)1≤i,j≤n de f sur
la base canonique est une matrice de permutation signee, c’est-a-dire qu’il existe une permutation σ de 1, n et (ε1, . . . , εn) ∈
{−1, 1}n verifiant ∀(i, j) ∈ 1, n2, ai,j = εjδi,σ(j).

Exercice 217 [ENS PC 231] Soient d ∈ N∗ avec d ≥ 2 et p ∈ [1,+∞[. On definit la norme ∥ ∥p sur Rd par ∀X ∈ Rd, ∥X∥p =(∑d
k=1 |xk|p

)1/p
. Pour tous X,Y ∈ Rd et t ∈ R, on pose

ρ(X,Y, t) = 1
2 (∥X + tY ∥p + ∥X − tY ∥p)− 1 et ρ(t) = sup∥X∥p=∥Y ∥p=1 ρ(X,Y, t).

• On suppose que p ∈ [1, 2] et qu’il existe C > 0 tel que ∀t ∈ R, ρ(t) ≤ Ct2. Montrer que p = 2.
• On suppose que p = 2. Montrer qu’il existe C > 0 tel que ∀t ∈ R, ρ(t) ≤ Ct2.

Exercice 218 [ENS PC 232] Soit E l’espace des fonctions f : [ 0 ; 1 ] → R de classe C1 telles que f(0) = 0. Pour f ∈ E, on pose
∥f∥ = ∥f + f ′∥∞.

• Montrer que ∥ ∥ est une norme sur E.
• Montrer qu’il existe a > 0 tel que, pour tout f ∈ E, on ait ∥f∥∞ ≤ a ∥f∥.
• Les normes ∥ ∥ et ∥ ∥∞ sont-elles equivalentes sur E ?

Exercice 219 [ENS PC 233] Soient (E, ∥·∥) un espace vectoriel norme de dimension finie et f ∈ L(E) tel que, pour tout x ∈ E,
∥f(x)∥ ≤ ∥x∥. Pour n ∈ N, on pose sn = 1

n+1

∑n
k=0 f

k . Etudier le comportement de sn quand n tend vers +∞.

Exercice 220 [ENS PC 234] Soient E = RN et D : E → E defini par
∀u ∈ E, D(u) = u′ avec ∀n ∈ N, u′n = un+1 − un.

• L’endomorphismeD est-il injectif ? surjectif ? Quels sont ses valeurs propres et ses vecteurs propres? - On poseF =
{
u ∈ E ,

∑
u2n converge

}
.

Pour u, v ∈ F , on pose ⟨u, v⟩ =
∑+∞

n=0 unvn et ∥u∥ =
√

⟨u, u⟩. Montrter que F est stable par D puis determiner l’ensemble

$H= \ ⟨u,D(u)⟩
∥u∥2

\ ; ;\ ;u ∈ F\ \0\\.$

Exercice 221 [ENS PC 235] On considere la suite (Fn)n≥0 definie par F0 = 0, F1 = 1 puis Fn+2 = Fn + Fn+1 pour tout n ∈ N.
Montrere que tout entier N ∈ N∗ s’ecrit de maniere unique N = Fp1

+ Fp2
+ · · · + Fpm

avec des entiers pi tels que pi+1 − pi ≥ 2
pour tout i ∈ 1 ; m− 1 et p1 ≥ 2. Prouver l’unicite de cette ecriture.

Exercice 222 [ENS PC 236] Pour n ∈ N∗, on pose un =
(∏2n

k=n k
k
)1/n

• Determiner un equivalent de ln(un) lorsque n tend vers l’infini.
• Determiner un equivalent de un lorsque n tend vers l’infini.

Exercice 223 [ENS PC 237] Quelle est la nature de la serie
∑

sin(2π n! e) ?

Exercice 224 [ENS PC 238] Quelle est la nature de la serie
∑

tan(2π n! e) ?

Exercice 225 [ENS PC 239] Nature, suivant la valeur de α ∈ R, de
∑

| sin (2πen!) |α.

Exercice 226 [ENS PC 240] Quelle est la nature de la serie de terme general
sin2(n)

n
?

Exercice 227 [ENS PC 241] Soit
∑
an une serie convergente de reels positifs. Montrere que la serie

∑ axn
n

converge pour tout x > 0.
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Exercice 228 [ENS PC 242] Soit (a− n ∈ N une suite reelle telle que
∑

exp(an) converge.
Determiner limk→+∞

∑+∞
n=0 exp(kan).

Exercice 229 [ENS PC 243] Soient f : R → R une fonction derivable et ℓ un reel.
On suppose que f(x) + f ′(x) −→

x→+∞
ℓ. Etudier la limite de f et de f ′ en +∞.

Exercice 230 [ENS PC 244] Soient g : [0, 1] → R continue et F : [0, 1] → R de classe C1 telles que : F (0) = 1 et ∀x ∈ [0, 1],
|F ′(x)| = F (x)g(x). Determiner les valeurs possibles de F (1).

Exercice 231 [ENS PC 245] Soient f ∈ C1 (R,R) et (a, b, c, d) ∈ R4 tels que les fonctions af ′ + bf et cf ′ + df soient bornees.
A quelle condition sur (a, b, c, d) la fonction f est-elle bornee?[MISSINGPAGEFAIL :1]# 256 [PL] Soit g ∈ C0([0, 1],R∗

+). On definit

Φ: x ∈ R 7→ ln
(∫ 1

0
extg(t) dt

)
.

• Montrer que Φ est convexe.
• On suppose maintenant que g est de classe C1. Trouver un equivalent et un developpement asymptotique de Φ en +∞.

Exercice 232 [ENS PC 257] Soit f ∈ Ck(R+,R) telle que f (k) est bornee sur R+.

Soit F : λ ∈ R+∗ 7→
∫ +∞
0

e−λtf(t) dt. Determiner un developpement asymptotique de F (λ) lorsque λ→ +∞.

Exercice 233 [ENS PC 258] Soit f une fonction developpable en serie entiere au voisinage de 0 avec un rayon > 1. Soient φ ∈
C0([0, 1],R) et g : x 7→

∫ 1

0
φ(y)f(x− y) dy. Montrer que g est developpable en serie entiere au voisinage de 0.

Exercice 234 [ENS PC 259] Soit P ∈ Rn[X]. On cherche les applications f : R2 7→ R de classe C2 verifiant (∗) : ∀(t, x) ∈
R2, ∂f

∂t (t, x) =
∂2f
∂x2 (t, x) et f(0, x) = P (x).

• Montrer qu’il existe une solution de (∗) polynomiale en x.
• On suppose P scinde a racines simples sur R. Soit f une solution de (∗) polynomiale en x. Montrer qu’il existe ε > 0 tel que,

pour tout t ∈ [0, ε[, x 7→ f(t, x) est aussi scinde a racines simples.

Exercice 235 [ENS PC 260] Soient u, v : R2 → R de classe C1 telles que ∂u
∂x = ∂v

∂y et ∂u
∂y = − ∂v

∂x .

• Donner un exemple de telles fonctions u et v.
• On suppose que u et v sont de classe C2. Montrer que ∆u = ∆v = 0.

• Montrer que, pour tout r > 0, u(0, 0) = 1
2π

∫ 2π

0
u(r cos(θ), r sin(θ)) dθ.

• Soit V un ouvert contenant (0, 0). Soit u de classe C2 sur V telle que ∆u = 0 sur V . On admet que sous ces conditions, l’egalite
de - est encore valable pour r > 0 suffisamment petit.

On note D le disque unite ouvert et C le cercle unite. Soit g une fonction continue sur D et f une fonction continue sur C . Montrer
qu’il existe au plus une fonction u de classe C2 sur le disque unite ferme, de classe C2 surD et telle que ∆u = g surD et u = f sur C .

3) Geometrie

Exercice 236 [ENS PC 261] Montrer qu’un polygone convexe a n sommets inscrit dans le cercle unite est d’aire maximale si et
seulement si le polygone est regulier.

Exercice 237 [ENS PC 262] • Sur le cercle trigonometrique C, on place A de coordonnees (−1, 0) et P ̸= A de coordonnees
(x, y). Soit Q le point d’intersection de la droite (AP ) avec l’axe des ordonnees. On note t l’ordonnee de Q. Exprimer t en
fonction de x et y. - Exprimer x et y en fonction de t. Que reconnait-on? Expliquer cela geometriquement. Peu-on parametrer
les points de C \ {A} a l’aide de fractions rationnelles ?

▷ Peut-on parametrer un arc Γ (non reduit a un point) du cercle C a l’aide de polynomes a coefficients reels c’est-a-dire
existe-t-il un intervalle I et deux polynomes P,Q ∈ R[X] tels que le point de coordonnees (x, y) appartienne a Γ si et
seulement s’il existe t ∈ I tel que x = P (t) et y = Q(t)? Et a l’aide de polynomes a coefficients complexes?

4) Probabilites

Exercice 238 [ENS PC 263] On retourne une par une les cartes d’un jeu de 52 cartes. Trouver l’esperance du nombre de cartes
retournees avant d’obtenir le premier as (on demande un raisonnement intuitif sans calcul de la loi).

Exercice 239 [ENS PC 264] On considere deux capteurs independants, qui detectent chacun en moyenne 5000 evenements par an.
Quelle est la probabilite que les deux detecteurs detectent un evenement pendant la meme seconde?

Exercice 240 [ENS PC 265] Soient σ une variable aleatoire suivant la loi uniforme sur le groupe symetrique Sn et A ⊂ 1, n. On
pose k = |A|. Calculer P(A = {σ(1), . . . , σ(k)}).
Exercice 241 [ENS PC 266] Soient X,Y deux variables aleatoires a valeurs dans {1, 2, 3} telles que Y suive la loi uniforme sur
{1, 2, 3} et P(X = 1) = 1

2 , P(X = 2) = P(X = 3) = 1
4 . Quelle est la valeur minimale de E((X − Y )2)?

Exercice 242 [ENS PC 267] Existe-t-il des variables aleatoires X,Y telles que X ∼ B(p), Y ∼ P(p) et telles que l’on ait P(X =
Y ) = 1− p+ pe−p ?

Exercice 243 [ENS PC 268] On considereX de loi B(p) et Y de loi P(p) avec p ∈ [0, 1]. Majorer P(X = Y ) et trouver des variables
X et Y pour lesquelles cette majoration est atteinte.

Exercice 244 [ENS PC 269] Soient X,Y deux variables aleatoires entieres independantes qui suivent la meme loi.

24



• On suppose que X suit une loi geometrique commencant a zero, c’est-a-dire qu’il existe p ∈ ] 0 ; 1 [ tel que ∀k ∈ N, P(X =
k) = (1− p)kp.

Montrer que ∀n ∈ N, ∀k ∈ 0 ; n, P(X = k |X + Y = n) = 1
n+1 .

• Prouver la reciproque.

Exercice 245 [ENS PC 270] On considere M =

(
X Y
Y X

)
, ou X et Y independantes avec X de loi P(λ) et Y de loi G(p).

• Determiner la probabilite que M soit inversible.
• Determiner la probabilite que M soit diagonalisable. Dans ce cas, preciser spectre et espaces propres.
• Determiner la probabilite que M8 = I2.
• Determiner la probabilite qu’il existe une fonction f : R2 → R2 admettant un minimum local strict en (0, 0) et dont la matrice

Hessienne en (0, 0) est M .# 271
⋆ Soit (Xn)n∈N∗ une suite i.i.d. de variables aleatoires a valeurs dans N. On suppose que P(X1 = 0)P(X1 = 1) ̸= 0. On pose, pour
n ∈ N, Sn = X1 + · · ·+Xn. Montrer que P(4 divise Sn) −→

n→+∞
1
4 .

Exercice 246 [ENS PC 272] Soient n ∈ N∗ et p ∈]0, 1[. On considere dans le plan un graphe non oriente aleatoire de n sommets.
On note Xi,j = 1 si les points d’indices i et j sont relies, et 0 sinon. On suppose les Xi,j independantes et de meme loi B(p). On note
Tn le nombre de triangles formes par ces n points. On pose an =

(
n
3

)
p3.

Calculer E(Tn) et montrer que ∀ε > 0, limn→+∞ P
(∣∣∣Tn

an
− 1
∣∣∣ > ε

)
= 0.

Exercice 247 [ENS PC 273] On considere une matrice aleatoire M = (mi,j) de taille n× n qui est symetrique, ou chaque variable
aleatoire mi,j suit la loi uniforme sur {−1, 1} et ou les variables aleatoires (mi,j)1≤i≤j≤n sont independantes.

• Calculer E(Tr(M)), E(Tr(M2)) et E(Tr(M3)).
• Montrer que E(Tr(M4)) = O(n3).
• On note λ1 la plus grande valeur propre de M .

Pour tout ε > 0, montrer que P(λ1 ≥ nε) −→
n→∞

0.

Exercice 248 [ENS PC 274] On note ⟨ ⟩ le produit scalaire canonique dans Rn et ∥ ∥ la norme euclidienne associee.

• Soient A ∈ Sn(R), x ∈ Rn \ {0} et a ∈ R. Soit λ1 la plus grande valeur propre de A. Si ⟨Ax, x⟩ ≥ a ∥x∥2, montrer que λ1 ≥ a.
• Soit M = (mi,j) une variable aleatoire a valeurs dans Sn(R) telle que les mi,j suivent une loi de Bernoulli de parametre 1/2 et

telle que les (mi,j)1≤i≤j≤n soient independantes. Soit λ1 la plus grande valeur propre de M .

Pour tout reel ε > 0, montrer que limn→+∞ P
(
λ1 ≥ n

2 (1− ε)
)

−→
n→∞

1.

IV) École Polytechnique - MP - MPI

Exercice 249 [X MP 275] On note p(n) le nombre de partitions de n pour n ∈ N∗. Monter que p(n) ≤ 2n−1.

Exercice 250 [X MP 276] Soient er > · · · > e2 > e1 ≥ 0 des entiers, n =
∑r

k=1 2
ek et X = {s ∈ N; 2s |n!}.

• Montrer que maxX = n− r.
• Montrer que le nombre d’entiers k tels que

(
n
k

)
est impair est 2r .

Exercice 251 [X MP 277] ⋆

• Montrer que l’equation a2 − 2b2 = 1 admet une infinite de solutions (a, b) ∈ N2.

Determiner l’ensemble des solutions.

• Que dire de l’ensemble des solutions de a2 − 2b2 = −1?# 278

Si G est un groupe, les elements d’ordre fini forment-il un sous-groupe?

Exercice 252 [X MP 279] • Trouver deux groupes G1 et G2 non isomorphes de cardinal 2023 = 7.172.

▷ Soit p premier. Montrer qu’un groupe de cardinal p2 est isomorphe a Z/p2Z ou â (Z/pZ)2.
▷ Soient G,H deux groupes finis et ψ : G→ H un morphisme surjectif.

Montrer que |G| = |H| × |Kerψ|.
• On suppose que G est un groupe de cardinal 2023, que H = Z/7Z et que φ : G→ H est un morphisme surjectif. Montrer que
G est isomorphe a Z/7Z ×Kerφ.

• Montrer que tout groupe de cardinal 2023 est isomorphe a G1 ou G2.

Exercice 253 [X MP 280] Soit G un groupe fini de neutre 1. Soit φ un automorphisme de G sans point fixe c’est-a-dire tel que :
∀x ∈ G, φ(x) = x⇒ x = 1. On note n l’ordre de φ ; c’est le plus petit entier n ∈ N∗ tel que φn = id.

• Montrer que ∀x ∈ G, xφ(x)φ2(x) · · · φn−1(x) = 1.
• Si n = 2, que peut-on dire du groupe G? Donner un exemple.
• Si n = 3, montrer que, pour tout x ∈ G, x et φ(x) commutent.

Exercice 254 [X MP 281] Soient G un groupe et T l’ensemble des elements de G d’ordre fini.
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• En general, T est-il un sous-groupe de G?
• Soit S une partie finie de G stable par conjugaison munie d’une relation d’ordre totale ≤. Montrer que, pour tous s1,. . ., sr ∈ S,

il existe s′1,. . ., s′r ∈ S tels que s′1 ≤ s′2 · · · ≤ s′r et s1s2 · · · sr = s′1s
′
2 · · · s′r .

• Avec la question precedente, montrer que, si T est fini, alors T est un sous-groupe de G.

Exercice 255 [X MP 282] • Soit s : R∗ → R∗, t 7→ t−1. Determiner le groupe engendre par s.

▷ On definit les applications s1 : (t, u) ∈ R∗ × R∗ 7→ (t−1, tu) ∈ R∗ × R∗ et

Montrer que le sous-groupe qu’elles engendrent est isomorphe a S3.

• Retrouver le resultat de la question precedente en considerant le quotient A de (R∗)3 par la relation de colinearite, la bijection
f : A → (R∗)2 qui associe a la classe de (x1, x2, x3) le couple (x1/x2, x2/x3), et enfin les permutations de A induites par
(x1, x2, x3) 7→ (x2, x1, x3) et (x1, x2, x3) 7→ (x1, x3, x2).

• Soitn ≥ 3. Determiner le groupe engendre par les bijections (s−1 ≤ i ≤ n de (R∗)n definies par si(t1, ..., tn) = (t1, ..., ti−2, ti−1×
ti, t

−1
i , ti×ti+1, ti+2, ..., tn) si 1 < i < n, s1(t1, ..., tn) = (t−1

1 , t1×t2, t3, ..., tn) et sn(t1, ..., tn) = (t1, ..., tn−2, tn−1×tn, t−1
n ).

Ind. Considerer f : (R∗)n+1 → (R∗)n definie par f(t1, ..., tn+1) =

(
t2
t1
, ...,

tn+1

tn

)
et chercher des bijections simples s′i de (R∗)n+1

telles que si ◦ f = f ◦ s′i.
Exercice 256 [X MP 283] Soit G un groupe fini d’ordre n. On note, pour tout diviseur positif d de n, nd(G) le nombre d’elements
de G d’ordre d.

• Montrer que n =
∑

d|n nd(G).

• Calculer les nd(G) lorsque G est cyclique.
• Montrer que, si pour tout diviseur positif d de n, |{x ∈ G, xd = 1}| ≤ d, alors G est cyclique. - Soient K un corps et G un

sous-groupe fini de K∗. Montrer que G est cyclique.

Exercice 257 [X MP 284] On pose Q[i] = {a+ ib ; a, b ∈ Q}.

• Montrver que Q[i] est un sous-corps de C.
• Determiner les elements de Q[i] \ {0} qui sont d’ordre fini.

Exercice 258 [X MP 285] • Soient K un corps, (a, b) ∈ K2, P = X2− aX − b. On considere la K-algebre A admettant une base
sur K de la forme (1, x) avec x2 = ax+ b. A quelle condition cette algebre est-elle un corps?

▷ On suppose que K = Fp ou p est un nombre premier. Combien de Fp-algebres non isomorphes peut-on obtenir ainsi ?

Exercice 259 [X MP 286] Soit p un nombre premier. On suppose que, pour toute Fp-algèbre A, il existe un endomorphisme uA de
A de sorte que, pour tout couple (A,B) de Fp-algèbres et tout morphisme τ de Fp-algèbres de A dans B, on ait τ ◦uA = uB ◦ τ . Que
dire des uA ?

Démonstration. Pour tout isomorphisme τ : A→, uA commute avec τ .

Exercice 260 [X MP 287] Soit, pour n ∈ N∗, Pn = 1 +X + · · ·+Xn−1.
Montrer que

∑n
k=1

(
n
k

)
Pk = 2n−1Pn

(
X+1
2

)
.

Exercice 261 [X MP 288] • Montrrer que pour tout n ∈ N, il existe un unique polynome Sn ∈ Q[X] tel que ∀N ∈ N, Sn(N) =∑N−1
k=0 k

n. Dans la suite, on note bn le coefficient de Sn devant X .

▷ Donner une relation de recurrence exprimant bn en fonction de b0, . . . , bn−1.
▷ Pour n ≥ 1, donner une relation entre S

′′

n et S′
n−1.

▷ En deduire une expression explicite des coefficients de Sn en fonction de b0, . . . , bn.

Exercice 262 [X MP 289] Soit n ∈ N∗. Soit q ∈ C tel que 0 < |q| < 1.
On pose F : z ∈ C∗ 7→

∏n
k=1(1 + q2k−1z)(1 + q2k−1z−1).

• Montrver qu’il existe une unique list (c0, . . . , cn) ∈ Cn+1 telle que

∀z ∈ C∗, F (z) =
∑n

k=0 ck(z
k + z−k).

• Donner une relation de recurrence entre ck et ck+1, et en deduire une expression de ck a l’aide d’un produit. Ind. Exprimer
F (q2z) en fonction de F (z).

Exercice 263 [X MP 290] Soit p un nombre premier. Trouver tous les entiers n ∈ N tels que (X + Y )n soit congru a Xn + Y n

modulo p.

Exercice 264 [X MP 291] Soit f ∈ C[X] tel que f(0) ̸= 0. Soit (k, n) ∈ (N∗)2. Montrver qu’il existe P ∈ C[X] tel que Xn divise
P k − f .# 292 Soit p un nombre premier. Pour deux polynomes P,Q dans Z[X,Y ], on note P ≡ Q [p] pour signifier que P −Q a tous
ses coefficients (devant les XkY l) divisibles par p. On adopte une definition similaire pour les polynomes a une indeterminee.

• Exhiber un polynome P ∈ Z[T ] tel que P (XY ) ≡ P (X)P (Y ) [p], P ̸≡ T [p] et P ̸≡ 0 [p].
• Exhiber un polynome P ∈ Z[T ] tel que P (XY ) ≡ P (X)P (Y ) [p], P (X + Y ) ≡ P (X) + P (Y ) [p], P ̸≡ T [p] et P ̸≡ 0 [p].
• Determiner tous les polynomes P ∈ Z[T ] tels que P (XY ) ≡ P (X)P (Y ) [p] et P (X + Y ) ≡ P (X) + P (Y ) [p].

Exercice 265 [X MP 293] Soient α1, . . . , αr des complexes deux a deux distincts. Soient n1, . . . , nr dans N∗ et H1, . . . ,Hr dans
C[X]. Montrer qu’il existe un H ∈ C[X] tel que (X − αi)

ni divise H −Hi pour tout i ∈ [[1, n]].
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Exercice 266 [X MP 294] • Soient N1, . . . , Nr des entiers premiers entre eux deux a deux, et f1, . . . , fr des entiers. Montrer
qu’il existe un entier F tel que F ≡ fi [Ni] pour tout i ∈ [[1, r]].

▷ Soient N1, . . . , Nr des elements de C[X] premiers entre eux deux a deux, et f1, . . . , fr des elements de C[X]. Montrer
qu’il existe F ∈ C[X] tel que Ni divise F − fi pour tout i ∈ [[1, r]].

▷ Soient f, g deux elements de C[X] premiers entre eux, et n ∈ N∗. Montrer qu’il existe h ∈ C[X] tel que g divise hn − f .

Exercice 267 [X MP 295] Soit n ∈ N. Le polynome Xn+1 − nXn + 1 est-il irreductible dans Z[X]?

Exercice 268 [X MP 296] Soit P ∈ Z[X] un polynome unitaire dont les racines complexes ont un module inferieur ou egal a 1.
Montrer que les racines de P sont des racines de l’unite.

Exercice 269 [X MP 297] Soit P ∈ Z[X] possedant n racines distinctes x1, . . . , xn. On ecrit P 2 + 1 = Q1 . . . Qr ou les Qi sont
dans Z[X]. On pose R =

∑r
i=1Qi

2 − r.

• Montrer que les xk sont racines au moins doubles de R.
• En deduire qu’il existe i ∈ {1, . . . , r} tel que deg(Qi) ≥ 2

⌊
n+1
2

⌋
.

Exercice 270 [X MP 298] On se propose de donner une preuve du theoreme de d’Alembert-Gauss.

• Montrer qu’il suffit de montrer le theoreme pour les polynomes a coefficients reels. Dans la suite, on ecrira le degre d’un
polynome non constant de R[X] sous la forme 2nq, ou n ∈ N et q ∈ N est impair. La preuve se fait par recurrence sur n.

• Montrer le theoreme dans le cas ou n = 0.

Dans la suite, on suppose le resultat vrai jusqu’au rang n, ou n ≥ 1 est fixe.

• Soit P ∈ R[X] de degre 2nq, ou n ≥ 1. On admet l’existence d’une extension K de C sur laquelle P est scinde, et on note
x1, . . . , xd ses racines dans K, distinctes ou non. Ayant fixe c ∈ R, on pose yij(c) = xi + xj + cxixj pour 1 ≤ i ≤ j ≤ d.

• Montrer que le polynome Qc =
∏

i≤j(X − yij(c)) est a coefficients reels. - Montrrer que l’un des yij(c) est element de C.
• Montrer finalement que l’un des xi est element de C.

Exercice 271 [X MP 299] Soient F ∈ C(X) et q ∈ C∗.

• On suppose que q n’est pas une racine de l’unite. Montrer qu’il existe au plus deux fractions rationnelles G ∈ C(X) telles que
F = 1 +G(qX)G(q−1X)F (q−2X), et que s’il y en a deux alors elles sont opposees l’une de l’autre.

• Montrer que le resultat precedent peut tomber en defaut si l’on ne suppose plus que q n’est pas une racine de l’unite.

Exercice 272 [X MP 300] SoitG un groupe, M l’ensemble des morphismes de groupes deG dans C∗. Montrer que M est une partie
libre du C-espace vectoriel CG.

Exercice 273 [XMP 301] On noteC l’ensemble des matrices deGL2(R) dont les coefficients sont non nuls. PourM = (mi,j)1≤i,j≤2 ∈
C , on pose J(M) =

( 1

mi,j

)
1≤i,j≤2

. Soit φ : C → C qui a M associe J(M−1). Montrer que φ est bien definie et trouver a quelle

condition sur M ∈ C la suite (φn(M))n≥1 est stationnaire, ou bien periodique a partir d’un certain rang.

Exercice 274 [X MP 302] Soit R ∈ Mn(Z) non nulle et M = In + 3R. Montrer que, pour tout k ∈ N∗, Mk ̸= In.

Exercice 275 [ 303] Soient E un R-espace vectoriel de dimension finie, p, u ∈ L(E). On suppose que p est un projecteur et que
pu+ up = u. Montrer que tr(u) = 0.

Démonstration. On a u(Ker p) ⊂ Im p et u(Im p) ⊂ Ker p.

Exercice 276 [X MP 304] Pour (A,B) ∈ Mn(R)2, on pose φA,B :M ∈ Mn(R) 7→ AMB.
Soit T = {φA,B , (A,B) ∈ Mn(R)2}.

• L’ensemble T est-il un R-espace vectoriel ?
• Montrer que l’espace vectoriel engendre par T est L (Mn(R)).

Exercice 277 [X MP 305] Pour une matrice de projecteur P ∈ Mn(K), on pose RP = det(In + (X − 1)P ).

• Calculer RP en fonction de P .
• Soient P,Q des matrices de projecteur dans Mn(K) telles que PQ = QP = 0. Montrer que RPRQ = RP+Q.
• Soit φ un automorphisme de la K-algebre Mn(K).
• Montrer que φ(Ei,i) est un projecteur de rang 1, pour tout i ∈ 1, n.
• Que dire du rang de φ(Ei,j), pour i, j dans 1, n?
• Montrer que Kn =

⊕n
i=1 Imφ(Ei,1).

Exercice 278 [X MP 306] Soient E un C-espace vectoriel de dimension finie n ≥ 1 et V un sous-espace vectoriel de L(E). On
suppose qu’il existe une application q : V → C telle que u2 = q(u) id pour tout u ∈ V .

• Monter que, pour tous u, v ∈ V , il existe B(u, v) ∈ C tel que uv + vu = 2B(u, v) idE .
• Montrer que B est une forme bilineaire. - Soient d ≥ 1 et u1, . . . , ud ∈ V tels que B(ui, uj) = −δij pour tous i, j ∈ 1, n.

Montrer que (u1, . . . , ud) est libre.
• Soient d ≥ 2 et u1, . . . , ud ∈ V tels que B(ui, uj) = −δij pour tous i, j ∈ 1, n. Montrer que les ui sont de trace nulle, et que
dimE est paire.
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Exercice 279 [XMP 307] Soit n ∈ N avec n ≥ 2. Soit φ ∈ L (Mn(C)). On suppose que φ(In) est inversible et que ∀A,B ∈ Mn(C),
φ(AB) = φ(A)φ(B). Montrer qu’il existe P ∈ GLn(C) tel que : ∀A ∈ Mn(C), φ(A) = PAP−1.

Exercice 280 [X MP 308] • Caracteriser les endomorphismesφ de C(X) verifiant (∗) : ∀F1, F2 ∈ C(X),φ(F1F2) = φ(F1)φ(F2).

▷ Determiner les automorphismes de C(X) verifiant (∗).
Exercice 281 [X MP 309] Soit M = (mi,j)1≤i,j≤n ∈ Mn(R) telle que : ∀i, j, mi,j ≥ 0 et

∑n
j=1mi,j = 1.

• Montrer que 1 est valeur propre de M et que tout valeur propre de M est de module ≤ 1.
• On note µ = min1≤i≤nmi,i. Montrer que le spectre de M est inclus dans le disque de centre µ et de rayon 1− µ.
• On suppose que µ > 0 et que 1 est valeur propre de multiplicite 1 dans χM . Montrer que (Mp)p≥1 converge vers une matrice

de rang 1 dont toutes les lignes sont egales.
• On se donne trois reels strictement positifs p, q, r tels que p + q + r = 1. On considere la matrice B ∈ Mn(R) definie par
bi,i = r, bi,i+1 = q si i > 2, b1,2 = p + q, bi+1,i = p si i < n − 1, bn,n−1 = p + q, et tous les autres coefficients sont nuls.
Montrer que 1 est valeur propre simple de B, et expliciter la limite de (Bk)k≥0.

Exercice 282 [X MP 310] Soient E un K-espace vectoriel de dimension finie, f ∈ L(E) cyclique, F un sous-espace de E stable par
f . Montrer que l’induit par f sur F est cyclique.

Exercice 283 [X MP 311] Soient E un C-espace vectoriel de dimension finie, a, b ∈ L(E). On suppose qu’il existe f ∈ L(C, E) et
v ∈ L(E,C) telles que ab− ba = fv.

• Que peut-on dire de det(ab− ba)?
• Montrer que a et b sont cotrigonalisables.
• A quelle condition sur u ∈ L(E) existe-t-il w ∈ L(E) tel que uw − wv soit de rang 1?

Exercice 284 [XMP 312] SoientE un C-espace vectoriel de dimension finie et f ∈ L(E) tel que, pour tout vecteur x ∈ E, l’ensemble
{fn(x), n ∈ N} est fini.

• Montrer que, si f ∈ GL(E), il existe k ∈ N∗ tel que fk = id.
• On revient au cas general. Montrer l’existence de k ∈ N∗ et p ∈ N tels que fp+k = fp.

Exercice 285 [X MP 313] Pour σ ∈ Sn, on note Pσ ∈ Mn(C) la matrice de permutation associee a σ. Montrer que, si σ et σ′ sont
dans Sn, σ et σ′ sont conjuguees dans Sn si et seulement si Pσ et Pσ′ sont semblables.

Exercice 286 [ 314] Soient p et q deux projecteurs orthogonaux dans un espace euclidien E.

1. Montrer que p ◦ q ◦ p est diagonalisable.
2. Montrer que E = Im p+Ker q + (Im q ∩Ker p).
3. Montrer que p ◦ q est diagonalisable.
4. Montrer que le spectre de p ◦ q est inclus dans [0, 1].

Démonstration.

Exercice 287 [X MP 315] Soit n ∈ N∗. On pose Ln = Dn((X2 − 1)n), ou D designe l’operateur de derivation des polynomes.

• Determiner le degre de Ln. Montrer que
∫ 1

−1
Ln(t)P (t) dt = 0 pour tout P ∈ Rn−1[X]. - Montrer que Ln est scinde a racines

reelles simples x1 < · · · < xn avec x1 > −1 et xn < 1. - Montrer qu’il existe des reels a1, . . . , an tels que

∀P ∈ R2n−1[X],
∫ 1

−1
P (t) dt =

∑n
k=1 akP (xk).

Exercice 288 [ 316] Soit α ∈ R+∗. On note S2 =
{
x ∈ R3, ∥x∥ = 1

}
où ∥·∥ désigne la norme euclidienne canonique. Montrer

l’équivalence entre les propositions suivantes.

• α = 2.
• ∀n ≥ 1,∀ (a1, . . . , an, b1, . . . , bn, c1, . . . , cn) ∈

(
S2
)3n

,∃p ∈ S2 tel que
n∑

i=1

∥p− ai∥α =

n∑
i=1

∥p− bi∥α =

n∑
i=1

∥p− ci∥α

Démonstration.

Exercice 289 [X MP 317] Existe-t-il A ∈ SO2(Q) telle qu’il n’existe pas B ∈ SO2(Q) verifiant B2 = A?

Exercice 290 [X MP 318] Soient E un espace vectoriel euclidien, f ∈ S(E), Φ :
E → R
v 7→ ∥f(v)∥2 − ⟨f(v), v⟩2 . Donner une

condition necessaire et suffisante pour que Φ admette un extremum.

Exercice 291 [X MP 319] On considere dans M2n(R) les matrices J =

(
0 −In
In 0

)
et I =

(
In 0
0 In

)
.

• Soit K ∈ M2n(R) tel que K2 = −I . Montrer que KTJ ∈ S2n(R) si et seulement si J = KTJK .
• On note C l’ensemble des K ∈ M2n(R) telles que K2 = −I et KTJ ∈ S++

n (R). Soit K ∈ C. Montrer que K + J est inversible
et que (K + J)−1(K − J) est symetrique.

• Soit K ∈ C. On pose S = (K + J)−1(K − J). Montrer que SJ + JS = 0.
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Exercice 292 [X MP 320] Montrer que ∀(A,B) ∈ S+
n (R)2, det(A+B) ≥ max(det(A),det(B)).

Exercice 293 [X MP 321] Soient A,B ∈ Sn(R).

• Montrer que tr
(
eAeB

)
> 0.

• Montrer que tr
(
eA+B

)
≤ tr

(
eAeB

)
.

Exercice 294 [ 322] Soit t1, . . . , tn des réels.

1. Montrer que la matrice A = (titj)1≤i,j≤n est dans S+
n (R).

2. On suppose 0 ≤ t1 ≤ · · · ≤ tn. Montrer que la matrice B = (min (ti, tj))1≤i,j≤n est dans S+
n (R).

3. On suppose 0 ≤ t1 ≤ · · · ≤ tn ≤ 1. Montrer que M = B −A ∈ S+
n (R).

Démonstration. 1. XTAX = (
∑
tixi)

2

2.
∫ (∑

xi1ti

)2
3. Il s’agit de montrer que

∫ 1

0

(∑
xi1ti

)2 ≥ (
∑
tixi)

2, c’est-à-dire
∫
h2 ≥

( ∫
h
)2

, car l’intégrale est sur [0, 1].

Exercice 295 [X MP 323] On munit Rn de son produit scalaire standard et on note ∥A∥ = supX∈Bf (0,1)
∥AX∥ pour A ∈ Mn(R).

• Montrver que ∥||||| definit une norme sur Mn(R).
• Montrver que ∥||A||| = sup(X,Y )∈Bf (0,1)2

| ⟨AX,Y ⟩ |.

• On prend A =
( 1

i+ j + 1

)
0≤i,j≤n

dans Mn+1(R). Pour X = (x0 · · ·xn)T et Y = (y0 · · · yn)T dans Rn+1, donner une

interpretation de ⟨AX,Y ⟩ a l’aide d’une integrale faisant intervenir P : t ∈ [0, 2π] 7→
∑n

k=0 xke
ikt et Q : t ∈ [0, 2π] 7→∑n

k=0 yke
ikt.

• En deduire que ∥||A|| ≤ 2π.
• Montrver que l’on a meme ∥|A||| ≤ π.

1) Analyse

Exercice 296 [X MP 324] Trouver f : R2 → R continue sur R2 \ {(0, 0)}, discontinue en (0, 0), dont la restriction a toute droite
passant par (0, 0) est continue.

Exercice 297 [ 325] Soit K ⊂ R2 un convexe fermé non vide.

1. On suppose K borné. Montrer que K s’écrit comme intersection de carrés fermés.
2. On suppose K non borné et K ̸= R2. Donner des exemples de tels convexes. Montrer que si K contient deux droites, celles-ci

sont parallèles.
3. On suppose toujours K non borné. Montrer que K contient une demi-droite.

Démonstration. 1. Si x ̸∈ K , on peut trouver une droite séparant x de K , donc un carré contenant K et non x.
2. Si K contient deux droites non parallèles, K = R2. La partie au dessus du graphe de x 7→ ex.
3. Fixer y ∈ K , et une suite (xn) ∈ K qui tend vers ∞, et prendre une valeur d’adhérence des segments [y, xn].

Exercice 298 [X MP 326] Determiner les endomorphismes continus du groupe C∗.

Exercice 299 [X MP 327] Soit d ∈ N∗. On munit Rd de la structure euclidienne canonique. On definit une norme sur Md(R) en
posant, pour M ∈ Md(R), ∥M∥ = sup

{
∥Mx∥ ; x ∈ Rd, ∥x∥ = 1

}
.

• Soient A,B ∈ Md(R). Montrver que ∥AB∥ ≤ ∥A∥ × ∥B∥.
• Soit (u− n ≥ 0 une suite reelle. On suppose que la serie de terme general |un − 1| converge.

Montrer que la suite de terme general
∏n

k=0 uk converge.
Soit (M − n ≥ 0 une suite de matrices de Md(R). On suppose que la serie de terme general ∥Mn − Id∥ converge. On pose, pour
n ∈ N, Bn =M0 ×M1 × · · · ×Mn.

