
Exercices 2023

I) ENS MP-MPI xens

Exercice 1 [ 1] SoientS etT des ensembles finis non vides et f une application deS dansT . On poseX =
{
(x, y) ∈ S2, f(x) = f(y)

}
.

Montrer que |X| ≥ max

(
|S|2
|T | ,

(⌈
|S|
|T |

])2

+ |S| −
⌈
|S|
|T |

])
.

Démonstration. Pour le terme de gauche, il s’agit de montrer que
∑

y n
2
y ≥

(∑
y ny

)2∑
y 1 , c’est Cauchy-Schwarz.

Pour le terme de droite, c’est un principe des tiroirs, puis compter pour 1 les éléments qui ne sont pas dans le tiroir.

Exercice 2 [ 2] Soient n ∈ N∗ et (x1, . . . , xn) ∈ Rn. Montrer qu’il existe m ∈ Z et S un sous-ensemble non vide de 1, n tels que∣∣m−
∑

i∈S xi
∣∣ ≤ 1

n+1 .

Démonstration. S sera un sous-ensemble d’entiers consécutifs : considérer les sommes partielles S0, . . . , Sn.

Exercice 3 [ 3] Pour tout n ∈ N∗, on note E(n) la valuation 5-adique de
∏n

k=1 k
k . Donner un équivalent de E(n), quand n→ +∞.

sup

Exercice 4 [ 5] Soit n un entier premier > 1. Montrer que −1 est un carré modulo n si et seulement si n est somme de deux carrés
d’entiers.

Démonstration. Si p est somme de deux carrés d’entiers, p ≡ 1[4], et a est un carré si et seulement si a
p−1
2 ≡ 1[p].

Réciproquement, si n | m2 + 1, dur, dur. ! !

Exercice 5 [ 6] 1. Soit p un nombre premier impair. Montrer que
(
Z/pZ

)×
contient (p− 1)/2 carrés.

2. Montrer que tout élément de Z/pZ s’écrit comme la somme de deux carrés de Z/pZ.

3. Soit n un entier impair. Montrer que tout élément de
(
Z/nZ

)×
s’écrit comme somme de deux carrés.

Indication : Commencer par le cas où n est sans facteur carré.

Exercice 6 [ 7] Si n ∈ N∗, on pose Hn =
∑n

k=1
1
k . Si p est un nombre premier et si r ∈ Q∗ s’écrit a

b de manière irréductible, on
définit la p-valuation vp(r) comme vp(a)− vp(b).

1. Montrer que si p ≥ 3 est premier, alors vp(Hp−1) ≥ 1.
2. Montrer que si p ≥ 5 est premier, alors vp(Hp−1) ≥ 2.
3. Montrer que si p ≥ 5 est premier, alors vp(H(p−1)p) ≥ 1.
4. Pour n ∈ N∗, calculer v2( H ).

Exercice 7 [ 9] 1. Calculer
∑
d|n

φ(d) où φ est l’indicatrice d’Euler.

2. Calculer
∑
d|n

µ(d) où µ est la fonction de Möbius définie par µ(1) = 1, µ(p) = −1, µ
(
pk
)
= 0 pour k ≥ 2 si p est un nombre

premier et µ(nm) = µ(n)µ(m) si n ∧m = 1. On pose F : x ∈ R+ 7→
∣∣∣{p

q ∈ [0, 1]; q ≤ x
}∣∣∣.

3. Montrer que F (x) =
x→+∞

3
π2x

2 +O(x lnx).

Démonstration. 1.
∑

d|n φ(d) = n

2.
∑

d|n µ(d) = 0, ou 1 pour n = 1.

3. Par inversion de Möbius, on a φ(d) =
∑
d′|d

µ
(

d
d′

)
d′.

Exercice 8 [ 10] Soient p, q deux nombres premiers distincts. On note vp(n) la valuation p-adique d’un entier n. On pose, pour
m ∈ N∗, N(m) = (1− q)

(
1− q2

)
. . . (1− qm). Trouver une constante c > 0 telle que, pour tout m ∈ N∗, vp(N(m)) ≤ cm ln(m).

Démonstration. Relier à 423 (LTE).
On a vp(an − bn) = vp(a− b) + vp(n) (pour p ̸= 2).
Donc vp(N(m)) =

∑m
k=1 vp(1− q) + vp(m!), plus formule de Legendre.

Exercice 9 [ 11] Si X est un ensemble fini, on note X∗ =
⊔

k∈N X
k, c : (X∗)

2 → X∗ la concaténation et ℓ : X∗ → N la longueur.
Soient A et B deux ensembles finis et φ : A∗ → B∗ telle que, pour tous a, a′ ∈ A,φ (c (a, a′)) = c (φ(a), φ (a′)).

1. On pose A = {a, b, c, d} et B = {0, 1}. Étudier l’injectivité des applications définies sur les lettres de A puis étendues sur A∗

par φ : A → B∗ telles que φ(a) = 0, φ(b) = 01, φ(c) = 10, φ(d) = 10011, et ψ : A → B∗ telle que ψ(a) = 01, ψ(b) =
10, ψ(c) = 11, ψ(d) = 00.

2. Montrer que, si φ est injective, alors
∑

a∈A |B|−ℓ(φ(a)) ≤ 1.

Démonstration. 1. La première est non injective : 0100110 peut être lu de deux façons.
La seconde l’est.
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2. On note CN le nombre de choix possibles, de mots, dont la longueur totale N .
On doit avoir CN ≤ |B|N . Mais CN vérifie une relation de récurrence : CN =

∑
a∈A CN−ℓ(a.

Donc les racines de cette récurrence doivent être ≤ |B|, ce qui implique qu’en |B| la valeur est négative, d’où le résultat.

Exercice 10 [ 12] 1. Soit n ∈ N∗. Montrer que la transposition (1 2) et le cycle
(
1 2 · · · n

)
engendrent le groupe symé-

trique Sn.
2. La transposition (1 3) et le cycle (1 2 3 4) engendrent-ils S4 ?
3. Soient n ∈ N∗ et 1 ≤ a < b ≤ n tels que τ = (ab) et σ =

(
1 2 · · · n

)
engendrent Sn. Montrer que b − a et n sont

premiers entre eux.
4. Montrer la réciproque de la propriété précédente.

Démonstration. 1.
2. Non.
3. Si p | b− a ∧ n, alors σ(a)− σ(b) ≡ a− b[p].
4. Facile de se ramener à un cycle (uu+ 1)

Exercice 11 [ 14] Soit G un groupe fini. Si X et Y sont des parties non vides de G, on pose X−1 =
{
x−1, x ∈ X

}
et XY =

{xy, (x, y) ∈ X × Y }. Dans la suite, X désigne une partie non vide de G.

1. On suppose que |XX| < 2|X|. Montrer que XX−1 = X−1X .
2. On suppose que

∣∣XX−1
∣∣ < 3

2 |X|. Montrer que X−1X est un sous-groupe de G.

Démonstration. 1. Si X a un seul élément, ok. Sinon, alors pour tous a, b ∈ X , les ensembles aX et bX ne sont pas disjoints, donc
il existe u, v tels que au = bv ⇔ a−1b = uv−1. D’où le résultat.