• Montrver que la suite (B − n ≥ 0 converge.
• Soit σ une permutation de N. Que peut-on dire de la suite de terme general Mσ(0) × · · · ×Mσ(n) ?

• Soit E =
{∏+∞

k=0Mσ(k), σ ∈ S(N)
}

. Existe-t-il une suite de matrices pour laquelle E n’est pas ferme?

• Soit k ∈ N∗. Existe-il (M − n ≥ 0 ∈ (Md(R))N telle que E possede exactement k composantes connexes?

Exercice 300 [X MP 328] On definit la longueur d’un intervalle borne I de bornes a et b par ℓ(I) = |b − a|. - Soient N ∈ N∗,
I1, . . . , IN des intervalles bornes de R tels que [0, 1] ⊂

⋃N
i=1 Ii. Que peut-on dire de

∑N
i=1 ℓ(Ii)?

• Soit δ : [0, 1] → R+∗. Montrer qu’il existe p ∈ N∗, 0 ≤ x1 < x2 < · · · < xp = 1, t1, . . . , tp ∈ R tels que, pour tout k ∈ 1, p,
xq−1 ≤ tq ≤ xq et xq − xq−1 ≤ δ(tq).

• Soit (I − n ≥ 1 une suite d’intervalles bornes de R telle que [0, 1] ⊂
⋃+∞

n=1 In. Que peut-on dire de
∑+∞

n=1 ℓ(In)?

Exercice 301 [X MP 329] Dans R2, on note D le disque unite ferme pour la norme infinie, C la sphere unite pour la norme infinie.
On cherche a montrer qu’il n’existe pas de fonction continue r : D → C telle que la restriction de r a C soit l’identite.

• On considere une fonction f : R2 → R, antisymmetric (i.e. f(x, y) = −f(y, x)), et A = (ai,j)i,j≤n une matrice reelle telle que :
∀i, j ∈ 1, n− 1,
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f(ai,j , ai+1,j) + f(ai+1,j , ai+1,j+1) + f(ai+1,j+1, ai,j+1) + f(ai,j+1, ai,j) = 0.
Montrer que :∑n−1

i=0 f(ai,1, ai+1,1) +
∑n−1

j=0 f(an,j , an,j+1) +
∑n−1

i=0 f(ai+1,n, ai,n) +
∑n−1

j=0 f(a1,j+1, a1,j) = 0

• Soit M ∈ Mn+2(R) une matrice de la forme


1 1 · · · · · · 1
1 3
... M ′ ...
1 3
1 2 · · · · · · 2

 ou M ′ ∈ Mn(R)

est a coefficients dans {1, 2, 3}. Montrer qu’au moins un des petits carres de M comporte trois valeurs differentes.

• Montrer qu’on dispose d’un η > 0 tel que, pour tous x, y ∈ D verifiant ∥x− y∥∞ ≤ η, on a ∥r(x)− r(y)∥ ≤ 1
10 .

• Soit alors n ∈ N tel que 2
n−1 ≤ η. Pour tous i, j ∈ 1, n, on pose

vi,j =
(
1− 2 i−1

n−1 , 1− 2 j−1
n−1

)
.

Montrer que, pour tous i, j ∈ 1, n− 1, vi,j , vi+1,j , vi+1,j+1, vi,j+1 sont contenus dans une boule de rayon 1/10.

• En utilisant une fonction bien choisie de C dans {1, 2, 3}, aboutir a une contradiction et conclure.
• Utiliser ce resultat pour montrer que toute fonction continue de D dans D admet un point fixe.

Exercice 302 [ 330] On dit qu’une famille (Dt)t∈R+ de disques fermés de R2 vérifie (P) si

• pour tous s, t ∈ R+ distincts, Ds et Dt ont des centres distincts,
• pour tous s, t ∈ R+ tels que s < t,Ds ⊂ Dt.

1. Existe-t-il une telle famille ?
2. Soit A : R+ → R2 une fonction C1 et injective. Existe-t-il une famille (Dt)t∈R+ vérifiant (P) telle que, pour tout t ∈ R+, A(t)

soit le centre de Dt ?
3. Le résultat subsiste-t-il si A est seulement supposée continue?

Démonstration. 1. Cercles de centre (x, 0), de rayon x.
2. Prendre Dt de rayon la longueur de la courbe de A(0) à A(t).
3. Prendre une fonction non réglée.

Exercice 303 [X MP 331] Dans tout l’enonce, K designe R ou C. On se donne une K-algebre A de dimension finie, et on identifie K
a une sous-algebre de A via λ 7→ λ.1A. On suppose donnee sur A une norme multiplicative ∥ ∥, autrement dit une norme verifiant
∀(a, b) ∈ A2, ∥ab∥ = ∥a∥ ∥b∥. Jusqu’a la question - incluse, on suppose K = C.

• Soit x ∈ A. Montrer qu’il existe un z0 ∈ C tel que ∀z ∈ C, ∥z0 − x∥ ≤ ∥z − x∥.

• On suppose ∥a∥ = 2 pour a = z0 − x. Montrer que ∥a− e
2ikx
n ∥ ≥ 2 pour tout (n, k) ∈ N∗ × N.

• En deduire que ∥a− 1∥ = 2.
• En deduire que A = C.
• Retrouver le resultat de la question precedente en utilisant des polynomes annulateurs.

Dans la suite, on suppose que K = R.

• Est-ce que A est necessairement egale a R?
• On admet qu’il existe une R-algebre H ayant une base de la forme (1, i, j, k) ou i, j, k anticommutent deux a deux et i2 = j2 =
k2 = −1. On considere la symetrie x 7→ x par rapport a R parallelement a VectR(i, j, k), et on considere la normeN : q 7→

√
qq.

Montrer que N est bien definie, est effectivement une norme, et qu’elle est multiplicative.
• Montrer que A est isomorphe, en tant que R-algebre, a R, C ou H.

Exercice 304 [ 332] Soient a, b, c des entiers naturels non nuls. Montrer qu’il existe un n ∈ N∗ tel que
√
n4 + an2 + bn+ c /∈ N.

Démonstration. Dérivée discrète.

Exercice 305 [X MP 333] Pour n ≥ 2, on note ℓn = min
{
k ∈ 1, n,

∏k
i=1

(
1− i

n

)
≤ 1

2

}
.

• Montrer que ℓn = o(n).
• Donner un equivalent de ℓn.

Exercice 306 [ 334] Soient (an) et (bn), deux suites réelles positives telles que la série de terme général bn converge, que la série de
terme général nan diverge et que

∑+∞
n=0 an = 1.

1. Montrer qu’il existe une unique suite (un) telle que, ∀n ∈ N, un = bn +
∑n

k=0 ukan−k .
2. Montrer que (un) est bornée.
3. Montrer que, si (un) converge, alors sa limite est 0.

Démonstration. Cf une année précédente.
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Exercice 307 [X MP 335] On considere la suite reelle definie par x0 = 2 et xn+1 = xn +
x2
n

n2 pour tout n ≥ 1. Montrer qu’il
existe un reel C > 1 tel que xn ∼ C2nn2 quand n → +∞.# 336 Soit (a − n ≥ 0 la suite reelle definie par a0 = 1, a1 = 2 et
∀n ∈ N∗, an+1 = 2an + an−1

n2 . Donner un equivalent de an.

Exercice 308 [X MP 337] Soit (a − n ≥ 0 definie par a0 = π/2 et ∀n ∈ N, an+1 = sin(an). Nature de la serie de terme general
$an$2?

Exercice 309 [X MP 338] Soit
∑
un une serie convergente de reels positifs. Existe-t-il une suite (v−n ≥ 0 de reels positifs tendant

vers +∞ telle que la serie
∑
unvn converge?

Exercice 310 [X MP 339] Soit (xn) une suite reelle. On suppose que (xnyn) est sommable pour toute suite reelle (yn) de carre
sommable. Montrer que (xn) est de carre sommable.

Exercice 311 [X MP 340] Soit σ une permutation de N∗. Determiner la nature de la serie
∑ σ(n)

n2 .

Exercice 312 [X MP 341] Etudier la convergence de la serie de terme general sin(lnn)
n .

Exercice 313 [X MP 342] On pose un = −2
√
n+

∑n
k=1

1√
k

pour tout n ≥ 1.

• Montrer que u converge vers une limite ℓ.

• Montrer que ℓ = −(
√
2 + 1)

∑+∞
n=1

(−1)n+1

√
n

.

• Montrer que un = ℓ+ 1
2n1/2 +O

(
1

n3/2

)
.

• Montrer que ℓ = −
∑+∞

n=1
1√

n (
√
n+

√
n−1)2

.

• Etudier les variations de u.
• Determiner un developpement asymptotique semblable a celui de la question - pour la suite de terme general vn =

∑n
k=1

1
k −

lnn.
• Soit α ∈ ]0, 1[. Donner un developpement asymptotique a trois termes pour wn =

∑n
k=1

1
kα .

Exercice 314 [ 343] Soit f ∈ C0 (R+,R+), strictement croissante et bijective. Montrer que les séries
∑

1
f(n) et

∑ f−1(n)
n2 sont de

même nature.

Démonstration. La série
∑

1
f(n) a la même nature que

∫
1
f . On peut raccorder f de manière C1, puis on pose u = f(t) :∫ +∞

0

1

f(t)
dt =

∫ +∞

0

1

uf ′(f−1(u))
du,

puis IPP.

Exercice 315 [X MP 344] • Soit m ∈ N∗. Montrer que
+∞∑
n=1

√
m

(m+n)
√
n
≤ π.

Ind. : Dans R2, considérer les points xn = (
√
m,

√
n) et l’intersection rn du cercle C(0,

√
m) avec le segment [0, xn].

• Soient (an)n≥1 et (bn)n≥1 deux suites de carre sommable et a termes positifs. On noteA =
∑+∞

n=1 a
2
n etB =

∑+∞
n=1 b

2
n. Montrer

que
∑

(m,n)∈(N∗)2
ambn
m+n ≤ π

√
AB.

Exercice 316 [X MP 345] • Trouver les fonctions f : R → R monotones telles que ∀(x, y) ∈ R2, f(xy) = f(x) f(y).

• Trouver les fonctions f : R → R monotones telles que ∀x ̸= y ∈ R, f
(

x+y
x−y

)
= f(x)+f(y)

f(x)−f(y) .

Exercice 317 [ 346] Que dire d’une fonction f : R → R continue, 1-périodique et
√
2-périodique?

Démonstration. Easy.

Exercice 318 [X MP 347] Trouver les fonctions f : R → R de classe C1 telles que |f ′|+ |f + 1| ≤ 1.

Exercice 319 [X MP 348] Pour x ≥ 1, on note Θ(x) =
∑

p∈P, p≤x ln(p). Montrer que Θ(x) =
x→+∞

O(x).

Exercice 320 [XMP 349] SoitF un ferme de R. Montrer qu’il existe une fonction f de classeC∞ de R dans R telle queF = f−1({0}).
Exercice 321 [X MP 350] Soit (x−n ≥ 0 une suite de points de [0, 1]2. Donner une condition necessaire et suffisante pour que, pour
toute permutation σ de N, il existe une fonction continue f : [0, 1] → [0, 1]2 et une suite strictement croissante (t−n ≥ 0 d’elements
de [0, 1] telle que f(tn) = xσ(n) pour tout n ≥ 0.

Exercice 322 [X MP 351] Calculer
∫ 1

0
ln(1+t)
1+t2 dt.

Exercice 323 [X MP 352] Pour n ∈ N∗, on note Ln la derivee n-ieme de (X2 − 1)n.

• Soit n ∈ N∗. Montrer que : ∀P ∈ Rn−1[X],
∫ 1

−1
PLn = 0.

• Montrer que Ln possede n racines distinctes x1 < x2 < · · · < xn dans ]− 1, 1[.

• Montrer qu’il existe α1, . . . , αn ∈ R tels que : ∀P ∈ R2n−1[X],
∫ 1

−1
P =

∑n
i=1 αiP (xi).

Exercice 324 [X MP 353] Pour n ∈ N, on pose $ In=
∑

k=0
n(-1)k {n}{k}3$.
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• On suppose n impair. Montrer que In = 0.
• On suppose n multiple de 4. Montrer que In > 0.
• Montrer, pour tout n ∈ N, l’egalite

$ I2n=(-1)n{43n-1}{π2}
∫

0
2π
∫

0
2π sin2n(x)\,sin2n(y)\,sin2n(x+y)\,dx\,dy$.

Exercice 325 [X MP 354] • Soient n ∈ N∗ et f : [0, 2π] → R continue. Montrer queHn : (a0, . . . , an, b1, . . . , bn) ∈ R2n+1 7→∫ 2π

0
(a0 +

∑n
k=1(ak cos(kt) + bk sin(kt))− f(t))

2
dt admet un minimum, atteint en un unique point, et donner une expression

simple de ce point en fonction de f .

▷ Determiner la limite de minHn quand n tend vers +∞.

Exercice 326 [X MP 355] Justifier l’existence et calculer
∫ 1

0
dt

2+⌊ 1
t ⌋

.

Exercice 327 [ 356] Soit f : x ∈ R 7→ e
x2

2

∫ +∞
x

e−
t2

2 dt.

1. Montrer que f(x) < 1
x pour tout x > 0.

2. Montrer que f(x) >
√
x2+4−x

2 pour tout x > 0.
3. Donner un développement limité à quatre termes de f(x) quand x→ +∞.

Démonstration.

Exercice 328 [ 357] Soient u, v ∈ R. Pour r ∈ R+ \ {|u|, |v|}, calculer Ir(u, v) =
∫ 2π

0
dθ

(u−reiθ)(v−reiθ)
.

Démonstration.

Exercice 329 [X MP 358] Soit f : R → R+ integrable, de classe C1, telle que
∫ +∞
−∞ f(t) dt = 1. On suppose que f ′ s’annule en un

unique M ∈ R.

• Donner le tableau de variations de f . Montrer qu’il existe un unique m ∈ R tel que
∫m

−∞ f(t)dt = 1
2 .

• Montrer que, pour tout ℓ ∈]0, f(M)[ il existe un unique couple (x1, x2) ∈ R2 tel que x1 < M < x2 et f(x1) = f(x2) = ℓ.
• Supposons que, pour tout ℓ ∈]0, f(M)[, f ′(x1) + f ′(x2) > 0. Montrer que m > M .

Exercice 330 [X MP 359] • Soient a et b deux suites reelles telles que b − a converge vers 0. Soit (f − m ∈ N une suite de
fonctions de R dans R. On suppose que, pour tout m ≥ 0, il existe un entier Nm tel que ∀n ≥ Nm, am ≤ fn ≤ bm. Montrer
que (fm) converge uniformement vers une fonction constante.

▷ On note H l’ensemble des fonctions continues f : R → R strictement croissantes et telles que f(x+ 1) = f(x) + 1 pour
tout x ∈ R. Montrer que H forme un groupe pour la composition des fonctions.

▷ Soit f ∈ H . Montrer que sup{f(x)− x, x ∈ R} < 1 + inf{f(x)− x, x ∈ R}.

Exercice 331 [X MP 360] On note F l’ensemble des fonctions de [0, 1] dans [0, 1], C l’ensemble des fonctions continues de F . On
note aussi I = {f ∈ F ; ∀a ∈ [0, 1], {x ∈ [0, 1], f(x) ≤ a} est ferme} et S = {f ∈ F ; ∀a ∈ [0, 1], {x ∈ [0, 1], f(x) ≥ a} est
ferme}.
Pour f ∈ F et n ∈ N, soit Ln(f) : x ∈ [0, 1] 7→ infy∈[0,1] (f(y) + n|x− y|) ∈ [0, 1].

• Montrer que C = I ∩ S. - Montrrer que, si f ∈ F , Ln(f) est une suite croissante d’applications continues.
• Soit f ∈ F . Montrrer que f ∈ I si et seulement s’il existe une suite (f − n ≥ 0 de fonctions de C telle que pour tout x ∈ [0, 1],
f(x) = supn∈N fn(x).

Exercice 332 [X MP 361] Soient a ∈ R+∗ et f : R+ → R+∗ de classe C1 telle que
f ′(x)

f(x)
∼ a

x
quand x→ +∞.

• Rappeler le theoreme d’integration des relations de comparaison.
• Donner un equivalent de ln f(x) quand x→ +∞.
• Determiner le domaine de definition de la fonction u : x 7→

∑+∞
n=0 f(n)e

−nx.
• Determiner les limites de u aux bornes de son intervalle de definition.

• Montrer qu’il existe une constante C > 0 telle que f(x) ∼ C

x
f

(
1

x

)
quand x→ +∞.

Exercice 333 [X MP 362] Soit (a− n ∈ N une suite reelle telle que a0 > 0, a1 > 0 et

∀n ∈ N, an+2 =
n+ 4

n+ 1
an+1 +

3n+ 7

n+ 2
an.

• Montrer que le rayon de convergence de la serie entiere
∑
anx

n est strictement positif.
• Determiner la valeur de ce rayon de convergence.

Exercice 334 [X MP 363] Pour x reel, on pose f(x) =
∑+∞

n=1

xn

1− xn
sous reserve de convergence.

• Determiner le domaine de definition de f .
• Etudier la continuite puis la derivabilite de f .
• Donner un equivalent simple de f en 1−.
• Montrre que f est developpable en serie entiere, et preciser le developpement associe.
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Exercice 335 [X MP 364] • Soient U un voisinage de 0 dans C, et f : U → C somme d’une serie entiere. Soit k ∈ N∗ tel que
f(z) = O(zk) quand z tend vers 0. Montrrer que, pour r voisin de 0+, il existe au moins 2k nombres complexes z de module r
tels que f(z) soit un nombre reel.

▷ Soient A et B deux polynomes a coefficients reels dont toute combinaison lineaire a coefficients reels est scindee ou nulle.
Soient x < y deux racines de A. Montrre que [x, y] contient au moins une racine de B.

Exercice 336 [X MP 365] Soit
∑
anz

n une serie entiere de rayon de convergence egal a 1 et de somme f .

On suppose qu’il existe C > 0 tel que ∀r ∈ [0, 1[,
∫ 2π

0
|f ′(reiθ)|dθ ≤ C .

Montrre que
∫ 1

0
|f(t)|dt < +∞.

Exercice 337 [ 366] Soit P = a1X + · · ·+ adX
d ∈ Z[X] avec a1 impair.

1. Montrer l’existence d’une suite réelle (bk)k≥0 telle que : ∀x ∈ R, exp(P (x)) =
∑+∞

k=0 bkx
k .

2. Montrer que les bk sont tous non nuls.

Démonstration. 1.
2. Quand on dérive successivement eP , on trouve une quantité qui vaut toujours 1 modulo 2.

Exercice 338 [X MP 367] Pour x et q dans ]0, 1[, on pose (x, q)n =
∏n−1

k=0(1− qkx).

• Montrrer que la suite de terme general (x, q)n converge vers un reel (x, q)∞ > 0.

• Determiner le rayon de convergence de la serie entiere
∑

n≥0
(x,q)n
(q,q)n

zn. On notera fx,q sa somme sur le disque ouvert de conver-
gence, et D son disque ouvert de convergence.

• Etablir l’identife fx,q(z)− fx,q(qz) = (1− x)zfx,q,q(z) pour tout z ∈ D.
• Etablir l’identife fx,q(z) = 1−xz

1−z fx,q(qz) pour tout z ∈ D.

• Demontrer que fx,q(z) =
(zx,q)∞
(z,q)∞

pour tout z ∈ D.

• Soit α ∈ R+∗. Determiner, pour tout z ∈ D, la limite de fqα,q(z) quand q tend vers 1−.

Exercice 339 [X MP 368] • Pour x ≥ 0 on pose f(x) = card
{
(n,m) ∈ (N∗)2, n2 +m2 ≤ x

}
. Trouver un equivalent de f(x)

lorsque x→ +∞.

▷ On pose g(t) =
∑+∞

n=0 t
n2

. Trouver un equivalent de g en 1− en utilisant g2.

Exercice 340 [X MP 369] Soit p un nombre premier. Pour tout F ∈ Fp[X], on pose |F | = pdegF .

• Soit s ∈ C tel que Re s > 1. Montrre que la famille
(
|F |−s

)
, indexee par les polynomes F ∈ Fp[X] unitaires, est sommable et

calculer sa somme, qu’on notera z(s).
• On note A l’ensemble des polynomes unitaires de F ∈ Fp[X] sans facteur carre, c’est-a-dire tels que : ∀D ∈ Fp[X], D2|F ⇒
degD = 0. Montrre que

∑
F∈A |F |−s = z(s)

z(2s) .

• En deduire, pour tout d ∈ N, la proportion de polynomes sans facteur carre parmi les polynomes unitaires de degre d de Fp[X].

Exercice 341 [X MP 370] Soit f continue sur [0, 1] et g : x 7→
∫ 1

0
f(t)
1+xtdt pour x ≥ 0. On suppose f(0) ̸= 0.

• Donner un equivalent de g lorsque x→ +∞.
• On suppose f de classe C1. Majorer l’ecart avec l’equivalent trouve.
• Que peut-on dire de plus si f est de classe C2 ?

Exercice 342 [X MP 371] • Determiner le domaine de definition de f : x 7→ 2√
π

∫ π/2

0
(cos t)2x dt.

▷ Montrre, pour tout reel x > 0, l’egalite f(x) = 2√
π

∫ +∞
0

u exp
(
−u2
(
x+ 1

2

))
√

1−e−u2
du.

Exercice 343 [X MP 372] • Calculer
∫ +∞
0

e−t sin(xt) dt pour tout reel x. - On pose F : x 7→
∫ +∞
0

sin(xt)
t (1+t2) dt. Montrer que F

est de classe C2 sur R+∗ et que ∀x > 0, F
′′
(x) = F (x)−

∫ +∞
0

sin t
t dt

▷ Donner une expression simplifiee de F .

Exercice 344 [X MP 373] Soit f ∈ C0(R+∗,R) de carre integrable. On pose Sf : x ∈ R+∗ 7→
∫ +∞
0

f(y)
x+y dy.

• Justifier la bonne definition de Sf .
• Montrer que Sf est de carre integrable.

Exercice 345 [X MP 374] Soient α, β > 0. Pour x > 0, on pose I(x) =
∫ +∞
0

tβ−1e−t−xtα dt.

• Determiner la limite et un equivalent de I en +∞.
• Donner un developpement asymptotique de I a tout ordre.
• Donner une condition necessaire et suffisante pour que ce developpement soit la somme partielle d’une serie convergente pour

tout x > 0.

Exercice 346 [X MP 375] • Soient K un segment et f : K → K une fonction continue croissante. Montrer que f admet un
point fixe.
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▷ On considere l’equation differentielle non lineaire (E) : x′ = cos(x) + cos(t). On admet que pour tout a ∈ R il existe
une unique solution φa de (E) sur R verifiant φ(0) = a, et que, pour tous a, b reels distincts, les fonctions φa et φb ne
coincident en aucun point. Montrer que (E) possede une solution 2π-periodique.

Exercice 347 [X MP 376] Soient f et g deux fonctions de classe C1 de R+ dans R+∗. Soit a ∈ [0, 1].

• Justifier qu’il existe une unique fonction xa : R+ → R de classe C1 telle que ∀t ∈ R+, x′(t) = f(t) − (f(t) + g(t))x(t) et
x(0) = a.

• On suppose que f et g ont une limite finie strictement positive en +∞. Montrer que xa tend vers 0 en +∞.
• Montrer que f et g peuvent etre choisies de telle sorte que xa n’ait pas de limite en +∞.
• On suppose que l’une des fonctions f et g n’est pas integrable sur R+. Montrer que x1 − x0 tend vers 0 en +∞.

Exercice 348 [X MP 377] Soient v : R → R une fonction continue a support compact et ω ∈ R+∗. On considere l’equation
differentielle $y”+ω2y=v(t),$ dont on note SE l’ensemble des solutions.

• Montrer que, pour tout (a, b) ∈ R2, il existe une unique solution f+a,b (resp. f−a,b) de (E) telle que f+a,b(t) = a cos(ωt)+ b sin(ωt)

pour tout t dans un voisinage de +∞, (resp. f−a,b(t) = a cos(ωt) + b sin(ωt) pour tout t dans un voisinage de −∞.

• Montrer que SE = {f+a,b, (a, b) ∈ R2} = {f−a,b, (a, b) ∈ R2}.

• On pose c(ω) =
∫ +∞
−∞ v(t) cos(ωt) dt et s(ω) =

∫ +∞
−∞ v(t) sin(ωt) dt, et on definit l’application Sω : R2 → R2 par : f−a,b =

f+Sω(a,b) pour tout (a, b) ∈ R2. Expliciter l’application Sω en fonction de c(ω) et s(ω).

• On suppose que Sω = idR2 pour tout ω > 0. Montrer que v est identiquement nulle.

Exercice 349 [X MP 378] Soient q1, q2 deux fonctions continues de R+ dans R telles que q1 ≤ q2. On considere l’equation differen-
tielle (Ei) : y

′′
+ qi(t) y = 0 pour i ∈ {1, 2}.

• Soient y1, y2 des solutions respectives de (E1) et (E2) sur I . Soient α < β deux zeros de y1. Montrer que y2 s’annule dans
[α, β].

• Soient q : R+ → R continue, m,M deux reels strictement positifs tels que m ≤ q ≤ M . Soient α < β deux zeros consecutifs
d’une solution non nulle x de y

′′
+ q(t) y = 0.

• Montrer que les zeros de x fortner une suite strictement croissante (t− n ∈ N.
• Montrer que π√

M
≤ tn+1 − tn ≤ π√

m
pour tout n ∈ N.

Exercice 350 [X MP 379] • Soit p un projecteur d’un espace vectoriel E de dimension finie, et u ∈ L(E) tel que pu+ up = u.
Montrer que tr(u) = 0.

▷ Soit E un espace euclidien de dimension n ≥ 1. Soit r ∈ 0, n. On note G l’ensemble des projecteurs orthogonaux de E de
rang r. Soit p ∈ G. Determiner l’espace vectoriel tangent a G en p.

Exercice 351 [X MP 380] On munit R2 de sa structure euclidienne canonique. On considere le carre de coins {0, 1} × {0, 1}. On
choisit trois points A, B et C sur ce carre.

• Montrer qu’il existe une disposition des points A, B et C maximisant l’aire du triangle ABC .
• Caracteriser une telle disposition.

2) Geometrie

Exercice 352 [X MP 381] Pour n ≥ 2, on note Pn le perimetre d’un polygone regulier a 2n cotes inscrit dans le cercle unite.

• Calculer Pn et etudier la convergence de la suite (P − n ≥ 2.
• Etablir une relation de recurrence entre Pn et Pn+1.
• Estimer l’erreur 2π − Pn.
• Proposer une methode d’approximation de π par exces.

Exercice 353 [X MP 382] On se donne un triangle direct ABC du plan complexe. On note respectivement a, b, c les mesures
principales des angles orientes (

−−→
AB,

−→
AC), (

−−→
BC,

−−→
BA) et (

−→
CA,

−−→
CB). On note P l’unique point tel que b

3 soit une mesure de (
−−→
BC,

−−→
BP )

et c
3 soit une mesure de (

−−→
CP,

−−→
CB) ; Q l’unique point tel que a

3 soit une mesure de (
−→
AQ,

−→
AC) et c

3 soit une mesure de (
−→
CA,

−−→
CQ) ; R

l’unique point tel que a
3 soit une mesure de (

−−→
AB,

−→
AR) et b

3 soit une mesure de (
−−→
BR,

−−→
BA). L’objectif est de montrer que le triangle

PQR est equilateral.

• On note f, g, h les rotations de centres respectifs A,B,C et d’angles de mesures respectives 2a
3 , 2b

3 et 2c
3 . Montrer que P est

l’unique point fixe de g ◦ h.
• Montrer que (f3 ◦ g3 ◦ h3)(z) = z pour tout nombre complexe z.
• On note f : z 7→ a1z + b1, g : z 7→ a2z + b2 et h : z 7→ a3z + b3. Experimer P,Q,R en fonction des ai et des bi.
• Conclure.

Exercice 354 [X MP 383] Determiner le nombre moyen de 2-cycles, de 3-cycles, de p-cycles, d’une permutation de [[1, n]].

Exercice 355 [X MP 384] • Montrer que ∀x ∈ R+∗, e−x

(1−e−x)2 <
1
x2 .

▷ Soit n ∈ N∗. On appelle partition de n toute liste decroissante (λ − 1 ≤ k ≤ n d’entiers naturels non nuls de somme n.
On note P (n) le nombre de telles listes.
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Montrer que P (n) ≤ 2n−1.

• On fixe n ≥ 1 et on considere une variable aleatoireX suivant la loi uniforme sur l’ensemble des partitions de n. On fixe k ∈ N∗

et j ∈ N. On pose Nk = |{i ∈ [[1, n]] : Xi = k}|.
Exprimer P(Nk ≥ j) comme un quotient P (a)

P (b) pour des entiers a et b a preciser.

• Calculer
∑n

i=1 iNi.

Exercice 356 [X MP 385] On considere la suite (an) definie par a1 = 0, a2 = 1 et an = an−1 + an−2 pour n ≥ 3.

• Calculer
∑+∞

n=2
an

2n .
• On lance une piece non truquee. Determiner la loi de la variable aleatoireX qui donne l’instant de premiere apparition du motif

Face-Face.
• Calculer E(X) et V(X).
• Donner un equivalent de P(X = n).

Exercice 357 [X MP 386] Soit n ∈ N∗. On munit Sn de la loi uniforme, et on note N la variable aleatoire associant a tout σ ∈ Sn le
nombre de ses orbites.

• Calculer P(N = 1) et P(N = n).
• Donner une formule simple pour la fonction generatrice de N .
• Donner un equivalent de E(N) quand n tend vers +∞.
• Donner un equivalent de V(N) quand n tend vers +∞.

Exercice 358 [X MP 387] Soient n ≥ 2, X1, . . . , Xn des variables aleatoires i.i.d. suivant la loi uniforme sur [[1, n]]. Soit (e1, . . . , en)
la base canonique de Cn et f(X1,...,Xn) la variable aleatoire a valeurs dans L(Cn) telle que, pour tout i, f(X1,...,Xn)(ei) = eXi

.

• Determiner E
(
rg
(
f(X1,...,Xn)

))
.

• Pour z ∈ C, soit µz la multiplicite de z comme valeur propre de f(X1,...,Xn). Calculer E(µz).

Exercice 359 [X MP 388] Soient b, n ∈ N∗. On considere (B − 1 ≤ i ≤ n des variables aleatoires independantes suivant la loi
uniforme sur [[0, b− 1]]. On note S l’ensemble des descentes de la suite B c’est-a-dire S = {i ∈ [[1, n]], Bi > Bi+1}.

• Pour i ∈ [[1, n− 1]], calculer P(Bi > Bi+1).
• Soit j ∈ [[1, n− j − 1]]. Calculer P(B1 > B2 > · · · > Bj+1). - Pour I ⊂ 1, n, on pose α(I) (resp. β(I)) le nombre de suites a n

elements a valeurs dans 0, b− 1 qui verifient S ⊂ I (resp. S = I). Exprimer α en fonction de β, puis β en fonction de α.

Exercice 360 [X MP 389] Si n ∈ N∗, σ ∈ S2n et k ∈ {1, . . . , 2n}, on note s(σ, k) le segment de C qui joint les points e
ikπ
n et e

iσ(k)π
n .

On note b(σ) le nombre de segments qui ne croisent aucun autre segment (ou on dit que deux segments se croisent s’ils ont un point
d’intersection qui n’est pas une extremite).
Pour n ∈ N∗, soit σn une variable aleatoire suivant la loi uniforme sur S2n. Determiner E(b(σn)) et en donner un equivalent.

Exercice 361 [ 390] Soient p ∈ [0, 1/2], (Xn)n≥1 i.i.d. telle que P (Xn = −1) = P (Xn = 1) = p et P (Xn = 0) = 1 − 2p. On
cherche p tel que : ∀n ∈ N∗,∀a1, . . . , an, b ∈ Z,P (

∑n
i=1 aiXi = 0) ≥ P (

∑n
i=1 aiXi = b).

1. Montrer que p ≤ 1
3 , puis que p < 1

3 et enfin que p ≤ 1
4 .

2. Si X une variable aléatoire à valeurs dans Z, on pose ΦX : θ 7→ E
(
eiXθ

)
. Exprimer P(X = k) en fonction de ΦX .

3. En déduire que p ≤ 1
4 est une condition suffisante.

Démonstration. 1. On regarde les probabilités, jusqu’à n = 3.
2. ΦX(θ) =

∑
P (X = k)eikt et formule de Cauchy.

3.

Exercice 362 [X MP 391] Soient n et d des entiers tels que 1 ≤ d < n, et X1, . . . , Xn des variables aleatoires independantes
uniformement distribuees sur 0, d. On note Sn la classe de X1 + · · ·+Xn dans Z/nZ.

• La variable aleatoire Sn est-elle uniformement distribuee sur Z/nZ?
• Calculer la loi de Sn.

Exercice 363 [X MP 392] Soient d ∈ N∗, (X − n ≥ 1 une suite i.i.d. de variables aleatoires suivant la loi uniforme sur 1, d. Pour
n ∈ N∗, on pose Sn = X1 + · · ·+Xn.

• Soient Y une variable aleatoire a valeurs dans Z, r ∈ 0, d− 1, ω = e2iπ/n.

Montrer que $P(Y≡ r[d]) = 1
n

∑
k=0

n-1 1{ω
kr}E(ω kY.$

Soit r ∈ 0, d− 1. Donner une expression de P(Sn ≡ r [d]).
Determiner la limite de la suite de terme general P(Sn ≡ 0 [d]).

Exercice 364 [X MP 393] Soit n ≥ 1.

• On se donne deux variables aleatoires independantesXn et Yn suivant chacune la loi uniforme sur 1, n2. Soit r ∈ Q. Determiner
la probabilite un(r) pour que Xn et Yn soient deux points distincts et le coefficient directeur de la droite (XnYn) soit egal a r.
Donner un equivalent de un(r) lorsque n→ +∞.
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• On se donne quatre variables aleatoires independantes Xn, Yn, An, Bn suivant chacune la loi uniforme sur 1, n2. On note pn la

probabilite pour que Xn ̸= Yn, An ̸= Bn et les droites (XnYn) et (AnBn) soient paralleles. Montrer que pn = O
(

lnn
n2

)
quand

n→ +∞.

Exercice 365 [X MP 394] Soit a ∈ [1, 2]. On pose fa : x 7→ |1 + x|a − |2x|a − ax.*a)* : Montrer : ∀x ∈ R, fa(x) ≤ 1.

• Soit X une variable aleatoire reelle centree et admettant un moment d’ordre 2. Montrer : ∀c ∈ R, E (|c+X|a) ≤ 2aE(|X|a) +
|c|a.

• Soit (X − n ≥ 1 une suite i.i.d. de variables aleatoires centrees admettant un moment d’ordre 2. Montrer que, pour n ∈ N∗,
E
(
|
∑n

i=1Xi|
a) ≤ 2a

∑n
i=1 E(|Xi|a).

Exercice 366 [X MP 395] Une urne contient a boules jaunes et b boules rouges. On effectue une succession de tirages d’une boule
dans l’urne avec remise. A chaque tirage, on ajoute une boule de la couleur de celle titee dans l’urne. Soit Xn la variable aleatoire du
nombre de boules jaunes dans l’urne apres n tirages. Soit Tn l’evenement «tirer une boule jaune au nieme tirage».

• Calculer PT2
(T1).

• Determiner la loi de Xn.
• Calculer P(Tn).
• Pour n1, ..., np,m1, ...,mq tous distincts, calculer P(Tn1

∩ ... ∩ Tnp
∩ Tm1

∩ ... ∩ Tmq
).

Exercice 367 [ 396] Soient n ≥ 1 et A,B,C des variables aléatoires indépendantes uniformément distribuées sur {0, 1}n.

1. Pour n ≥ 2, calculer la probabilité pn que ABC soit un triangle équilatéral.
2. Déterminer un équivalent de pn.

Démonstration. Relier à un précédent.

1. On prend A = 0⃗. Alors on veut B,C avec autant de termes 1, et autant de différences entre les deux.
On considère les ensembles B ⊂ [[1, n]], C[[1, n]], et B ⊕ C .
Les parties U = B \ C , V = C \ B et W = B ∩ C vérifient u + w = v + w = u + v, donc ils sont de même cardinaux, et
disjoints.

Exercice 368 [X MP 397] On munit l’ensemble Sn des permutations de [1, n] de la probabilite uniforme. SoitXn la variable aleatoire
donnant le nombre de points fixes d’une permutation aleatoire σ ∈ Sn.

• Calculer P(Xn = 0).
• Determiner la loi de Xn.
• Etudier la convergence en loi de la suite (X − n ∈ N∗.
• Calculer les esperance et variance de la variable aleatoire Xn.

Exercice 369 [X MP 398] SoitM =


a −b −c −d
b a d −c
c −d a b
d c −b a

 une matrice aleatoire ou (a+1) ∼ P(α), (b+1) ∼ P(β), (c+1) ∼ P(γ)

et (d+ 1) ∼ P(δ).

• Calculer la probabilite que la matrice M soit inversible.
• Calculer la probabilite que la matrice M soit inversible et diagonalisable dans R.

Exercice 370 [X MP 399] Soient X et Y deux variables aleatoires a valeurs dans N verifiant P(X ≥ Y ) = 1, et, pour tout n ∈ N et

tout i ∈ [[0, n]], P(X = n) > 0 et P(Y = i|X = n) =
1

n+ 1
.

• Montrer que, si (i, j) ∈ N2, PP (X = i, Y = j) = P(X = i,X − Y = j), puis que X − Y ∼ Y .
• Montrer que P(Y = 0) > 0.
• On suppose que X − Y et Y sont independantes. Determiner la loi de Y , puis celle de X .