2. X−1X contient l’élément neutre, et stable par inverse.
Si ce n’est pas un sous-groupe, c’est qu’il existe u−1va−1b qui ne s’écrit pas de cette forme.
! !
Quitte à translater, on peut supposer que e ∈ X . Alors XX−1 contient tous les éléments de X , et leurs inverses. Au moins la
moitié des éléments de X ont leurs inverses dans X !

Exercice 12 [ 15] Soient A un anneau et B ⊂ A finie non vide. On note E(B) =
∣∣{(a, b, c, d) ∈ B4 | ab = cd}

∣∣. Montrer que

E(B) ≥ |B|4
|BB| .

Exercice 13 [ 16] 1. Montrer que S =

(
0 −1
1 0

)
et T =

(
1 1
0 1

)
engendrent SL2(Z).

2. Soit m ≥ 2. Montrer que le morphisme π : SL2(Z) → SL2(Z/mZ) est surjectif.

Exercice 14 [ 17] Soit p un nombre premier. On admet qu’il existe un anneau commutatif A dans lequel p2.1A = 0A et il existe un
élément inversible x tel que :

• tout élément de A s’écrive P (x)x−k pour un P ∈ Z[X] et un k ∈ N ;
• pour deux polynômes P,Q dans Z[X] et deux entiers naturels k, l, l’égalité P (x)x−k = Q(x)x−ℓ équivaut à ce que XkQ et
XℓP aient même réduit modulo p2 (autrement dit, tous les coefficients de XkQ−XℓP sont des multiples de p2).

1. Soient P ∈ Z[X] et k ∈ N. Caractériser l’inversibilité de P (x)x−k dans A.
2. Montrer que le groupe multiplicatif A× ne possède pas de partie génératrice finie.

Démonstration.

Exercice 15 [ 18] Soit f ∈ Z[X]. On pose Sq =
∑

0≤a<q
a∧q=1

q−1∑
n=0

e
2iπaf(n)

q pour tout q ∈ N∗. Montrer que, si q∧ q′ = 1, alors Sqq′ = SqSq′ .

Démonstration. Les a ∈ [[1, qq′]] premiers avec q et q′ sont les bq + aq′, avec a premier avec q et b premier avec q′.

Exercice 16 [ 19] On dit qu’un ensembleX ⊂ C est intégrable si : ∀(x, y) ∈ X2, |x− y| ∈ N. Montrer que, pour tout n ∈ N, il existe
un ensemble intégrable X composé de n points tous sur un même cercle.

Démonstration. On veut que les sin( θi−θj
2 ) soient rationnels, c’est-à-dire les sin θi

2 cos
θj
2 − sin

θj
2 cos θi

2 .
Il suffit donc de prendre les doubles d’une infinité de points rationnels sur le cercle.

Exercice 17 [ 20] Soit z ∈ C annulé par un polynôme unitaire à coefficients entiers. Soit Q ∈ Z[X]. Montrer que Q(z) est annulé
par un polynôme unitaire à coefficients entiers.

Exercice 18 [ 21] Soit n = 2m + 1 ≥ 1 un entier impair. Expliciter un polynôme Pm de degré 2m tel que ∀x ∈ R \ Z, sin(nx) =
(sinx)nPm(cotanx).

1. Donner une expression simplifiée de
∑m

k=1 cotan
2
(
kπ
n

)
.

2. Donner une expression simplifiée de
∑m

k=1
1

sin2( kπ
n )

.

3. En déduire que
∑+∞

k=1
1
k2 = π2

6 .
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Démonstration. Easy.

Exercice 19 [ 22] Pour n ∈ N, on pose Pn =
∑n

k=0
Xk

k! . sup

1. Montrer que Pn est scindé à racines simples sur C.
2. Montrer que si n est impair, alors Pn possède exactement une racine réelle, et qu’elle appartient à [−n,−1].
3. On suppose n pair. Le polynôme Pn a-t-il une racine réelle ?
4. Déterminer les variations et la convexité de x 7→ Pn(x).

Exercice 20 [ 23] Soit P ∈ R[X] de degré n ≥ 1.

1. On suppose P scindé sur R. Montrer que ∀x ∈ R, nP (x)P ′′(x) ≤ (n− 1)P ′(x)2.
2. Donner un polynôme ne vérifiant pas le résultat de la question précédente, puis un polynôme non scindé le vérifiant.

Démonstration. 1.
2. Ajouter à un précédent.

Exercice 21 [ 24] Soit n ∈ N∗, P = Xn +
∑n−1

k=0 akX
k ∈ C[X]. On factorise P sous la forme P =

∏n
i=1(X − zi). Pour k ∈ N, on

note Sk =
∑n

i=1 z
k
i . Montrer que, si k > n, Sk+an−1Sk−1+ · · ·+a0Sk−n = 0 et que, si k ≤ n, Sk+an−1Sk−1+ · · ·+an−k+1S1 =

−kan−k .

Exercice 22 [ 25] Une suite d’entiers (an)n≥1 est un pseudo-polynôme si pour tous n,m ∈ N∗, m− n | am − an.

1. Soit P ∈ Z[X]. Montrer que
(
P (n)

)
n≥1

est un pseudo-polynôme.

2. Montrer que
(
⌊n!e⌋

)
n≥1

est un pseudo-polynôme.

3. Trouver un polynôme P ∈ Q[X] \ Z[X] tel que P (Z) ⊂ Z et que la suite
(
P (n)

)
n≥1

ne soit pas un pseudo-polynôme.

Exercice 23 [ 26] Montrer que, pour tout n ∈ N, il existe (a0, . . . , an) ∈ (R+∗)
n+1 tel que, pour tout (ε0, . . . , εn) ∈ {−1, 1}n+1, le

polynôme P (X) =
∑n

k=0 εkakX
k est scindé sur R.

Démonstration. Easy, à relier.

Exercice 24 [ 27] Deux polynômes P,Q ∈ R[X] sont entrelacées si

• −P et Q sont scindés à racines simples sur R,
• P et Q n’ont aucune racine réelle commune,
• entre deux racines consécutives de P (respectivement Q) il y a une unique racine de Q (respectivement P ).

Soient P,Q ∈ R[X]. Montrer que si, pour tout λ, µ ∈ R∗, λP + µQ est scindé à racines simples sur R, alors P et Q sont entrelacés.

Démonstration. À relier.

Exercice 25 [ 28] Soit P ∈ C[X] de degré n > 0 tel que P (0) = 0 et P ′(0) = 1. On note Dr le disque complexe ouvert de centre 0
et de rayon r. Montrer que D1/n ⊂ P (D1).

Démonstration. X +X2Q(X)− zi = 0 avec |zi| < 1
n admet toujours une racine, < 1.

Vient des relations coefficients-racines.

Exercice 26 [ 31] • CNS sur n pour que Z/nZ soit un corps.
• On suppose cette condition satisfaite. Combien y a-t-il de polynômes de degré d ∈ N fixé dans Z/nZ?
• Soit p premier. Montrer qu’il existe des polynômes irréductibles de degré 2 et 3 dans Z/pZ.

Exercice 27 [ 32] Soit n ∈ N∗, K un corps, et V un sous-espace vectoriel de Mn(K) dont tous les éléments sont de rang ≤ 1. Montrer
que V est de dimension ≤ n. Étudier le cas d’égalité.

Exercice 28 [ 33] Quelle est la dimension maximale d’un sous-espace vectoriel V de Mn(R) tel que pour tout (X,Y ) ∈ V 2, on ait
Tr(XY ) = 0.

Exercice 29 [ 35] Soient A,B ∈ Mn(R) de même rang telles que A2B = A. Montrer que B2A = B.

Démonstration.

Exercice 30 [ 38] Soient n ≥ 1 et E une partie de P([[1, n]]).

1. On suppose que E est stable par différence symétrique. Que dire de C = {m1A} comme partie de l’espace vectoriel
(
Z/2Z

)n
?

2. On ne fait plus l’hypothèse précédente, mais on suppose que A ∩ B est de cardinal pair pour tous A,B ∈ E. Montrer que
|E| ≤ 2⌊n/2⌋.

Exercice 31 [ 39] Soient (a1, . . . , an) ∈ Rn telle que |ai| ≥ 2, pour tout i ∈ [[1, n]].

1. Soit A ∈ Mn(R) telle que ∀i, aii = ai, aij = 1 si |i − j| = 1 et aij = 0 sinon. Montrer que A est inversible et que son
déterminant a le même signe que

∏
ak .

2. Montrer que la conclusion tient encore si l’on suppose |aij | ≤ 1 si |i− j| = 1 au lieu de aij = 1.

Exercice 32 [ 40] On considère φ :
(
R4

)2 → M4(R) qui à (u, v) associe la matrice dont le coefficient en (i, j) vaut
∣∣∣∣ ui vi
uj vj

∣∣∣∣.
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1. Que peut-on dire si φ(u, v) = φ (u′, v′) ̸= 0?
2. Que dire de la réciproque?
3. Montrer que A s’écrit comme φ(u, v) avec (u, v) libre si et seulement si A ∈ A4(R), det(A) = 0 et A ̸= 0.
4. Décrire l’image et le noyau d’une telle matrice.

Démonstration.

Exercice 33 [ 41] Soient a, b,m, p des entiers naturels tels que a2 + b2 − pm = −1. On pose A =

(
p a+ ib

a− ib m

)
. Montrer

qu’il existe B ∈ GL2(Q(i)) telle que A = B∗B où B∗ = B̄T . Même question avec B dans GL2(Z[i]).

Démonstration. On a une matrice hermitienne, de déterminant 1. Donc diagonalisable?

Exercice 34 [ 42] Soient n ∈ N∗, φ1, . . . , φn des formes linéaires non nulles sur R2. Pour g ∈ SL2(R), soit fg : (x1, . . . , xn) ∈(
R2

)n 7→ φ1 (g (x1))× · · · × φn (g (xn)), application de
(
R2

)n
dans R. Montrer l’équivalence entre les propositions suivantes :

• il existe une suite (gk)k≥1 d’éléments de SL2(R) telle que, pour tous vecteurs x1, . . . , xn de R2, fgk (x1, . . . , xn) −→
k→+∞

0,

• il existe une droite vectorielle L telle que |{i, L ⊂ Ker (φi)}| > n
2 .

Démonstration. Si il existe une droite L, en prenant gk =

(
k 0
0 k−1

)
selon L et n’importe quel supplémentaire, ça devrait être bon.

Réciproquement, ! !

Exercice 35 [ 43] Soit G l’ensemble des matrices de GL2(Z) de la forme
(
a b
c d

)
, où ad− bc = 1 et a ≡ d ≡ 1− c ≡ 1 mod 3.

Montrer que G est le sous-groupe de GL2(Z) engendré par les matrices
(

1 1
0 1

)
et

(
1 0
3 1

)
Démonstration. Facile ? Attention : faux pour 2.

Exercice 36 [ 45] Soit A ∈ Mn(C) et CA : X ∈ Mn(C) 7→ AX − XA. Montrer que si la matrice A est diagonalisable, alors CA

l’est aussi.

Exercice 37 [ 46] Soient A et B deux matrices de GL2(R). On suppose que ABA−1B−1 commute avec A et B. Montrer que
BA = ±AB.

Démonstration. ⇐ Ok.
Si ABA−1B−1 commute avec un Vect de dimension 2. Si AB = λBA, c’est bon. Sinon, alors le commutant de ABA−1B−1 est
Vect(In, C), donc B = λA+ µIn, puis faire de la réduction.

Exercice 38 [ 47] Soit A ∈ Mn(C) et λ1, . . . , λr les valeurs propres distinctes de A et α1, . . . , αr leurs multiplicités. On note
Pk = (X − λk)

αk et Fk = KerPk(A).

1. Montrer que Cn =
⊕r

i=1 Fi.
2. Montrer que Pk est le polynôme caractéristique de l’endomorphisme induit par A sur Fk .
3. Montrer que A se décompose en D +N , avec D diagonalisable, N nilpotente et ND = DN .

Exercice 39 Soient A ∈ Mn(C) et m la multiplicité de 0 dans χA. Montrer l’équivalence entre

• KerA = KerA2.
• il existe M ∈ Mn(C) telle que Mm = A.
• pour tout k ≥ 1, il existe M ∈ Mn(C) telle que Mk = A.

Exercice 40 [ 49] SoitM ∈ GLn(Z) dont toutes les valeurs propres sont de module ≤ 1. Montrer qu’il existe k ≥ 1 tel queMk − In
soit nilpotente.

Exercice 41 [ 51] Soit n ≥ 1. Pour σ ∈ Sn, on note Pσ =
(
δi+1,j

)
i,j

la matrice de permutation associée. On note A l’ensemble
des fonctions polynomiales f : Mn(C) → C telles que ∀A,P ∈ Mn(C)GLn(C), f(PAP−1) = f(A). On note A l’ensemble des
fonctions polynomiales f : Dn(C) → C telles que f(PσDP

−1
σ ) = f(D). Expliciter un isomorphisme d’algèbres de A sur B.

Exercice 42 Décomposition de Jordan [ 52] SoientE un K-espace vectoriel non nul de dimension finie, f ∈ L(E) nilpotent d’indice
m,x ∈ E tel que fm−1(x) ̸= 0.

1. Montrer que la famille
(
fk(x)

)
0≤k≤m−1

est libre. On note V le sous-espace de E engendré par cette famille.

2. Soit φ ∈ E∗ telle que φ(fm−1(x)) ̸= 0,W le sous-espace de E∗ engendré par (φ ◦ f i)0≤i≤m−1,W
⊥ l’ensemble des y ∈ E tels

que ∀ψ ∈W⊥, ψ(y) = 0. Montrer que W⊥ est un supplémentaire de V dans E stable par f .
3. Montrer qu’il existe une base de E dans laquelle la matrice de f soit diagonale par blocs, les blocs diagonaux étant de la forme
Jk avec k ∈ N∗, où Jk ∈ Mk(K) est une matrice dont tous les coefficients sont nuls en dehors de ceux de la sur-diagonale qui
sont égaux à 1.