Exercice 371 [X MP 400] Soit n ≥ 3 un entier. Si k ∈ Z, on note k la reduction de k modulo n. Soient X1, . . . , Xn des variables
aleatoires independantes a valeurs dans Z/nZ telles que, pour tout k ∈ 1, n, Xk suit la loi uniforme sur {1, 2, 3}. Soit F l’application
aleatoire de Z/nZ dans lui-meme telle que, pour tout k ∈ 1, n, F (k) = k +Xk . Calculer la probabilite que F soit bijective.

Exercice 372 [X MP 401] On cherche a collectionner N jouets. A chaque achat, chaque jouet a une probabilite uniforme d’etre
obtenu. Pour i ∈ 1, N , on note Ti le temps d’attente pour obtenir i jouets differents.

• Calculer l’esperance de TN .
• Calculer la variance de TN .
• Montrer que ∀ε > 0, P

(∣∣ TN

N lnN − 1
∣∣ ≥ ε

)
−→ 0 quand N → +∞.

Exercice 373 [X MP 402] Soit (X − n ∈ N∗ une suite i.i.d. de variables aleatoires reelles centrees.
On suppose que E(X4

1 ) < +∞.

• Montrer que E
(
(X1 + · · ·+Xn)

4
)
= O(n2).

• Pour ε > 0, quelle est la nature de la serie de terme general P
(
X1+...+Xn

n > ε
)

?
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Exercice 374 [X MP 403] Soient x ∈ R+∗, (X−k ≥ 1 une suite i.i.d. de variables aleatoires suivant la loi P(x). Pour n ∈ N∗, soient
Sn =

∑n
k=1Xk, Tn = Sn−n√

n
.

• Montrer que
∫ +∞
0

P(Tn ≥ x)dx =
√
n
(
n
e

)n 1
n! .

• On admet que, pour tout x ∈ R, P(Tn ≥ x) −→
n→+∞

1√
2π

∫ +∞
x

e−t2/2dt. Retrouver la formule de Stirling.

V) X PSI

1) Algebre

Exercice 375 [X PSI 404] Pour n ≥ 2 on pose Pn = (X + 1)n +Xn + 1 et Q(X) = (X2 +X + 1)2.
Donner une condition necessaire et suffisante sur n pour que Q divise P .

Exercice 376 [X PSI 405] SoitE un espace vectoriel de dimension finie. Montrer qu’il existe une base de L(E) formee de projecteurs.

Exercice 377 [X PSI 406] Soient E un C-espace vectoriel de dimension finie n, f un endomorphisme de E diagonalisable. Montrer
que f possede n valeurs propres distinctes si et seulement s’il existe v ∈ E tel que (v, f(v) · · · , fn−1(v)) soit libre.

Exercice 378 [X PSI 407] Trouver Vect(On(R)).# 408

• Soit (A,B) ∈ S+
n (R)2. Montrer que det(A+B) ≥ max(det(A),det(B)). - Trouver une condition necessaire d’egalite lorsque

A ∈ S++
n (R).

Exercice 379 [X PSI 409] Soit A ∈ Mn(R) tel que A2 ∈ Sn(R). - A-t-on necessairement A ∈ Sn(R)? - Trouver une condition
necessaire supplementaire pour avoir A ∈ Sn(R).

2) Analyse

Exercice 380 [X PSI 410] Soit (a, b) ∈ R2 avec a < b. Montrer qu’il existe (n,m) ∈ N2 tel que
√
n−

√
m ∈]a, b[.

Exercice 381 [X PSI 411] • Soit P ∈ Rn[X] unitaire, avec n ≥ 2. Montrer que P est scinde dans Rn[X] si et seulement si
∀z ∈ C, |P (z)| ≥ | Im z|deg P .

• Montrer que l’ensemble des matrices de Mn(R) trigonalisables dans R est un ferme.

Exercice 382 [X PSI 412] Soit α > 0. Soient (an), (bn) et (cn) trois suites reelles telles que, pour tout n ∈ N, an+1 =
1

α
(bn + cn),

bn+1 =
1

α
(an + cn), cn+1 =

1

α
(an + bn). Etudier leur comportement asymptotique.

Exercice 383 [X PSI 413] Étudier la serie
∑

(−1)n
sin(ln(n))

n
.

Exercice 384 [X PSI 414] Soit f : [0,+∞[→ [0,+∞[ de classe C1, strictement croissante avec limx→+∞ f(x) = +∞. Montrer que∑ 1

f(n)
converge si et seulement si

∑ f−1(n)

n2
converge.

Démonstration. écrit quelque part. . .
Comparaison série intégrale, puis changement de variable.

Exercice 385 [X PSI 415] Trouver les fonctions f : R → R monotones telles que ∀(x, y) ∈ R2, f(xy) = f(x)f(y).

Exercice 386 [X PSI 416] Pour a ∈]0, 1[ et n ∈ N, on pose In(a) =
∫ 1

0

1

1 + (at) + · · ·+ (at)n
dt.

Determiner limn→+∞ (lima→1 In(a)) et lima→1 (limn→+∞ In(a)).

Exercice 387 [X PSI 417] Soient a, b, c trois reels strictement positifs.

On pose E =

{
(x, y, z) ∈ R3 ;

(x
a

)2
+
(y
b

)2
+
(z
c

)2
= 1

}
. On suppose que A,B,C sont trois points distincts de E tels que le

plan tangent a E en A est parallele a (BC), le plan tangent a E en B est parallele a (CA), le plan tangent a E en C est parallele a
(AB).

Calculer le volume du parallelepipede engendre par les vecteurs
−→
OA,

−−→
OB,

−−→
OC .

3) Geometrie

Exercice 388 [X PSI 418] Soient abc un vrai triangle du plan complexe, α (resp. β, resp. γ) a rotation de centre a (resp. b, resp. c) et

d’angle
2π

3
.

• Montrere que le centre de α ◦ β appartient a l’intersection des trisectrices du triangles.
• Montrere que α3 ◦ β3 ◦ γ3 est l’identite du plan.
• Montrere que les points d’intersection des trisectrices forment un triangle equlateral.
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4) Probabilites

Exercice 389 [X PSI 419] Determiner la loi d’une variable aleatoireX a valeurs dans N∗ telle que ∀(k, ℓ) ∈ (N∗)2,P(X > k+ℓ |X >
k) = P(X > ℓ).

Exercice 390 [X PSI 420] Une entreprise qui commercialise des eeufs en chocolat met dans chaque ceuf un jouet. Au total il y a N
jouets differents. On suppose qu’a chaque achat d’ceuf la probabilite de tomber sur un jouet donne est identique pour chaque jouet.
On note TN le nombre d’eufs achetes jusqu’a obtenir la collection complete.

Montrer que E(TN ) = N ×HN avec HN =
∑N

n=1

1

n
.

Exercice 391 [X PSI 421] On poseM =


a −b −c −d
b a d −c
c −d a b
d c −b a

 avec a, b, c, d des variables aleatoires a valeurs dans Z telles que

a+1, b+1, c+1, d+1 suivent des lois de Poisson de parametres respectifs λa, λb, λc, λd. Calculer la probabilite de l’evenement ∗M
est inversible ⇒.

Exercice 392 [X PSI 422] On considere deux variables aleatoires X et Y independantes a valeurs dans [[0, n]] qui suivent la meme
loi. Trouver les lois de X possibles pour que X + Y suive la loi uniforme sur [[0, n]].

Exercice 393 [X PSI 423] On dispose de n objets differents. On effectue des tirages aleatoires independants avec remise. On note
Nn le nombre de tirages qu’il a fallu pour avoir les n objets differents.

• Calculer E(Nn) et V(Nn).

• Montrere que ∀ε > 0, limn→∞ P

(∣∣∣∣ Nn

n ln(n)
− 1

∣∣∣∣ > ε

)
= 0.

VI) X PC

1) Algebre

Exercice 394 [X PC 424] Montrer que, pour tout n ∈ N∗, il existe m ∈ N∗ et ε1, . . . , εm ∈ {−1, 1} tels que n =
∑m

k=1 εkk
2.

Exercice 395 [X PC 435] Soit A ∈ Mn(C) une matrice qui n’est pas une homothetie. On suppose que M est une matrice qui
commute avec PAP−1 pour tout P ∈ GLn(C). Montrer que M est une homothetie. Meme question pour A et M matrices reelles.

Exercice 396 [X PC 436] Soit n ≥ 2. Si A ∈ Mn(C) est nilpotente, determiner les valeurs possibles du cardinal de l’ensemble
{B ∈ Mn(C), A = B2}.

Exercice 397 [X PC 437] Trouver les matrices A de M2 (C) telles que Ap = A, ou p est un entier ≥ 2.

Exercice 398 [X PC 438] Soient A,B ∈ Mn(C). Montrer A et B ont une valeur propre commune si et seulement s’il existe
P ∈ Mn(C) \ {0} telle que AP = PB.

Exercice 399 [X PC 439] Caracteriser les matricesA ∈ Mn(C) telles que l’ensemble des matrices semblables aA engendre l’espace
Mn(C).

Exercice 400 [X PC 440] Soit G une partie de GL2(R) qui contient I2 et qui est stable par produit et passage a l’inverse. On note
Vect(G) l’ensemble des combinaisons lineaires d’elements deG. Montrer que Vect(G) ̸= M2(R) si et seulement si une des conditions
suivantes est verifiee :
(i) il existe P ∈ GL2(R) telle que, pour toute M ∈ G, la matrice P−1MP est triangulaire superieure,

(ii) il existe P ∈ GL2(R) telle que, pour toute M ∈ G, la matrice P−1MP est de la forme
(
a −b
b a

)
avec a et b dans R.

Exercice 401 [X PC 441] Soit A ∈ Mn (C). On note Sp (A) = {λ1, . . . , λr} ou les λi sont distincts et ou λi est de multiplicite
mi ∈ N∗.

• Montrer qu’il existe P ∈ GLn (C) telle que A = PTP−1 avec

T =


λ1Im1 +N1 ∗ · · · ∗

0
. . .

. . .
...

...
. . .

. . . ∗
0 · · · 0 λrImr

+Nr


Exercice 402 [X PC 442] Soient A,B ∈ Mn(C) telles que AB2 − B2A = B. Montrer qu’il existe p ∈ N tel que B2p ̸= 0 et
B2p+1 = 0.

Exercice 403 [X PC 443] Soient n ∈ N impair, A et B dans Mn (C) telles que : AB +BA = A.
• Montrer que A et B ont un vecteur propre commun.
• Que dire si n est impair.

Exercice 404 [X PC 444] Soit A ∈ Mn(C) admettant n valeurs propres non nulles distinctes λ1, . . . , λn. - Montrrer qu’il existe des
nombres complexes ci,j , avec 1 ≤ i ≤ n, 0 ≤ j ≤ n− 1, tels que ∀k ∈ N, Ak =

∑n
i=1

∑n−1
j=0 ci,jλ

k
iA

j .
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• Montrer l’unicite des ci,j .
• On suppose de plus A inversible. Montrer que la formule reste vraie si k ∈ Z.

Exercice 405 [X PC 445] Caracteriser les matrices M ∈ Mn(C) qui sont somme de deux matrices diagonalisables de rang 1.

Exercice 406 [X PC 446] Determiner les entier n tels qu’il existe A ∈ Mn(Z) verifiant A2 −A+ In = 0.
Ind. Commencer par n ≤ 3.

Exercice 407 [X PC 447] Soit G = {M ∈ M2(Z), det (M) = 1}. On note ord(A) = inf{n > 0, An = I}.

• Montrer que si ord(A) < +∞ alors ord(A) divise 12.
• Soient A,B ∈ G. On suppose que ord(A) = ord(B) < +∞. Montrer qu’il existe P ∈ GL2(Q) tel que PAP−1 = B. Peut-on

toujours prendre P dans G?

Exercice 408 [X PC 448] Soit A ∈ Mn(C). Montrer que si λ est un reel strictement negatif qui est valeur propre de la matrice AA,
alors la dimension du sous-espace propre associe est paire.

Exercice 409 [X PC 449] Soit α ∈ R+∗. On note S2 =
{
x ∈ R3, ∥x∥ = 1

}
ou ∥ ∥ designe la norme euclidienne canonique. Montrer

l’equivalence entre les propositions suivantes.
(i) α = 2.
(ii) ∀n ≥ 1, ∀ (a1, . . . , an, b1, . . . , bn, c1, . . . , cn) ∈ (S2)3n, ∃p ∈ S2 tel que∑n

i=1 ∥p− ai∥α =
∑n

i=1 ∥p− bi∥α =
∑n

i=1 ∥p− ci∥α.

Exercice 410 [X PC 450] Soit n un entier ≥ 2. Pour quelles valeurs du reel α existe-t-il n + 1 vecteurs unitaires u0, u1, . . . , un de
Rn verifiant ∀(i, j) ∈ {0, 1, . . . , n}2, i ̸= j ⇒ ⟨ui, uj⟩ = α?
Ind. Considerer la matrice A = (⟨ui, uj⟩)1≤i,j≤n.

Exercice 411 [X PC 451] On munit Rn de sa structure euclidienne canonique. Soit n ≥ 2. Montrer que tout endomorphisme de Rn

est somme d’un nombre fini d’isometries.

Exercice 412 [X PC 452] • Est-il vrai que pour tout n et tous A,B ∈ Mn(R), les matrices AB et BA sont semblables ?

▷ Montrer que AAT et ATA sont semblables.
▷ Soient F,G des sous-espaces de dimension m de Rn, pF et pG les projections orthogonales respectivement sur F et G.

Montrer que sp(pF ◦ pG) = sp(pG ◦ pF ) ⊂ [0, 1].

Exercice 413 [X PC 453] Soit A = (ai,j)1≤i,j≤n une matrice symetrique positive non nulle. Montrer qu’il existe r ∈ N∗ et des reels
bi,k , avec 1 ≤ i ≤ n et 1 ≤ k ≤ r, tels que ∀(i, j) ∈ {1, . . . , n}2, ai,j =

∑r
k=1 bi,kbj,k . Quel est la plus petite valeur possible de r ?#

454 Soit A =
(

1
i+j+1

)
0≤i,j≤n

. Montrer que les valeurs propres de A sont dans ]0, π[ et que la plus petite valeur propre est inferieure

ou egale a 1
2n+1 .

On pourra montrer que ∀P ∈ R[X],
∫ 1

−1
P (t) dt+

∫ π

0
P (eiθ)ieiθ dθ = 0.

Exercice 414 [X PC 455] Soit A ∈ Mn(R). Montrer que A et AT commutent si et seulement si AATA = A2AT .

Exercice 415 [X PC 456] Soient A ∈ Mm,n(R) non nulle, X ∈ Rn et Y ∈ Rm. On munit Rn et Rm de leurs normes euclidiennes
canoniques. Considerons les assertions :
(i) ∀Z ∈ Rn, ∥AX − Y ∥ ≤ ∥AZ − Y ∥ ;
(i)’ ATAX = ATY ;
(ii) X est de norme minimale pour la propriete (i) ;
(ii)’ X ⊥ KerATA.

• Montrer que (i) ⇐⇒ (i)’.
• On suppose (i) verifie. Montrer qu’alors (ii) ⇐⇒ (ii)’.
• Montrer l’unicite de X verifiant (i) et (ii). Notons BY ce vecteur.

• Montrer que B est lineaire. Montrer que, pour tout Y ∈ Rm, ∥BY ∥ ≤ ∥Y ∥√
λ1

ou λ1 est la plus petite valeur propre non nulle de

ATA, et qu’il y a des cas d’egalite non triviaux.

Exercice 416 [X PC 457] Donner une condition sur A = (ai,j)1≤i,j≤n ∈ Sn (R) pour que l’application qui a U = (ui,j)1≤i,j≤n ∈
On (R) associe

∑
1≤i,j≤n ai,jui,j atteigne son maximum en un unique U .

Exercice 417 [X PC 458] Soit α ∈ ]0, 1[.

• Montrer que l’existence de cα ∈ R tel que ∀λ > 0, cα
∫ +∞
0

t−α

λ+tdt = λ−α.

• SoitA ∈ S++
n (R). On definit :A−α = cα

∫ +∞
0

t−α(A+ tIn)
−1dt. Expliquer le sens de cette expression, montrer que l’integrale

converge et que
(
A−1/2

)2
= A−1.

• Montrer que si B −A est positive alors A−1/2 −B−1/2 l’est aussi.

Exercice 418 [X PC 459] Soit f : Sn(R) → R une forme lineaire. Montrer l’equivalence des trois assertions suivantes :

1. ∀A ∈ Mn(R), f
(
AAT

)
≥ 0 ;
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ii) ∃B ∈ S+
n (R), ∀A ∈ Mn(R), f(A) = Tr(AB) ;

iii) ∃m ∈ N, ∃(X − i ∈ 1 : m ∈ Mn,1(R)m, ∀A ∈ Mn(R), f(A) =
∑m

i=1 Tr
(
XT

i AXi

)
.

Exercice 419 [X PC 460] Sont A ∈ S++
n (R) et B ∈ An (R). Montrer que AB est diagonalisable sur C.

2) Analyse

Exercice 420 [X PC 461] Si I est un intervalle de R, on note |I| sa longueur. Montrer qu’il existe une famille (I− j ∈ A d’intervalles
de R, non reduits a un point, deux a deux disjoints et tels que
Q ⊂

⋃
j∈A Ij et

∑
j∈A |Ij | = 42.

Exercice 421 [X PC 462] On pose : E = Mn(R) et F =
{
P ∈ E, P = PT = P 2

}
. Soit (P,Q) ∈ F 2. Donner une condition

necessaire et suffisante pour qu’il existe f : [0, 1] → F continue telle que f(0) = P et f(1) = Q.

Exercice 422 [X PC 463] Soit A : R → Mn(C) continue telle que A(0) = A(1) = In et A(s+ t) = A(s)A(t) pour tous s, t.

• Donner des exemples non triviaux de telles applications.
• Montrer qu’il existe P inversible et λ1, . . . , λn ∈ Z tels que :

∀t ∈ R, A(t) = Pdiag(ei2πλ1t, . . . , ei2πλnt)P−1.

Exercice 423 [X PC 464] Soit A ∈ Mn(R). On definit une suite de matrices par M0 = A et, pour tout k ∈ N, Mk+1 = Mk −M2
k .

On etudie la convergence eventuelle de (M − k ≥ 0.

• Etudier le cas ou A admet une valeur propre reelle λ < 0 ou λ > 1.
• Etudier le cas ou A est nilpotente.
• Etudier le cas ou A = λI +N avec N ̸= 0, N2 = 0 et 0 < λ < 1.
• Etudier le cas ou A = λI +N avec N2 ̸= 0, N3 = 0 et 0 < λ < 1.

Exercice 424 [X PC 465] Soit E un espace vectoriel de dimension finie inclus dans C1(R,R). On suppose que E est stable par
translation, c’est-a-dire que ∀f ∈ E,∀a ∈ R, (x 7→ f(x+ a)) ∈ E. Montrer que ∀f ∈ E, f ′ ∈ E.

Exercice 425 [X PC 466] Soit E un espace vectoriel norme de dimension finie. Soient p, q ∈ L(E) tels que p2 = p et q2 = q. On
suppose que ∀x ̸= 0, ∥(p− q)(x)∥ < ∥x∥.

• Montrer que p et q ont le meme rang.
• Montrer que u = pq + (id− p)(id− q) est inversible et que p = uqu−1.

Exercice 426 [X PC 467] Soit x ≥ 0. Donner un equivalent de la suite de terme general un =
∏n

i=1(x+ i).

Exercice 427 [X PC 468] Montrer que, pour tout n ∈ N∗,
∑n−1

k=0 | cos(k)| ≥
4n
10 .

Exercice 428 [X PC 469] Soit cn le nombre de listes (a1, . . . , an) d’entiers telles que {a1, . . . , an} = {1, . . . , n} et ∀i ∈ {1, . . . n−1},
ai+1 ̸= ai + 1.

• Montrer que, pour n ∈ N avec n ≥ 3, on a cn = (n− 1)cn−1 + (n− 2)cn−2.

• Montrer que la suite
(

cn
n!

)
converge vers une limite non nulle.

Exercice 429 [X PC 470] Soit C = 0, 1234567891011121314 . . . (on ecrit les ecritures decimales de tous les entiers naturels a la
suite). Montrer que C est irrationnel.# 471 Soit a ∈ R. On suppose que (n {an!})n∈N converge ou on note {x} = x−⌊x⌋ pour x ∈ R.
Montr er que a ∈ Q + eN.

Exercice 430 [X PC 472] • On fixe x ≥ 0. Determiner un equivalent simple de un = (x+1) · · · (x+n) de la forme C(x)vn(x)
ou C(x) est une constante qu’on ne cherchera pas a calculer et vn(x) est explicite.

▷ Calculer C(k) pour k ∈ N, et la limite de C(x) quand x→ +∞.

Exercice 431 [X PC 473] Soit un le maximum de la fonction x 7→ (n− x) ln(x) sur [0, n].

• Trouver un equivalent de un.
• Soit λ ∈ R. On pose, pour n ≥ 3, vn = un − n ln(n) + n+ n ln(ln(n)) + λn. Montr er que vn → +∞ si λ ≥ 0 et vn → −∞

sinon.

Exercice 432 [X PC 474] Soit (un) une suite telle que u0 > 0 et ∀n ≥ 0, un+1 = un − e−1/un .

• Determiner la limite de (un).
• Montr er que, pour tout α > 0 on a nαun → +∞.

Exercice 433 [X PC 475] Determiner limn→+∞

√
1 + 2

√
1 + 3

√
1 + · · ·+ (n− 1)

√
1 + n.

Ind. Etudier si n ≥ m, am,n =

√
1 +m

√
1 + (m+ 1)

√
1 + · · ·+ (n− 1)

√
1 + n, et considerer a2m,n − (m+ 1)2.

Exercice 434 [X PC 476] Soit (un) une suite bornee. Montr er qu’il y a equivalence entre :
(i) 1

n

∑
k<n |uk| → 0,

(ii) il existe A ⊂ N tel que 1
n |A ∩ [0, n− 1]| −→

n→+∞
0 et limn/∈A un = 0.
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Exercice 435 [X PC 477] Etudier la convergence de la serie de terme general |sin(2πn!e)|α selon les valeurs du reel α > 0.

Exercice 436 [X PC 478] • Soit (un)n≥0 une suite bornee telle que limn→+∞
∑+∞

p=0
un2p

2p = 1.
Que peut-on en dedaire sur la suite (un)n≥0 ?

• Soit (v − n ∈ N une suite reelle bornee. On suppose limn→+∞
(
vn − 1

2v2n
)
= 1

2 . Que dire (vn)n∈N ?

Exercice 437 [X PC 479] • Soient a ∈ N∗ et n ∈ N. Montr er qu’il existe des entiers cj , avec 0 ≤ j ≤ a − 1, tels que∑+∞
k=0

kn

k!a =
∑+∞

k=0

∑a−1
j=0 cjk

j

k!a .

▷ Montr er que les cj sont uniquees (on traitera d’abord le cas a = 2).# 480

Soient a ∈]0, 1[ et n ∈ N∗. Notons Sn =
∑+∞

k=0

(
1− (1− ak)n

)
.

▷ Montrer que la somme est bien definie.
▷ Donner un equivalent de Sn lorsque n→ ∞.

Exercice 438 [X PC 481] Soient f et g : R → R continues et croissantes. Soit λ > 0. Montrer qu’il existe un unique couple
(u, v) ∈ R2 tel que λu+ f(u− v) = λv + g(v − u) = 0.

Exercice 439 [X PC 482] Soit f : [0, 1] → [0, 1] une fonction croissante. Montrer que f admet un point fixe.

Exercice 440 [X PC 483] Soit f : [0, 1] 7→ R de classe C1 telle que f(0) = f(1) = 0. Montrer que, pour tout a ∈ R, f ′+af s’annule
sur ]0, 1[.

Exercice 441 [X PC 484] • Soit f : R+∗ → R une fonction C∞. Montrer que pour tout n > 0 et pour tout x > 0 il existe
c ∈]x, x+ n[ tel que

∑n
k=0

(
k
n

)
(−1)n−kf(x+ k) = f (n)(c).

▷ Soit λ > 0 tel que nλ ∈ N pour tout n. Montrer que λ ∈ N.

Exercice 442 [X PC 485] On appelle polynome trigonometrique reel toute fonction f : R → R donnee par une formule ∀x ∈
R, f(x) =

∑n
k=−n ake

ikx avec n ∈ N et des constantes ak ∈ C. Trouver tous les couples (f, g) de polynomes trigonometriques reels
tels que f2 + g2 = 1.

Exercice 443 [X PC 486] Soient a, b deux reels strictement positifs. Pour x > 0, on pose f(x) =
(
ax + bx

2

)1/x

.

• Determiner les limites de f en 0+ et en +∞.
• On prolonge f en 0 en posant f(0) = lim

x→0+
f(x). La fonction f est-elle continue? de classe C1 ? de classe C2 ? de classe C∞ ?

• Soit g : x 7→ f(1/x). Trouver une fonction x 7→ h(x) telle que, pour tout n ∈ N, g(x)− h(x) =
x→0+

o(xn).

Exercice 444 [X PC 487] Soit f : R → R continue. Montrer que les propositions suivantes sont equivalentes :

• f est croissante,
• pour tout intervalle I ⊂ R ouvert, pour toute φ ∈ C∞ (I,R), pour tout x0 ∈ I , si f − φ admet un minimum local en x0, alors
φ′ (x0) ≥ 0.

Exercice 445 [X PC 488] Soit g ∈ C3([0, 2],R) telle que g(0) = g(1) = g(2) = 0.

• Montrer : ∀x ∈ [0, 2], ∃c ∈ [0, 2], g(x) =
1

6
x(x− 1)(x− 2)g(3)(c).

• Montrer que
∫ 2

0
|g(x)| dx ≤ 1

12
∥g(3)∥∞.

• Montrer que
∣∣∣∫ 2

0
g(x) dx

∣∣∣ ≤ 1

24

[
sup

(
g(3)

)
− inf

(
g(3)

)]
.# 489

Soient (a, b) ∈ R2 avec a < b, et f, g ∈ C0([a, b],R+∗).

On pose $ m=inf [a,b]
f

g
$et$M =⊃[a,b]

f

g
·$ Montrer que

∫ b

a
f2
∫ b

a
g2 ≤ (M +m)

2

4Mm

(∫ b

a
fg
)2

.

Exercice 446 [X PC 490] Soient $ K :[0, 1] 2→R$etf, g : [0, 1] → R continues telles que :
∀x ∈ [0, 1], $ f(x) =

∫
0

1K(x,z)g(z)\,dz$ et $ g(x) =
∫

0
1K(x,z)f(z)\,dz$. Montrer que $ f=g$.

Exercice 447 [X PC 491] Soit E l’espace des fonctions $ f∈ C2(R,R)$ telles que

sup
x∈R

(
1 + x2

) (
|f(x)|+ |f ′(x)|+

∣∣∣f ′′
(x)
∣∣∣) < +∞.

Pour (t, x) ∈ R2, on definit $ At(f)(x)=txf(x)+f’(x)$ et $ At
*(f)(x)=txf(x)-f’(x)$.

Montrer que ∀t ∈ R, ∀f ∈ E,
∫ +∞
−∞ A∗

t (At(f))(x) f(x) dx ≥ 0.

Exercice 448 [X PC 492] Soient a, b ∈ R avec a < b.

• Soient $ f1,. . .,fn∈R
[a,b]$. Montrer que (f1, . . . , fn) est libre si et seulement s’il existe $ x1,. . .,xn∈[a,b]$ tels que la matrice (fi(xj))1≤i,j≤n

soit inversible.
• Soit $ E=Vect(f1,. . .,fn)$. Montrer que toute limite simple de fonctions de E est encore dans E.
• La convergence est-elle uniforme?
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Exercice 449 [X PC 493] Posons $ A=Q∩[ 0 ; 1 ] $.Existe − t − ilunesuite(fn) de fonctions de A dans A, continues sur A et qui
converge simplement sur A vers une fonction f qui n’est continue en aucun point de A? La convergence peut-elle etre uniforme?

Exercice 450 [X PC 494] On considere l’ensembleE des applications continues $ f : R7→ R$tellesqu′ilexiste$M > 0$verifiant∀x, y ∈
R, |f(x+ y)− f(x)− f(y)| ≤M .

• Montrer que E est un espace vectoriel contenant le sous-espace des applications lineaires et celui des applications bornees.
• Soit $ f∈ E$. Pour n ∈ N, on pose $ gn :x∈R 7→ 2-nf(2nx)$.Montrerquelasuite(gn) converge uniformement vers une application

lineaire g. En deduire que f s’ecrit, de facon unique, comme somme d’une application lineaire et d’une application bornee.

Exercice 451 [X PC 495] On considere une suite (f − n ≥ 0 d’applications de [0, 1] dans R qui converge simplement sur [0, 1] vers
une application continue f .

• On suppose les fn de classe C1 et de derivees uniformement bornees, c’est-a-dire qu’il existe $ C≥ 0$ tel que ∀n, ∥f ′n∥∞ ≤ C .
Montrer que la convergence de (fn) vers f est uniforme sur [0, 1].

• On suppose maintenant les fn de classe Ck pour un entier $ k∈N*$ et de derivees k-iemes uniformement bornees. La conver-
gence de la suite (fn) est-elle toujours uniforme sur [0, 1]?

Exercice 452 [X PC 496] Pour $ n∈N*$ et $ x∈Rˆ+$, on pose $ fn(x)=cos
(
x

{
√
n}
)
\,1_{ [1, {π

√
n}{2}}(x)$.

Montrer que (fn) converge simplement vers une fonction $ f$ que l’on precisera. - Montrer qu’il existe C > 0 tel que ∀x ∈ R+, ∀n ∈
N∗, |fn(x)− f(x)| ≤ C√

n
.

Exercice 453 [X PC 497] Soit (f − n ∈ N une suite de fonctions appartenant a C3(R,R) et C une constante reelle positive. On
suppose : (i) supn∈N ∥f (3)n ∥∞ ≤ C , (ii) limn→+∞ ∥fn∥∞ = 0.

• Montrer que lim ∥f ′n∥∞ = lim ∥f ′′

n ∥∞ = 0.
• Les resultats precedents restent-ils vrais si on ne fait plus l’hypothese (i) ?

Exercice 454 [X PC 498] On noteE = C0([0, 1],R). Si f ∈ E, on definit la fonctionT (f) parT (f)(0) = f(0) et $ T(f)(x)=1
x
∫ 0

xf(t)dt$
pour x ∈ ]0, 1].
On definit par recurrence sur n ∈ N, Tn+1(f) = T (Tn(f)).

• Montrer que T est bien definie comme fonction de E dans lui-meme.
• Soit f ∈ E. On suppose qu’il existe ε > 0 tel que f(x) = 0 si x ∈ [0, ε]. Montrer que Tnf converge uniformement vers la

fonction nulle quand n→ +∞.
• Etudier le comportement de (Tn(f))n≥0 quand n→ +∞ pour tout f continue.

Exercice 455 [X PC 499] Soit $ F :x 7→
∑

k=0
+∞(−1)kx2k

$.

Determiner le domaine de definition de F .
Trouver une relation entre F (x) et F

(
x2
)
.

On pose $ G :x 7→
∑

k=0
+∞x4k

(
1−x4k

)
$.

Montrer que $ G(x) $convergepourtoutx ∈ ]0, 1[.

Trouver une relation entre F et G.

Exercice 456 [X PC 500] Soient α > 0 et, pour n ∈ N∗, $ fn :x 7→ sinnx
{ nα}$.Laserie

∑
fn converge-t-elle simplement sur R? Pour

quels α a-t-on convergence uniforme?

Exercice 457 [X PC 501] On pose $ g :x 7→ 1
x −

∑
n=1

+∞ 2x
n2−x2 $.

Montrer que g est definie et continue sur R \ Z.
Montrer que g est 1-periodique.
Etablir une relation entre $ g

(
x
2

)
$, $g

(
x+1
2

)
$et$g(x)$desquelestermesfontsens.Endeduirequeπ cotan(πx) = g(x) pour tout

x ∈ R \ Z.

Exercice 458 [X PC 502] Soit (an) une suite de reels positifs tels que
∑
an diverge.

• Montrer que, pour tout intervalle de longueur non nulle I , il existe x ∈ I tel que la serie
∑
an cos(nx) ne converge pas absolu-

ment. On pourra d’abord montrer que, pour tout $ a< b$ et toutN il existeM ∈ N et $ x∈[a,b]$ tel que
∑M

n=0 an cos
2(nx) > N .

- Existe-t-il des exemples ou la serie converge sur un intervalle non trivial ?

Exercice 459 [X PC 503] Soit une suite (an)n∈N telle que ∀n ∈ N, an+2 = n+3
n+2an+1+

3n+7
n+1 an. Montrer que le rayon de convergence

de
∑
anz

n est strictement positif et trouver un minorant de ce rayon.

Exercice 460 [X PC 504] Soit (an)n≥0 une suite de nombres reels. Pour n ∈ N, on pose sn = a0 + · · ·+ an et σn = 1
n+1

∑n
k=0 sk .

On considere les assertions :
(i) la suite (σn) converge,
(ii) f(x) =

∑
anx

n a un rayon de convergence ≥ 1, et lim
x→1−

f(x) existe (et est finie).

A-t-on (i) =⇒ (ii) ? A-t-on (ii) =⇒ (i) ?
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Exercice 461 [X PC 505] Etudier la limite de f(x) =
∑+∞

k=0(−1)kxk! lorsque x tend vers 1−.

Exercice 462 [X PC 506] On pose, pour k ∈ N avec k ≥ 2, ζ(k) =
∑+∞

n=1
1
nk .

• Montrer que, pour tout x ∈]− 1, 1[, on a
∫ 1

0
1−tx

1−t dt =
∑+∞

k=1(−1)k+1ζ(k + 1)xk .

• En deduire la valeur de S =
∑+∞

k=1(ζ(2k)− ζ(2k + 1)).

Exercice 463 [X PC 507] • Soit λ ∈ R. Determiner s’il existe y : R → R developpable en serie entiere telle que xy
′′
+ (1 −

x)y′ − λy = 0.

▷ On suppose λ = 2. Expliciter les solutions sur R+∗ et R−∗ (on admet que sur chacun des deux intervalles l’ensemble des
solutions est un espace vectoriel de dimension 2).

▷ Determiner les solutions sur R.

Exercice 464 [X PC 508] Soient n ∈ N avec n ≥ 2, I un intervalle de R et f1, . . . , fn ∈ Cn−1(I,R).

On noteWn(f1, . . . , fn) =

∣∣∣∣∣∣∣∣∣
f1 f2 · · · fn
f ′1 f ′2 · · · f ′n
...

...
...

f
(n−1)
1 f

(n−1)
2 · · · f

(n−1)
n

∣∣∣∣∣∣∣∣∣.Ind. On admettra que, si a0, . . . , an−2 sont des fonctions continues sur I ,

alors l’ensemble des solutions de l’equation differentielle y(n−1)+an−2(t)y
(n−2)+ · · ·+a1(t)y′+a0(t)y = 0 est un espace vectoriel

de dimension n− 1.

Exercice 465 [X PC 509] Soient λ > 0 et x, y : R+ → R deux fonctions de classe C1 telles que x(0) > 0, y(0) > 0, x′ = −xy et
y′ = xy − λy.

• Montrer que x et y admettent des limites en +∞. Ces limites sont-elles nulles ?
• Montrer qu’il existe K > 0 et µ > 0 tels que y(t) ∼ Ke−µt quand t→ +∞.

Exercice 466 [X PC 510] Determiner les extrema de f : (x, y) 7→ 3x2 + 2xy + 2y2 − x4 sur le disque unite ferme et les points en
lesquels ils sont atteints.

3) Probabilites

Exercice 467 [X PC 511] On a un de equilibre a N faces numerotees de 1 a N , et on effectue une suite de lancers independants. Le
jeu s’arrete lorsque le resultat du lancer n+ 1 est strictement inferieur a celui du lancer n.

• Calculer la probabilite πk que le jeu s’arrete apres le rang k.
• Montrer que πk tend vers 0 pour k → +∞.

Exercice 468 [X PC 512] Soient a ∈ R, q ≥ 3 et (Xn) une suite de variables aleatoires mutuellement independantes et uniformes

sur
{

k
q , k = 0, . . . , q − 1

}
. On definit la suite (Tn) par : T0 = 0 et ∀n, Tn+1 = Tn + a+ sin(2π(Tn −Xn)). Determiner l’esperance

de Tn.

Exercice 469 [X PC 513] On dispose deN pieces equilibrees. On lance lesN pieces de maniere independante. On noteX1 le nombre
de < < pile > > obtenus. On relance ces X1 pieces et on note X2 le nombre de < < pile > > obtenus. . .

• Calculer la fonction generatrice de X2.
• Calculer la fonction generatrice de Xk , pour k ≥ 3.
• Soit T l’instant ou l’on n’a plus de piece. Calculer E (T ) dans le cas ou N = 4.

Exercice 470 [X PC 514] Soient X et Y deux variables aleatoires discretes independantes telles que Y prenne un nombre fini de
valeurs, et E(Y ) = 0. On suppose que |X| admet une esperance. Montrer que E(|X − Y |) ≥ E(|X|).
Exercice 471 [X PC 515] On tire une piece n fois independamment avec probabilite de faire pile 1/n. Soit pn la probabilite d’obtenir
un nombre impair de fois pile. Etudier le comportement de pn.

Exercice 472 [X PC 516] • Montrer que ∀x ∈ R, ch(x) ≤ ex
2/2.