Démonstration.
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Exercice 43 [ 53] SoitE un K-ev de dimension n ≥ 1. Un élément u ∈ L(E) est dit cyclique s’il existe x ∈ E tel que (uk(x))0≤k≤n−1

soit une base de E.

1. Quels sont les endomorphismes de E diagonalisables et cycliques?
2. Montrer que si u est cyclique, le commutant de u est égale à K[u].
3. Montrer que si u ∈ L(E), il existe r ∈ N∗ et des sous-espaces E1, . . . , Er de E stables par u tels que E =

⊕r
i=1Ei et que,

pour tout i, uEi
soit cyclique.

Exercice 44 [ 54] Soient r ∈ N∗, d1, . . . , dr des entiers supérieurs ou égaux à 2 tels que d1 |d2| . . . | dr . Déterminer le plus petit
n ∈ N∗ tel que GLn(C) contienne un sous-groupe isomorphe à Z/d1Z × · · · × Z/drZ.

Démonstration. n = r convient. Réciproquement, si G contient un tel groupe, on peut codiagonaliser.

Exercice 45 [ 55] Le groupe GL2(Q) contient-il un élément d’ordre 5?

Exercice 46 [ 56] On note H l’ensemble des matrices de M2(R) de trace nulle.

1. Montrer que ∀M ∈ H, eM ∈ SL2(R).
2. Montrer que ∀M ∈ H, Tr eM ≥ −2.
3. A-t-on exp(H) = SL2(R)?
4. Montrer que toute matrice deSL2(R) est produit d’une matrice deSO2(R) et d’une matrice triangulaire supérieure à coefficients

diagonaux > 0.
5. En déduire que toute matrice de SL2(R) est produit de deux exponentielles de matrices de H .

Exercice 47 [ 57] Soient E un espace vectoriel réel de dimension finie, h1 et h2 deux éléments de L(E). On suppose qu’il existe une
norme sur E pour laquelle h1 et h2 sont des isométries et que [h1, h2] = h1h2h

−1
1 h−1

2 commute avec h1 et h2. Montrer que l’espace
des vecteurs de E fixes par h1 et h2 admet un supplémentaire dans E stable par h1 et h2.

Démonstration. On peut supposer que l’ensemble F des points fixes est de dimension 1. Donc est le noyau d’une forme linéaire φ. ! !
Notons C le commutateur. On a Ch2 = h1h2h

−1
1 .

Si h1 et h2 commutent.
Si h1 = h2.

Exercice 48 [ 58] Soit A ∈ Mn(C) et λ1, . . . , λn ses valeurs propres.

1. Montrer que
∑

|λi|2 ≤
∑

i,j |aij |2.

2. Montrer que |detA| ≤ nn/2 sup |aij |.
Exercice 49 [ 59] Soient (E, ⟨⟩) un espace euclidien, m ∈ N∗, u1, . . . , um, v1, . . . , vm des vecteurs de E tels que, pour tout (i, j) ∈
1,m2, ⟨ui, vj⟩ = δi,j . On note p le projecteur orthogonal deE sur Vect (u1, . . . , um). Montrer que ∀x ∈ E,

∑n
i=1 ⟨ui, x⟩ ⟨x, p (vi)⟩ =

∥p(x)∥2.

Démonstration. Easy, on a ⟨x, p(vi)⟩ = ⟨p(x), vi⟩ = ⟨ui, x⟩.

Exercice 50 [ENS 60] On munit R[X] du produit scalaire (P,Q) 7→ ⟨P,Q⟩ =
∫ +∞
0

P (t)Q(t)e−t dt. On poseF = Vect (X,X2, . . . , Xn)
et on note Q la projection orthogonale de 1 sur F .
On ecrit Q = −

∑n
k=1 akX

k et P = 1 +
∑n

k=1 ak(X + 1) . . . (X + k).

• Determiner
〈
Q− 1, Xk

〉
pour k ∈ [[1, n]] et montrer que P (k) = 0 pour k ∈ [[1, n]].

• Calculer inf(a1,...,an)∈Rn

∫ +∞
0

(1 + a1x+ · · ·+ anx
n)2e−x dx.

Exercice 51 [ 61] Soient (E, ⟨⟩,)unespaceeuclidien,m ∈ N∗, u, u1, . . . , um des vecteurs deE. Montrer que u ∈ R+u1+· · ·+R+um
si et seulement si pour tout x ∈ E, {x ∈ E;∀i ∈ 1,m, ⟨ui, x⟩ ≤ 0} ⊂ {x ∈ E; ⟨u, x⟩ ≤ 0}.

Démonstration. ⇒ : Easy.
⇐ : Si les vecteurs ui sont libres, on peut prendre un élément x orthogonal à tous sauf 1.
Sinon, si um est combinaison linéaire des précédents, avec un coefficient < 0. ! !

Exercice 52 [ENS 62] Montrer que, siM ∈ GLn(R),M s’ecrit d’une unique faconQR avecQ ∈ On(R) etR ∈ Mn(R) triangulaire
superieure a termes diagonaux dans R+∗.

Exercice 53 [ENS 63] [Rennes sur dossier] Soit M ∈ Mn(R) une matrice antisymetrique et inversible.

• Que peut-on dire de l’entier n?
• En considerantM2, montrer queM admet un plan stable puis qu’il existe une matrice orthogonaleO ∈ On(R) telle queOTMO

soit une matrice diagonale par blocs de la forme diag(Ra1
, ..., Rak

), avec Ra =

(
0 −a
a 0

)
.

• Qu’en est-il si M n’est plus supposee inversible ?

Exercice 54 [ENS 64] Soit n ≥ 1. Determiner les matrices A dans Mn(R) telles que A+Ak = AT pour tout entier k ≥ n.

Exercice 55 [ 65] Soient A ∈ On(R) et M une matrice de réflexion dans On+1(R). On pose A′ =M

(
1 0
0 A

)
. Calculer χA′(1)

en fonction de la première colonne de M et de χA.
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Démonstration. χA′(1) = det(In+1 −M

(
1 0
0 A

)
). ! !

Exercice 56 [ENS 66] Soit A ∈ Sn(R) ayant n valeurs propres distinctes. Soit v ∈ Rn. On suppose que A et A+ vvT n’ont pas de
valeur propre commune. Sous reserve d’existence, on pose F (x) = 1 + vT (A− xIn)

−1v pour x reel.

• Montrer que les zeros de F sont les valeurs propres de A+ vvT .
• On note λ1 < · · · < λn les valeurs propres de A. Montrer que chaque intervalle ]λ1, λ2[,. . ., ]λn−1, λn[, ]λn,+∞[ contient

exactement une valeur propre de A+ vvT .

Exercice 57 [ENS 67] Soient n ∈ N impair, M ∈ Mn(R) telle que, pour toute A ∈ An(R), A +M soit nonversible. Montrer que
M ∈ An(R).

Exercice 58 [ 68] Soient A,B deux matrices de On(R) qui n’ont pas -1 pour valeur propre et telles que AB n’ait pas 1 pour valeur
propre. Montrer que (A− In) (BA− In)

−1
(B − In) est antisymétrique.