▷ Soient X1, . . . , Xn des variables i.i.d. suivant la loi uniforme sur {−1, 1}. On pose, pour n ∈ N∗, Sn = X1 + · · · +Xn.
Soit λ ∈ R+∗. Montrer que P(Sn ≥ λ) ≤ e−λ2/2n.Algebre_

VII) Mines

Exercice 473 [Mines 517] Determiner les sous-groupes finis de (C∗,×).

Exercice 474 [Mines 518] Soient p un nombre premier et Cp l’ensemble des z ∈ C tels qu’il existe n ∈ N verifiant zp
n

= 1.

• Montrer que Cp est un sous-groupe infini de C∗.
• Determiner les sous-groupes de Cp.

Exercice 475 [Mines 519] Determiner tous les couples (m,n) ∈ N2 verifiant : 3m = 8 + n2.

Démonstration. Nécessairement, m pair, donc cela s’écrit 32m − n2 = 8.

Exercice 476 [Mines 520] Soient p, q deux entiers superieurs ou egaux a 2.
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• Montrer que si qp − 1 est premier, alors q = 2 et p est premier.
• On suppose que p est premier et l’on note k ∈ N∗ un diviseur de 2p − 1. Montrer que : k ≡ 1 [2p].

Exercice 477 [Mines 521] Soit A = {n ∈ N, 2n + 1 ≡ 0 [n]}.

• Montrer que 3 est l’unique nombre premier appartenant a A.
• Montrer que A contient toutes les puissances entieres de 3.

Exercice 478 [Mines 522] • Soit n > 6 un entier. Montrer qu’il existe un couple (a, b) ∈ (N \ {0, 1})2 tel que a + b = n et
a ∧ b = 1.

▷ Soit (pn) la suite croissante des nombres premiers. Montrer que, pour tout k ≥ 3, p1 · · · pk ≥ pk+1 + pk+2. Ind. Utiliser la
premiere question avec n = p1 · · · pk .

Exercice 479 [Mines 523] On ecrit n ∈ N en base p ∈ P : n =
∑+∞

k=0 αkp
k et l’on pose Sp(n) =

∑+∞
k=0 αk .

• Soit k ∈ [[0, n]]. Montrer que : vp
(
n
k

)
=

Sp(k)+Sp(n−k)−Sp(n)
p−1 .

• Exprimer vp
(
n
k

)
en fonction des retenues dans l’addition de n− k et k en base p.

• Est-ce que 7 divise
(
1000
500

)
?

• Montrer que 2 divise
(
2n
n

)
. Etudier la divisibilite par 4 pour n ≥ 2.

Exercice 480 [Mines 524] Soient G un groupe et k ∈ N.
On suppose que : ∀i ∈ [[k, k + 2]],∀(a, b) ∈ G2, (ab)i = aibi. Montrer que G est abelien.

Exercice 481 [Mines 525] Soit G un groupe commutatif de cardinal pq avec p, q deux nombres premiers distincts. Montrer que G
est cyclique. Trouver un contre-exemple dans le cas ou G n’est pas commutatif.# 526

• Soit G un groupe cyclique d’ordre n. Soit H un sous-groupe de G. Montrer que H est cyclique d’ordre divisant n. Soit d un
diviseur de n. Montrer qu’il existe un unique sous-groupe de G d’ordre d.

• On noteφ l’indicatrice d’Euler. Soientn ∈ N∗ etD(n) l’ensemble des diviseurs positifs den. Montrer l’egaliten =
∑

d∈D(n) φ(d).

• Montrer que si p, q ∈ N∗ sont premiers entre eux, alors φ(pq) = φ(p)φ(q). Pour n ∈ N∗, exprimer φ(n) en fonction de la
decomposition en facteurs premiers de n.

Exercice 482 [Mines 527] • Soit a ∈ R. Montrer que aZ = {ax, x ∈ Z} est un sous-groupe de (R,+).

▷ Soit G un sous-groupe de (R,+) non reduit a {0}.
▷ Montrer que a = inf (G ∩ R+∗) existe.
▷ On suppose a ̸= 0. Montrer que G = aZ.
▷ On suppose a = 0. Montrer que G est dense dans R.

Exercice 483 [Mines 528] Soit p un nombre premier impair.

• D enombrer les carres de Fp.
• Montrer que −1 est un carre de Fp si et seulement si p ≡ 1[4].

Exercice 484 [Mines 529] Soient A un anneau commutatif integre et (a0, . . . , an) une famille non nulle d’elements de A. Montrer
que l’equation a0 + a1x+ · · ·+ anx

n = 0 admet au plus n solutions dans A.

Exercice 485 [Mines 530] On pose Z[i] = {a+ ib, (a, b) ∈ Z2}.
Montrer que Z[i] est un anneau integre et determiner ses inversibles.

Exercice 486 [Mines 531] en Soit A un anneau commutatif.
Si I est un ideal de A, on note R(I) = {x ∈ A ; ∃n ∈ N, xn ∈ I}.

• Montrer que R(I) est un ideal de A contenant I .
• Soient I et J deux ideaux de A. Montrer :

R(I ∩ J) = R(I) ∩R(J) ; R(I) +R(J) ⊂ R(I + J).

• Pour cette question, A = Z. Montrer que l’ensemble des entiers naturels non nuls tels que R(nZ) = nZ est l’ensemble des
entiers naturels non nuls dont la decomposition primaire ne comporte aucun facteur premier d’exposant au moins egal a 2.

Exercice 487 [Mines 532] Soient n ∈ N∗, z1, . . . , zn des nombres complexes non nuls de meme module tels que, pour tout i ∈ 1, n,

|
∑n

k=1 zk| = |
∑n

k=1 zk − zi|. Calculer (
∑n

k=1 zk)
(∑n

k=1
1
zk

)
.

Exercice 488 [Mines 533] • Montrer qu’il existe une unique suite (Pn) de polynomes a coefficients dans Z verifiant : ∀n ∈
N,∀x ∈ R∗, Pn

(
x+ 1

x

)
= xn + 1

xn .

▷ Soit a ∈ Q tel que cos(aπ) ∈ Q. Montrer que : 2 cos(aπ) ∈ Z.

Exercice 489 [Mines 534] • Montrer que, pour tout n ∈ N, il existe Pn ∈ R[X] tel que$∀θ ∈
]
0,π

2

[
,

\ sin((2n + 1)θ){sin
2n+1(

θ)}=Pn(cotan2θ).$

▷ Determiner les racines de Pn et calculer leur somme.

▷ Montrer que, pour θ ∈
]
0, π2

[
, $cotan2θ< 1

θ2<cotan2θ+1.$Deduiredecequiprecedelavaleurde$
∑ n=1

+∞ 1
n2 .$
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Exercice 490 [Mines 535] Soit P ∈ R[X] unitaire de degre n. Montrer qu’il existe k ∈ 0, n tel que |P (k)| ≥ n!
2n .

▷ Démonstration. Interpolation de Lagrange.

Exercice 491 [Mines 536] Soit P ∈ C[X].
• A quelle condition P realise-t-il une surjection de C sur C ?

• A quelle condition P realise-t-il une surjection de R sur R ?

• A quelle condition P realise-t-il une surjection de Q sur Q ?

Exercice 492 [Mines 537] On pose B0 = 1 et pour tout k ∈ N∗, Bk = 1
k!X(X − 1)...(X − k + 1).

• Montrer que pour tout N ∈ N, la famille (B0, ..., BN ) est une base de RN [X].
• Soit P ∈ R[X]. Montrer que si P (N) ⊂ Z alors P (Z) ⊂ Z.
• Soit P ∈ R[X]. Montrer que si exp(2iπP (n)) −−−−−→

n→+∞
1 alors P (Z) ⊂ Z.

• Soit P ∈ R[X]. Montrer que si P (n)− ⌊P (n)⌋ −−−−−→
n→+∞

1 alors P (Z) ⊂ Z.

Exercice 493 [Mines 538] Soient n ∈ N∗ et k ∈ 0, n− 1. Soit P = anX
n + · · ·+ a1X + a0 ∈ C[X] polynome de degre n tel que

(X − 1)k|P . On note µ(P ) le nombre de coefficients non nuls de P . On veut montrer que µ(P ) ≥ k + 1. On raisonne par l’absurde
et on pose A = {i ∈ 0, n, ai ̸= 0}.

• On pose P0 = 1 et Ps =
∏s−1

j=0(X − j) pour s ∈ N∗.

Montrer que ∀s ∈ 0, k − 1, P (s)(1) =
∑

i∈A aiPs(i).
• En deduire que ∀i ∈ A, ai = 0, et conclure.
• L’inegalite demontree est-elle optimale?

Exercice 494 [Mines 539] • Soit P ∈ R[X] simplement scinde sur R et non constant. Montrer que, si λ ∈ R, P ′ − λP est
simplement scinde sur R.
▷ Le resultat de la question precedente s’etend-il a P

′′ − λP ? Comment le generaliser ?

Exercice 495 [Mines 540] • Soit P un polynome irreductible dans Q[X]. Montrer que les racines complexes de P sont simples.
▷ Soient k ∈ N∗, P ∈ Q[X] non constant avec deg(P ) ≤ 2k − 1, α ∈ C une racine de P de multiplicite k. Montrer que α

est rationnel.# 541
Soit P =

∑n
k=0 akX

k avec : a0 ≥ a1 ≥ · · · ≥ an > 0.
▷ Montrer que les racines complexes de P sont de module superieur ou egal a 1.
▷ Soit z ∈ C tel que P (z) = 0. Montrer mink∈[0,n−1]

ak

ak+1
≤ |z| ≤ maxk∈[0,n−1]

ak

ak+1
.

Exercice 496 [Mines 542] • Soit P ∈ R[X] de degre n ≥ 1. Soit x ∈ R. On considere la suite
(
P (k)(x)

)
k∈[0,n]

.

On note v(x) le nombre de changements de signe stricts :
Soit a < b tel que P (a)P (b) ̸= 0. Montrer que si l’on note µ(a, b) le nombre de racines comptees avec multiplicite sur [a, b] de P
comptees avec multiplicite, alors :
µ(a, b) ≤ v(a)− v(b) et $µ(a,b)≡ v(a)-v(b)$$[2]$.

• Soit P = a0 + · · · + anX
n ∈ R[X] non constant. On pose V (P ) le nombre de changements de signe stricts de la suite

(a0, a1, . . . , an) et µ(P ) le nombre de racines strictement positives comptees avec multiplicite. Montrer que µ(P ) ≤ V (P ) et
$µ(P)≡ V(P)$$[2]$.

Exercice 497 [Mines 543] • Soit P ∈ C[X] \ {0}. Decomposer P ′/P en elements simples.
▷ On note a1, ..., an les racines de P . Soit a une racine de P ′. Montrer qu’il existe des reels positifs t1, ..., tn tels que t1 +
· · ·+ tn = 1 et t1a1 + · · ·+ tnan = a.

Exercice 498 [Mines 544] Soit P ∈ R[X] un polynome de degre n ≥ 2, ayant n racines reelles distinctes et non nulles a1 < ... < an.
Calculer

∑n
i=1

1
P ′(ai)

et
∑n

i=1
1

aiP ′(ai)
.

Exercice 499 [Mines 545] Soit P ∈ C[X] un polynome unitaire de degre n. On note λ1, . . . , λn ses racines comptees avec multipli-
cite. On suppose que P est a coefficients entiers.
Montrer que, pour tout q ∈ N∗, Pq =

∏n
i=1(X − λqi ) est a coefficients entiers.

Exercice 500 [Mines 546] Soit K = Q+
√
2Q+

√
3Q+

√
6Q. Montrer que K est un Q-sous-espace vectoriel de R et que (1,

√
2,
√
3,
√
6)

est une base de K.

Exercice 501 [Mines 547] Quelle est la dimension du Q-sous-espace de R engendre par U5 ?

Exercice 502 [Mines 548] Soient x, y, z des rationnels non nuls. Montrer que la matrice

 x y z
2y z 2x
z x 2y

 est inversible.# 549 Soient

x, y ∈ R et D =

∣∣∣∣∣∣∣∣∣∣
1 0 1 0 0
x 1 y 1 0
x2 2x y2 2y 2
x3 3x2 y3 3y2 6y
x4 4x3 y4 4y3 12y2

∣∣∣∣∣∣∣∣∣∣
. Montrer que D = 0 si et seulement si x = y.
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Exercice 503 [Mines 550] Soit A ∈ Mn(K) dont on note C1, . . . , Cn les colonnes. Soit B la matrice dont les colonnes sont
C ′

1, . . . , C
′
n avec : C ′

j =
∑

i̸=j Ci. Determiner detB en fonction de detA.

Exercice 504 [Mines 551] • Soient p ∈ N∗, a1, . . . , ap ∈ R non tous nuls et b1, . . . , bp ∈ R avec b1 < · · · < bp. Montrer que
fp : x ∈ R 7→

∑p
i=1 aie

bix s’annule au plus p− 1 fois sur R.

▷ Soit n ∈ N∗. Soient α1 < · · · < αn et β1 < · · · < βn des reels. Montrer que : det
(
eαiβj

)
1≤i,j≤n

> 0.

Exercice 505 [Mines 552] Soit f ∈ L(E) ouE est un R-espace vectoriel de dimension finie. Montrer que rg f = rg f2 si et seulement
si E = Ker f ⊕ Im f .

Exercice 506 [Mines 553] Soient E un espace vectoriel de dimension finie et u ∈ L(E).

• Montrer l’equivalence entre les trois proprietes suivantes :

▷ Im(u) = Im(u2)

▷ Ker(u) = Ker(u2)

▷ E = Im(u)⊕Ker(u).

• Donner des exemples d’endomorphismes verifiant ces proprietes.
• L’equivalence est-elle vraie en dimension infinie? Montrer que (i) et (ii) equivaut a (iii).

Exercice 507 [Mines 554] Soit E un K-espace vectoriel de dimension finie. On dit que h ∈ L(E) est une transvection s’il existe
φ ∈ L(E,K) non nulle et a ∈ E non nul tels que : ∀x ∈ E, h(x) = x+φ(x)a. Soit u ∈ L(E) tel que rg(u− id) = 1 et (u− id)2 = 0.
Montrer que u est une transvection. La reciproque est-elle vraie?

Exercice 508 [Mines 555] Soient A ∈ Mn(R) et M ∈ Mn(R). On suppose que toutes les matrices semblables a A appartiennent
au commutant de M . Determiner M . Meme question dans Mn(C).

Exercice 509 [Mines 556] Soient p, q ∈ C. On note x1, x2 et x3 les racines (non necessairement distinctes) du polynomeX3+pX+q.
Pour j ∈ N, on pose Nj = xj1 + xj2 + xj3.
Calculer, pour n ∈ N∗, le determinant de la matrice Mn = (Ni+j−2)1≤i,j≤n.

Exercice 510 [Mines 557] ⋆ Soit n ∈ N∗. Calculer det((i ∧ j)1≤i,j≤n).
Ind. On rappelle que, pour N ∈ N∗, N =

∑
d|N φ(d) ou φ est l’indicatrice d’Euler.

Exercice 511 [Mines 558] Soient K1,. . ., Kn des segments non triviaux disjoints.

• Montrer que, si P ∈ Rn−1[X] verifie
∫
Kj
P = 0 pour tout j ∈ {1, ..., n}, alors P = 0. - Montrer qu’il existe P ∈ Rn[X] non

nul tel que
∫
Kj
P = 0 pour tout j ∈ {1, ..., n}.

Exercice 512 [Mines 559] • Determiner le rang de Com(A) en fonction du rang de A.

▷ Calculer Com (Com(A)) lorsque A ∈ GLn(R).
▷ Montrer que si X est un vecteur propre de A associe a une valeur propre non nulle, alors X est un vecteur propre de
(Com(A))T .

Exercice 513 [Mines 560] Soit n ∈ N∗. Soit D l’ensemble des matrices M ∈ Mn(K) telles que mi,j = 0 si i et j sont de parites
differentes.

• Montrer que D est une sous-algebre de Mn(K).
• Soit M ∈ D ∩GLn(K). Montrer que Com(M) ∈ D.
• Traiter le cas ou M n’est pas inversible.

Exercice 514 [Mines 561] Trouver les solutions dans M2(R) de X2 +X =

(
1 1
1 1

)
.

Exercice 515 [Mines 562] Soient A,B ∈ Mn(C) telles que AB = 0.
Montrer ∀k ≥ 1, tr(Ak) + tr(Bk) = tr

(
(A+B)k

)
.

Exercice 516 [Mines 563] • Soit f ∈ L (Mn(K),K) verifiant : ∀(A,B) ∈ Mn(K)2, f(AB) = f(BA). Montrer que f est
proportionnelle a la trace.

▷ Soit g ∈ L(Mn(K)) un endomorphisme d’algebre. Montrer que tr ◦ g = tr.

Exercice 517 [Mines 564] Soit f : Mn(K) → K non constante telle que : ∀A,B ∈ Mn(K), f(AB) = f(A)f(B). Montrer que
A ∈ GLn(K) ⇐⇒ f(A) ̸= 0.

Exercice 518 [Mines 565] Soient A,B dans Mn(R). Montrer que KerA = KerB si et seulement s’il existe P inversible telle que
B = PA.

Exercice 519 [Mines 566] Soient E un K-espace vectoriel de dimension finie et u ∈ L(E). Montrer l’equivalence entre : i) u2 = 0
et ∃v ∈ L(E), u ◦ v + v ◦ u = id, ii) Imu = Keru.
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Exercice 520 [Mines 567] Soient A =



1 1 0 · · · 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
...

. . .
. . . 1

0 · · · · · · 0 1


et N = A− In.

Soit (E) l’equation matricielle X2 = A.

• Quelles sont les matrices qui commutent avecN ? - Montrer que les solutions de (E) sont de la formeX = ±


1 a1 · · · an−1

0
. . .

. . .
...

...
. . .

. . . a1
0 · · · 0 1

.

Montrer qu’il y a au plus deux solutions.

• Rappeler le developpement limite a l’ordre n de x 7→
√
1 + x. Resoudre (E).

Exercice 521 [Mines 568] Soit A ∈ Mn(C) nilpotente.

• Calculer det(A+ In).
• Soit M ∈ Mn(C) telle que AM =MA. Calculer det(A+M). On commencera par le cas ou M ∈ GLn(C).
• Le resultat est-il toujours vrai si AM ̸=MA?

Exercice 522 [Mines 569] Soient E un espace vectoriel de dimension finie et (u, v) ∈ L(E)2.

• Montrer que | rg(u)− rg(v)| ≤ rg(u+ v) ≤ rg(u) + rg(v).
• Soient F un sous-espace vectoriel de E, G et H deux supplementaires de F . On note p (resp. q) la projection sur F (sur H)

parallelement a G (a F ).

Montrer que rg(p+ q) = rg p+ rg q.

Exercice 523 [Mines 570] Determiner les parties G de Mn(C) telles que (G,×) soit un groupe multiplicatif et G ne soit pas un
sous-groupe de GLn(C).

Exercice 524 [Mines 571] Soit G un sous-groupe fini de GLn(C). Montrer que
∑

M∈G Tr(M) est un entier divisible par le cardinal
de G.

Exercice 525 [Mines 572] • Soit G un sous-groupe fini de GLn(R) tel que
∑

g∈G tr g = 0. Montrer que
∑

g∈G g = 0.

▷ Soient G un sous-groupe fini de GLn(R) et V un sous-espace vectoriel de Rn stable par tous les elements de G. Montrer
que V admet un supplementaire stable par tous les elements de G.

Exercice 526 [Mines 573] Determiner les ideaux bilateres de Mn(R), c’est-a-dire les sous-groupes additifs stables par multiplication
a gauche et a droite par n’importe quel element de Mn(R).

Exercice 527 [Mines 574] Soient E un R-espace vectoriel, f et g deux elements de L(E) tels que fg − gf = idE .

• Montrer que E est de dimension infinie ou nulle.
• Montrer que f n’est pas nilpotent.
• Donner un exemple de triplet (E, f, g) verifiant les conditions precedentes.

Exercice 528 [Mines 575] Soit A ∈ Mn(R).

• Montrer que |detA| ≤
∏n

i=1

(∑n
j=1 |Ai,j |

)
.

• Lorsque detA ̸= 0, etudier le cas d’egalite.# 576

Soit E un K-espace vectoriel. Une partie S de L(E) est dite dense si, pour tout n ≥ 1, toute famille (b1, . . . , bn) de vecteurs de E et
toute famille libre (a1, . . . , an) de vecteurs de E, il existe f ∈ S tel que f(ai) = bi pour tout i ∈ 1, n.

• Quelles sont les parties denses de L(E) si E est de dimension finie?
• Dans cette question, on suppose que E n’est pas de dimension finie.
• Montrer que {f ∈ L(E), rg f < +∞} est dense dans L(E).
• Meme question avec {f ∈ L(E); rg f est fini et pair}.
• Si S est dense dans L(E), determiner {g ∈ L(E) ;∀f ∈ S, fg = gf}.

Exercice 529 [Mines 577] Soit (Mi,j) une base de Mn(K) verifiant : ∀(i, j, k, ℓ) ∈ 1, n4,Mi,jMk,ℓ = δj,kMi,ℓ.

• Montrer que ImMi,j est independante de j. On la notera Fi.
• Montrer que Kn =

⊕n
i=1 Fi.

• En deduire dimFi.
• Montrer qu’il existe P ∈ GLn(K) telle que : ∀(i, j) ∈ 1, n2,Mi,j = PEi,jP

−1.
• Expliciter les automorphismes de l’algebre Mn(K).

Exercice 530 [Mines 578] Soit U une partie de Mn(C) non vide, finie et stable par produit. Montrer qu’il existe M ∈ U tel que
trM ∈ {0, . . . , n}.

47



Exercice 531 [Mines 579] Pour tout x ∈ R, on pose Ax =

(
0 x
x 0

)
. Determiner la structure de l’ensemble : {exp(Ax), x ∈ R} et

expliciter exp(Ax) pour tout x ∈ R.

Exercice 532 [Mines 580] Soit M ∈ Mn(C) admettant n valeurs propres distinctes. Montrer que l’ensemble des matrices qui
commutent avec M est Vect(In,M, . . . ,Mn−1).

Exercice 533 [Mines 581] Soient n ∈ N∗, E un R-espace vectoriel de dimension finie et u ∈ L(E) tel que un = id. Pour b ∈ E et
λ ∈ R, resoudre x+ λu(x) = b.

Exercice 534 [Mines 582] Soit Z =

1 · · · 1
...

...
1 · · · 1

 ∈ Mn(C). Calculer χZ2 . La matrice Z est-elle diagonalisable?

Exercice 535 [Mines 583] Soient n ∈ N∗, U = (ui,j)1≤i,j≤n, V = (vi,j)1≤i,j≤n ∈ Mn(R) ou ui,i+1 = 1 pour 1 ≤ i ≤ n− 1, les
autres coefficients etant nuls, vi,j = 1 si j > i, les autres coefficients etant nuls.

• Calculer le polynome minimal de U .
• Montrer que U et V sont semblables.# 584

Soient a1 < ... < an des reels et M =


a1 + 1 1 . . . 1

1 a2 + 1
. . .

...
...

. . .
. . . 1

1 . . . 1 an + 1

.

• Determiner le polynome caracteristique de M .
• Montrer que M est diagonalisable et que ses espaces propres sont des droites.

Exercice 536 [Mines 585] Soient E un R-espace vectoriel de dimension finie, u ∈ L(E), a, b ∈ R et P = X2+aX + b. On suppose
que P est irreductible sur R et annulateur de u.

• Soit x ∈ E \ {0}. Montrer que Fx = Vect(x, u(x)) est un plan stable par u.
• Soient F un sous-espace vectoriel stable par u et x ∈ E \ F . Montrer que F ∩ Fx = {0}.
• Montrer que u est diagonalisable par blocs identiques de taille 2× 2.

Exercice 537 [Mines 586] Ecrire l’ensemble des matrices symetriques de M2(C) non diagonalisables comme reunion de deux plans
vectoriels prives de leur droite d’intersection.

Exercice 538 [Mines 587] Soient a, b dans R∗ et A la matrice de taille 2n dont la diagonale contient des a, l’anti-diagonale des b et
les autres coefficients sont nuls.

• La matrice A est-elle diagonalisable? Determiner ses elements propres.
• A quelle condition A est-elle inversible ?
• Calculer Ak pour k ∈ N.

Exercice 539 [Mines 588] Soient A =



0 1 0 · · · 0

1 0 0
...

0 0 1
. . .

...
...

. . .
. . . 0

0 · · · · · · 0 1


et B =



0 · · · · · · 0 1

1
. . . 0

0
. . .

. . .
...

...
. . .

. . .
. . .

...
0 · · · 0 1 0


dans Mn(R).

• Montrer que A et B sont inversibles et preciser le sous-groupe G de GLn(R) engendre par ces matrices.
• Dans le cas n = 3, preciser les matrices de G qui sont diagonalisables.

Exercice 540 [Mines 589] Soit u l’endomorphisme de l’espace vectoriel R[X] defini par
∀P ∈ R[X], u(P ) = (X2 − 1)P

′′
+ 4XP ′.

• Montrer que le spectre reel de u est l’ensemble {n(n+3), n ∈ N}, et que les espaces propres associes sont des droites vectorielles.
• Pour n ∈ N, on note Pn l’unique polynome unitaire generateur de la droite propre associee a n(n + 3). Trouver une relation

entre Pn, Pn−1 et Pn−2 pour n ≥ 2.

Exercice 541 [Mines 590] Soit E = Mn(R). Soient A ∈ E et uA :M ∈ E 7→ AM .

• Caracteriser les matrices A telles que uA soit un automorphisme de E.
• Calculer determinant et trace de l’endomorphisme uA.
• Montrer que uA est diagonalisable si et seulement si A est diagonalisable.

Exercice 542 [Mines 591]

Soient A,B ∈ Mn(R) non nulles et f : M ∈ Mn(R) 7→ M + tr(AM)B. - Determiner un polynome de degre 2 annulateur de f . -
Etudier la diagonalisabilite de f .

Exercice 543 [Mines 592]
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Soient (M,N) ∈ M2n+1(C). On suppose que MN = 0 et que M +MT est inversible. - Montrer que M et N ont un vecteur propre
commun. - Montrer que N +NT n’est pas inversible.

Exercice 544 [Mines 593]

Soient P ∈ Mn(R) une matrice de projection et f : M ∈ Mn(R) 7→ PM −MP . - L’endomorphisme f est-il diagonalisable? -
Calculer la trace de f .

Exercice 545 [Mines 594]

SoientA,B ∈ Mn(K) diagonalisables. Soit ∆ l’endomorphisme de Mn(K) defini par ∀M ∈ Mn(K), ∆(M) = AM +MB. Montrer
que ∆ est diagonalisable et preciser ses valeurs propres.

Exercice 546 [Mines 595] Soit σ une permutation de [[1, n]]. PourM ∈ Mn(K), on pose p(M) =M ′ avec : ∀(i, j) ∈ [[1, n]]2, m′
i,j =

mi,j si i = σ(j) et m′
i,j = 0 sinon.

• Montrer que p est un projecteur. Determiner son noyau et son image.

Soit A ∈ Mn(K) non nulle. On definit deux applications φ et uA par :
∀M ∈ Mn(K), φ(M) =

∑n
k=1mσ(k),k et uA(M) = φ(M)A+ φ(A)M .

• Montrer que uA est diagonalisable si et seulement si φ(A) ̸= 0.

• L’endomorphisme uA peut-il etre un projecteur?

Exercice 547 [Mines 596] Soient E un R-espace de dimension n, f, g ∈ L(E) tels que f ◦ g − g ◦ f = f .

• Montrer que f est nilpotent.
• On suppose que g est diagonalisable et que dim(Ker f) = 1. Determiner g.

Exercice 548 [Mines 597] Soient n ≥ 2, A,B ∈ Mn(R) telles que AB −BA = B.

• Montrer que, pour m ∈ N∗, ABm −BmA = mBm.
• En deduire que B est nilpotente.

Exercice 549 [Mines 598] Soit E un C-espace vectoriel de dimension finie.

• Montrer que deux endomorphismes u et v de E qui commutent ont un vecteur propre en commun.
• Montrer qu’une famille finie F d’endomorphismes de E qui commutent admet une base de trigonalisation commune a ses

elements.

Exercice 550 [Mines 599] Soient E un K-espace vectoriel et f ∈ L(E).

• Soit P ∈ K[X] annulateur de f tel que 0 soit racine simple de P .

Montrer que : E = Im f ⊕Ker f .
On suppose dans la suite que K = C et que E est de dimension n ∈ N∗.

• Soit g ∈ L(E) tel que fg = 0. Montrer que f et g sont cotrigonalisables.
• Soit f1, . . . , fp ∈ L(E) qui commutent. Montrer que f1, . . . , fp sont cotrigonalisables.
• Soient f1, . . . , fn ∈ L(E) nilpotents qui commutent. Calculer f1 ◦ · · · ◦ fn.# 600

Soit A ∈ Mn(C). Montrer que A est diagonalisable si et seulement si
∀P ∈ C[X], P (A) nilpotent ⇒ P (A) = 0.

Exercice 551 [Mines 601] Soient A,B ∈ Mn(R) avec B diagonalisable. On suppose que AB3 = B3A. Montrer que A et B
commutent. Generaliser.

Exercice 552 [Mines 602] Quels sont les n ∈ N tels qu’existe A ∈ Mn(R) verifiant A3 −A2 = In ?

Exercice 553 [Mines 603] Determiner les entiers n ≥ 1 tels qu’il existe f ∈ L(Rn) verifiant f3 + f2 − id = 0 et tr f ∈ Q.

Exercice 554 [Mines 604] Soit A ∈ Mn(C). On pose fA :M ∈ Mn(C) 7→ AMAT ∈ Mn(C).

• Soit (X1, . . . , Xn, Y1, . . . , Yn) ∈ (Cn)2n. Montrer que (X1, . . . , Xn) et (Y1, . . . , Yn) sont des bases de Cn si et seulement si(
XiY

T
j

)
1≤i,j≤n

est une base de Mn(C).

• Montrer que A est inversible si et seulement si fA est inversible.
• On suppose A diagonalisable. Montrer que fA est diagonalisable.
• Soit λ ∈ C∗ une valeur propre deA et Y un vecteur propre associe. Montrer que le sous-espace vectoriel F =

{
XY T , X ∈ Cn

}
est stable par fA.

• Montrer que si fA est diagonalisable, alors A est diagonalisable.

Exercice 555 [Mines 605] Soit p une permutation de [[1, n]]2. On considere l’application u : Mn(C) → Mn(C) definie par : u(A) =
(Ap(i,j))(i,j)∈[[1,n]]2 . Montrer que u est un endomorphisme de Mn(C). Est-il diagonalisable?

Exercice 556 [Mines 606] • Soient A,B,C,D ∈ Mn(C) telles que CD = DC .

Montrer que det

(
A B
C D

)
= det(AD −BC).

• Soient A ∈ GLn(C), B,C ∈ Mn(C) et λ ∈ C. Montrer l’equivalence des enonces suivants :
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1. λ est valeur propre de la matrice
(

0 A−1C
In A−1B

)
,

ii) il existe x ∈ Cn \ {0} tel que la fonction t 7→ eλtx soit solution de Ay
′′ −By′ − Cy = 0.

Exercice 557 [Mines 607] Donner une base de Mn(R) constituee de matrices diagonalisables.

Exercice 558 [Mines 608] Soient E un C-espace vectoriel de dimension finie et f ∈ L(E). Montrer que f est diagonalisable si et
seulement si f2 est diagonalisable et Ker(f) = Ker(f2).

Exercice 559 [Mines 609] Soit A ∈ Mn(R).
Montrer que A2 = A si et seulement si rgA ≤ trA et rg(In −A) ≤ tr(In −A).

Exercice 560 [Mines 610] Soit A ∈ M2(R) telle qu’il existe n ∈ N∗ tel que A2n = I2.

Montrer que A2 = I2 ou qu’il existe k ∈ N∗ tel que A2k = −I2.

Exercice 561 [Mines 611] Soit u un endomorphisme diagonalisable de Cn. Montrer que les propositions suivantes sont equiva-
lentes :[MISSINGPAGEFAIL :1]# 621 Quelles sont les A ∈ Mn(R) telles que, pour toute P ∈ GLn(R), PA soit diagonalisable?

Exercice 562 [Mines 622] Quelles sont les A ∈ Mn(R) telles que, pour toute P ∈ GLn(R), PA soit trigonalisable?

Exercice 563 [Mines 623] Soient A,B ∈ Mn(C). Soit u l’endomorphisme de Mn(C) defini par
∀T ∈ Mn(C), u(T ) = AT − TB.

• Soit α ∈ C (resp. β ∈ C) une valeur propre de A (resp. B). Montrer que α− β est valeur propre de u.
• Soient λ ∈ C une valeur propre de u, et T ∈ Mn(C) un vecteur propre associe.

Montrer que, pour tout polynome P ∈ C[X], P (A)T = TP (λIn +B).

• Montrer qu’il existe α ∈ Sp(A) et β ∈ Sp(B) telles que λ = α− β.
• En deduire une condition necessaire et suffisante pour qu’il existe T ∈ Mn(C) non nulle telle que AT = TB.

Exercice 564 [Mines 624] • Pour quels λ ∈ C existe-t-il (A,B) ∈ GLn(C)2 tel que AB = λBA?

▷ Pour quelsλ ∈ C est-il vrai que, pour tout (A,B) ∈ GLn(C)2 tel queAB = λBA, les matricesA etB sont diagonalisables ?

Exercice 565 [Mines 625] On note B l’ensemble des suites bornees de (C)Z.
On s’interesse a l’endomorphisme T ∈ L(B) qui a (un) associe (un+1).

• Determiner les valeurs et les vecteurs propres de T .

• Soit S ⊂ B un sous-espace de dimension finie de B stable par T . On note T̃ l’endomorphisme induit par T sur S. Montrer que
l’on dispose de (λ1, . . . , λr) ∈ Cr distincts tels que

S =

r⊕
i=1

Ker
(
T̃ − λiid

)
Exercice 566 [Mines 626] • Soit A ∈ Mn(C). Montrer que A est diagonalisable si et seulement si eA est diagonalisable. Que

se passe-t-il sur R?

▷ Soit A ∈ Mn(C). Resoudre l’equation eM = A.

Exercice 567 [Mines 627] Soient (E, ⟨ ⟩) un espace euclidien de dimension n, v1, . . . , vn+2 des vecteurs de E. Montrer qu’on ne
peut avoir : ∀i ̸= j, ⟨vi, vj⟩ < 0.

Exercice 568 [Mines 628] Soient (E, ⟨ ⟩) un espace euclidien, c1, c2 ∈ E, r1, r2 ∈ R+∗.

• A quelle condition les boules fermees Bf (c1, r1) et Bf (c2, r2) se rencontrent-elles ?
• A quelle condition les spheres S(c1, r1) et S(c2, r2) se rencontrent-elles ?

Exercice 569 [Mines 629] Soient E un espace prehilbertien reel et (e1, . . . , en) une famille libre de vecteurs de E telle que ∀x ∈
E, ∥x∥2 =

∑n
k=1⟨x, ek⟩2. Montrer que la famille (e1, . . . , en) est une base orthonormalee de E. Le resultat reste-t-il vrai si on ne

suppose plus la famille libre, mais seulement constituee de vecteurs non nuls ?# 630 Soient E un espace euclidien, A une partie de E
et B =

{
⟨x, y⟩ ; (x, y) ∈ A2

}
. Montrer que A est fini si et seulement si B est fini.

Exercice 570 [Mines 631] Soient E un espace euclidien, A et B deux sous-espaces vectoriels de E orthogonaux. Montrer que les
symetries orthogonales par rapport a A et par rapport a B commutent et que leur composee est la symetrie orthogonale par rapport
a (A+B)⊥.

Exercice 571 [Mines 632] Soient (E, ⟨ , ⟩) un espace euclidien et a ∈ E \ {0}.
Pour λ ∈ R, soit Φλ : x 7→ x− λ ⟨a, x⟩ a.

• Determiner les λ pour lesquels Φλ est inversible.
• Si λ, µ ∈ R, calculer Φλ ◦ Φµ.
• Soit λ ∈ R. Determiner les elements propres de Φλ.

Exercice 572 [Mines 633] Soit E un espace euclidien.

• Trouver les endomorphismes f de E tels que :

50



∀x, y ∈ E, ⟨x, y⟩ = 0 =⇒ ⟨f(x), f(y)⟩ = 0.

• Pour un tel f , discuter de la nature de la suite de terme general $ un=1n
∑ k=0

n-1fk$.

Exercice 573 [Mines 634] • Enoncer le theoreme de reduction pour une matrice de SO3(R).

▷ Montrer que deux rotations de SO3(R) qui ont meme axe commutent.
▷ Montrer que deux demi-tours de SO3(R) d’axes orthogonaux commutent.
▷ Montrer que si deux rotations de SO3(R) commutent, alors on est dans l’un des deux cas precedents.

Exercice 574 [Mines 635] Soient a, b, c ∈ R et A(a, b, c) =

a b c
c a b
b c a

.

• Montrer que A(a, b, c) est dans SO3(R) si et seulement si a, b, c sont les racines d’un polynome X3 −X2 + t ou t appartient a
un intervalle I que l’on determinera.

• Soit a, b, c ∈ R. Determiner une droite et un plan stables par A(a, b, c).
• Si A(a, b, c) ∈ SO3(R), caracteriser l’endomorphisme canoniquement associe.

Exercice 575 [Mines 636] On travaille dans l’espace E = R[X]. Pour P et Q dans E, on pose

Φ(P,Q) =
∫ +∞
0

P (t)Q(t) e−tdt.

• Montrer que Φ est correctement definie et munit l’espace E d’un produit scalaire.
• Calculer Φ(Xp, Xq) pour p, q ∈ N.
• Calculer l’orthonormalisee de Gram-Schmidt de la famille (1, X,X2).
• Calculer la distance de X3 a R2[X].

Exercice 576 [Mines 637] Soit n ∈ N∗. Montrer que : ∀P ∈ Rn−1[X],
∫ +∞
0

e−x (P (x) + xn)
2
dx ≥ (n!)2.

Exercice 577 [Mines 638] SoitE = R3[X]. - Montrer que l’application φ : (P,Q) 7→
∫ 1

−1
P (t)Q(t)dt d$\ !$efinit un produit scalaire

sur E, - Determiner inf(a,b,c)∈R3

∫ 1

−1
(t3 − at2 − bt− c)2dt.

Exercice 578 [Mines 639] Calculer le minimum de la fonction f : (x, y) ∈ R2 7→
∫ 1

0
(t ln(t)− xt− y)2dt.

Exercice 579 [Mines 640] On fixe un entier n ≥ 0, et on pose Qi =
(
Xi(1−X)i

)(i)
pour i ∈ 0, n. On munit egalement Rn[X] du

produit scalaire d$\ !$efini par ⟨P,Q⟩ =
∫ 1

0
P (t)Q(t) dt.

• Montrer que (Q0, . . . , Qn) est une base orthogonale de Rn[X].
• On fixe k ∈ 0, n et on note Fk,n l’ensemble des elements de Rn[X] dont le coefficient de Xk est egal a 1. Montrer que Fk,n est

un sous-espace affine de Rn[X], et preciser sa direction
−→
F k,n.

• Trouver Rk ∈ Fk,n ∩
−→
F ⊥

k,n, et calculer
∫ 1

0
Rk(t)

2 dt. Interpreter le resultat.

Exercice 580 [Mines 641] Soient E le R-espace vectoriel des suites reelles et D : u ∈ E 7−→ (un+1 − u− n ∈ N.

• Verifier que D est un endomorphisme de E. Est-il injectif ? Surjectif ?
• Donner les elements propres de l’endomorphisme D.
• Soit F l’espace des suites reelles de carre sommable.

Montrer que F est stable par l’endomorphisme D.

• On munit F de son produit scalaire ⟨ ⟩ usuel.

Decrire l’ensemble $H= \⟨u,D(u)⟩∥u∥2,\ u∈ F\\(0)n∈ N\\.$

Exercice 581 [Mines 642] Soient (E, ⟨ ⟩), p, q ∈ L(E) des projecteurs orthogonaux.

• Verifier que Im p est stable par pq et que l’endomorphisme induit est symetrique.
• Montrer que Ker(pq) = Ker q ⊕ (Im(q) ∩Ker(p)).
• Montrer que E est somme directe orthogonale de (Im p+Ker q) et de (Ker p ∩ Im q).
• En deduire que pq est diagonalisable.
• Montrer que le spectre de pq est inclus dans [0, 1].

Exercice 582 [Mines 643] Soient p et q deux projecteurs orthogonaux d’un espace euclidien E. Montrer que q ◦ p est un projecteur
si et seulement si p et q commutent.

Exercice 583 [Mines 644] On munit E = Rn munit du produit scalaire usuel. Soit A ∈ Mn(R).

• Soit F un sous-espace vectoriel de E stable par A. Montrer que F⊥ est stable par AT .
• On suppose A ∈ M3(R) et ATA = AAT . Montrer que A est diagonalisable ou A est semblable a une matrice de la formeλ 0 0

0 α −β
0 β α

 avec β ̸= 0.# 645

• Quelles sont les matrices de Mn(R) qui commutent avec toutes les matrices de On(R)?

51



• Quelles sont les matrices de Mn(R) qui commutent avec toutes les matrices de SOn(R)?

Exercice 584 [Mines 646] Soit E un espace euclidien de dimension 4. Trouver les endomorphismes f ̸= 0 de E tels que tr(f) =
0, f + f4 = 0 et f∗ = −f2.

Exercice 585 [Mines 647] Soit M ∈ On(R). Pour k ∈ N∗, on pose Ck = 1
k+1

∑k
j=0M

j . Etudier la convergence de la suite
(C − k ∈ N.

Exercice 586 [Mines 648] Soit A ∈ An(R). Montrer que A est semblable a une matrice definie par blocs :
(
B 0
0 0

)
ou B est

inversible de taille p. Montrer que p est pair.

Exercice 587 [Mines 649] Soit A ∈ An(R). Montrer que A est semblable a une matrice diagonale par blocs, de blocs diagonaux
antisymetriques de taille au plus 2× 2.

Exercice 588 [Mines 650] Soient A,M,N ∈ Mn(R).

• Montrer que AAT et ATA sont diagonalisables.
• Montrer que MN et NM ont les memes valeurs propres et que, pour toute valeur propre non nulle, les sous-espaces propres

associes sont de meme dimension.
• Montrer que ATA et AAT ont les memes valeurs propres avec les memes multiplicites.
• Montrer qu’il existe U ∈ On(R) telle que : ATA = UAATU−1.

Exercice 589 [Mines 651] Soient A,B ∈ Mn(R) telles que ATA = BTB. Montrer qu’il existe Q ∈ On(R) telle que B = QA.

Exercice 590 [Mines 652] Soit A ∈ Mn(R) telle que A2 = AAT . Montrer que A ∈ Sn(R).

Exercice 591 [Mines 653] Soit M ∈ Mn(R) nilpotente telle que : MTM =MMT . Determiner MTM puis M .

Exercice 592 [Mines 654] Soit A = (ai,j)1≤i,j≤n ∈ S+
n (R).

• Montrer que det(A) ≥ 0.
• Pour p ∈ [[1, n]], on pose Ap = (ai,j)1≤i,j≤p. Montrer que det(Ap) ≥ 0.

Exercice 593 [Mines 655] Soit A ∈ Sn(R). On suppose que la suite (Ak)k≥1 converge vers B = (bi,j)1≤i,j≤n. Montrer que∑
1≤i,j≤n |bi,j | ≤ n

√
rgB.

Exercice 594 [Mines 656] Soit A = (ai,j) ∈ On(R). Montrer que
∣∣∣∑1≤i,j≤n aij

∣∣∣ ≤ n ≤
∑

1≤i,j≤n |ai,j | ≤ n
√
n.# 657 Soit

A ∈ Sn(R). Montrer que (
∑n

i=1 ai,i)
2 ≤ rg(A)

∑n
i=1

∑n
j=1 a

2
i,j .

Exercice 595 [Mines 658] Soit S ∈ S+
n (R). Calculer max{tr(OS) ; O ∈ On(R)}.

Exercice 596 [Mines 659] Soit E un espace euclidien. On note A(E) (resp. S(E), O(E)) l’ensemble des endomorphismes antisy-
metriques (resp. symetriques, orthogonaux) de E.

• Soit u ∈ L(E). Montrer que l’ensemble T = {tr(uv) ; v ∈ O(E)} est majore.
• Montrer que si u ∈ A(E) alors pour tout t ∈ R, exp(tu) ∈ O(E).
• On suppose que supT est atteint en v = id. Montrer que u ∈ S+(E).
• Etudier la reciproque.

Exercice 597 [Mines 660] Soit A = (ai,j) ∈ Sn(R). On suppose que a1,1, . . . , an,n sont les valeurs propres de $A$prises avec
multiplicite. Montrer que A est diagonale.

Exercice 598 [Mines 661] • Soit x ∈ Rn tel que
∑n

i=1 xi = 0. Montrer que |xj | ≤
(
n−1
n

)1/2 ∥x∥2 pour tout j ∈ 1, n.

▷ Soient A ∈ Sn(R) et λ une valeur propre de A.

Montrer que $|λ -{

trA}{n}≤
(
n−1
n

)
1/2
(√

{\|A\|22-{
(trA)2}{n}}.$

Exercice 599 [Mines 662] Soient A ∈ Sn(R), (a, b) ∈ R2 tels que : ∀X ∈ Rn, a∥X∥2 ≤ ⟨X,AX⟩ ≤ b∥X∥2. Soit P ∈ R[X] tel que
: ∀x ∈ [a, b], P (x) > 0. Montrer que P (A) ∈ S++

n (R).

Exercice 600 [Mines 663] • Soit A ∈ Mn(R) une matrice antisymetrique reelle. Montrer que les valeurs propres de A sont
imaginaires pures.

▷ Montrer que (In +A)(In −A)−1 ∈ On(R).
▷ Soit Q ∈ SO2(R). Resoudre l’equation (I2 +A)(I2 −A)−1 = Q, d’inconnue une matrice antisymetrique A ∈ M2(R).

Exercice 601 [Mines 664] Soient A ∈ S++
n (R) et B ∈ S+

n (R).

• Montrer qu’il existe C ∈ S++
n (R) telle que C2 = A−1.

• On pose D = CBC . Montrer que det(In +D)1/n ≥ 1 + det(D)1/n.
• En deduire que det(A+B)1/n ≥ det(A)1/n + det(B)1/n.
• Est-ce encore vrai si A,B ∈ S+

n (R)?
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Exercice 602 [Mines 665] Soit A ∈ Sn(R). Montrer que A appartient a S+
n (R) si et seulement si, pour toute matrice B ∈ S+

n (R),
on a tr(AB) ≥ 0.

Exercice 603 [Mines 666] On considere la forme quadratique q : (x, y, z) ∈ R3 7→ (x+ z)2 + 2xy + 4yz.

• Determiner a, b, c tels que q(x, y, z) = a(x+ y + z)2 + b(y − z)2 + cz2.
• La forme quadratique q est-elle definie positive?
• Trouver les plans de R3 sur lesquels la restriction de q est definie positive.Analyse_

Exercice 604 [Mines 667] Soient E un espace vectoriel norme et A une partie de E. On considere l’ensemble des parties que l’on
peut obtenir en appliquant successivement des passages a l’interieur ou a l’adherence a partir de A.

• Montrer qu’il y en a au plus 7.
• Donner une partie A telle qu’il y en ait exactement 7.

Exercice 605 [Mines 668] Soient (E, ∥ ∥) un espace vectoriel norme et A une partie non vide de E.
Soit f : x ∈ E 7→ d(x,A) = inf{∥x− a∥, a ∈ A}.

• Montrer que f est 1-lipschitzienne.
• Montrer que A est ferme si et seulement si A = f−1({0}).
• Montrer que tout ferme de E est intersection decroissante d’ouverts.
• Montrer que tout ouvert est union croissante de fermes.

Exercice 606 [Mines 669] Soient E un espace vectoriel norme et F un sous-espace vectoriel de dimension finie.

• Montrer que : ∀x ∈ E,∃y ∈ F, d(x, F ) = ∥y − x∥.
• On suppose que F ̸= E. Montrer qu’il existe u ∈ E tel que d(u, F ) = ∥u∥ = 1.
• En deduire que Bf (0, 1) est compact si et seulement si E est de dimension finie.

Exercice 607 [Mines 670] Determiner les sous-groupes compacts de C∗.

Exercice 608 [Mines 671] Soit f ∈ L(Rn,Rp). Montrer que f est surjective si et seulement si l’image de tout ouvert par f est un
ouvert.

Exercice 609 [Mines 672] • Soient f une fonction continue de Rn dans R etN une norme sur Rn. Montrer l’equivalence entre :
(i) |f(x)| → +∞ lorsque N(x) → +∞ ;
(ii) l’image reciproque de tout compact par f est un compact.

• Soit f une fonction continue de Rn dans Rn. On suppose que l’image reciproque de tout compact par f est un compact. Montrer
que l’image directe de tout ferme par f est un ferme.

• La reciproque du resultat precedent est-elle vraie?

Exercice 610 [Mines 673] On munit E = C0([0, 1],R) de la norme ∥ ∥∞.

Si f ∈ E, on pose u(f) =
∑+∞

k=1

(
− 1

2

)k
f
(
1
k

)
. ∈ R.

• Montrer que u est bien definie sur E.
• Montrer que u est continue sur E et determiner sa norme subordonnee.

Exercice 611 [Mines 674] Soient L1(R) l’espace vectoriel des suites sommables et N : x 7→
∑+∞

n=0|xn|.
• Montrer que N est une norme.
• Soit A l’ensemble des suites de L1(R) nulle a partir d’un certain rang. Donner l’adherence et l’interieur de A. Ind. Remarquer

que A est dense dans L1(R).# 675

On munit Rn de sa structure euclidienne canonique.
Soit D =

{
(x1, . . . , xn) ∈ (R+)n ;

∑
x2i < 1,

∑
xi > 1

}
. Soit f : D → R telle que ∀x, y ∈ D, |f(x)− f(y)| ≤ ∥x− y∥2. Que dire

de f ?

Exercice 612 [Mines 676] Soient (E, ∥ ∥) un espace norme reel, p ∈ N∗, (x1, . . . , xp) ∈ Ep,.

• Montrer que (x1, . . . , xp) est libre si et seulement si

inf {∥
∑p

i=1 λixi∥ ; (λ1, . . . λp) ∈ Rp} > 0.

• En deduire que l’ensemble des (x1, . . . , xp) ∈ Ep tels que (x1, . . . , xp) est libre est un ouvert de Ep. Retrouver ce resultat plus
simplement si E est de dimension finie.

Exercice 613 [Mines 677] Soient n ≥ 2, K un compact de Rn et ε > 0. Une partie A ⊂ K est ε-separee si, pour tous x, y ∈ A tel
que ∥x− y∥ < ε, on a x = y.

• Montrer qu’il existe un entier M(ε) tel que toute partie ε-separee de K est de cardinal inferieur a M(ε) et il existe une partie
ε-separee de K de cardinal M(ε).

• Soit f : K → K . On suppose que, pour tous x, y ∈ K , ∥f(x)− f(y)∥ = ∥x− y∥. Montrer que f est surjective.

Exercice 614 [Mines 678] Soient n ≥ 2 et f : Rn → R continue telle que, pour tout a ∈ R, f−1({a}) est compact. Montrer que f
admet un extremum global. Que se passe-t-il si n = 1?
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Exercice 615 [Mines 679] Soient (E, ∥ ∥) un espace norme reel de dimension finie, k ∈]0, 1[, f une application k-lipschitzienne de
E dans E. Montrer que f admet un unique point fixe.

Exercice 616 [Mines 680] Soit E = C0([−1, 1],R) muni de la norme de la convergence uniforme. Pour f ∈ E on pose φ(f) =∫ 1

0
f(t) dt−

∫ 0

−1
f(t) dt.

• Montrer que φ est une forme lineaire continue sur E et calculer ∥φ∥.
• Existe-t-il f unitaire telle que |φ(f)| = ∥f∥ ?

Exercice 617 [Mines 681] On note E l’espace vectoriel des fonctions de [−1, 1] vers R continues par morceaux, muni du produit
scalaire ⟨f, g⟩ =

∫ 1

−1
fg et de la norme euclidienne associee ∥ ∥.

On dit qu’une suite (f −n ≥ 0 ∈ EN converge fortement (resp. faiblement) vers f ∈ E si ∥fn− f∥ → 0 (resp. ⟨fn, φ⟩ → ⟨f, φ⟩ pour
tout φ ∈ C1([−1, 1],R)).

• Montrer que la convergence uniforme implique la convergence forte. La reciproque estelle vraie?
• Montrer que la convergence forte implique la convergence faible.
• Soit (f − n ≥ 0 ∈ EN convergent faiblement vers f ∈ C1([−1, 1],R) et verifiant de plus ∥fn∥ → ∥f∥. Montrer qu’alors
(f − n ≥ 0 ∈ EN converge fortement vers f .

• Soit (φ − n ≥ 0 ∈ C1([−1, 1],R)N convergeant uniformement vers φ et telle que (φ′
n)n≥0 converge uniformement. Soit par

ailleurs (f − n ≥ 0 ∈ EN bornee et convergeant faiblement vers f . Montrer qu’alors ⟨fn, φn⟩ → ⟨f, φ⟩.
• On pose fn(x) = sin(nx) pour n ≥ 0 et x ∈ [−1, 1]. - Montrrer que (f − n ≥ 0 converge faiblement vers la fonction nulle. -

La suite (f − n ≥ 0 converge-t-elle fortement?

Exercice 618 [Mines 682] Soient a1 < · · · < ap des reels et P =
∏p

i=1(X − ai).

On pose : E =
{
M ∈ Mn(R), P (M) = 0

}
.

• Soit M ∈ E. Determiner les valeurs possibles de trM .
• Determiner les matrices M ∈ E verifiant trM = na1.
• Montrer que la matrice a1In est isolee dans E.
• La matrice Diag(a2, a1, . . . , a1) est-elle isolee?
• Generaliser.

Exercice 619 [Mines 683] • Soit P ∈ R[X] unitaire de degre n ∈ N∗. Montrer que P est scinde sur R si et seulement si : ∀z ∈ C,
|P (z)| ≥ |Im(z)|n.

▷ Montrer que l’ensemble des matrices de Mn(R) trigonalisables est ferme.
▷ Quelle est l’adherence de l’ensemble des matrices diagonalisables de Mn(R)?

Exercice 620 [Mines 684] Soient n ≥ 2 et r ∈ [1, n − 1]. L’ensemble E des matrices carrees de taille n et de rang r est-il ouvert ?
ferme? Determiner l’interieur et l’adherence de E .

Exercice 621 [Mines 685] On munit l’espace E = C0([0, 1],R) du produit scalaire usuel defini par

⟨f, g⟩ =
∫ 1

0
f(t)g(t) dt et de la norme associee ∥ ∥2. Soit F un sous-espace de E tel qu’il existe une constante C ∈ R telle que

∀f ∈ F, ∥f∥∞ ≤ C∥f∥2.

• Montrer que F ̸= E.
• Soit (f1, . . . , fn) une famille orthonormale de F .

Montrer que ∀a1, . . . , an ∈ R, |
∑n

i=1 aifi| ≤ C
√∑n

i=1 a
2
i .

• En deduire que F est de dimension finie majoree par C2.

Exercice 622 [Mines 686] SoitA ∈ Mn(C). Montrer queA est diagonalisable si et seulement si l’ensemble {PAP−1, P ∈ GLn(C)}
est ferme.

Exercice 623 [Mines 687] Soit K = R ou C. Montrer que l’ensemble des matrices nilpotentes de Mn(K) est connexe par arcs.

Exercice 624 [Mines 688] Soient n ∈ N avec n ≥ 2, D l’ensemble des matrices diagonalisables de Mn(R).

• L’ensemble D est-il un sous-espace vectoriel ?
• Quel est le sous-espace vectoriel engendre par D ? par Mn(R) \ D ?
• L’ensemble D est il ouvert ? ferme?

Exercice 625 [Mines 689] On pose E = Mn(C) et, pour A ∈ E, ∥A∥ = sup1≤j≤n

∑n
i=1 |ai,j |. - Montrer que || ∥ est une norme

d’algebre.

• Soit A ∈ E. Etudier la convergence de la serie
∑
Ak si ∥A∥ < 1.

Cette condition est-elle necessaire pour que la serie soit convergente?

• Pour tout k ∈ N∗, on pose Uk =
(
In + A

k

)k
. Etudier la convergence et la limite de la suite (Uk).

Exercice 626 [Mines 690] Lorsque J est un intervalle de R, on pose Sn(J) = {M ∈ Sn(R) Sp(M) ⊂ J}.

• Soit I un intervalle de R. Montrer que Sn(I) est convexe.
• Montrer que Sn(I) = Sn(I).
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Exercice 627 [Mines 691] • Montrer que SLn(R) est un ferme non compact de Mn(R).

▷ Montrer que SOn(R) est connexe par arcs.
▷ Soit M ∈ GLn(R). Montrer qu’il existe un unique couple (O,S) ∈ On(R)× S++

n (R) tel que M = OS.
▷ En deduire que SLn(R) et GL+

n (R) sont connexes par arcs.

Exercice 628 [Mines 692] Determiner la limite de la suite de terme general $ un=
∑

k=0
n-1
(
n−k
n

)
n$.

Exercice 629 [Mines 693] On pose $ un=
∑

k=1
n{1}{k}

(
1− 1

n

)
k$pourtoutn ≥ 1.

• Montrer que la suite (u− n ≥ 1 est divergente.
• Donner un equivalent de un quand n→ +∞.

Exercice 630 [Mines 694] Soit $ f :[0,2]→R$ une fonction C1. On pose $ un=1n
∑ k=1

nf ( k
n+ k

n2 $pourn ≥ 1.

Etudier la convergence de la suite (u− n ≥ 1.

Exercice 631 [Mines 695] Pour n ∈ N∗, on pose $ un=
∑

k=1
nsin (

{
√

k}{n} $.Determinerunequivalentdeun.

Exercice 632 [Mines 696] Soit B le sous-espace de CZ forme des suites (u − n ∈ Z bornees. Soit T l’endomorphisme de B qui a
(u− n ∈ Z associe (un+1)n∈Z.

• Montrer que T est lineaire. Determiner ses valeurs propres et ses sous-espaces propres.
• Determiner les sous-espaces de dimension finie de B stables par T .

Exercice 633 [Mines 697] Etudier les suites definies par u1, v1 reels et
∀n ∈ N∗, $ un+1=un+vnarctan ( 1

n2
$et$vn+1 = vn − u

narctan ( 1
n2

)
$.

Exercice 634 [Mines 698] $\ \ - La suite (d− n ≥ 1 est-elle convergente? - La suite (d− n ≥ 1 est-elle bornee?

Exercice 635 [Mines 699] Soit (b− n ∈ N une suite strictement positive, croissante et non majoree.

• Montrrer que, si (a− n ∈ N est une suite reelle convergente de limite ℓ, alors

1

bn

n−1∑
k=0

(bk+1 − bk)ak −→
n→+∞

ℓ.

• Soit (a− n ∈ N une suite reelle. Montrer que, si la suite
(

an+1−an

bn+1−bn

)
n∈N

converge vers ℓ ∈ R, alors an

bn
→ ℓ quand n→ +∞.

• La reciproque de la propriete precedente est-elle vraie?

Exercice 636 [Mines 700] Soit (a − n ≥ 0 une suite reelle decroissante de reels strictement positifs, telle que a0 = 1. On pose

bn =
∑n

k=1

(
1− ak−1

ak

)
1
ak

pour tout n ≥ 1.

• Montrrer que bn ∈ [0, 1] pour tout n ≥ 1.
• On fixe ℓ ∈ [0, 1]. Montrer que l’on peut choisir la suite (a− n ≥ 0 de telle sorte que bn → ℓ.

Exercice 637 [Mines 701] Soit a ∈]0, 1[. On definit (un) par u0 = a et, pour n ∈ N, un+1 = un + u2n ln(un).

• Montrer que (un) est definie et etudier sa convergence.
• On pose F : x 7→

∫ x

a
dt

t2 ln t . Montrer que F (un+1)− F (un) −→
n→+∞

1.

• En deduire un equivalent de F (un). Qu’en deduire sur un ?

Exercice 638 [Mines 702] Soit (u − n ∈ N definie par u0 ∈]0, π/2] et ∀n ∈ N, un+1 = sin(un). Etudier la convergence de (un).
Determiner un equivalent de un.

Exercice 639 [Mines 703] Pour tout n ≥ 2, on pose fn(x) = xn − nx+ 1.

• Montrer que l’equation fn(x) = 0 admet une unique solution xn dans [0, 1].
• Etudier la monotonie de la suite (xn). Montrer sa convergence.
• Determiner la limite de la suite (xn) et un equivalent simple de xn.

Exercice 640 [Mines 704] Determine un developpement asymptotique a deux termes de xn.

Exercice 641 [Mines 705] Soit (un) une suite reelle definie par u0 ≥ 0 et, pour tout n ∈ N, un+1 =
√
un + 1

n+1 .

• Si (un) converge, quelle est sa limite?
• On suppose que, pour tout n ∈ N, un ≤ 1. Montrer que (un) converge. Quelle est sa limite?
• Etudier la convergence de (un) dans le cas general.

Exercice 642 [Mines 705] Pour n ≥ 2, on considere l’equation sin(x) = x
n .

• Montrer que cette equation admet une unique solution sur ]0, π[ qu’on notera xn.
• Montrer que la suite (x−n ≥ 2 converge. Quelle est sa limite? - Donner un developpement asymptotique de xn a la precision $o

(
1
n3

)
.$

Exercice 643 [Mines 706] Pour tout n ∈ N∗, on pose Pn =
∏n

i=0(X − i).

• Montrer que : ∀n ∈ N∗,∃!rn ∈
]
0, 1[ , P ′

n(rn) = 0.
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• Determiner un equivalent simple de rn.

Exercice 644 [Mines 707] Soit (un) la suite definie par u0 ≥ 0 et, pour tout n ∈ N, un+1 =
√
n+ un

• Montrer que un → +∞.
• Donner un developpement asymptotique a trois termes de un.

Exercice 645 [Mines 708] Pour tout P ∈ R[X], on pose $N(P)=⊃t∈[0,1]|P(t)|.$ Pour tout n ∈ N, on noteEn l’ensemble des polynomes
unitaires de Rn[X] et an = infP∈En

N(P ).

• Montrer que an > 0 ; calculer a0 et a1.
• Montrer que (a− n ∈ N est decroissante et de limite nulle.

Exercice 646 [Mines 709] Limite et developpement asymptotique en o(1/n) de un =
∏n

k=1 cos

(√
k(n−k)

n3/2

)
.

Exercice 647 [Mines 710] Soit (un) une suite reelle verifiant : $∀(m,n)∈N2,u
n+m≤ um+un.$ Montrer que : un

n −→
n→+∞

inf
{

un

n pour n ∈

N∗
}

.

Exercice 648 [Mines 711] • Montrer que tout sous-groupe de (R,+) est de la forme aZ (a ∈ R) ou dense dans R. Soit θ ∈ R∗

tel que π
θ /∈ Q.

▷ Montrer que A =
{
pθ + 2πq, (p, q) ∈ Z2

}
est dense dans R.

▷ Expliciter les valeurs d’adherence de la suite (cos(nθ))n∈N.
▷ Expliciter les valeurs d’adherence de la suite (cos(

√
nθ))n∈N.

Exercice 649 [Mines 712] Soit x ∈
[
0, π2

[
. Convergence et somme de

∑
n≥0

1
2n tan

(
x
2n

)
.

Ind. Montrer que tan(x) = cos(x)
sin(x) − 2 cos(2x)

sin(2x) .

Exercice 650 [Mines 713] Soit (un) une suite reelle telle que n(un+1 − un) → 1. Quelle est la nature de la serie
∑
un ?

Exercice 651 [Mines 714] Determiner la convergence et la somme de la serie de terme general un = (−1)n

n+(−1)n .

Exercice 652 [Mines 715] Determiner la nature de
∑ cos(lnn)

lnn .# 716 Si n ∈ N∗, soit un =
∑n

k=1(ln(k))
2. Determiner la nature de∑ 1

un
.

Exercice 653 [Mines 717] Nature de la serie de terme general
(−1)n∑n

k=1
1√
k
− (−1)n

?

Exercice 654 [Mines 718] Soit α > 0 fixe. Nature de la serie de terme general
∑ ⌊

√
n+ 1⌋ − ⌊

√
n⌋

nα
?

Exercice 655 [Mines 719] Soient α > 0 et β ∈]0, 1[. Nature de la serie
∑ (−1)⌊n

β⌋

nα
.

Exercice 656 [Mines 720] • Montrrer que
π

4
=
∑+∞

k=0

(−1)k

2k + 1
.

▷ Nature de la serie de terme general un = ln

(
tan

(∑n
k=0

(−1)k

2k + 1

))
?

Exercice 657 [Mines 721] Soient a, b deux reels tels que 0 < a < b.

On pose u0 > 0 et : ∀n ∈ N, un+1 =
n+ a

n+ b
un.

• Determiner une condition necessaire et suffisante pour que la serie
∑
un soit convergente.

• Dans ce cas, calculer la somme
∑+∞

n=0 n(un+1 − un).

• En deduire la somme
∑+∞

n=0 un.

Exercice 658 [Mines 722] Soit (u− n ≥ 0 une suite decroissante de reels positifs. On pose, pour n ∈ N, vn =
1

1 + n2un
. Montrrer

que si
∑
vn converge, alors

∑
un diverge.

Exercice 659 [Mines 723] On pose un =
∫√(n+1)π
√
nπ

sin(x2) dx. Quel est le signe de un ? Montrrer que la serie
∑
un est semi-

convergente.

Exercice 660 [Mines 724] Etudier limn→+∞
∑+∞

k=n+1

n

k
√
k2 − n2

.

Exercice 661 [Mines 725] Pour tout n ∈ N∗, on pose un =
∫ n+1

n

cos (ln(t))

t
dt et vn =

cos ln(n)

n
.

• Determiner la nature de la serie
∑
un. - Soit n ∈ N∗. Montrer que un − vn =

∫ n+1

n
(t− n− 1) cos ln(t)+sin ln(t)

t2 dt.
• En deduire la nature de la serie

∑
vn.
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Exercice 662 [Mines 726] Soit f ∈ C1(R,R+∗) telle que f ′(x)
f(x) −→

x→+∞
−∞. Montrer que

∑
f(n) converge.

Exercice 663 [Mines 727] On dit que la serie de terme general un enveloppe a ∈ R+∗ lorsque, pour tout n ∈ N, |a−
∑n

k=0 uk| ≤
|un+1|. On dit qu’elle enveloppe strictement a ∈ R+∗ lorsqu’il existe une suite (θn) ∈]0, 1[N telle que, pour tout n ∈ N, a−

∑n
k=0 uk =

θn+1un+1.

• Soit a > 0. Donner un exemple de serie divergente qui enveloppe a.
• Donner un exemple de serie convergente qui enveloppe un reel a ∈ R+∗.
• Donner un exemple de serie convergente qui n’enveloppe aucun reel a ∈ R+∗.
• Montrer que, si une serie enveloppe strictement un reel a > 0, alors elle est alternee.

Exercice 664 [Mines 728] • Soit
∑
un une serie a termes positifs. On pose Sn =

∑n
k=0 uk . Montrer que si

∑
un diverge, alors∑ un

Sn
diverge aussi.

▷ Soit
∑
yn une serie a termes complexes telle que, pour toute suite (xn) qui tend vers 0, la serie

∑
xnyn converge. Montrer

que
∑

|yn| converge.

Exercice 665 [Mines 729] Soit (un) ∈ (R+)N. On suppose que
∑
un converge. Construire (vn) ∈ (R+)N, croissante et de limite

+∞, telle que
∑
unvn converge.

Exercice 666 [Mines 730] Soit f : R+ → R+. Montrer que les proprietes suivantes sont equivalentes :

1. pour toute serie
∑
un convergente de terme general positif, la serie

∑
f(un) est convergente ;

ii) l’application x 7→ f(x)
x est bornee au voisinage de 0+.

Exercice 667 [Mines 731] Soit
∑
un une serie convergente a termes strictement positifs.

• Montrer que
∑n

k=1 kuk = o(n).
• Montrer que 1

n(n+1)

∑n
k=1 kuk est le terme general d’une serie convergente.

• Montrer que la serie de terme general 1
n+1 (n!

∏n
k=1 uk)

1/n est convergente et que :

+∞∑
n=1

1

n+ 1

(
n!

n∏
k=1

uk

)1/n

≤
+∞∑
k=1

uk.

Exercice 668 [Mines 732] Pour toute permutation f de N∗, on note $Ef= \α ∈R,\ ;
∑

f(n){nα}<+∞\.$

• Montrer qu’il existe f ∈ S(N∗) tel que Ef = ∅.
• Soit f ∈ S(N∗). Montrer que si Ef ̸= ∅, alors c’est un intervalle minore par 2 et non majore.
• Montrer que, si β > 2, alors il existe f ∈ S(N∗) tel que Ef =]β,+∞[.

Exercice 669 [Mines 733] Soit fn = x 7→
∑n

k=0
xk

k! .

• Montrer que, pour n pair, fn ne s’annule pas et que, pour n impair, fn s’annule en un unique point rn.
• Montrer que, pour n impair, −2n− 3 < rn < 0.

Exercice 670 [Mines 734] Soit α un reel non nul. On pose, pour x ∈ [−1, 1], gα(x) = cos(α arcsinx). A quelle condition sur α la
fonction gα est-elle polynomiale?

Exercice 671 [Mines 735] Soit f : [0, 1] → R de classe C2, telle que f(0) = f ′(0) = f ′(1) = 0 et f(1) = 1. Montrer qu’il existe
c ∈ ]0, 1[ tel que |f ′′

(c)| ≥ 4.

Exercice 672 [Mines 736] Soient I un intervalle non vide de R et f : I → R de classeC2. Montrer que f est convexe si et seulement
si : ∀(x, y) ∈ I2, ∃t ∈ ]0, 1[, f((1− t)x+ ty) ≤ (1− t)f(x) + tf(y).

Exercice 673 [Mines 737] Trouver les fonctions f : R → R continues en 0 telles que f(0) = 1 et, pour tout x ∈ R, f(2x) =
f(x) cos(x).

Exercice 674 [Mines 738] Soient A,B ∈ R+, f : R → de classe C2 telle que, pour tout x ∈ R, |f(x)| ≤ A et |f ′′
(x)| ≤ B.

• Montrer que, pour tout h ∈ R+∗, |f ′(x)| < A
h + Bh

2 .
• Trouver la meilleure majoration de |f ′(x)| pour tout x ∈ R.

Exercice 675 [Mines 739] Soit f : x ∈ ]− 1,+∞[ 7→ x− ln(1 + x).

• Montrer que f definit une bijection f1 de ]− 1, 0] sur R+ et une bijection f2 de R+ sur R+.
• Determiner un equivalent de f en 0. En deduire un equivalent de f−1

1 et f−1
2 en 0.

• Determiner le developpement asymptotique a l’ordre 2 de f−1
2 en 0.

Exercice 676 [Mines 740] Soit E = C0([−1, 1],C). Soit g ∈ C0([−1, 1], [−1, 1]) strictement croissante et surjective. Soit Φ ∈ L(E)
l’application qui a f ∈ E associe f ◦ g. Soit F un sous-espace de E de dimension finie stable par Φ. On note ΦF l’endomorphisme de
F induit par Φ sur F .

• Montrer que ΦF est un automorphisme de F .
• Montrer que la seule valeur propre de ΦF est 1.

57



• Soit Ψ = ΦF − idF . Montrer que Ψ est nilpotent.# 741

Soit f : R → Mn(R) derivable. Montrer l’equivalence entre les assertions suivantes : i) f(0) = In et ∀x ∈ R, f ′(x) = f ′(0)f(x),
ii) ∀(x, y) ∈ R2, f(x+ y) = f(x)f(y) et ∀x ∈ R,det(f(x)) ̸= 0.

Exercice 677 [Mines 742] Soient E = C∞(R,R) et D : f ∈ E 7→ f ′. Montrer que D est un endomorphisme de E et determiner ses
elements propres.

Exercice 678 [Mines 743] Soient f : R+ → R+ de classe C1, ℓ ∈ R+∗ et P =
∑n

k=0 akX
k ∈ R[X] avec n ∈ N∗ et an ̸= 0. On

suppose que f ′(x)P (f(x)) −→
x→+∞

ℓ. Determiner un equivalent de f en +∞.

Exercice 679 [Mines 744] Soient h : R → R+ continue, ℓ ∈ R+∗, n ∈ N∗. On suppose : h(x)
∫ x

0
hn −→

x→+∞
ℓ. Determiner un

equivalent de h en +∞.

Exercice 680 [Mines 745] Soient a, b ∈ R avec a < b et E = C0([a, b],R).
On pose F =

{
g ∈ C2([a, b],R) ; g(a) = g(b) = g′(a) = g

′
(b) = 0

}
.

• On fixe f ∈ E.

Montrer qu’il existe g ∈ F tel que f = g
′′

si et seulement si
∫ b

a
f(t)dt =

∫ b

a
tf(t)dt = 0.

• Soit h ∈ E tel que ∀f ∈ F ,
∫ b

a
hg

′′
= 0. Montrer que h est affine.

Exercice 681 [Mines 746] SoientE = C0([0, 1],R) etu l’application definie par : ∀f ∈ E, ∀x ∈ [0, 1],u(f)(x) =
∫ 1

0
min(x, t)f(t) dt.

Verifier que u est un endomorphisme de E. Determiner ses elements propres.

Exercice 682 [Mines 747] Montrer qu’il n’existe pas de fraction rationnelle F ∈ R(X) telle que :

∀x ∈ R,
∫ x

0
et

2

dt = F (x) ex
2

.

Exercice 683 [Mines 748] Etudier la fonction f : x 7→
∫ x2

x
dt

t
√
1−t

.

Exercice 684 [Mines 749] Calculer I =
∫ 1

−1
cos x

e
1
x +1

dx.

Exercice 685 [Mines 750] Soient a, b ∈ R avec a < b, f ∈ C0([a, b], R), ϵ > 0. Montrer qu’il existe P,Q ∈ R[X] tels que ∀x ∈ [a, b],
P (x) ≤ f(x) ≤ Q(x) et

∫ b

a
(Q− P ) ≤ ϵ. Est-ce toujours vrai si f est uniquement continue par morceaux?

Exercice 686 [Mines 751] Soit f : [0, 1] → R continue. - Soit n ∈ N. On suppose que, pour tout k ∈ 0, n,
∫ 1

0
f(t) tkdt = 0. Montrer

que f s’annule au moins n+ 1 fois.

• On suppose que, pour tout k ∈ N,
∫ 1

0
f(t) tkdt = 0. Montrer que f est nulle.

Exercice 687 [Mines 752] Soit f ∈ C0([a, b],R) telle que : ∀(α, β) ∈ [a, b]2,
∫ β

α
f = 0. Montrer que f = 0.

Exercice 688 [Mines 753] Soient (a, b) ∈ R2 avec a < b et F =
{
g ∈ C1([a, b],R), g(a) = g(b) = 0

}
. Determiner les f ∈

C0([a, b],R) verifiant : ∀g ∈ F,
∫ b

a
fg = 0.