Démonstration. Classique

Exercice 59 [ENS 69] Soit n ∈ N∗. On pose J =

(
0n −In
In 0n

)
.

• Determiner les valeurs propres de J et leur multiplicite.
• Soit A ∈ S++

n (R). Montrer qu’il existe une matrice B ∈ S++
n (R) telle que B2 = A.

• Que peut-on dire de la matrice BJB ?
• Lorsque A est diagonale, calculer les valeurs propres de JA.
• Montrer plus generalement que toute valeur propre d’une matrice antisymetrique reelle est imaginaire pure.

Exercice 60 [ 70] Soit A ∈ Sn(R). On note λ1 ≤ · · · ≤ λn les valeurs propres de A non nécessairement distinctes. Montrer que

∀k ∈
[
1, n,

∑k
i=1 λi ≤

∑k
i=1 ai,i ≤

∑k
i=1 λn+1−i .

Démonstration.

Exercice 61 [ 71] 1. SoientA ∈ S++
n (R) etB ∈ S+

n (R) Montrer queAB est diagonalisable à valeurs propres positives ou nulles.
2. Soient A,B ∈ S++

n (R). On pose fA,B : X ∈ S++
n (R) 7→ Tr(AX) + Tr

(
BX−1

)
. Montrer que fA,B admet un minimum µA,B

atteint en une unique matrice MA,B . Expliciter µA,B et MA,B .

Démonstration.

Exercice 62 [ENS 72] Soit A ∈ Sn(R). On definit p(A) comme la dimension maximale d’un sous-espace V sur lequel ∀x ∈ V \
{0}, ⟨Ax, x⟩ > 0. On definit de meme q(A) avec la condition ⟨Ax, x⟩ < 0.

• Montrer que p(A) + q(A) = rgA.
• Montrer que, si A est inversible, alors p et q sont constantes sur un voisinage de A dans Sn(R).
• Soit B ∈ Sn(R), on suppose que f : t 7→ det(A + tB) n’a que des racines simples sur R. Montrer que f admet au moins
|p(B)− q(B)| racines dans R.

Exercice 63 [ENS 73] On note λ1(M) ≤ · · · ≤ λn(M) le spectre ordonne d’une matrice S de Sn(R).

• Soient A et B dans Sn(R) telles que A + B ∈ S+
n (R). Si 1 ≤ i, j ≤ n et i + j ≥ n + 1, que dire du signe de λi(A) +

λj(B)?[MISSINGPAGEFAIL :1]# 80

Soient a ≤ b deux reels, et (O − i ∈ I une famille d’ouverts de R telle que [a, b] ⊂
⋃

i∈I Oi. On note X l’ensemble des x ∈ [a, b] tels
qu’il existe une partie finie J ⊂ I verifiant [a, x] ⊂

⋃
j∈J Oj . Montrer que X = [a, b].

Exercice 64 [ 74] Pour M ∈ Sn(R), on note λ1(M) ≤ · · · ≤ λn(M) le spectre ordonné de M .

1. On considère A,B ∈ Sn(R) telles que A+B ∈ S−−
n (R). Montrer que, si i+ j < n+ 2 alors λi(A) + λj(B) < 0.

2. Généraliser à A1, . . . , Ad ∈ Sn(R) telles que A1 + · · ·+Ad ∈ S−−
n (R). telle que B = PTAP .

Démonstration.

Exercice 65 [ 75] On note ∥·∥ la norme d’opérateur sur Mn(R) associée à la norme euclidienne. Soit S ∈ Sn. On suppose que
E = {M ∈ Mn(R) | S =MTM −MMT } est non vide. On note γ(S) = infM∈E ∥M∥2. Montrer que ∥S∥ ≤ γ(S) ≤ 2 ∥S∥.

Exercice 66 [ 76] 1. Soient A,B ∈ S++
n . Montrer qu’il existe P ∈ GLn(R) telle que B = PTAP .

2. Soit f une fonction de R+∗ dans R. Proposer une définition naturelle de f(A) si A ∈ S++
n (R).

3. Pour A et B dans S++
n (R), on pose d(A,B) =

∥∥∥ln(√A−1B
√
A−1

)∥∥∥. Justifier la définition, et montrer que d est une distance

surS++
n (R).

4. Soient P ∈ GLn(R), A,B ∈ S++
n (R). Montrer que d

(
PTAP,PTBP

)
= d(A,B).

Démonstration.

Exercice 67 [ 77] Soit n ∈ N∗.

1. Montrer que (X,Y ) 7→ TrXTY est un produit scalaire sur Mn(R). On note ∥·∥ la norme associée.
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2. Si M ∈ Mn(R), soit L(M) : X ∈ Mn(R) 7→MX . Montrer que L est un morphisme d’algèbre injectif.
3. Soit ∥| · |∥2 la norme sur Mn(R) subordonnée à la norme euclidienne de Rn, et ∥| · |∥ la norme sur L(Mn(R)) subordonnée à

∥·∥. Si M ∈ Mn(R), montrer que ∥|L(M)|∥ ≤ ∥|M |∥2.
4. Montrer que

∥∥|MT |
∥∥
2
= ∥|M |∥2 pour tout M ∈ Mn(R).

Exercice 68 [ 78] On note ∥·∥ la norme d’opérateur sur Mn(C) associée à la norme X 7→
√
X̄TX .

1. Soient A,B dans Sn(R). Montrer que
∥∥eiA − eiB

∥∥ ≤ ∥A−B∥.
2. Démontrer le même résultat sous l’hypothèse que A et B sont deux matrices de Mn(C) telles que ĀT = A et B̄T = B.

Démonstration.

Exercice 69 [ 79] Soit p > 1. On pose, pour x ∈ Rn,
∥∥∥x = (

∑n
i=1 |xi|p)

1/p .

1. Montrer qu’il s’agit bien d’une norme.
2. Montrer l’inégalité de Hölder.
3. Dans R2, dessiner la boule unité de la norme p pour plusieurs valeurs de p.

Exercice 70 [ 80] Soient a ≤ b deux réels, et (Oi)i∈I une famille d’ouverts de R telle que [a, b] ⊂
⋃

iOi. On note X l’ensemble des
x ∈ [a, b] tels qu’il existe une partie finie J ⊂ I telle que [a, x] ⊂

⋃
j∈J Oj . Montrer que X = [a, b].

Exercice 71 [ENS 81] Soient K un compact convexe non vide d’un espace norme E, f un endomorphism continu de E tel que
f(K) ⊂ K . Montrer que f admet un point fixe dans K .

Exercice 72 [ 82] Peut-on écrire ]0,1[ comme réunion dénombrable disjointe de segments d’intérieurs non vides?

Démonstration. Non. Par l’absurde, on fait de la dichotomie, entre des segments, dont la distance tend vers 0, alors la limite n’appartient
à aucun segment.

Exercice 73 [ 83] Pour tout réel x dans [0,1[, on note 0, x1x2x3 . . . le développement décimal propre de x. On pose, pour tout
n ∈ N∗, Sn(x) =

∑n
i=1 xi. Soit a un réel tel que 0 < a < 9. On définit Pn = {x ∈ [0,1[;Sn(x) ≤ na} et P =

⋂
n∈N∗ Pn. Montrer

que P est compact, non vide, d’intérieur vide et sans point isolé.