Exercice 689 [Mines 754] Soit f ∈ C2([0, 1],R) telle que f(0) = f(1) = 0.

Montrer : 120
( ∫ 1

0
f
)2

≤
∫ 1

0
(f

′′
)2.

Exercice 690 [Mines 755] Soient E = C0([a, b],R) muni de ∥∥∞ et B la boule unite fermee de E. Soit f ∈ E. Montrer que
supg∈B

∫ b

a
fg =

∫ b

a
|f |.

Exercice 691 [Mines 756] Etudier la convergence et calculer
∫ +∞
−∞

dx
x6+1 .

Exercice 692 [Mines 757] Etudier la convergence de l’integrale
∫ +∞
0

t| cos t|t5 dt.

Exercice 693 [Mines 758] Nature de
∫ +∞
0

| sin(x)|x dx puis de
∫ +∞
0

| sin(x)|xα

dx avec α ∈]1,+∞[.

Exercice 694 [Mines 759] Soit α > 0. Etudier la convergence de l’integrale :
∫ +∞
0

(
exp

(
sin2 x
xα

)
− 1
)
dx.

Exercice 695 [Mines 760] Nature suivant a ∈ R de I(a) =
∫ +∞
0

x−ln(1+x)
xa dx ? Calculer I(5/2).

Exercice 696 [Mines 761] • Soit
∑
un une serie convergente a termes positifs. Nature de

∑
u2n ?

▷ Soit f une fonction continue, positive et integrable sur R+. Nature de
∫∞
0
f2 ?

Exercice 697 [Mines 762] Soient In =
∫ π/2

0
sin(2n+1)t

sin t dt et Jn =
∫ π/2

0
sin(2n+1)t

t dt.

• Montrer que In et Jn sont bien definies. Montrer que (In) est constante.

• Montrer que In − Jn −→
n→+∞

0. - Montrrer la convergence de
∫ +∞
0

sin t
t dt et la calculer.

Exercice 698 [Mines 763] Soit a > 0. Montrer que l’integrale :
∫ +∞
0

arctan(ax)+arctan(x/a)
1+x2 dx converge et calculer sa valeur.

Exercice 699 [Mines 764] Soit f ∈ C1([0, 1],R) telle que f(0) = f(1) = 0.
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• Soient I1 =
∫ 1

0
(1 + cotan2(πt))f(t)2 dt et I2 =

∫ 1

0
f ′(t)f(t) cotan(πt) dt. Montrer la convergence de I1 et I2. Trouver une

relation entre I1 et I2.
• Montrer que

∫ 1

0
f ′(t)2 dt ≥ π2

∫ 1

0
f(t)2 dt et etudier le cas d’egalite.

Exercice 700 [Mines 765] Soit f continue et T -periodique de R dans R. Montrer l’existence et l’unicite de λ tel que
∫ +∞
1

λ−f(t)
t dt

converge.

Exercice 701 [Mines 766] Soit f : R+ → R+ une fonction continue decroissante.

• On suppose que f est integrable sur [0,+∞[. Montrer que f(x) =
x→+∞

o
(
1
x

)
.

• Etudier la reciproque.

Exercice 702 [Mines 767] Soit f ∈ C1(R,R+) telle que f ′ est bornee et
∫

R f converge.
Montrer que lim

+∞
f = lim

−∞
f = 0.

Exercice 703 [Mines 768] Etudier la convergence
∫ +∞
0

t| cos(t)|t5 dt.

Exercice 704 [Mines 769] Etudier la convergence et la convergence absolue de
∫ +∞
2

cos(x)
ln(x) dx.

Exercice 705 [Mines 770] • Soient f et g deux fonctions continues de [a, b] dans R. On suppose f de signe constant. Montrer
qu’il existe c ∈ [a, b] tel que

∫ b

a
f(t)g(t)dt = g(c)

∫ b

a
f(t)dt.

▷ Soit f : R+∗ → R continue telle que f admet la limite λ ∈ R en 0 et il existe µ ∈ R telle que la fonction t 7→ f(t)−µ
t est

d’integrable convergente sur [1,+∞[. Montrer que, pour tout a < b, l’integrale
∫ +∞
0

f(at)−f(bt)
t dt existe et la calculer.

Exercice 706 [Mines 771] Soit f une fonction continue par morceaux et de carre integrable de R+ dans R. Pour x ∈ R+∗, soit
g(x) = 1√

x

∫ x

0
f .

• Determiner la limite de g en 0. - Determiner la limite de g en +∞.

Exercice 707 [Mines 772] Donner un equivalent, quand x→ +∞, de $
∫

1
x\ !ttdt\,$ ?

Exercice 708 [Mines 773] Soit f : x 7→
∫ +∞
x

e−t

t dt.

• Montrer que f est definie sur R+∗ et seulement sur cet ensemble.
• Etudier l’integrabilite de f sur R+∗.

Exercice 709 [Mines 774] Si a > 0 et b > 0, calculer
∫ +∞
0

e−at−e−bt

t dt.

Exercice 710 [Mines 775] Soit f : R+ → R+∗ une fonction de classe C1. On suppose que f ′/f tend vers une limite a ∈ R−∗ en
+∞.

• Montrer que f et f ′ sont integrables sur R+.

• Donner un equivalent de
∫ +∞
x

f lorsque x tend vers +∞.

Exercice 711 [Mines 776] Trouver une valeur approchee rationnelle a 10−3 pres de
∫ 1

0
e−t ln(t) dt.

Exercice 712 [Mines 777] Quelles sont les fonctions de R+ dans R qui sont limite uniforme sur R+ d’une suite d’applications
polynomiales reelles ?

Exercice 713 [Mines 778] Soient S un segment de R non reduit a un point, n ∈ N∗, m ∈ R+∗, ε ∈ R+∗, f une fonction de classe
Cn de S dans R telle que ∥f (n)∥∞,S < m. Montrer qu’il existe p ∈ R[X] tel que ∥f − p∥∞,S < ε et ∥p(n)∥∞,S < m.

Exercice 714 [Mines 779] Soit f une application continue de R dans R. Montrer qu’il existe une suite (p − n ≥ 0 d’applications
polynomiales reelles telle que (p− n ≥ 0 converge uniformement vers f sur tout segment de R.

Exercice 715 [Mines 780] Soient a et b deux nombres reels tels que a < b et S = [a, b].

• On suppose que S ∩ Z ̸= ∅. Expliciter une fonction continue f de S dans R qui n’est pas limite uniforme sur S d’une suite
d’elements de Z[X].

• On suppose S ⊂]0, 1[. On definit une suite (P − n ≥ 0 de polynomes par P0 = X et, pour tout n ∈ N, Pn+1 = 2Pn(1− Pn).
Montrer que (P − n ≥ 0 converge uniformement sur S vers la fonction constante egale a 1

2 .
• On suppose que S∩Z = ∅. Montrer que toute fonction continue f de S dans R est limite uniforme sur S d’une suite d’elements

de Z[X].

Exercice 716 [Mines 781] Soit, pour n ∈ N, fn : x ∈ R+ 7→ xn(1−
√
x).

• Determiner le domaine de convergence D de la serie de fonctions
∑
fn.

• Y a-t-il convergence normale sur D ? - Calculer
∑+∞

n=0
1

(n+1)(2n+3) .

Exercice 717 [Mines 782] Soitα > 0. Etudier les modes de convergence de la serie de fonctions
∑
un definie parun(x) = x

nα(1+nx2) .

Exercice 718 [Mines 783] Soit f : x 7→
∑

n≥1
e−nx

x+n . Domaine de definition, continuite de f , equivalent de f aux extremites de son
domaine de definition.

Exercice 719 [Mines 784] Soit f : x 7→
∑

n≥1
x

n(1+nx2) . Domaine de definition, continuite, etude de la derivabilite, equivalents en
0 et +∞.
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Exercice 720 [Mines 785] • Montrer que la serie de fonctions
∑

x e−nx

ln(n) converge simplement sur R+ mais non normalement.

▷ Montrer la convergence uniforme sur R+.

Exercice 721 [Mines 786] Pour tout n ∈ N∗ et x ∈ R+, on pose fn(x) = x√
n(n+x)

.

• Montrer la convergence simple de
∑
fn sur R+. On note f =

∑+∞
n=1 fn.

• Montrer que la serie
∑
fn converge normalement sur les segments de la forme [0,M ] avecM > 0. Y a-t-il convergence normale

sur R+ ?
• Etudier la continuite de f . Montrer que f est de classe C1 sur ]0,+∞[.
• Soient n ≥ 1 et x0 ≥ n. Montrer : f(x0) ≥

∑n
k=1

1
2
√
k

. En deduire : f(x) −→
x→+∞

+∞.

• Montrer que f(x) =
x→+∞

o(x).

Exercice 722 [Mines 787] Soit f ∈ C([a, b],R).
On pose f0 = f et, pour n ∈ N∗ et x ∈ [a, b], fn(x) =

∫ x

a
fn−1(t)dt.

Etudier la convergence simple de la serie
∑
fn et calculer sa somme.

Exercice 723 [Mines 788] Soit f : x 7→
∑+∞

n=1
(sin(nx))2

n2 .

• Montrer que la fonction f est definie et continue sur R.
• La fonction f est-elle derivable en 0?# 789

Soient a > 0 et $f :x 7→
∑

n=1
+∞ ln

(
1 + a

n2x2

)
.$

Determiner l’ensemble de definition de f .
Determiner un equivalent de f en 0, et en +∞.

Exercice 724 [Mines 790] • Justifier la convergence pour x ∈ [0, 1[ de$ :f(x)=
∏

n=0
+∞
(

1+xn

{ 1+xn+1}
)

xn
.$

• Montrer que, pour tout x ∈ ]0, 1[, on a $ :ln f(x)=x-1x
∑ n=1

+∞xnln(1+xn)+ln 2.$

• En deduire : ∀x ∈ [0, 1[ , ln f(x) = ln 2 +
∑+∞

m=1
(−1)m

m
xm

1+x+···+xm .

• Montrer que f possede une limite finie en 1− et l’expliciter.

Exercice 725 [Mines 791] Pour n ∈ N et x ∈ R, on pose un(x) = e−x
√
n.

• Determiner les domaines de definition des fonctions $ f=
∑

n=0
+∞un$etg=

∑+∞
n=0(−1)nun .

• Trouver une equation fonctionnelle reliant f et g.
• Montrer que f est analytique. Qu’en est-il de g ?

Exercice 726 [Mines 792] Rayon de convergence et somme de $ f :x 7→
∑

n=1
+∞ {

x
2n+2}{n(n+1)(2n+1)}$.

Exercice 727 [Mines 793] Rayon de convergence et somme de $ f :x 7→
∑

n=1
+∞ xn

4n2−5n+1
$.

Exercice 728 [Mines 794] Determiner le rayon de convergence et la somme de la serie entiere
∑
zn+(−1)n .

Exercice 729 [Mines 795] Soit u qui a $ P∈C[X]$ associe $ u(P) :z7→ e-z∑
n=0

+∞P (n)
n! zn$.Montrerqueu est bien definie, et que c’est

un automorphisme de C[X]. Determiner ses elements propres.

Exercice 730 [Mines 796] Soient $ q∈]-1,1[$ et $ f :x7→
∑

n=0
+∞ sin(qnx)$.

• Montrer que f est definie sur R et de classe C∞.
• Montrer que f est developpable en serie entiere.

Exercice 731 [Mines 797] Soient α et β deux reels strictement positifs.

• Montrer que la serie
∑ (−1)n

αn+β est convergente. - On noteS la somme de la serie ci-dessus et pour toutn ∈ N, rn =
∑+∞

k=n+1
(−1)k

αk+β .

Exprimer S et rn sous forme integrale.

• Determiner le rayon de convergence de la serie entiere
∑
rnx

n. Etudier son comportement aux bornes de l’intervalle de conver-
gence.

Exercice 732 [Mines 798] Montrer qu’au voisinage de 0, la fonction f : x 7→
∫ +∞
0

ln(1+xe−t) dt est developpable en serie entiere
et en donner les coefficients.

Exercice 733 [Mines 799] Expliciter le developpement en serie entiere de ln(x2 − x
√
2 + 1) au voisinage de 0.

Exercice 734 [Mines 800] Soient τ ∈ R et f : x 7→ arctan
(
τ x−1
x+1

)
. Montrer que f est developpable en serie entiere en 0 et preciser

le domaine exact de validite.

Exercice 735 [Mines 801] Rayon de convergence, ensemble de definition et somme de f : x 7→
∑+∞

n=1
ch(n)

n x2n ?

Exercice 736 [Mines 802] Determiner le developpement en serie entiere en 0 de f : x 7→ sin
(
1
3arcsin(x)

)
.

Exercice 737 [Mines 803] On pose : ∀n ≥ 2, un =
∑

(i,j)∈(N∗)2
1

(ij)2 et S : x 7→
∑+∞

n=2 unx
n.
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• Determiner un equivalent simple de un.
• Determiner le rayon de convergence R de S et simplifier S(x) sur ]−R,R[.
• Etudier la bonne definition et la continuite de S en R et en −R.

Exercice 738 [Mines 804] Soit P ∈ R[X] de degre p ∈ N∗.

• Determiner le rayon de la serie entiere
∑+∞

n=0 P (n)x
n et montrer que la somme de cette serie s’ecrit sous la forme Q(x)

R(x) avec
Q,R ∈ R[X].

• Soit M = (P (i+ j))1≤i,j≤p+1. Montrer que det(M) = 0.
• Montrer que det(P (i+ j))1≤i,j≤p ̸= 0.

Exercice 739 [Mines 805] Soit f : x 7→ (arcsin(x))2.

• Montrer que f est solution d’une equation differentielle lineaire d’ordre 2, sur un intervalle que l’on precisera.
• Montrer que f est developpable en serie entiere au voisinage de 0. Experimer les coefficients de ce developpement en serie

entiere et donner son rayon de convergence.

Exercice 740 [Mines 806] On definit la suite (an) par : a0 = a1 = 1 et ∀n ∈ N∗, an+1 = an + 2
n+1an−1. - Montrer que :

∀n ∈ N∗, 1 ≤ an ≤ n2 et en deduire le rayon de convergence R de la serie entiere
∑
anx

n.
On pose f : x ∈ ]−R,R[ 7→

∑+∞
n=0 anx

n.

• Montrer que f est solution de (1− x)y′ − (1 + 2x)y = 0.
• Expliciter f a l’aide des fonctions suuelles.

Exercice 741 [Mines 807] On pose f : x 7→
∑+∞

n=0 e
−n+in2x.

• Montrer que f est bien definie et de classe C∞.
• Est-elle developpable en serie entiere?

Exercice 742 [Mines 808] • Rappeler la formule de Stirling.

▷ Calculer le rayon de convergence de la serie entiere
∑

ln
(
1 + 1

n

)
xn.

▷ Calculer la somme de cette serie entiere en −1 apres s’etre assure de son existence.

▷ Calculer
∫ 1

0
(−1)⌊1/x⌋

x dx.

Exercice 743 [Mines 809] • Determiner le rayon de convergence de f : z 7→
∑+∞

k=1
(−1)k

k zk .

▷ Soit z ∈ C avec |z| < 1. Calculer exp (f(z)). Ind. Considerer t ∈ [0, 1] 7→ exp (f(tz)).
▷ Soit A ∈ Mn(C). Montrer l’existence de α > 0 tel que :

$∀ z∈C,\ |z|≤ α⇒ det(In+zA)=exp (
∑

k=1
+∞ (−1)k

k \,tr(Ak)\,zk .$

Exercice 744 [Mines 810] Soit A ∈ Mn(C). - Determiner le rayon de convergence de la serie f(z) =
∑

p∈N tr(Ap)zp - Calculer
f(z) en fonction du polynome caracteristique de A.

Exercice 745 [Mines 811] Soit (a− n ≥ 0 ∈ CN. On suppose que la serie
∑
n|an| converge.

• Montrer que le rayon de
∑
anz

n est superieur ou egal a 1.
• On suppose |a1| ≥

∑+∞
n=2 n|an| avec a1 ̸= 0. Montrer que f : z ∈ D 7→

∑+∞
n=0 anz

n est injective.

Exercice 746 [Mines 812] • Developpere en serie entiere φ : z 7→ z
(1−z)2 . Montrer que φ est injective sur Do(0, 1).

On pose f : z 7→ z +
∑+∞

n=2 anz
n avec (an) une suite reelle. On suppose que f est definie et injective sur Do(0, 1). - Montrrer que

f(z) ∈ R ⇐⇒ z ∈ R.

• En deduire que Im z ≥ 0 ⇐⇒ Im f(z) ≥ 0.
• Soit R ∈ ]0, 1[. Calculer

∫ π

0
Im f(Reit) sin(nt) d t.

• Montrrer que : ∀n ≥ 2, |an| ≤ n.

Exercice 747 [Mines 813] Soit, pour n ∈ N, In =
∫ π/4

0
tan(t)n d t.

• Trouver une relation de recurrence sur (In).

• Montrrer que, pour n ∈ N, I2n = (−1)n
∑+∞

k=n
(−1)k

2k+1 . Donner une expression similaire pour I2n+1.
• Donner un equivalent de In.

Exercice 748 [Mines 814] Soit, pour n ≥ 2, In =
∫ +∞
1

d t
1+t+···+tn . Determiner de trois facons differentes la nature de

∑
In.

Exercice 749 [Mines 815] On pose, pour tout n ∈ N∗, un =
∫ +∞
1

exp(−xn) dx. Justifier l’existence de (un). Etudier la convergence
de la suite (un) et de la serie

∑
un.

Exercice 750 [Mines 816] Developpement asymptotique a deux termes de In =
∫ +∞
0

e−nx ln(n+ x)dx?

Exercice 751 [Mines 817] Pour n ∈ N∗ et α ∈ R+, on pose un =
∫ n

0

(
1 + x

n

)n
e−αx dx. Determiner un equivalent simple de un

dans les cas α = 0, α > 1, α = 1.

Exercice 752 [Mines 818] • Montrrer que
∫ +∞
0

cos
(
u2
)
du converge.
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▷ Soit (a, b) ∈ (R+∗)
2. Trouver un equivalent de In =

∫ 1

0
cos
(
n
(
au2 + bu3

))
du.

Ind. Poser t =
√
nau.

Exercice 753 [Mines 819] Soit α > 1. Pour n ∈ N∗, on pose In(α) =
∫ +∞
0

d t
(1+tα)n .

• Justifier la convergence de In(α).
• Etablir une relation entre In+1(α) et In(α). En deduire une expression de In(α) en fonction de I1(α) et de α.
• Determiner la limite de la suite (In(α))n∈N.

• Montrrer l’existence d’un reel K(α) tel que In(α) ∼ K(α)
n1/α quand n→ +∞.# 820

On pose, pour tout x ∈ ]0, 1[, f(x) = x2 ln x
x−1 .

• Montrer que f est prolongeable en une fonction de classe C1 sur [0, 1], qu’on appellera toujours f par la suite.

• Donner un equivalent de
∫ 1

0
xnf(x) dx.

• Montrer que limn→+∞ n
∫ 1

0
xnf(xn) dx =

∑+∞
k=3

1
k2 .

Exercice 754 [Mines 821] Soit g : R+ → R, continue par morceaux, integrable, continue en 0. Montrer que
∫ 1

0
x g(u) e−xu du −−−−−→

x→+∞
g(0). On commencera par le cas ou g est bornee.

Exercice 755 [Mines 822] Soit f : x 7→
∫ +∞
0

eitx−1
t e−tdt.

• Montrer que, pour tout u ∈ R, |eiu − 1| ≤ |u|.
• En deduire que f est derivable sur R puis simplifier l’expression de f .

Exercice 756 [Mines 823] On admet que
∫ +∞
0

e−x2

dx = π
2 .

• Montrer que I =
∫ +∞
0

cos(t2)dt converge.

On pose F : x 7→
∫ +∞
0

e−(t2+i)x2

t2+i dt.

• Montrer que F est definie et de classe C1 sur R+.

• En deduire que
∫ +∞
0

e−ix2

dx = 1√
π

∫ +∞
0

dt
t2+i .

• En deduire la valeur de I .

Exercice 757 [Mines 824] On pose, pour tout t ∈ R, h(t) =
∫

R e
−π(x2+2itx) dx. Montrer que l’integrale h(t) est bien definie pour

tout t ∈ R puis la calculer explicitement.

Exercice 758 [Mines 825] On pose f : x 7→
∫ 1

0
ln t
t+x dt.

• Determiner le domaine de definition de f .
• Montrer que f est derivable sur R+∗ et expliciter f ′.
• On pose g : x 7→ f(x) + f(1/x). Simplifier g(x) pour x > 0.

Exercice 759 [Mines 826] Soit F : x 7→
∫ +∞
0

sin(xt)
t(1+t2) dt.

• Montrer que F est definie sur R et de classe C2.
• Exprimer F a l’aide de fonctions usuelles.# 827

On pose F : x 7→
∫ +∞
0

e−t2− x2

t2 dt.

• Montrer que F est definie sur R.
• Montrer que F est de classe C1 sur R∗.
• Trouver une equation differentielle d’ordre 1 verifiee par F .
• En deduire F .

Exercice 760 [Mines 828] Soit f : x 7→
∫

R e
tx−t2 dt.

• Montrer que f est definie et de classe C2 sur R. Quelle equation differentielle verifie f ?
• Trouver les solutions du probleme de Cauchy −2y

′′
+ xy′ + y = 0 avec les conditions initiales y(0) =

√
π et y′(0) = 0.

Exercice 761 [Mines 829] • Determiner le domaine de definition de f : x 7→
∫ +∞
0

sin t
t e−xt dt.

▷ Montrer que f est continue sur R+.
▷ Montrer que f est de classe C1 sur R+∗.
▷ Donner une expression de f ′ puis de f .

▷ En deduire la valeur de
∫ +∞
0

sin t
t dt.

Exercice 762 [Mines 830] On pose f(x) =
∫ +∞
0

| sin(t)|e−xtdt. Determiner le domaine de definition de la fonction f et montrer
qu’elle y est de classe C∞. Expliciter la valeur de f(x).

Exercice 763 [Mines 831] Soient f ∈ C0(R,R) et g : x 7→ 1
x

∫ x

0
cos(x−y)f(y) dy. Montrer que g est bien definie sur R+∗ et trouver

sa limite en 0. On suppose que f tend vers ℓ en +∞. Etudier la limite de g en +∞.
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Exercice 764 [Mines 832] Soient C > 0, d > 0 et α ∈ R. Montrer que
∫ d

0
e−tx2

(C + x2)αdx ∼
t→+∞

√
π
2

Cα
√
t

.

Exercice 765 [Mines 833] Soit f : x 7→
∫ π

0
ln(x2 − 2x cos t+ 1) dt.

• Determiner le domaine de definition de f , etudier la continuite et les symetries.
• Expliciter f(x).

Exercice 766 [Mines 834] On pose f(x) =
∫ 1

0
dt

1−xt+xt2 .

• Determiner le domaine de definition de f .
• Determiner le developpement de f en serie entiere sur un intervalle I centre en 0 que l’on precisera.# 835

On pose, pour x ∈ R, f(x) =
∫ +∞
0

ln(1 + xe−t) dt. Montrer que f est developpable en serie entiere au voisinage de 0 et expliciter
son developpement.

Exercice 767 [Mines 836] Soit f ∈ C0(R+,R). On considere la fonction F : x 7→
∫ +∞
0

e−xtf(t) dt.

• On suppose f bornee. Montrer que F est definie et de classe C∞ sur R+∗.
• On suppose que f admet une limite finie non nulle ℓ en +∞. Donner un equivalent de F en 0+.
• On suppose f developpable en serie entiere sur R+ : f(x) =

∑+∞
n=0 anx

n, et que la serie
∑
n!an converge. Etudier le compor-

tement de F (1/x) au voisinage de 0 et de +∞.
• Donner des exemples de fonctions f telles que le domaine de definition de F soit ]0,+∞[, ]1,+∞[ ou ∅.

Exercice 768 [Mines 837] On note L l’ensemble des fonctions f : R+∗ → C continues et integrables, et E l’ensemble des fonctions

f : R+∗ → C continues telles que, pour tout s > 0, la fonction u 7→ f(u)

u+ s
est integrable. Si f ∈ E , on pose f̂(s) =

∫ +∞
0

f(u)

u+ s
du

pour tout s > 0.

• Quelles inclusions existent entre L et E ?

• Dans cette question, on suppose que f(u) = uα−1, ou α ∈]0, 1[. Montrer que f̂α est proportionnelle a fα.

• Soit f ∈ E . Montrer que f̂ est continue, et determiner lims→+∞ f̂(s).

Exercice 769 [Mines 838] Montrer que
∫ 1

1
2

ln(t)

1− t
dt =

∫ 1
2

0

ln(1− t)

t
dt et en deduire la valeur de

∑+∞
n=1

1

2nn2
.

Exercice 770 [Mines 839] • Soit (a− n ≥ 0 ∈ CN sommable. Montrer
∫ +∞
0

e−t
∑+∞

n=0 an
tn

n!
dt =

∑+∞
n=0 an.

▷ Montrer le meme resultat en ne supposant que la convergence de la serie
∑
an.

Exercice 771 [Mines 840] Soient α ∈
]
0,
π

2

[
et f : t 7→ 1

1− sinα cos t
:

• Expliciter une suite (an) telle que : ∀t ∈ R, f(t) =
∑+∞

n=0 an cos(nt).

• En deduire, pour n ∈ N, la valeur de :
∫ π

0

cos(nt)

1− sinα cos t
dt.

Exercice 772 [Mines 841] Soit (λ− n ∈ N une suite croissante de reels strictement positifs.
On pose : f(x) =

∑+∞
n=0(−1)n exp(−λnx).

• Determiner le domaine de definition de f .On suppose dans la suite que (λn) tend vers +∞.

• Montr per que l’integrale
∫ +∞
0

f converge et la calculer.
• Traiter le cas particulier ou λn = n+ 1.

Exercice 773 [Mines 842] Soient a et b deux fonctions continues de R+ dans R+ et S l’ensemble des solutions de y′ = ay+b. Montr
per l’equivalence entre :

1. tous les elements de S sont bornes, ii) a et b sont integrables.

Exercice 774 [Mines 843] Determiner les fonctions y de R dans R derivables et telles que y′(x) = y(π − x).

Exercice 775 [Mines 844] Soit f la fonction de R dans R telle que f(0) = 0 et que ∀x ∈ R∗, f(x) = e−1/x2

.

• Montr per que f est de classe C∞ sur R.
• La fonction f est-elle solution d’une equation differentielle lineaire homogene?

Exercice 776 [Mines 845] Resoudre l’equation differentielle y′ + |y| = 1.

Exercice 777 [Mines 846] Soientn ∈ N∗ etω ∈ C tel queωn = 1. Trouver les fonctions y ∈ Cn(R,C) solutions de
∑n

k=0 y
(k)ωn−k =

0.

Exercice 778 [Mines 847] On considere la fonction f : R → R definie par : f(x) = exp(−x−2) si x ̸= 0 et f(0) = 0. Montr per que
f n’est solution d’aucune equation differentielle lineaire homogene a coefficients constants (d’ordre quelconque).

Exercice 779 [Mines 848] Resoudre le systeme differentiel $ \

Exercice 780 [Mines 849] Soientm,n ∈ N∗ etA ∈ Mn(R). On note (S) le systeme differentiel : ∀p ∈ [1, n], x
(m)
p =

∑n
q=1 ap,qxq(t).

Montr per que A est nilpotente si et seulement si toutes les solutions de (S) sont polynomiales.
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Exercice 781 [Mines 850] Resoudre les systemes : $ \
Exercice 782 [Mines 851] Determiner les solutions developpables en serie entiere au voisinage de 0 de l’equation :
2xy

′′ − y′ + 2y = 0. Les exprimer a l’aide des fonctions usuelles.

Exercice 783 [Mines 852] • Resoudre l’equation : (1 + t2)y
′′
+ 4ty′ + 2y = 0 sur R en cherchant des solutions developpables

en serie entiere.

▷ Resoudre : (1 + t2)y
′′
+ 4ty′ + 2y = 1

1+t2 .# 853

On considere l’equation differentielle : y
′′ − y = | cosx|. Existe-t-il des solutions positives? Bornees? Positives et bornees?

Exercice 784 [Mines 854] Soient a, b des fonctions continues et 2π-periodiques de R dans R. Soit (E) l’equation differentielle
y′ + a(x)y + b(x) = 0. Soit A : x 7→

∫ x

0
a(t) dt et I = A(2π).

• Trouver une condition sur I pour que A soit 2π-periodique.
• Montrer que si y est solution de (E), alors x 7→ y(x+ 2π) est aussi solution de (E).
• Supposons I ̸= 0. Montrer que (E) admet une unique solution 2π-periodique.
• Que dire si I = 0?
• Donner un exemple pour illustrer chacune de ces situations.

Exercice 785 [Mines 855] Soit f : x 7→
∫ 2π

0
ex sin(t)dt.

• Montrer que f est solution de (∗) : xy′′
+ y′ = xy.

• Quelles sont les solutions developpables en serie entiere sur R de (∗)?

Exercice 786 [Mines 856] • Soient A ∈ R+, f, g : R+ → R+ continues. On suppose que
∀x ≥ 0, f(x) ≤ A+

∫ x

0
f(t) g(t)dt. Montrer que ∀x ≥ 0, f(x) ≤ A exp

(∫ x

0
g(t)dt

)
.

Soit (∗) l’equation differentielle x
′′
(t)+a(t)x(t) = b(t) avec a et b continues sur R+, b et t 7→ t a(t) integrables sur R+. Soit x solution

de (∗).
• Montrer que

∀t ≥ 1, x(t) = x(1) + (t− 1)x′(1)−
∫ t

1
(t− u) a(u)x(u)du+

∫ t

1
(t− u) b(u)du.

• On pose, pour t ≥ 1, y(t) =
|x(t)|
t

. Montrer l’existence de K tel que :

∀t ≥ 1, $y(t)≤ Kexp
(∫

1
tu\,|a(u)|du≤ K exp

(∫
1

+∞u\,|a(u)|du.$

Exercice 787 [Mines 857] Soient T ∈ R+∗, A une application continue et T -periodique de R dans Mn(C). Montrer qu’il existe une
application X de classe C1 de R dans Cn et λ ∈ C∗ tels que ∀t ∈ R, X(t+ T ) = λX(t).

Exercice 788 [Mines 858] Soit A ∈ Mn(R) telle que A2 = −In; Expliciter les solutions de X ′(t) = AX(t).

Exercice 789 [Mines 859] Soit A ∈ Mn(C). A quelle condition est-il vrai que toutes les solutions du systeme differentiel X ′(t) =
AX(t) sont bornees sur R?

Exercice 790 [Mines 860] Soient D = [0, 1]2 et f : D → R telle que f(x, y) = x(1 − y) si x ≤ y et f(x, y) = y(1 − x) sinon.
Montrer que f admet un minimum et un maximum sur D et les determiner.

Exercice 791 [Mines 861] Etudier la differentiabilite de la fonction f definie sur R × R par f(x, y) =
xy2

x2 + y2
si (x, y) ̸= (0, 0) et

f(0, 0) = 0.# 862 On note T le triangle plein defini par les points (0, 0), (1, 0) et (0, 1). Determiner le minimum sur T de la fonction
f : (x, y) 7→ x2 + y2 + 1

2 (1− x− y).

Exercice 792 [Mines 863] Soit f : R2 → R telle que f(0, 0) = 1 et f(x, y) = (x2 + y2)x si (x, y) ̸= (0, 0).

• Montrer que f est continue sur R2.
• Montrer que f est de classe C1 sur R2 \ {(0, 0)}.
• La fonction f admet-elle des derivees partielles en (0, 0)?
• Etudier les variations de g : x 7→ f(x, 0).
• Determiner les extrema de f .

Exercice 793 [Mines 864] Soit f : (R+)2 → R definie par f(0, 0) = 0 et f(x, y) = xy
(x+1)(y+1)(x+y) sinon.

• Montrer que f est continue.
• Etudier les extrema de f .

Exercice 794 [Mines 865] Soient E un espace vectoriel norme de dimension finie, f une forme lineaire sur E.

Montrer que l’application g : x ∈ E 7→ f(x) e−∥x∥2

admet un minimum et un maximum, puis determiner ce maximum et ce minimum.

Exercice 795 [Mines 866] Determiner les fonctions de classe C2 sur (R+∗)2 verifiant x2 ∂2f
∂x2 − y2 ∂2f

∂y2 = 0. On pourra faire le
changement de variables u = xy, v = x

y .

Exercice 796 [Mines 867] Soit K ∈ R. Determiner toutes les fonctions f :]0,+∞[×R → R de classe C1 solutions de l’equation
x ∂
∂yf(x, y)− y ∂

∂xf(x, y) = K f(x, y).
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Exercice 797 [Mines 868] Soient α ∈ R et f ∈ C1(R3,R). On dit que f est homogene de degre α si :
∀(x, y, z) ∈ R3, ∀t ∈ R+∗, f(tx, ty, tz) = tαf(x, y, z). Montrer que f est homogene de degre α si et seulement si x∂f

∂x +y
∂f
∂y +z

∂f
∂z =

αf .

Exercice 798 [Mines 869] Resoudre ∂2f
∂x2 − 3 ∂2f

∂x∂y + 2 ∂2f
∂y2 = 0.

Ind. Utiliser le changement de variable (u, v) = (x+ y, 2x+ y).

Exercice 799 [Mines 870] • Soit f ∈ C1(Rn,R).

Montrer que : ∀x ∈ Rn, f(x) = f(0) +
∑n

i=1 xi
∫ 1

0
∂f
∂xi

(tx) dt.
On pose E = C∞(Rn,R) et

D =
{
φ ∈ L(E,R) ; ∀(f, g) ∈ E2, φ(fg) = f(0)φ(g) + g(0)φ(f)

}
.

• Montrer que la famille (φ− 1 ≤ i ≤ n est libre, avec : φi : f 7→ ∂f
∂xi

(0).
• Montrer que D est de dimension finie.# 871

Soient f ∈ C2(R2,R), k ∈ [0, 1[ tells que: ∀a ∈ R2,
∣∣∣∂f∂x (a)∣∣∣+ ∣∣∣∂f∂y (a)∣∣∣ ≤ k. Soit (un) definie par (u0, u1) ∈ R2 et : ∀n ∈ N, un+2 =

f(un, un+1).
Pour tout n ∈ N, on pose $ :an=max(|un+1 − un|, |un+2 − un+1|) .$
Montrer : ∀(a, b) ∈ (R2)2, ∃c ∈ R2, f(b)− f(a) = (b− a|∇f(c)).
Montrer que $ :∀(x,y,x’,y’)∈R4, |f(x,y)−f(x’ ,y′) ≤ kmax(|x− x′|, |y − y′|) .$Montrerque : ∀n ∈ N, an+2 ≤ kan, puis qu’il existe
deux constantes q et C telles que : ∀n ∈ N, an ≤ Cqn.
Montrer que (un) est une suite convergente et donner une propriete verifiee par sa limite.

Exercice 800 [Mines 872] Soient Ω un ouvert de R,K une partie compacte non vide de Ω, f une fonction de classe C2 de Ω dans R.

• On suppose que ∆f > 0. Montrer que f n’admet pas d’extremum local.
• On suppose que ∆f ≥ 0. Montrer que maxK f = max

FT(K) f .

Exercice 801 [Mines 873] SoientR ∈ R+∗,DR = {(x, y) ∈ R2 ; x2+y2 < R2}, (a−n ≥ 0 une suite complex telle que
∑
anz

n ait
pour rayon de convergenceR. Pour (x, y) ∈ DR, on pose f(x, y) =

∑+∞
n=0 an(x+iy)

n. Montrer que f est de classeC2 et harmonique
sur DR.

Exercice 802 [Mines 874] Soient A ∈ S++
n (R) et B ∈ Rn. On pose : f : X ∈ Rn 7→ XTAX − 2BTX .

• Calculer ∇f(X).
• Montrer que f admet un minimum global et le determiner.
• Soit (Xk) une suite de vecteurs non nuls verifiant

∀k ∈ N, Xk+1 = Xk − ∥∇f(Xk)∥
XT

k AXk
∇f(Xk). On suppose que la suite (Xk) est convergente.

Determiner sa limite.

Exercice 803 [Mines 875] Pour x = (x0, . . . , xn) et y = (y0, . . . , yn) dans Rn+1, on pose

f(x, y) =
(∑

0≤i,j≤n
i+j=k

xiyj

)
k∈[0,2n]

∈ R2n+1.

• Soient x, y ∈ (Rn+1 non nuls. Montrer que f(x, y) est non nul.

• Soient u et v les applications de Rn+1 \ {0} dans R2n+1 definies par u : x 7→ f(x, x) et v : x 7→ f(x,x)
∥f(x,x)∥ ou ∥ ∥ est la norme

euclidienne canonique sur R2n+1. Calculer les differentielles de u et v.
• Soit x ∈ Rn+1 non nul. Calculer rg (dv(x)).

Exercice 804 [Mines 876] ⋆ Soit f : Rn → Rn differentiable telle que : i) pour tout x ∈ Rn, df(x) est injective ; ii) ∥f(x)∥ −→
∥x∥→+∞

+∞.
Soient a ∈ Rn et g : x ∈ Rn 7→ ∥f(x)− a∥2.

• Calculer dg. - Montrrer que g admet un minimum.
• En deduire que f est surjective.

Exercice 805 [Mines 877] Soient U un ouvert convexe de Rn et f : U → R une fonction de classe C1.

• Montrre que f est convexe si et seulement si f(y) − f(x) ≥ dfx(y − x) pour tous x, y ∈ U . Que donne cette caracterisation
dans le cas ou n = 1?