Démonstration. P est borné et fermé, car Sn est continue inférieurement. Clairement non vide et d’intérieur vide. Si x ∈ P , en retirant
1 a un chiffre de x arbitrairement grand, on reste dans P . Possible sauf si x est décimal, auquel cas on peut ajouter 1.

Exercice 74 [ENS 84] Soit A ∈ Mn(K), ou K = R ou K = C. Montrer que la classe de similitude de A est fermee si et seulement si
A est diagonalisable sur C.

Exercice 75 [ENS 85] • On note D le disque unite du plan euclidien R2. Demontrer qu’il existe une suite (C − i ∈ N de parties
de D telle que :

▷ pour tout i ∈ N, l’ensemble Ci soit un carre de R2 dont les cotes sont paralleles aux axes ;
▷ les Ci soient d’interieurs deux a deux disjoints ;
▷
∑

i∈N Aire(Ci) = π.

• On note C = [−1, 1]2. Demontrer qu’il existe une suite (D − i ∈ N de parties de C telle que :

▷ pour tout i ∈ N, l’ensemble Di soit un disque ferme de R2 ;
▷ les Di soient d’interieurs deux a deux disjoints ;
▷
∑

i∈N Aire(Di) = 4.

Exercice 76 [ENS 2023 86] Soit d ≥ 1. On note P l’ensemble des polynômes unitaires de degré d de R[X].

1. On poseA = {(P, x) ∈ P×R;P (x) = 0} et P ′(x) ̸= 0}. Déterminer les composantes connexes par arcs deA dans Rd[X]×R.
2. On pose B = {P ∈ P;∀x ∈ R, P (x) ̸= 0 ou P ′(x) ̸= 0}. Déterminer les composantes connexes par arcs de B dans Rd[X].

Démonstration. 1. Par translation, on peut passer de (P, x) à (P̃ , 0). Alors P = Xn +Q+αX , avec α ̸= 0. On peut ramener Q à
0, et α à ±1. Deux composantes connexes, selon le signe de α = P ′(x).

2. B est l’ensemble des polynômes unitaires à racines simples. Le nombre de racines simples est un invariant, et réciproquement,
ces morceaux sont clairement connexes par arcs.

Exercice 77 [ 87] Soient (Mk)k≥1 une suite de matrices de Mn(C) semblables les unes aux autres, ∥·∥ une norme sur Mn(C).
On suppose que ∥Mk∥ → +∞. Montrer qu’il existe une matrice N ∈ Mn(C) nilpotente et une extractrice φ : N → N telles que
Mφ(k)

∥Mφ(k)∥ → N .

Démonstration. On peut extraire Mφ(k)

∥Mφ(k)∥ convergent, vers Π.

Si Π a une valeur propre complexe X , comme
∥∥∥∥ Mφ(k)

∥Mφ(k)∥ −Π

∥∥∥∥ ≤ ε, on a une valeur propre complexe proche de λ, donc Mφ(k) a une

valeur propre qui tend vers +∞.

Exercice 78 [ 88] Soit A ∈ Mn(C) dont toutes les valeurs propres sont de module < 1. Montrer qu’il existe une norme \|\| sur Cn

telle que, pour la norme d’opérateur associée, on ait ∥A∥ < 1.
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Démonstration. Trigonaliser, puis conjuguer par une matrice diagonale pour n’avoir que des petits coefficients hors de la diagonale.

Exercice 79 [ 89] SoientA ∈ Mn(R), de lignes L1, . . . , Ln, et ε ∈ R+∗. On suppose que, pour tout i ∈ 1, n, ∥Li∥2 = 1 et la distance
euclidienne canonique de Li au sous-espace engendré par les Lj , pour j ̸= i, est supérieure ou égale à ε. Montrer que A est inversible
et que sup

{∥∥A−1x
∥∥
2
;x ∈ Rn, ∥x∥1 = 1

}
≤ 1

ε .

Démonstration. A est inversible car aucune ligne n’est combinaison linéaire des autres.
Si x = Ei, on considère les colonnes de A−1, notées Ci. On ⟨Ci, Li⟩ = 1 et Ci orthogonal aux autres lignes, ce qui donne ∥Ci∥2 ≤ 1

ε ,
peut-être.
Ensuite, utiliser une convexité ?

Exercice 80 [ENS 90] On note B(R) l’espace vectoriel des fonctions bornees de R dans R, muni de la norme ∥ ∥ ∥∞. On fixe g ∈ B(R)
non nulle a support compact, et on note W (g) l’espace vectoriel engendre par les fonctions x 7→ g(x − n), n decrivant Z. Montrer

que l’ensemble des reels t lets que
{
x 7→ f(x− t), f ∈W (g)

}
=W (g) est un sous-groupe discret de R.

Exercice 81 [ 91] Soient (an) et (bn) deux suites réelles de limite 1 et (un) une suite réelle strictement positive telle que, pour tout
n, un+2 = an+1un+1 + bn+1un. On pose, pour n ∈ N, vn = un+1

un
et wn = ln(un)

n . Montrer que les suites (vn) et (wn) convergent.

Démonstration. Soit m. On peut écrire ua+n = Gnua + Gn+1ua−1 et ua+n+1 = Gn+1ua + Gn2ua−1, où Gn −−−−−−→
a→+∞ Fn, ce qui

devrait implique ce que l’on veut.
wn s’obtient à partir de vn par Cesàro.

Exercice 82 [ENS 2023 92] 1. Si n ≥ 2 est un entier, montrer que
∑n

k=2 ⌊logk(n)⌋ =
∑n

j=2⌊ j
√
n⌋.

2. Donner un équivalent lorsque n tend vers +∞ de
∑n

k=2 ⌊logk(n)⌋, puis un développement asymptotique à deux termes.

Démonstration. 1. Le premier compte les puissances de k inférieures à n, dont k1.
Le second compte les puissances j-èmes inférieures à n.

2. En coupant la somme en k =
√
n, on a du

√
n lnn+ (n−

√
n)n, d’où un équivalent à n.

En suite, on prend l’autre expression, on retire n. Le premier terme est
√
n. Les termes non nuls correspondent à j

√
n ≥ 2 ⇔

n ≥ 2j , donc les autres termes sont au plus en 3
√
n lnn, d’où le DSA n+

√
n+ o+∞(

√
n).

Exercice 83 [ENS 93] Soient α > 0 et (a−n ∈ N une suite strictement decroissante a valeurs dans ]0, 1[. Soit (u−n ∈ N une suite
definie par u0 > 0 et ∀n ∈ N, un+1 = un(u

α
n + an). Montrer qu’il existe un unique u0 > 0 tel que la suite (u− n ∈ N converge vers

un reel strictement positif.

Exercice 84 [ENS 94] Soit (un) une suite definie par : ∀n ∈ N∗, un = sin(lnn). On note V l’ensemble des valeurs d’adherence de
(un).