• Soient α et β des reels fixes. On note E l’ensemble des fonctions f : [0, 1] → R de classe C1 telles que f(0) = α et f(1) = β.
Soit Φ : f ∈ E 7→

∫ 1

0

√
1 + f ′(x)2 dx. Montrre que Φ atteint sa borne inferieure en un unique element deE, que l’on precisera.

Exercice 806 [Mines 878] Soit E = Mn(R) muni de la norme euclidienne canonique.
On pose f :M ∈ E 7→ ∥M∥2 = tr(MTM) et g :M ∈ E 7→ detM − 1. On note h la restriction de f a SLn(R).

• Justifier que f et g sont de classe C1 et calculer leur gradient en une matrice M ∈ SLn(R).
• Montrre que f admet un minimum sur SLn(R). Soit M0 une matrice ou il est ateint.
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• Soit H ∈ Mn(R) orthogonale au gradient de g en M0. Montrre qu’il existe un chemin γ de classe C1 defini sur un voisinage de
0 dans R, a valeurs dans SLn(R) tel que γ(0) =M0 et γ′(0) = H .

• Montrre que (∇fM0
)⊥ = (∇gM0

)⊥.
• Calculer le minimum de h sur SLn(R).

Exercice 807 [Mines 879] Si n ∈ N∗, determiner TInSOn(R), puis, si M ∈ SOn(R),TMSOn(R).
Probabilities

Exercice 808 [Mines 880] On tire au hasard un element A de P ([[1, n]]). Calculer la probabilite que cardA soit un entier pair.

Exercice 809 [Mines 881] Soient m,n ∈ N∗ tel que m ≤ n
2 . On se donne deux unres contenant chacune des boules numerotees de

1 a n. On tire m boules dans chaque urne et l’on note X le nombre de doublons. Calculer la loi de X puis sa variance.

Exercice 810 [Mines 882] Un couple met au monde quatre enfants. Chaque enfant a la probabilite p ∈]0, 1[ d’etre une fille, et les
naissances sont independantes. On considere les evenements $A :≪$e dernier est une fille ⇒, $B :≪$e couple a autant de filles que
de garcons ⇒, $C :≪$es garcons naissent toujours apres une fille ⇒.

• Les evenements A et B (resp. A et C) sont-ils independants?
• Les evenements A,B,C sont-ils mutuellement independants?

Exercice 811 [Mines 883] Soit p ∈]0, 1[. Dans un sac contenant n jetons numerotes de 1 a n, on tire S jetons ou S est une variable
aleatoire suivant la loi binomiale de parametre n et p. Quelle est la probabilite d’obtenir des jetons de numeros consecutifs ?

Exercice 812 [Mines 884] On lance une piece jusqu’a obtenir deux piles de plus que de faces ou deux faces de plus que de piles. On
note p ∈]0, 1[ la probabilite que la piece donne pile. On note X la variablealeatoire associee au nombre de lancers. Determiner la loi
de X et montrer que X est presque surement finie. La variable aleatoire X est-elle d’esperance finie?

Exercice 813 [Mines 885] Une urne contient n ∈ N∗ boules noires et b ∈ N∗ boules blanches. On tire successivement et sans remise
les boules. On noteX la variable aleatoire qui donne le rang de la derniere boule blanche titee. Calculer la loi, l’esperance et la variance
de X .

Exercice 814 [Mines 886] On considere une urne qui contient une proportion p ∈ ]0, 1[ de boules blanches. On effectue un tirage
avec remise des boules. SoitXn la variable donnant le nombre de tirages successifs necessaires pour obtenir n boules blanches. Donner
la loi de X1 ainsi que sa fonction generatrice GX1

. En deduire GXn
. Loi et esperance de Xn ?

Exercice 815 [Mines 887] On considere une urne remplie avec des boules numerotees de 1 a 2n. On procede a une suite de tirages
sans remise.

• Calculer la probabilite que les boules impaires soient tires exactement dans l’ordre 1, 3, . . . , 2n− 1.
• Soit X la variable correspondant au nombre de tirages necessaires pour obtenir toutes les boules impaires. Determiner la loi et

l’esperance de X .

Exercice 816 [Mines 888] Soit n ≥ 2. On place n boules numerotees de 1 a n dans une urne et l’on realise des tirages successifs
avec remise. On note X le rang du tirage donnant pour la premiere fois un numero superieur ou egal aux precedents.

• Determiner la loi de X .
• Calculer l’esperance et la variance de X .

Exercice 817 [Mines 889] Une urne contient n + 1 boules numerotees de 0 a n. On y effectue des tirages avec remise. On pose
X1 = 1. Pour i ≥ 2, Xi est la variable de Bernoulli egale a 1 si le numero de la boule titee au i-eme tirage n’avait jamais ete obtenu
avant. On pose, pour i ∈ N∗, Yi = X1 + · · ·+Xi.

• Determiner la loi des Xi.
• Calculer l’esperance et la variance de Yi. Donner un equivalent de E(Yn).
• Pour (i, j) ∈ (N∗)2, calculer P(Xi = 1, Xj = 1).
• Etudier l’independance des Xi.

Exercice 818 [Mines 890] Soit (J − n ∈ N une suite de joueurs. Le joueur J0 affronte le joueur J1 ; le gagnant affronte J2, puis le
gagnant de ce nouveau match affronte J3 et ainsi de suite. Lors d’un match, le joueur entrant a une probabilite p ∈]0, 1[ de remporter
le match. Le jeu termine lorsqu’un meme joueur remporte trois victoires. Pour n ∈ N, on note An l’evenement < < le n-ieme match
est joue > > . Determiner la limite de P(An) quand n→ +∞.

Exercice 819 [Mines 891] On suppose que lorsqu’un enfant natt, il a une chance sur deux d’etre un garcon. Dans une famille donnee,
le nombre d’enfants est la variable aleatoire Z et le nombre de filles est X .

• Montrer que : $∀ t∈[0,1],GX(t)=GZ ( 1+t
2
.$ExpliciterlaloideX si Z suit une loi de Poisson de parametre λ.# 892

Une puce se trouve sur l’origine de Z2. A chaque etape, elle saute aleatoirement dans l’une des quatre directions. On noteXn l’abscisse
de la puce a l’etape n. Calculer E(Xn) et E(X2

n).

Exercice 820 [Mines 893] On munit Sn de la probabilite uniforme. Calculer la probabilite πn que σ ∈ Sn ait un cycle de longueur
strictement superieure a

n

2
dans sa decomposition en produit de cycles a supports disjoints. Determiner un equivalent de πn.

Exercice 821 [Mines 894] Soient X1, X2 deux variables aleatoires independantes qui suivent la loi geometrique de parametre
p ∈ ]0, 1[. On pose Y = |X1 −X2|.
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• Calculer P(Y = 0).
• Determiner la loi de Y .
• Montrer que Y est d’esperance finie et calculer E(Y ).
• Montrer que Y possede un moment d’ordre 2 et calculer V(Y ).

Exercice 822 [Mines 895] • Determiner la loi de la somme de n variables geometriques de parametre p ∈]0, 1[, independantes
et identiquement distribuees.

▷ Soit p ∈]0, 1[. On lance des des tels que la probabilite de tomber sur 6 en jetant un de est p. Soit X la variable aleatoire
egale au rang du n-ieme 6. Determiner la loi et l’esperance de X .

Exercice 823 [Mines 896] Soient n ∈ N∗, σ une variable aleatoire suivant la loi uniforme sur Sn. Pour m ∈ [[1, n]], on note
Xm = min {k ∈ [[1, n]], σ(k) ≥ m} et Ym = max {k ∈ [[1, n]], σ(k) ≥ m}. Calculer la loi de Xm et Ym, et leur esperance.

Exercice 824 [Mines 897] Soient λ > 0 et X une variable aleatoire qui suit la loi de Poisson de parametre λ. Soient b ∈ N∗ et Y le
reste de la division euclidienne de X par b. Determiner la loi de Y .

Exercice 825 [Mines 898] Soit p ∈ ]0, 1[. Soit (X − k ∈ N∗ une suite de variables aleatoires i.i.d. verifiant :

P(Xk = 1) = p et P(Xk = −1) = 1 − p. Pour tout n ∈ N∗, on pose Sn =
∑n

k=1Xk . Montrer que p =
1

2
si et seulement si :

∀n ∈ N∗,maxk∈Z P(S2n = k) = P(S2n = 0).

Exercice 826 [Mines 899] Soient A,B,C des variables aleatoires independantes telles que A suive la loi de Rademacher, et B et C
la loi geometrique de parametre p ∈]0, 1[.

• Calculer la probabilite que le trinome AX2 +BX + C2 admette deux racines reelles distinctes.
• Calculer la probabilite que le trinome AX2 +BX + C2 admette une unique racine reelle.
• Calculer la probabilite que le trinome AX2 +BX + C2 n’admette aucune racine reelle.

• Cette derniere probabilite peut-etre egale a
1

2
? Dans ce cas, donner une valeur approchee de p a 10−1 pres.

Exercice 827 [Mines 900] On considere une variable aleatoire X suivant la loi de poisson de parametre λ et on pose Y = X2 + 1.
- Calculer l’esperance de Y .

• Calculer la probabilite de l’evenement (2X < Y ).
• Comparer les probabilites des evenements (X ∈ 2N) et (X ∈ 2N + 1).

Exercice 828 [Mines 901] Soit X une variable aleatoire a valeurs dans [a, b], d’esperance E(X) = m.

• Montrere que V(X) ≤ (m− a)(b−m).
• Montrere que cette inegalite est optimale.

Exercice 829 [Mines 902] Soient A ∈ Sn(R) et b ∈ Mn,1(R). On pose M =

(
A b
bT c

)
et on suppose que les racines du polynome

caracteristique de M ne sont pas toutes simples.

• Montrere que M admet un vecteur propre de la forme V = (v1, ..., vn, 0)
T .

• Montrere que (v1, ..., vn)
T est vecteur propre de A et orthogonal a b.

• Soient X1, ..., X5 variables de Bernoulli independantes de parametre p ∈]0, 1[.

On pose N =


2 0 0 X1

0 1 X5 X2

0 X5 −1 X3

X1 X2 X3 X4

. Montrere que la probabilite que le polynome caracte-ristique de la matrice N n’ait que des

racines simples est superieure ou egale a 3p3 − 2p4.

Exercice 830 [Mines 903] Soit p ≥ 3 premier. Soit K =
{
x2, x ∈ Z/pZ

}
.

• Denombrer le cardinal de K .
• Soient A, B deux variables aleatoires a valeurs dans Z/pZ. Soit N variable aleatoire comptant le nombre de solutions de (E) :
X2 +AX +B = 0. Determiner l’esperance et la variance de N .

Exercice 831 [Mines 904] Caracteriser les couples (X, a) avec X variable aleatoire discrete complexe et a ∈ C tels que X ∼ aX .

Exercice 832 [Mines 905] Soit α > 1. On munit N∗ de la loi de probabilite Pα definie par Pα({n}) =
1

ζ(α)nα
pour n ≥ 1.

• Calculer Pα(mN∗) pour m ≥ 1.
• On note (p − k ≥ 1 la suite strictement croissante des nombres premiers. Montrere que les pkN∗ sont mutuellement indepen-

dants.

• En deduire la formule d’Euler $ζ(α)=
∏

k=1

+∞
(
1−

1

{
pk

α}
)

-1.$

Exercice 833 [Mines 906] Soient X et Y deux variables aleatoires discretes strictement positives, de meme loi et d’esperance finie.
Montrere que E(X/Y ) ≥ 1. Ind. Commencer par le cas ou X et Y sont independantes.
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Exercice 834 [Mines 907] Soit (X−n ∈ N∗ une suite de variables aleatoires i.i.d. suivant la loi geometrique de parametre p ∈]0, 1[.
On pose : Yn = min(X1, . . . , Xn), αn = E(Yn) et Zn = max(X1, . . . , Xn), βn = E(Zn).

• Etudier la monotonie des suites (αn) et (βn). - Exprimer αn en fonction de n.
• Determiner la limite de (βn) puis un equivalent simple.

Exercice 835 [Mines 908] Soient p, q ∈]0, 1[. On considere deux variables aleatoires X et Y , independantes, suivant les lois geome-

triques de parametres respectifs p et q. Soit M =

(
X 1
0 Y

)
. Quelle est la probabilite que M soit diagonalisable?

Exercice 836 [Mines 909] Soient p ∈]0, 1[, X une variable aleatoire suivant la loi geometrique de parametre p. On pose Y =⌊
X + 1

2

⌋
.

• Montrer que la variable Y suit une loi geometrique.
• Montrer que les variables Y et 2Y −X sont independantes.

Exercice 837 [Mines 910] Soient n ∈ N∗, X1, . . . , Xn i.i.d. suivant la loi uniforme sur [[1, d]]. Pour j ∈ {1, . . . , n}, on pose
Yj = |{i ∈ [[1, n]], Xi = j}|.

• Determiner la loi de Yj .
• Soient i, j ∈ [[1, n]] avec i ̸= j et k, ℓ ∈ [[1, n]]. Calculer P(Yi = k, Yj = ℓ).

Exercice 838 [Mines 911] Soit X une variable aleatoire discrete a valeurs dans R+∗ telle que E

(
1

X

)
< +∞.

Pour tout t ∈ R+, on pose : FX(t) = E(e−tX).

• Montrer que FX est bien definie (a valeurs reelles) et continue.

• Montrer la convergence et calculer
∫ +∞
0

FX(t) dt.

• SoientX et Y deux variables aleatoires independantes suivant la loi geometrique de parametre p ∈]0, 1[. Calculer E
(

1

X + Y

)
.

• Generaliser a m variables i.i.d. suivant la loi geometrique de parametre p.

Exercice 839 [Mines 912] Soit (X−n ≥ 1 une suite de variables aleatoires i.i.d. suivant la loi uniforme sur {−1, 2}. On pose S0 = 0
et, pour n ∈ N∗, Sn = X1 + · · ·+Xn.
Pour n ∈ Z, soit An = (∃k ≥ 0, Sk = −n) et pn = P(An).

• Exprimer P(∃k > 0, Sk = 0) en fonction de p−1 et de p2.
• Trouver une relation entre pn+2, pn et pn−1.
• En deduire la valeur de pn.

Exercice 840 [Mines 913] Soient X une variable aleatoire a valeurs dans {−1, 1}, (X − k ≥ 1 une suite i.i.d. de variables aleatoires
suivant la loi de X . Pour n ∈ N∗, soit Sn =

∑n
k=1Xk . Donner une condition necessaire et suffisante pour que, pour toute partie finie

A de Z,
∑+∞

n=1 P(Sn ∈ A) < +∞.

Exercice 841 [Mines 914] Soit (Xn) une suite i.i.d. de variables de Bernoulli de parametre 1/2. - Donner la loi deZn =
∑n

k=0 2
n−kXk .

- Determiner limn→+∞ P(Zn ≥ 3n) et limn→+∞ P(Zn ≥ 2n).

Exercice 842 [Mines 915] Soit X une variable aleatoire a valeurs dans R+.

• Montrer que P(X ≥ x) −→
x→+∞

0. - On suppose que E(X) < +∞. Montrer que P(X ≥ x) =
x→+∞

o
(
1
x

)
. - Soit (X − n ≥ 1

une suite i.i.d. de variables aleatoires.

On pose, pour n ∈ N∗, Rn = |{X1, . . . , Xn}|.
• Donner un equivalent de E(Rn) lorsque les Xi suivent la loi geometrique de parametre p ∈]0, 1[.
• Dans le cas general, montrer que E(Rn) = o(n).

Exercice 843 [Mines 916] Soit (X − i ≥ 1 une suite de variables aleatoires i.i.d. On suppose que chaque variable aleatoire Xi + 1
suit la loi geometrique de parametre p ∈ ]0, 1[. Pour tout n ∈ N∗, on pose Sn =

∑n
i=1Xi.

• Determiner la loi de Sn.
• Determiner Mn = max {P(Sn = k), k ∈ N} puis un equivalent simple de Mn quand n tend vers +∞.

Exercice 844 [Mines 917] Soit (X − n ≥ 1 une suite i.i.d. de variables aleatoires suivant la loi geometrique de parametre p ∈]0, 1[.
Montrer l’existence de α > 0 que l’on determinera tel que :

∀ϵ > 0, P
(∣∣∣ 1

ln(n) max1≤k≤nXk − α
∣∣∣ ≥ ϵ

)
−→

n→+∞
0.

Exercice 845 [Mines 918] Soit g : t 7→ et

(1+e)−t

• Montrer que g est la fonction generatrice d’une variable aleatoire X a valeurs dans N.
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• Soit (Xi,j)1≤i<j≤n une famille i.i.d. de variables aleatoires de meme loi queX . Determiner la probabilite queM =


0 X1,2 . . . X1,n

...
. . .

. . .
...

...
. . . Xn−1,n

0 . . . . . . 0


ait un nombre fini de de sous-espaces stables.

Exercice 846 [Mines 919] Soient X1, . . . , Xn des variables aleatoires i.i.d. suivant la loi de Bernoulli de parametre p. On pose
U = (X1 · · · Xn) et M = UTU .

• Determiner la loi des variables aleatoires tr(M) et rg(M).
• Calculer la probabilite que M soit une matrice de projection.# 920

Soit (Xn) une suite de variables aleatoires independantes, strictement positives, L2 et telles que : ∀n ∈ N, E(Xn) = 1. On dit que
(Xn) converge en probabilites vers 0 si : ∀α > 0,P(Xn ≥ α) −→

n→+∞
0. Pour tout n ∈ N∗, on pose Pn =

∏n
i=1Xi.

• Soient λ ∈ [0, 1] et X ∈ L2 telle que E(X2) > 0.

Montrer que : P(X ≥ λE(X)) ≥ (1− λ)2E(X)2

E(X2)
.

• Montrer que E(
√
Pn) −→

n→+∞
0 si et seulement si (Xn) converge vers 0 en probabilites.

Exercice 847 [Mines 921] • Soit (X1, . . . , Xn) une famille i.i.d. de variables aleatoires de Rademmacher, S =
∑n

k=1Xk . Mon-

trer que, si t ∈ R+, E(etS) ≤ exp

(
−nt

2

2

)
. En deduire que, si a ∈ R+∗, P(|S| ≥ a) ≤ 2e−

a2

2n .

▷ Generaliser au cas ou les Xk sont des variables aleatoires discretes i.i.d, a valeurs dans [−1, 1] et centres.

Exercice 848 [Mines 922] Soit (X − i ∈ N∗ une suite de variables aleatoires i.i.d. possedant un moment d’ordre 4. On pose :
m = E(Xi) et V4 = E((Xi −m)4).

• Justifier la bonne definition (dans R) de m et V4.

Pour ϵ > 0, on pose : $ An
ϵ=
(∣∣∣∣ 1n∑ i=1

n(Xi-m) ≥ ϵ.$

Montrer que P(Aϵ
n) ≤

3V4
n2ϵ4

.

Montrer que P
(⋂+∞

n=1

⋃+∞
p=nA

ϵ
p

)
= 0.

Montrer que P

(
1

n

∑n
i=1Xi −→

n→+∞
m

)
= 1.

1) Mines PSI

a) Algebre

Exercice 849 [Mines PSI 923] Soit P ∈ Z[X] tel que ∀k ∈ Z, P (k) est premier. Montrer que P est constant.

Exercice 850 [Mines PSI 924] Montrer qu’il existe (a0, . . . , an−1) ∈ Rn tel que
∀P ∈ Rn−1[X], $ P(X+n)+

∑
k=0

n-1akP(X+k)=0$.

Exercice 851 [Mines PSI 925] Soit (P ) le plan de R3 d’equation x− 2z − y = 0 et u le vecteur (1, 2, 1)T .

• Calculer la matrice de projection vectorielle sur (P ) parallelement a u. - Calculer l’image par cette projection de la droite

(D) :

{
x− y + z = 0

2x+ y − 2z = 0.

Exercice 852 [Mines PSI 926] Soit E = Rn[X]. On considere les polynomes Ek =
(
n
k

)
Xk(1−X)n−k , 0 ≤ k ≤ n.

• Montrrer que (E − 0 ≤ k ≤ n est une base de E.
• Calculer

∑n
k=0 kEk et

∑n
k=0 k

2Ek .
• Comment aurait-on pu prevoir les resultats obtenus?

Exercice 853 [Mines PSI 927] Resoudre dans Mn(R) l’equation : A2 + (−1)n det(A)In = 0.

Exercice 854 [Mines PSI 928] Soit M =

(
A A
A B

)
avec A,B ∈ Mn(R). Trouver une condition necessaire et suffisante sur A et

B pour que M soit inversible. Calculer alors M−1.

Exercice 855 [Mines PSI 929] Soit A ∈ Mn(C) nilpotente d’indice n.

• Justifier l’existence d’un vecteur X0 ∈ Mn,1(R) tel que An−1X0 ̸= 0. En deduire que la famille (X0, AX0, . . . , A
n−1X0) est

libre.
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• Montrrer que A est semblable a Jn =



0 · · · · · · · · · 0

1
. . .

...

0
. . .

. . .
...

...
. . .

. . .
. . .

...
0 · · · 0 1 0


.

c) i) : Soit λ ∈ C∗. Montrrer que λ(eJn − In) est nilpotente. Preciser son indice de nilpotence.

• Montrrer qu’il existe P ∈ GLn(C) telle que λIn + Jn = λP−1eJnP .
• En deduire qu’il existe B ∈ Mn(C) telle que λIn + Jn = eB .

Exercice 856 [Mines PSI 930] ⋆ SoientE un R espace vectoriel de dimension finie, u ∈ L(E) nilpotent, F est sous-espace vectoriel
de E tel que u(F ) ⊂ F . On suppose que E = F + Im(u). Montrer que E = F .

Exercice 857 [Mines PSI 931] • Soit P ∈ GLn(C), que l’on decompose en P = Q + iR avec P et Q ∈ Mn(R). Montrer qu’il
existe λ ∈ R, tel que Q+ λR ∈ GLn(R).

▷ En deduire que deux matrices A et B reelles, semblables sur C, sont semblables sur R.
▷ Soient A,B ∈ Mn(R) telles que A3 = B3 = In et $tr(A)=tr(B)$. Montrer que A et B sont semblables.

Exercice 858 [Mines PSI 932] Diagonaliser $A= 
0 · · · 0 1
...

...
...

0 · · · 0 1
1 · · · 1 1


∈Mn(R)$.# 1201 On considere un de equilibre a n faces. Les lancers se modelisent par une suite (X − i ≥ 1 i.i.d de variables aleatoires
suivant la loi uniforme sur 1, n.
Pour k ∈ 1, n, on note Tk = min{n ∈ N∗, |{X1, . . . , Xn}| = k}.

• Determiner la loi de Tk .
• Donner un equivalent, quand n→ +∞, du nombre moyen Mn de lancers necessaires pour obtenir toutes les faces.

Exercice 859 [Mines PSI 1202] Soient n ∈ N∗ et N = n!. Soient p1, . . . , pm les facteurs premiers distincts de N , Soient X1, X2

deux variables aleatoires independantes qui suivent la loi uniforme sur 1 ; N .

• Montrer que les evenements (pk|X1) : ◁pk divise X1 ↾ sont independants pour k ∈ 1 ; m.
• Pour k ∈ 1 ; m, calculer P(pk|X1 et pk|X2).
• Calculer la probabilite de l’evenement ◁X1 et X2 sont premiers entre eux ↾.

Exercice 860 [Mines PSI 1203] Soit n ∈ N∗. On munit 1 ; n de la probabilite uniforme.

• Soit a un diviseur de n, on note D(a) l’ensemble des multiples de a qui se trouvent dans 1 ; n. Calculer P(D(a)).
• On note p1, . . . , pk les diviseurs premiers (distincts) de n. Montrer que D(p1), . . . , D(pk) sont mutuellement independants.
• Soit B l’ensemble des entiers dans 1 ; n qui sont premiers avec n. Calculer P(B) a l’aide de p1, . . . , pk .
• On note φ(n) le nombre d’entiers dans 1 ; n qui sont premiers avec n. Montrer que φ(n) = n

∏
p premier
p divise n

p−1
p

Exercice 861 [Mines PSI 1204] Soit X une variable aleatoire discrete a valeurs reelles. Soient b > 0 et I un intervalle de R. Soit
g : R → R+ une fonction telle que g(x) ≥ b pour tout x ∈ I .

• Montrer que P(X ∈ I) ≤ E(g(X))
b .

• On suppose que X a un ecart-type σ et que E(X) = 0.

Montrer : ∀t > 0, P(X > t) ≤ σ2

σ2+t2 .

Ind. Utiliser une fonction x 7→ (x+ c)2 pour un reel c > 0.

Exercice 862 [Mines PSI 1205] Soient X,Y deux variables aleatoires discretes a valeurs dans R+∗, independantes et identiquement
distribuees. Montrer que E(X/Y ) ≥ 1. A quelle condition a-t-on egalite ?

Exercice 863 [Mines PSI 1206] Les variables aleatoires A,B suivent la loi uniforme sur l’ensemble P(1 ; n) et elles sont indepen-
dantes. On pose X = Card(A ∪B). Calculer E(X).

Exercice 864 [Mines PSI 1207] • Soit (A−n ∈ N∗ une suite d’evenements. Montrer que B : ◁ II existe un rang a partir duquel

An est vraie ↾ est un evenement et que B =
⋃

n∈N∗

( ⋂
k≥n

Ak

)
.

▷ Soient (X − n ∈ N∗ une suite i.i.d. de variables aleatoires reelles de meme loi que X .On suppose E(X) = 0 et E(X4) <
+∞. On pose Sn =

∑n
k=1Xk .

▷ Calculer E(Sn
4) en fonction de n, E(X2) et E(X4).

▷ En deduire que pour tout ε > 0, limn→+∞ P
(⋂

k≥n

(∣∣Sk

k

∣∣ ≤ ε
))

= 1 et que, presque surement, limn→+∞
Sn

n = 0.
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Exercice 865 [Mines PSI 1208] Soit α > 0.

• Montrer l’existence d’une variable aleatoireX valeurs dans N de fonction generatrice $ GX (t =
1
{ (2− t) α}$.DonnerunequivalentdeP (X = n)

quand n→ +∞.
•• Pour λ > 0, montrer que P (X ≥ λ+ α) ≤ 2α

λ2 .

VIII) Centrale

1) Algebre

Exercice 866 [Centrale 1209] On considere, pour n ∈ N, $ Cn=1
n+1(2nn )$.

Montrer que, pour tout n ∈ N, $ Cn∈N
*$.

Calculer
∑n

k=0 CkCn−k .
Donner tous les entiers tels que $ Cn$ soit pair. En deduire tous les entiers tels que $ Cn$ soit impair.

Exercice 867 [Centrale 1210] Pour n ∈ N∗, on note P(n) l’ensemble des nombres premiers inferieurs ou egaux a n et $
Pn=
∏

p∈ P(n)p$.

• Montrer que ∀n ≥ 2, 4n

2
√
n
<
(
2n
n

)
< 4n.

• Montrer que ∀n ≥ 1,
(
2n+1

n

)
< 4n.

• Montrer que ∀n ∈ N, $ P2n+1< 4nP
n+1$.

Exercice 868 [Centrale 1211] Soit (G, ·) un groupe fini commutatif tel que le nombre d’automorphismes de G est 3.
a) i) : Donner la definition d’un automorphisme. Montrer que φ : x 7→ x−1 est un automorphisme de G.

• Montrer que, pour tout x ∈ G, x2 = e.
• Montrer que G possede un sous-groupe V d’ordre 4 et preciser les automorphismes de V .# 1212

Soient p un nombre premier tel que p ≡ 3[4] et C = {x ∈ Z/pZ, ∃y ∈ Z/pZ, x = y2}.

• Rappeler l’enonce du petit theoreme de Fermat. Montrer que −1 /∈ C .

On pose πx =
∏

y∈C\{x}(x+ y) pour x ∈ C \ {0} et π =
∏

x ̸=y∈C(x+ y).

• Determiner le cardinal de C .
• Montrer que ∀x ∈ C \ {0}, πx = π1.
• Calculer π.

Exercice 869 [Centrale 1213] On pose u = 2 +
√
3, v = 2−

√
3.

Pour n ∈ N, on note Mn = 2n − 1 et sn = u2
n

+ v2
n

.

• Montrer que, si Mn est premier, alors n est premier.
• Montrer que, pour n ∈ N, sn+1 = s2n − 2. Qu’en deduire sur le suite (s− n ∈ N?
• Soit q un nombre premier. On munit l’ensemble B = (Z/qZ)2 des deux lois de composition interne definies par :

(x, y) + (x′, y′) = (x+ x′, y + y′) et (x, y) · (x′, y′) = (xx′ + 3yy′, xy′ + x
′
y).

• Montrer que les deux lois precedentes muinssent B d’une structure d’anneau commutatif fini.
• Montrer que, si 3 n’est pas un carre modulo q, alors l’anneau precedent est un corps.
• On note A = Z +

√
3Z. Montrer que l’application π definie par π(a + b

√
3) = (a, b) est bien definie et est un morphisme

surjectif d’anneaux de A dans B.
• On suppose n premier. Montrer que, si Mn divise sn−2 alors Mn est premier.

Ind. On pourra raisonner par l’absurde en considerant le plus petit facteur premier q de Mn et determiner l’ordre de (2, 1) dans le
groupe des elements inversibles de l’anneau B.

Exercice 870 [Centrale 1214] Soit A un anneau commutatif. On dit que A est noetherien lorsque tous ses ideaux sont engendres
par une partie finie de A.

• Les anneaux Z et R[X] sont-ils noetheriens?
• Montrer que A est noetherien si et seulement si toute suite croissante d’ideaux est stationnaire.
• Soit A un anneau non commutatif. On dit que I est un ideal a gauche de A lorsque IA ⊂ I (definition similaire pour un ideal a

droite). SoitA noetherien, c’est-a-dire que tous les ideaux, a droite ou a gauche, deA sont de type fini. Montrer que l’inversibilite

a gauche equivaut a l’inversibilite a droite, i.e. ∀a ∈ A,
(
∃b ∈ A, ab = 1 ⇐⇒ ∃b ∈ A, ba = 1

)
.

Ind. Considerer φ : x 7→ ax.

Exercice 871 [Centrale 1215] • Soit G un groupe commutatif fini. Si a et b sont deux elements de G d’ordre premiers entre
eux, quel est l’ordre de ab?

▷ Soit G un groupe commutatif fini. Montrer qu’il existe un element de G dont l’ordre est le ppcm des ordres des elements
de G.

▷ Soit p un nombre premier. Montrer que le groupe F∗
p est cyclique.
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Exercice 872 [Centrale 1216] Soit (T − n ∈ N la suite de polynomes reels definie par T0(X) = 1, T1(X) = X et pour n ∈
N, Tn+2(X) = 2XTn+1(X)− Tn(X).

• Montrer que, pour n ∈ N, ∀θ ∈ R, Tn(cos θ) = cos(nθ). - Montrrer que Tn ◦ Tm = Tm ◦ Tn pour (m,n) ∈ N2.
• Montrre que, pour n ≥ m, 2TnTm = Tn+m + Tn−m.

On considere l’equation differentielle (E) : (1− x2)P
′2 = n2(1− P 2).

• Montrre que, pour n ∈ N, Tn et −Tn sont solutions de (E) sur R.
• Montrre que tout polynome solution de (E) est de degre n, puis determiner les polynomes solution de (E) sur R.

Exercice 873 [Centrale 1217] Soient a1 < a2 < · · · < ap et b1 < b2 · · · < bp des reels et M = (eaibj )1≤i,j≤p.

• Calculer detM lorsque bk = k − 1 pour tout k.
• Montrre que M est inversible, puis que detM > 0.

Exercice 874 [Centrale 1218] • Rappeler la definition de l’indicatrice d’Euler, exprimer φ(n) en fonction de sa decomposition
en facteurs premiers.

▷ Pour n ≥ 2, calculer
∑

d|n φ(d) (la somme etant restreinte aux diviseurs positifs).
▷ En deduire le determinant de A, ou Ai,j = i ∧ j.

Exercice 875 [Centrale 1219] Soit f : R → R une fonction continue telle que, pour toute matriceA ∈ GLn(R), l’on ait (f(aij))1≤i,j≤n ∈
GLn(R).

• A l’aide des matrices Ux,y =

(
x 1
y 1

)
, montrer que f est injective.

• En utilisant l’ensemble T = {(x, y) ∈ R2, x < y}, en deduire que f est strictement monotone.
• On suppose que f(R) = R+∗. Montrre qu’il existe a ∈ R tel que, pour tous x, y ∈ R, il existe zx,y ∈ R tel que f(x)f(y) =
f(a)f(zx,y), et conclure a une absurdite.

• Traiter de meme le cas f(R) = R−∗.

Exercice 876 [Centrale 1220] • Rappeler la formule de developpement d’un determinant par rapport a une ligne ou une co-
lonne. En deduire, pour A ∈ Mn(R), une relation entre ComA, A et detA.

▷ Soit A = (ai,j)1≤i,j≤n la matrice de Mn(R) definie par : ai,i = 2, ai,j = −1 si |i− j| = 1 et ai,j = 0 dans tout autre cas.
Calculer le determinant de A.

▷ Soit A ∈ Mn(R) une matrice dont les coefficients diagonaux sont strictement positifs, dont les autres coefficients sont
negatifs et telle que

∑n
j=1 ai,j > 0 pour tout i. Montrre que A est inversible.

▷ Montrre que les coefficients de A−1 sont positifs.

Exercice 877 [Centrale 1221] Soient M ∈ GLn(R), F : X 7→MXM−1 et f : (A,B) 7→ tr(A) tr(B)− tr(AB).

• Montrre que, pour tous A, B ∈ Mn(R), tr(AB) = tr(BA).
• Trouver les endomorphismes h de Mn(R) qui verifient, pour tous A, B ∈ Mn(R), f(F (A), B) = f(A, h(B)).
• Dans cette question, on suppose que n = 2.Soit $h :

(
∈ {M}2(R) 7→

( )
.$Determinerlesendomorphismesk de Mn(R) tels

que f(h(A), B) = f(A, k(B)) pour tout $(A,B)∈{M}n(R)2.$ Parmi eux, preciser ceux qui sont trigonalisables, diagonalisables.

Exercice 878 [Centrale 1222] • Enoncer et demontrer la caracterisation du rang par les matrices extraites.

▷ Soit Ωn(K) l’ensemble des matrices M = (Mi,j)1≤i,j≤n de Mn(K) telles que, pour tout k ∈ 1, n, la matrice Mk :=
(Mi,j)1≤i,j≤k soit inversible. Si K = R ou C, montrer que Ωn est un ouvert de Mn(K).

▷ Montrer qu’une matriceM de Mn(K) appartient a Ωn(K) si et seulement siM s’ecrit TT ′ ou T (resp. T ′) est une matrice
de Mn(K) triangulaire inferieure (resp. superieure) inversible.

Exercice 879 [Centrale 1223] Soit A =


0 · · · 0 a1
...

...
...

...
an 0 . . . 0

 ∈ Mn(R)

• Donner la definition du polynome minimal πA. Donner une condition necessaire et suffisante pour que A soit diagonalisable.
• Calculer det(A) et A2.
• Montrer que A est diagonalisable si et seulement si Ker(A) = Ker(A2). Donner une condition sur les a1, . . . , an pour que A

soit diagonalisable.

Exercice 880 [Centrale 1224] On se place dans Mn(C).

• Montrer que toute matrice est trigonalisable sur C.
• Soient α1, . . . , αn ∈ C et D = Diag (α1, . . . , αn). Montrer qu’il existe un polynome f tel que pour tout i ∈ 1, n, f(αi)

2 = αi.
En deduire que f(D)2 = D.

On considere la suite (c− k definie par c0 = 1 et, pour tout k ∈ N, ck+1 =
∑k

i=0 cick−i et le polynome φ =
∑n−1

k=0 ckX
k+1.

• Determiner le reste de la division euclidienne de φ2 par Xn.
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• Trouver un polynome g tel que, pour toute matrice nilpotente N ∈ Mn(C), on ait g(N)2 = In +N .
• Soit A une matrice inversible. Montrer qu’il existe R ∈ C[A] telle que R2 = A.

Exercice 881 [Centrale 1225] Soient E un espace vectoriel de dimension finie et f un endomorphisme de E diagonalisable. On
note Ei ses sous-espaces propres et ni = dimEi.

• Montrer que E =
⊕r

i=1Ei.
• Soit g un endomorphisme de E. Montrer que les propositions suivantes sont equivalentes :
• g commute avec f , - pour tout i ∈ 1, r, g(Ei) ⊂ Ei.En deduire que la dimension du commutant de f est

∑r
i=1 ni

2.
• Soit A ∈ Mn(C), montrer que la dimension du commutant de A est superieure ou egale a n.

Exercice 882 [Centrale 1226] Soit A ∈ Md(C). On note ρ(A) = maxλ∈Sp(A) |λ|. On pose, pour n ∈ N, un = n
√
|tr (An)|.

• Si Sp(A) est un singleton, montrer que (un) converge vers ρ(A).
• Donner un exemple de matrice dans M2(C) telle que (un) ne converge pas.

On suppose maintenant que A a au moins deux valeurs propres distinctes.

• Soit z ∈ C tel que |z| = 1. Montrer que 1 est valeur d’adherence de (zn). Montrer que ρ(A) est valeur d’adherence de un.

Exercice 883 [Centrale 1227] Soit E un espace-vectoriel de dimension finie n et f un endomorphisme de E. Pour toute partie
A ⊂ L(E), on note C(A) = {u ∈ L(E) ; ∀v ∈ A, u ◦ v = v ◦ u}. L’objectif de l’exercice est d’etudier B(f) = C(C({f})).

• Montrer que B(f) est une K-algebre contenant K[f ].
• On suppose f nilpotente d’indice n. Montrer que B(f) = K[f ].
• Soient G1, G2 deux sous-espaces vectoriels supplementaires stables par un f ∈ L(E). On pose fi = f|Gi

. On suppose que
πf1 ∧ πf2 = 1. Montrer que B(f) = K[f ].

Exercice 884 [Centrale 1228] Soient E un espace vectoriel euclidien de dimension n ∈ N, a ∈ E un vecteur unitaire, et H
l’hyperplan orthogonal a la droite vectorielle dirigee par a. On note σ la symetrie orthogonale par rapport a l’hyperplan H , et p la
projection orthogonale sur H .

• Montrer que, pour tout sous-espace vectoriel F de E, F
⊥
⊕ F⊥ = E.

• Montrer que, pour x ∈ E, p(x) = x− ⟨a, x⟩a.
• Soit Ω = {x ∈ E, ⟨a, x⟩ ≥ 0 et ⟨x, σ(x)⟩ ≤ 0}.

Montrer les equivalences suivantes, pour x ∈ E :

• x ∈ Ω si et seulement si ⟨a, x⟩ ≤ ∥p(x)∥,
• x ∈ Ω si et seulement si ∀y ∈ Ω, ⟨x, y⟩ ≤ 0.

Exercice 885 [Centrale 1229] Soit E un espace euclidien. Soit s ∈ L(E).

• Rappeler l’identite du parallelogramme et les identites de polarisation.
• Montrer l’equivalence suivante :

1. $∃ c∈{R},\ ;∀(x,y)∈ E2,\ ;⟨ s(x),s(y)⟩=c ⟨ x,y⟩,$

ii) ∀(x, y) ∈ E2, ⟨x, y⟩ = 0 ⇒ ⟨s(x), s(y)⟩ = 0.

Exercice 886 [Centrale 1230] • Montrer que (P,Q) 7→
∫ 1

0
PQ definit un produit scalaire sur Rn−1[X]. En deduire qu’il existe

un unique P ∈ Rn−1[X] tel que
∫ 1

0
xkP (x) dx = 1 pour 0 ≤ k ≤ n − 1. On pose P = a0 + a1X + · · · + an−1X

n−1. - Soit
f : [0, 1] → R continue telle que

∫ 1

0
xkf(x) dx = 1 pour 0 ≤ k ≤ n− 1. Montrer que

∫ 1

0
f2 ≥

∑n−1
i=0 ai, puis que

∫ 1

0
f2 ≥ n2.

Exercice 887 [Centrale 1231] • Montrer que l’application (P,Q) 7→
∫ 1

0
P (t)Q(t) dt est un produit scalaire sur R[X].

▷ Soit (E,φ) un espace euclidien etB = (e1, ..., en) une base deE. Montrer que la matrice (φ(ei, ej))1≤i,j≤n est symetrique
definie positive.

▷ Pour tout p ∈ N, on pose Lp = dp

dXp [Xp(1 −X)p] ∈ R[X]. Montrer que la famille (Lp) est orthogonale pour le produit
scalaire de la question a. Est-elle orthonormale?

▷ Soit M =
(

1
i+j−1

)
1≤i,j≤n+1

. Montrer que la matrice M est symetrique definie positive et calculer detM .

Exercice 888 [Centrale 1232] Soient A ∈ S++
n (R) et b ∈ Rn.

• Rappeler la definition d’une matrice definie positive. Donner des proprietes d’une telle matrice.
• Pour x ∈ Rn, on pose J(x) = ⟨Ax, x⟩ − ⟨b, x⟩. Montrer que J est strictement convexe, c’est-a-dire que : ∀x ̸= y, ∀λ ∈]0, 1[,
J(λx+ (1− λ)y) < λJ(x) + (1− λ)J(y).

• Montrer que J atteint un minimum en un unique point de Rn et que ce vecteur est solution de l’equation Ax = b.

Exercice 889 [Centrale 1233] Soient n ∈ N et α > 0. On note Sα = {M ∈ S+
n (R), detM ≥ α}. Le but de cet exercice est de

s’interesser, pour A ∈ S+
n (R), a la quantite mα(A) = infM∈Sα

tr(AM).

• Montrer que les valeurs propres d’une matrice symetrique reelle sont reelles. Rappeler le theoreme spectral. Justifier l’existence
de mα(In) puis la calculer.

• Soit A ∈ S+
n (R). Justifier l’existence de R ∈ S+

n (R) telle que A = R2. Prouver l’unicite puis calculer mα(A).
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• Que se passe-t-il lorsque α = 0?

Exercice 890 [Centrale 1234] Soient d ∈ N∗, A ∈ Sn(R) a coefficients dans {0, 1} et de trace nulle. On suppose que A2 + A −
(d− 1)In = Jn ou Jn est la matrice dont tous les coefficients valent 1.

• Montrer que chaque ligne de A contient d coefficients egaux a 1.
• Montrer que AU = dU ou U = (1 · · · 1)T . En deduire que n = d2 + 1.
• Montrer que la multiplicite de d est egale a 1.
• Montrer que les autres valeurs propres de M sont racines de X2 +X − d+ 1 = 0.
• Montrer que’il existe deux entiers naturels m1 et m2 tels que m1 +m2 = n− 1 et d+m1r1 +m2r2 = 0 ou r1 et r2 sont les

solutions de l’equation precedente.
• Montrer que si m1 = m2 alors d = 2. On suppose d > 2 dans la suite.
• Montrer que’il existe un entier k tel que 4d− 3 = (2k + 1)2 puis que k4 ≡ 1 [2k + 1].
• Montrer que, pour tout entier k ∈ N, on a 16k4 ≡ 1 [2k + 1]. En deduire qu’on a forcement d ∈ {2, 3, 7, 57}.# 1235

Soit A =

(
A1 B
BT A2

)
une matrice symetrique definie positive avec A1 ∈ Sp(R) et A2 ∈ Sq(R).

• Montrrer que A1 et A2 sont definies positives.
• Montrer qu’il existe R1 et R2 symetriques definies positives telles que R2

1 = A1 et R2
2 = A2.

• Montrer que det(A) ≤ det(A1) det(A2).

Exercice 891 [Centrale 1236] On considere la relation binaire pour (A,B) ∈ (Sn(R))2A ⪯ B ⇔ B −A ∈ S+
n (R).

• Montrer que l’on definit ainsi une relation d’ordre sur Sn(R).
• Montrer qu’une partie de Sn(R) est bornee si et seulement si elle est majoree et minoree pour ⪯.
• Montrer que toute suite croissante majoree pour ⪯ converge.
• Soient A et B dans S++

n (R). Montrer que A ⪯ B =⇒ B−1 ⪯ A−1.

Exercice 892 [Centrale 1237] Si S ∈ Sn(R), on note λ1(S) ≤ · · · ≤ λn(S) le spectre ordonne de S. On munit Rn du produit
scalaire canonique note ⟨ ⟩ et on note Sn−1 la spere unite.

• Montrer que, si S ∈ Sn(R), λ1(S) = min{⟨Sx, x⟩ ; x ∈ Sn−1}.
• Si d ∈ 1, n, soit Vd l’ensemble des sous-espaces vectoriels de dimension d de Rn. Montrer que, si k ∈ 1, n et S ∈ Sn(R),

λk(S) = min
V ∈Vk

max{⟨Sx, x⟩ ; x ∈ V ∩ Sn−1} = max
V ∈Vn−k+1

min{⟨Sx, x⟩ ; x ∈ V ∩ Sn−1}.

• Si (i, j) ∈ 1, n2, i+ j ≤ n+ 1 et (S, S′) ∈ Sn(R)2, montrer que

λi+j−1(S + S′) ≤ λi(S) + λj(S
′).

2) Analyse

Exercice 893 [Centrale 1238] Soient (E, ∥ ∥) un espace norme, F un sous-espace vectoriel ferme strict de E et δ ∈]0, 1[. Montrer
qu’il existe un vecteur unitaire u de E tel que d(u, F ) ≥ δ.

Exercice 894 [Centrale 1239] Soient (E,N) et (E′, N ′) deux espaces vectoriels normes.
Soit d ∈ N. Pour P (X) = p0 + p1X + · · ·+ pdX

d ∈ Rd[X] on pose ∥P∥ = max(|p0|, ..., |pd|).
• Verifier que l’application ∥ ∥ est une norme sur Rd[X].

b) i) Soit (y − n ∈ N une suite d’elements de E, convergeant vers ℓ ∈ E.
Montrer que l’ensemble Y = {yn, n ∈ N} ∪ {ℓ} est compact.

• Soit f : E → E′ continue telle que, pour tout compact K de E′, f−1(K) est un compact de E. Montrer que, si F est un ferme
de E, alors f(F ) est un ferme de E′.

• Soit P ∈ Rd[X] un polynome unitaire. Montrer que, si x ∈ R est une racine de P telle que |x| > 1, alors |x| ≤ ∥P∥ + 1. En
deduire que l’ensemble des polynomes unitaires et scindes de Rd[X] est ferme dans Rd[X].

Exercice 895 [Centrale 1240] • Resoudre dans C l’equation ez = −1.

▷ Soit f : U → R continue. Montrer qu’il existe z ∈ U tel que f(−z) = f(z). En deduire que, si A et B sont deux parties
fermees de reunion U, il existe deux points de U diametralement opposes tous deux dans A ou tous deux dans B. - Soient
D le disque unite ferme du plan complexe et g : D → C∗ continue telle que, pour tout z ∈ U, g(−z) = −g(z). On admet
qu’il existe h continue telle que g = exp ◦h. Montrer qu’il existe z ∈ D tel que h(−z) = h(z).

Exercice 896 [Centrale 1241] Soit (E, ∥ ∥) un espace vectoriel norme. Pour A ⊂ E non vide et x ∈ E, on note d(x,A) =
inf{∥x− a∥, a ∈ A}.

• On suppose A ferme. Soit x ∈ E. Montrer que d(x,A) = 0 si et seulement si x ∈ A.
• Soient F un sous-espace vectoriel ferme de E et δ ∈]0, 1[. Montrer qu’il existe x ∈ E unitaire verifiant d(x, F ) ≥ δ.
• On suppose E de dimension infinie et on admet que les sous-espaces vectoriels de dimension finie sont fermes. Montrer que la

sphere unite n’est pas un compact de E.
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Exercice 897 [Centrale 1242] Soit φ la fonction definie sur [0, 1] par φ(0) = 0 et φ(t) = −t ln(t) pour t ∈]0, 1]. Soit n ∈ N∗.
On pose Sn l’ensemble des vecteurs p = (p1, ..., pn) ∈ Rn tels que p1 + ... + pn = 1 et pi ≥ 0 pour tout 1 ≤ i ≤ n. On pose enfin
Hn(p) =

∑n
i=1 φ(pi) pour p ∈ Sn.

• - Donner la definition d’une partie compacte d’un espace vectoriel norme, et en donner une caracterisation en dimension finie.
• Montrer que Sn est une partie compacte et convexe de Rn.
• - Montrer que Hn est continue.
• Montrer que Hn atteint sur Sn un maximum en un unique point p0, et expliciter p0.

Soit v = (v1, ..., vn) ∈ Rn. On pose fv(p) = Hn(p) +
∑n

i=1 pivi pour p ∈ Sn.
On pose f∗v = supp∈Sn

fv(p) et Ev = {p ∈ Sn, fv(p) = f∗v }.

• Montrer que Ev est non vide. Determiner f∗v et Ev .

Exercice 898 [Centrale 1243] Soient (E, ∥ ∥), (E′, ∥ ∥) deva espaces vectoriels normes de dimension finie, A un ferme non vide
de E, B une partie non vide de E′. Soit f : A→ B continue bijective telle que l’image reciproque par f de toute partie bornee de B
est bornee. Montrer que f−1 est continue.

Exercice 899 [Centrale 1244] Un espace norme reel est dit separable lorsqu’il contient une partie denombrable dense.

• L’espace R est-il separable?
• Montrer qu’un espace norme de dimension finie est separable.
• Soit E un espace prehilbertien reel de dimension infinie. Montrer que E est separable si et seulement s’il existe une suite

orthonormalee (e− n ≥ 0 telle que Vect (e− n ≥ 0 soit dense dans E.

Exercice 900 [Centrale 1245] Soit E l’espace des fonctions polynomiales de R dans R. Pour tout f ∈ E, on note φ(f) la primitive
de f d’integrale nulle sur l’intervalle [0, 1].

• Justifier la definition de φ puis etablir qu’il s’agit d’une application lineaire sur E.

On munit E de la norme ∥ ∥∞ sur [0, 1].
On note $\|φ\|op=⊃ \{ \|φ(f)\|∞, [0, 1]}{\|f \|∞, [0, 1]},\ f∈ E\\0E\\.$

• Montrer que ∥φ∥op est correctement definie et en trouver un majorant. - Soient f ∈ E et G la primitive de F = φ(f) nulle en
0. Etablir que, pour tout x > 0,

G(x) = xF (x)−
∫ x

0

tf(t)dt = (x− 1)F (x)−
∫ 1

x

(1− t)f(t)dt.

• Determiner la norme ∥φ∥op.

Exercice 901 [Centrale 1246] Soit A ∈ Mn(R), on pose fA(x) = (A+ xIn)
−1A pour x reel convenable.

• Montrer que la fonction fA est definie au voisinage epointe de 0.
• Etudier le comportement de la fonction fA en 0 dans le cas ou A est inversible, puis dans le cas ou A est nilpotente.
• Soit u ∈ L(Rn). Montrer l’existence de p ∈ N∗ tel que Im(up)⊕Ker(up) = Rn.

En deduire l’existence de deux supplementaires F et G dans Rn, stables par u, tels que u induit sur F un automorphisme et induit sur
G un endomorphisme nilpotent.

• Caracteriser les matrices A pour lesquelles fA a une limite en 0.

Exercice 902 [Centrale 1247] Soient (an) une suite a termes reels positifs et (bn) une suite a termes complexes. On suppose que
la serie

∑
an diverge et que bn ∼ an. On note Sn =

∑n
k=0 ak .

• Montrer que la serie
∑
bn diverge et que les sommes partielles des deux series sont equivalentes.

• On suppose qu’il existe λ ∈ R+∗ tel que Sn

nan
−−−−−→
n→+∞

λ. Determiner la limite de 1
n2an

∑n
k=0 kak .

Exercice 903 [Centrale 1248] • Rappeler la regle de d’Alembert pour une serie numerique a termes positifs.

▷ On considere une suite croissante (q − n ≥ 1 d’entiers ≥ 2.
▷ Quel est le rayon de convergence de la serie entiere

∑
zn

q1...qn
?

▷ Montrer que si la suite (qn) est stationnaire alors le reel $ x=
∑

n=1
+∞ 1

q1...qn
$appartientaQ∩]0,1].

▷ On admet reciproquement que si (qn) tend vers +∞ alors x /∈ Q. Montrer que les reels e, ch(
√
2) et e

√
2 sont irrationnels.

▷ Montrrer la reciproque admise ci-dessus.

Exercice 904 [Centrale 1249] Soit I =]− 1,+∞[. On dit que f ∈ C0(I,R) verifie (∗) si et seulement si :
∀x, y ∈ I , f(x) + f(y) = f(x+ y + xy).
On pose, pour n ∈ N, xn = 1

(n+2)(2n+1) et yn = n
n+1 . Soit f ∈ C0(I,R).

• Simplifier xn + yn + xnyn. Montrer que la serie de terme general $ f(xn)$ converge et exprimer
∑+∞

n=0 f(xn) en fonction de
f(1).

• Montrer que f est derivable. - Trouver toutes les fonctions continues verifiant (∗).
Exercice 905 [Centrale 1250] Soit f : R → R trois fois derivable telle que ff (3) = 0.
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• Montrrer que, si f ′ est strictement monotone sur un intervalle I , alors f prend une meme valeur au plus deux fois sur I .
• On pose Γ = {x ∈ I, f ′

′
(x) = 0}. Montrer que, si Γ est non vide, alors Γ n’est ni majore, ni minore.

• Montrer que Γ est un intervalle et en deduire f .

Exercice 906 [Centrale 1251] • Soit g : [a, b] → R continue et injective. Montrer que g est strictement monotone.
On cherche les fonctions g continues sur R telles que, pour tout x ∈ R, g2(x) = 2g(x)− x.

• Montrer qu’une telle fonction est bijective et strictement croissante.
• Exprimer gn pour tout n ∈ N puis conclure.

Exercice 907 [Centrale 1252] • Rappeler la definition d’une fonction lipschitzienne. Montrer qu’une fonction lipschitzienne
est continue. Soient α ∈]0, 1] et

Hα =
{
f : [0, 1] → R | ∃L > 0, ∀(x, y) ∈ [0, 1], |f(x)− f(y)| ≤ L|x− y|α

}
.

• Montrer Hα est un R-espace vectoriel, que si 0 < α ≤ β ≤ 1, alors Hβ ⊂ Hα. Verifier que x 7→ xα ∈ Hα.
• Montrer que, pour 0 < α < β ≤ 1, Hβ est strictement inclus dans Hα.
• Montrer que C1([0, 1],R) ⊂ Hα ⊂ C0([0, 1],R) et que ces inclusions sont strictes.

Exercice 908 [Centrale 1253] • Soient a, b dans R avec a < b et f :]a, b[→ R derivable. On suppose que f admet la meme
limite finie ℓ en a et en b. Montrer qu’il existe c ∈]a, b[ tel que f ′(c) = 0.

▷ Soit f : x ∈]− 1, 1[ 7→ e
1

x2−1 . Montrer que f est de classe C∞ sur ]− 1, 1[ et que, pour tout n ∈ N, il existe un polynome
Pn tel que f (n)(x) = Pn(x)

(x2−1)2n f(x). Quel est le degre de Pn ?

▷ Combien f (n) a-t-elle de zeros?

Exercice 909 [Centrale 1254] • Donner la definition de la multiplicite d’une racine d’un polynome puis sa caracterisation a
l’aide des derivees successives du polynome.

▷ Soit P ∈ C[X] non nul. Exprimer P ′/P a l’aide des racines de P .

▷ Soit r > 0. On suppose queP ne s’annule pas sur le cercleC(0, r) du plan complexe. On poseNr(P ) =
1
2π

∫ 2π

0
P ′(reit)
P (reit) re

it dt.
Montrer que Nr(P ) est egal au nombre de racines de P (comptees avec multiplicite) dans le disque D(0, r).

Exercice 910 [Centrale 1255] Soit E l’ensemble des fonctions f ∈ C0(R+,R) telles que
∫ +∞
0

f2 <∞. Soit f ∈ E.

On pose ∥f∥ =
(∫ +∞

0
f2
)1/2

et on definit l’application Tf par : Tf(0) = f(0) et, pour tout x > 0, Tf(x) = 1
x

∫ x′

0
f .a) i)_ : Rappeler

le theoreme concernant la derivabilite des fonctions x 7→
∫ x

a
f . - Montrver que Tf est continue. - Montrver que, pour tout x > 0, on

a Tf(x)2 ≤ 1
x

∫ x

0
f(t)2 dt.

• Soit A > 0. Montrver que
∫ A

0
Tf(x)2 dx ≤ 2

∫ A

0
f(x)
x

(∫ x

0
f
)
dx. En deduire que Tf ∈ E et que ∥Tf∥ ≤ 2∥f∥

• Montrver que la constante 2 est optimale dans l’inegalite (∗). On pourra considerer les fonctions fa : t 7→ t−a.

Exercice 911 [Centrale 1256] Soient (an) une suite reelle telle que (
∑n

k=0 ak) est bornee, (bn) une suite reelle decroissante de
limite nulle et, pour tout n ∈ N, fn : x 7→ sin(nx).

• Montrver qu’une serie absolument convergente est convergente.
• Montrver que la serie de terme general anbn converge.
• Montrver que la serie de fonctions de terme general bnfn converge.

Exercice 912 [Centrale 1257] Soit f ∈ C1(R+,R+∗) croissante telle que f ′(x)
f(x) ∼

x→+∞
a
x ou a > 0.

• Citer le theoreme d’integration des relations de comparaison, puis trouver un equivalent de ln(f(x)) quand x→ +∞.
• Donner le domaine de definition de u : x 7→

∑+∞
n=0 f(n) e

−nx. Determiner les limites de u aux bornes de son domaine de
definition.

• Montrver qu’il existe C ∈ R tel que u(x) ∼ C
x f
(
1
x

)
lorsque x→ 0+.

Exercice 913 [Centrale 1258] Soient α ∈ N avec α ≥ 2 et β ∈]1,+∞[. Soit f : t 7→
∑

n≥0
cos(2παnt)

βn .

• Montrver que f est definie et continue. Si α < β, montrer que f est derivable sur R.
• On suppose α ≥ β. Montrver que f n’est pas derivable en 0.

Exercice 914 [Centrale 1259] Soit f : x 7→
∑

n≥1 sin(nx) e
−nα

avec α > 0. Montrver que f est C∞ puis developpable en serie
entiere au voisinage de l’origine.

Exercice 915 [Centrale 1260] On considere la serie entiere S(x) =
∑+∞

n=0 anx
n ou an = 1

n!

∫ 1

0

∏n−1
k=0(t− k) dt avec a0 = 1.

• Montrver que le rayon de convergence R est ≥ 1.
• Calculer S(x) pour |x| < 1 puis montrer que R = 1.
• Determiner un equivalent de an.# 1261

On pose, pour n ∈ N, cn = 1
n+1

(
2n
n

)
.

• Donner le developpement en serie entiere de x 7→ (1 + x)α. Exprimer le developpement en serie entiere de f : x 7→ 1−
√
1−4x
2x

(avec f(0) = 1) a l’aide des cn.
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• Soit r un rationnel que l’on peut ecrire r = a
b = c

d avec b∧d = 1. Montrer que r est entier. Montrer que, pour tout $n∈N*,$$cn∈N$.
• Donner la valeur de

∑n
k=0 ckcn−k en fonction de cn+1.

Exercice 916 [Centrale 1262] Pour n ≥ 1, on note tn le nombre de σ ∈ Sn telles que σ ◦ σ = id. On convient que t0 = 1,

• Montrer que la serie entiere
∑ tn

n! x
n a un rayon de convergence ≥ 1.

• Calculer t1, t2, t3. Montrer que, si n ≥ 2, tn = tn−1 + (n− 1)tn−2.
• Determiner f(x) =

∑+∞
n=0

tn
n!x

n pour x ∈]−1, 1[. En deduire une expression de tn sous forme de somme. Calculer limn→+∞
tn
n! .

Exercice 917 [Centrale 1263] Pour n ∈ N, on note Pn l’ensemble des polynomes P a coefficients dans {0, 1, 2} tels que P (2) = n,
et an = |Pn|. On note sn la somme des chiffres de l’ecriture binaire de l’entier n, et pour k ∈ [[0, 7]], on pose bn,k = |{i ∈ [[0, n]], si −
sn−i ≡ k [8]}|.

• Calculer a0, a1, a2 et a3.
• Montrer que Pn est fini.
• Montrer que, pour n ∈ N, a2n+1 = an et que, pour n ∈ N∗, a2n = an + an−1.

Ind. Pour la premiere egalite, on pourra exhiber une bijection entre Pn et P2n+1.

• Montrer que la serie entiere
∑
anx

n a un rayon de convergence egal a 1.

On note A(x) la somme de cette serie.

• Montrer que, pour x ∈]− 1, 1[, A(x) = (1 + x+ x2)A(x2).

En deduire que ∀x ∈]− 1, 1[, A(x) = limn→+∞
∏n

k=0(1 + x2
k

+ x2
k+1

).

• On note j = e
2iπ
3 . Etablir que, pour n ∈ N et x ∈]− 1, 1[,

n∏
k=0

(1 + x2
k

+ x2
k+1

) =

2n+1−1∑
k=0

(−j)n−skxk

2n+1−1∑
k=0

(−j)n−skxk

 .

• Que peut-on en deduire sur (an)?

Exercice 918 [Centrale 1264] • - Rappeler la definition de partie dense dans R et en donner une caracterisation sequentielle.

▷ Trouver toutes les fonctions f : R → R continues en 0 telles que

∀(x, y) ∈ R2, f(x+ y) = f(x) + f(y).
On dit qu’une suite reelle (a− n ∈ N verifie la propriete (P ) si :1. La serie entiere

∑
anx

n a un rayon de convergence superieur ou
egal a 1,

1. La somme Sa de cette serie entiere admet une limite reelle en 1−.
2. - Montrer que, si la serie

∑
an converge absolument, alors la suite (a− n ∈ N verifie (P ),

3. Etudier la reciproque.
4. Trouver toutes les suites (a− n ∈ N periodiques qui verifient (P ).

Exercice 919 [Centrale 1265] Soient (a− n ≥ 1 une suite de carre sommable et $ f :t 7→
∑

n=1
+∞ an

n−t $.

Preciser le domaine de definition de f .
Montrer que f est developpable en serie entiere autour de 0.
Montrer que si f est identiquement nulle sur [−1/2, 1/2] alors la suite (an) est nulle.

Exercice 920 [Centrale 1266] • Rappeler la definition d’une fonction f developpable en serie entiere en 0 et preciser une
expression de f (k)(0) en fonction des coefficients pour k ∈ N.

▷ Soit f une fonction de classe C∞ au voisinage de 0 pour laquelle il existeα > 0,M > 0 et a > 0 tels que ∀x ∈]−α, α[, ∀k ∈
N, |f (k)(x)| ≤Makk!.

Montrer que f est developpable en serie entiere en 0.

• Soit f une fonction developpable en serie entiere en 0. Montrer l’existence deα > 0,M > 0 et a > 0 tels que ∀x ∈]−α, α[, ∀k ∈
N, |f (k)(x)| ≤Makk!.

Exercice 921 [Centrale 1267] On admet le theoreme suivant :Pour S une serie entiere de rayon de convergence infini dont la somme
ne s’annule pas sur C, il existe une serie entiere L de rayon de convergence infini telle que ∀z ∈ C, exp(L(z)) = S(z).

• - Rappeler tous les modes de convergence d’une serie entiere sur son disque ouvert de convergence.

• Soient $ F(z)=
∑

n=0
+∞anzn$derayondeconvergenceinfiniet$G(z)=Re(F (z))$.

Pour n ∈ N∗, montrer que
∫ 2π

0
F (reit)dt = 2πanR

n, puis que∫ 2π

0
G(Reit)e−intdt = πanR

n et
∫ 2π

0
G(Reit)dt = 2πRe(a0).

• Montrer que, s’il existe p et q reels strictement positifs tels que ∀z ∈ C, |G(z)| ≤ p|z| + q, alors F est un polynome de degre
au plus 1.

• Montrer que l’application z 7→ z exp(z) est une surjection de C sur lui-meme.
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Exercice 922 [Centrale 1268] Soient E un C-espace vectoriel de dimension finie et u ∈ L(E). Montrer qu’il existe r > 0 tel que,

pour tout t ∈]− r, r[, det(id− tu) = exp
(
−
∑+∞

k=1
tk tr(uk)

k

)
.

Exercice 923 [Centrale 1269.] • - Rappeler la definition de fonction continue par morceaux sur un intervalle I de R. - _Pour
n ∈ N∗, on definit une fonction fn sur R+ par fn(x) = 1

n

(
1− x

n

)
si x ∈ [0, n] et fn(x) = 0 sinon.

Montrer que la suite (f−n ∈ N∗ converge simplement sur R+ vers une fonction f a preciser et que
∫

R+ fn ̸−→
∫

R+
f quandn→ +∞.

• Rappeler le theoreme de convergence dominee.

Le demontrer sous l’hypothese supplementaire d’une convergence uniforme sur tout segment.

• Soit (f −n ∈ N ∈
(
RN
)N

une suite de fonctions qui converge simplement sur N vers une suite f ∈ RN. On suppose l’existence
d’une suite sommable positive φ ∈ RN telle que ∀n ∈ N, ∀t ∈ N, |fn(t)| ≤ φ(t).

Montrer que les suites fn et f sont sommables et que limn→+∞
∑+∞

k=0 fn(k) =
∑+∞

k=0 f(k).

Exercice 924 [Centrale 1270] Pour tout reel a, on pose {a} = a− ⌊a⌋.

• On fixe un entier n ≥ 1. Montrer que la fonction fn : x ∈ R+∗ 7→
{

1
x

}n
est continue par morceaux sur R+∗ et que l’integrale

In =
∫ 1

0
fn(x) dx est convergente.

• Montrer que la famille F =
(

(−1)ii
(i+1)ki+1

)
i≥1
k≥2

est sommable et exprimer sa somme S sous la forme d’une serie faisant intervenir

la fonction ζ .
• Exprimer I1 en fonction de S.

Exercice 925 [Centrale 1271] • Montrer le theoreme d’integration des series uniformement convergentes sur un segment.

▷ Pour a, b ∈ R avec a < b, γ : [a, b] → C de classe C1 et f : C → C continue, on pose
∫
γ
f(z) dz =

∫ b

a
f(γ(t))γ′(t) dt.

Meme definition lorsque f est a valeurs dans Mn(C).

On note, pour r > 0, γr : t ∈ [0, 2π] 7→ reit.
Soit F : C → C la somme d’une serie entiere de rayon de convergence infini. Soient a ∈ C et r > |a|. Montrer que f(a) =
1

2iπ

∫
γr

f(z)
z−a dz.

• En deduire, pour toute matrice M ∈ Mn(C) et pour r assez grand (a preciser), l’egalite exp(M) = 1
2iπ

∫
γr
ez(zIn −M)−1 dz.

Exercice 926 [Centrale 1272] Soient E = C∞([0, π],R) et F = {f ∈ E, f(0) = f(π) = 0}. Soient φ, q ∈ E, la fonction q
etant positive. On note α une primitive de φ. On pose D(y) = y

′′
+ φy′ − qy et L(y) = −eαD(y) pour tout y ∈ E, et ⟨y, z⟩ =∫ π

0
y(x)L(z)(x) dx pour tous y, z ∈ F .

• Rappeler le theoreme de Cauchy-Lipschitz.
• Montrer que ⟨ , ⟩ est un produit scalaire sur F .
• Soit h ∈ E. Montrer qu’il existe une unique fonction f0 ∈ F telle que D(f0) = h.# 1273
• Soient E un espace euclidien, U un ouvert de E, et f : U → R une application de classe C1. Rappeler la definition de la

differentielle df(a) de f en a ∈ U et du gradient ∇f(a), ainsi que l’expression de ∇f(a) en base orthonormale.
• On munit Mn(R) de sa structure euclidienne canonique.

Montrer que ∇(det)(A) = Com(A).

• Quel est le coefficient de X dans χA ?
• Determiner l’espace tangent a SLn(R) en In.

Exercice 927 [Centrale 1274] Soient A ∈ S++
n (R), b ∈ Rn et J : x 7→ 1

2 ⟨Ax, x⟩ − ⟨b, x⟩.
• Montrer que J est strictement convexe.
• Montrer que J(x) → +∞ quand ∥x∥ → +∞.
• En deduire que J admet un minimum.
• Calculer ∇J et conclure quant au minimum de J .

Exercice 928 [Centrale 1275] Soient (E, ⟨ ⟩) un espace prehilbertien reel et F un sous-espace vectoriel de dimension finie de E.

• Pour tout x ∈ E, exprimer la projection orthogonale de x sur F a l’aide d’une base orthonormale de F . Justifier la formule.
• On definit la fonction dF : E \ F → R, x 7→ d(x, F ). Montrer que dF est differentiable, et calculer sa differentielle.

3) Probabilites

Exercice 929 [Centrale 1276] On note dn le nombre de derangements de n objets, c’est-a-dire le nombre de permutations σ ∈ Sn

sans point fixe.
_a) i)Soit n ∈ N. Montrer

∑n
k=0

(
n
k

)
dn−k = n!.

• Montrer que la serie entiere
∑ dn

n! t
n a un rayon de convergence superieur ou egal a 1.

On note D(t) la somme de cette serie.

• Calculer etD(t).

• En deduire que dn = n!
∑n

k=0
(−1)k

k! .
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• Calculer la limite lorsque n tend vers +∞ de la probabilite pn qu’un element de Sn soit un derangement.

_c) i)Pour n et p entiers naturels, on note sn(p) le nombre de surjections de [[1, n] sur [1, p].
Montrer que pn =

∑n
k=0

(
p
k

)
sn(k).

• Soit (x, y) ∈ R2. Montrer que la famille
(
sn(p)

xp

p!
yn

n!

)
(n,p)∈N2

est sommable.

Sa somme est notee S(x, y).

• Calculer exS(x, y). - En deduire la valeur de sn(p) dans le cas n = p, puis dans le cas general (n, p) ∈ N2.

Exercice 930 [Centrale 1277] On melange les cartes d’un jeu de 2n cartes.
Avec quelle probabilite les cartes de numero impair sont-elles correctement ordonnees?

Exercice 931 [Centrale 1278] Pour A1, ..., An parties finies d’un ensemble E, on admet que
|
⋃n

i=1Ai| =
∑n

k=1(−1)k−1
∑

1≤i1<i2<...<ik≤n |Ai1 ∩ ... ∩Aik |.
• Expliciter la formule precedente pour n = 2 et n = 3.

La demontrer pour n = 2.

• On definit une fonction µ sur N∗ par µ(1) = 1, µ(n) = (−1)k si l’entier n ≥ 2 s’ecrit n = p1...pk ou p1,. . ., pk sont k nombres
premiers distincts et µ(n) = 0 sinon.

Calculer la probabilite que deux entiers choisis aleatoirement dans l’ensemble {1, 2, ..., n} soient premiers entre eux a l’aide de la
fonction µ.

Exercice 932 [Centrale 1279] Soient X1, . . . , Xn des variables aleatoires i.i.d. suivant la loi de Poisson de parametre 1. On pose

Sn = X1 + · · ·+Xn et Tn =
Sn − n√

n
.

• Determiner la loi de Sn. Qu’en deduire sur Tn ?

• Montrer que
∑

k≥0

k(nk − 1)

(n+ k)!
converge et calculer la somme.

• Calculer
∫ +∞
0

P(Tn ≥ x) dx.

Exercice 933 [Centrale 1280.] • Rappeler les formules des probabilites totales et composees.
On fixe d ∈ N∗ et (U −n ≥ 1 une suite de variables aleatoires independantes uniformement distribuees sur [[1, d]]. SoitNd = inf{n ≥
2, Un ∈ {U1, . . . , Un−1}}.

• Quelles sont les valeurs prises par Nd ?

• Montrer que P(Nd > k) =
d!

dk(d− k)!
pour tout k ∈ [[0, d]].

• Pour tout reel x > 0, calculer limd→+∞ P

(
Nd√
d
> x

)
.

Exercice 934 [Centrale 1281.] • Soient x > 0 et Xx une variable de Poisson de parametre x. Calculer l’esperance de Xx.

Montrer que P(|Xx −E(Xx)| ≥ εx) = O

(
1

x

)
quand x→ +∞.

Soient α ∈ R et uα : x 7→
∑+∞

n=1

nα

n!
xn.

• Determiner le domaine de definition de uα.
• Determiner u1 et u2.
• Montrer que, pour tout α < 0, uα(x) = o (ex) quand x→ +∞.
• Montrer que, si α ∈]− 1, 0[, uα(x) ∼ xαex quand x→ +∞.

4) Centrale - PSI

a) Algebre

Exercice 935 [Centrale - PSI 1282] Soit A =

 0 c b
−c 0 a
−b −a 0

 ∈ M3(R). Trouver α pour que A3 = αA. Calculer An en fonction

de α.

Exercice 936 [Centrale - PSI 1283] Soient E un R-espace vectoriel et f ∈ L(E). On suppose qu’il existe a, b ∈ R avec a ̸= b tels
que : (f − a id) ◦ (f − b id) = 0.

• Determiner λ, µ ∈ R tels que λ(f − a id) et µ(f − b id) soient des projecteurs.
• Montrer que Ker(f − a id) = Im(f − b id).
• Determiner fn pour n ∈ N.

Exercice 937 [Centrale - PSI 1284] Soit A ∈ M2(Z).

• On suppose A inversible. Montrer que A−1 ∈ M2(Z) si et seulement si det(A) ∈ {−1, 1}.
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• On suppose qu’il existe p ∈ N∗ tel que Ap = I2. Montrer que A est inversible, et que A−1 est a coefficients entiers. Montrer
qu’il n’existe qu’un nombre fini de polynomes caracteristiques possibles pour A.

Exercice 938 [Centrale - PSI 1285] Soit A =

 3 −1 2
2 0 1
1 −1 2

.

• Montrer que A a une valeur propre double a > 0 et une simple b > 0. La matrice A est-elle diagonalisable?
• Soit f une fonction de R+∗ dans R de classe C2. Montrer qu’il existe un unique polynome Pf ∈ R2[X] tel que : Pf (a) =
f(a), Pf (b) = f(b), P ′

f (a) = f ′(a).

• Pour toute fonction f ∈ C2(R+∗,R), on pose f(A) = Pf (A). Calculer f(A) dans les cas ou f : x 7→ x2, puis f : x 7→ x3.

• Desormais on prend f : x 7→ 1

x
. Conjecturer la valeur de Af(A) et prouver cette conjecture.

Exercice 939 [Centrale - PSI 1286] Soit E l’espace vectoriel des fonctions polynomiales.
Si P ∈ E, on pose L(P ) : x 7→ e−x

∫ x

−∞ P (t) et dt.

• Montrer que L est un endomorphisme de E.
• Trouver les elements propres de L.

Exercice 940 [Centrale - PSI 1287] On munit R3 de sa structure euclidienne canonique. Soient u = (a, b, c)
T un vecteur unitaire

de R3. On note D=Vect(u) et p la projection orthogonale sur D.

• Experimer p(v) pour tout vecteur v = (x, y, z)
T ∈ R3
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