• Montrer que, pour tous x et y ∈ R, sinx− sin y = 2 sin x−y
2 cos x+y

2 .
• Montrer que un+1 − un → 0.
• Montrer que V est un intervalle inclus dans [−1, 1], puis que V = [−1, 1].

Exercice 85 [ENS 95] Si A est une partie de N∗, on dit que A admet une densite si la suite
(

|A∩1,n|
n

)
n≥1

admet une limite. Cette

limite est alors notee d(A).

• Si m ∈ N∗, quelle est la densite de l’ensemble des multiples de m dans N∗ ?
• Soient A et B deux parties disjointes de N∗ admettant une densite. Montrer que A ∪B admet une densite que l’on precisera.
• Donner un exemple de partie de N∗ n’admettant pas de densite.

Exercice 86 [ENS 96] On considere une suite a ∈ {2, 3}N∗
telle que a1 = 2 et, pour tout n ≥ 1, le nombre de 3 apparaissant dans

la suite a entre la n-ieme occurrence de 2 et la (n+ 1)-ieme occurrence de 2 soit egal a an.
Etudier la convergence de la suite de terme general 1

n

∣∣{k ∈ 1, n, ak = 3}
∣∣.

Exercice 87 [ 97] On considère une suite a ∈ {2, 3}N∗
telle que a1 = 2 et, pour tout n ≥ 1, le nombre de 3 apparaissant dans la

suite a entre la n-ième occurrence de 2 et la (n+ 1)-ième occurrence de 2 soit égal à an. Montrer qu’il existe un unique irrationnel α
tel que les indices n ≥ 1 tels que an = 2 soient exactement les entiers de la forme ⌊mα⌋+ 1 pour un m ∈ N.

Démonstration.

Exercice 88 [ 98] Une suite réelle (xn) est dite équirépartie modulo 1 si elle vérifie, pour tout entier k ∈ Z∗, limN→+∞
1
N

∑N
n=1 e

2ikπxn =
0.

1. Soit α ∈ R \ Q. Montrer que la suite (nα) est équirépartie modulo 1.
2. Soit (xn) ∈ RN∗

. On suppose que pour tout h ∈ N∗, la suite (xn+h − xn)n∈N∗ est équirépartie ; on veut montrer que (xn) est
équirépartie modulo 1.

a) Soit (an) une suite de complexes de module≤ 1. Montrer, pour tousN,H ∈ N∗ :
∣∣∣ 1
N

∑N
n=1 an

∣∣∣ ≤ ∣∣∣ 1
H

∑H−1
h=0

1
N

∑N
n=1 an+h

∣∣∣+
2H
N .
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b) Montrer que
∣∣∣ 1
H

∑H−1
h=0

1
N

∑N
n=1 an+h

∣∣∣ ≤ √
1
N

∑N
n=1

∣∣∣∑H−1
h=0

an+h

H

∣∣∣2.

c) Conclure.
3. Soit P ∈ R[X] non constant et de coefficient dominant irrationnel. Montrer que (P (n))n≥1 est équirépartie modulo 1.
4. Soit (xn)n≥1 une suite réelle équirépartie modulo 1, et f : R → C une fonction continue 1-périodique. Montrer que 1

n

∑n
k=1 f (xk) −→

n→+∞∫ 1

0
f .

5. On reprend les hypothèses de la question 3. Montrer que la distance de P (Z) à Z est nulle.

Démonstration. 1.
2.
3.
4.
5. ? ?

Exercice 89 [ENS 99] Soit f : [0, 1] → R une fonction continue. Pourn ∈ N avecn ≥ 2, on noteAn la matrice



0 a1 0 · · · 0

a1 0 a2
. . .

...

0 a2 0
. . . 0

...
. . .

. . .
. . . an−1

0 · · · 0 an−1 0


ou, pour tout k ∈ 1, n− 1, ak = f

(
k
n

)
.

Soit q ∈ N∗. Determiner la limite de (tr (Aq
n))n≥2.

Exercice 90 [ 100] Montrer la convergence et calculer
∑+∞

k=1
(−1)k

k

⌊
ln(k)
ln(2)

⌋
.

Démonstration. Écrit quelque part. . .

Exercice 91 [ 101] On note ℓ2(R) l’ensemble des suites réelles de carré sommable indexées par N. On se donne une suite presque nulle
v ∈ R(N) ainsi qu’une suite (uk)k d’éléments de ℓ2(R) (l’élément uk est donc noté (uk,i)i∈N

)
. On suppose que, pour tout entier p ≥ 2,

la suite de terme général wk =
∑+∞

n=0 (uk,n)
p converge vers

∑+∞
n=0 (vn)

p. Montrer que infσ∈S(N)

∑+∞
n=0

(
uk,σ(n) − vn

)2 −→
k→+∞

0.

Démonstration. Écrit quelque part. . .
On peut supposer que les (vn) sont décroissants, par réordonnement.

Exercice 92 [ 102] Soit f la fonction de R dans R nulle sur R \ Q et telle que f
(

p
q

)
= 1

q si p ∈ Z et q ∈ N∗ sont premiers entre eux.
Quels sont les points de continuité de f ?

Démonstration. Facile.

Exercice 93 [ 103] Soient I un intervalle ouvert, f : I → R dérivable et [a, b] ⊂ I avec a < b. On suppose que f ′(a) = f ′(b). Montrer
qu’il existe c ∈ ]a,b[ tel que la tangente au graphe de f en c passe par le point (a, f(a)).

Démonstration. On peut supposer f ′(a) = f ′(b) = 0. À relier.

Exercice 94 [ENS 104] Construire une fonction continue de R dans R qui ne soit derivable en aucun point.

Exercice 95 [ 105] Déterminer les applications f de R dans R telles que, pour tout entier n ≥ 2, fn (puissance) soit polynomiale.

Démonstration. f2 et f3 polynomiales, donc f est une fraction rationnelle, f ∈ Q(x) et f2 ∈ Q[X] impliquent f ∈ Q[X].

Exercice 96 [ENS 106] Soit p > 1 un reel. Montrer qu’il existe une constante kp > 0 telle que, pour tout (x, y) ∈ R2 tel que
|x|p + |y|p = 2, on ait (x− y)2 ≤ kp (4− (x+ y)2).

Exercice 97 [ENS 107] Soit f : R → R. On note f∗(s) = supx∈R (sx− f(x)) et f∗(x) = sups∈R (sx− f∗(s)).
Montrer que f∗(x) = supa affine ≤f a(x).

Exercice 98 [ENS 108] Soient I un ensemble fini et (P − i ∈ I une famille de polynomes reels stable par derivation. On definit une
fonction signe par sign(x) =

x

|x|
si x ̸= 0 et sign(0) = 0.

Pour ε ∈ {−1, 1, 0}I , soient Aε = {t ∈ R ; ∀i ∈ I, sign(Pi(t)) = ε(i)} et
Bϵ = {t ∈ R ; ∀i ∈ I, sign(Pi(t)) ∈ {ε(i), 0}}.

• Montrer que Aε est soit vide, soit reduit a un point, soit un intervalle ouvert.
• Si Aε est non vide, montrer que Bε est l’adherence de Aε. Si Aε est vide, montrer que Bε est soit vide suit un singleton.

Exercice 99 [ENS 109] Soit I un intervalle de R et f : I → R de classe Cn.
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• Soient x0, . . . , xn des points de I . On note V (x0, . . . , xn) le determinant de Vandermonde associe a (x0, . . . , xn). Montrer qu’il
existe τ ∈ I tel que∣∣∣∣∣∣∣∣∣
1 x0 x20 · · · xn−1

0 f(x0)
1 x1 x21 · · · xn−1

1 f(x1)
...

...
...

...
...

1 xn x2n · · · xn−1
n f(xn)

∣∣∣∣∣∣∣∣∣ =
f (n)(τ)

n!
V (x0, x1, . . . , xn)

• On suppose que n = 2, que I est un segment et que f est strictement convexe. On note Γf = {(x, f(x));x ∈ I} ⊂ R2 le graphe
de f . Montrer qu’il existe une constante C , dependant uniquement de I et f , telle que le nombre de points de Γf ∩ 1

N Z2 soit
majore par C N2/3 pour tout entier N ≥ 1.

Exercice 100 [ENS 110] Pour n ∈ N, on pose wn =
∫ π/2

0
cosn(x) dx.

• Montrer que (w − n ≥ 0 est decroissante.
• Etablir une relation de recurrence entre wn+2 et wn.
• Sans utiliser la formule de Stirling, determiner un equivalent simple de wn.
• Determiner le rayon de convergence de la serie entiere

∑
wnx

n.

Exercice 101 Théorème de Rouché [ 111] Soit P ∈ C[X] ne s’annulant pas sur U.

1. Montrer que le nombre de racines deP de module strictement inférieur à 1 comptées avec multiplicité n’est autre que 1
2π

∫ π

−π

eitP ′(eit)
P (eit) dt.

2. Soit Q ∈ C[X] ne s’annulant pas sur U et tel que ∀z ∈ U, |P (z) −Q(z)| < |Q(z)|. Montrer que P et Q ont même nombre de
racines de module strictement inférieurs à 1 comptées avec multiplicité.

Démonstration.

Exercice 102 [ENS 112] Pour n ∈ N, on note An =
∫ π

2

0
cos2n(x) dx et Bn =

∫ π
2

0
x2 cos2n(x) dx. On admet que, pour n ∈ N∗,

2nAn = (2n− 1)An−1.

• Montrer que
∑n

k=1
1
k2 = 2B0

A0
− 2Bn

An
pour tout n ∈ N∗.

• En deduire que
∑+∞

k=1
1
n2 = π2

6 puis que
∑n

k=1
1
k2 = π2

6 +O
(
1
n

)
.

Exercice 103 [ 113] Soit f : R+ → R une fonction continue et presque périodique c’est-à-dire telle que, pour tout ϵ > 0, il existe
T > 0 tel que : ∀x ∈ R+,∀n ∈ N, |f(x+ nT )− f(x)| ≤ ϵ. Soit f : R+ → R continue et presque périodique.

1. Montrer que f est uniformément continue sur R+.

2. Montrer que t 7→ 1
t

∫ t

0
f possède une limite quand t→ +∞.

Démonstration. 1. Easy.
2. ! !

Exercice 104 [ENS 114] Soit f une fonction continue par morceaux et croissante de [0, 1] dans R. Montrer que
∫ 1

0
f(x)eiλxdx =

λ→+∞
O
(
1
λ

)
.

Exercice 105 [ENS 115] Soient f1, . . . , fn, g1, . . . , gn des fonctions de C0([0, 1],R). Soit A la matrice de terme general Ai,j =∫ 1

0
fi(x)gj(x) dx.

On poseB(x1, . . . , xn) = det
(
fi(xj)

)
etC(x1, . . . , xn) = det

(
gi(xj)

)
.Montrer que

∫
[0,1]n

B(x1, . . . , xn)C(x1, . . . , xn) dx1 . . . dxn =

n! det(A).

Exercice 106 [ENS 116 - La fonction f • Soit f une fonction de classe C1 de R+ dans R admettant une limite en +∞ et telle
que f ′ est uniformement continue. Est-ce que f ′ a une limite en +∞?

Exercice 107 [ENS 117] [Rennes sur dossier] Soient d,N ∈ N tels que N > d. Soient (P − n ∈ N une suite de polynomes a
coefficients reels de degre au plus d et x1, ..., xN des reels distincts. On suppose que pour tout j ∈ {1, ..., N}, la suite (Pn(xj))n∈N est
bornee. Montrer que l’on peut extraire de (P − n ∈ N une suite (Q− n ∈ N qui converge uniformement sur [0, 1] vers un polynome
de degre au plus d.

Exercice 108 [ENS 118] Montrer que la suite de fonctions de terme general fn : x 7→ (sinx)n cos(x) converge uniformement sur[
0, π2

]
.

Exercice 109 [ENS 119] On note I (resp. S) l’ensemble des fonctions f : [0, 1] → [0, 1] telles que, pour tout a ∈ R, l’ensemble
{x ∈ [0, 1], f(x) ≤ a} est ferme (resp. de meme avec l’inegalite dans l’autre sens).

• Montrer que S ∩ I est l’ensemble C des fonctions continues de [0, 1] dans [0, 1].
• Soit f : [0, 1] → [0, 1]. On pose fn : x 7→ inf({1} ∪ {f(y) + n|x − y|, y ∈ [0, 1]}) pour n ∈ N. Montrer que fn est continue

pour tout n, que la suite (fn) est croissante et que f ∈ I si et seulement si la suite (fn) converge simplement vers f .

Exercice 110 [ 120] Soit Λ : N → R telle que Λ(n) = ln(p) sin = pk avec p premier et k ∈ N∗, et Λ(n) = 0 sinon. On note P
l’ensemble des nombres premiers.

1. Montrer que, pour tout n ∈ N∗,
∑

d|n Λ(d) = ln(n).

2. Montrer que, pour tout s > 1,
(∑

n∈N∗
Λ(n)
ns

) (∑
n∈N∗

1
ns

)
=

∑
n∈N∗

ln(n)
ns .
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3. Montrer que, pour tout s > 1,
∑

p∈P
ln(p)
ps =

s→1+

1
s−1 +O(1).

4. Montrer que, pour tout s > 1,
∑

p∈P
1
ps =

s→1+
ln
(

1
s−1

)
+O(1). Qu’en déduire?

Démonstration.

Exercice 111 [ENS 121] Soit q ≥ 2 entier. On se donne un caractere non trivial χ sur le groupe des inversibles (Z/qZ)×, c’est-a-dire
un morphisme de groupes non constant χ : ((Z/qZ)×,×) −→ (U,×). Pour m ∈ Z, on pose alors χ̃(m) = 0 si q n’est pas premier
avec m, et χ̃(m) = χ(m) sinon (ou m designe la classe de m modulo q).

• Montrer que la serie
∑

n≥1
χ(m)
ms converge si et seulement si s > 0. - Montrrer que la fonction s 7→

∑+∞
n=1

χ(m)
ms est de classe

C1 sur R+∗.

Exercice 112 [ 122] Soient f : R+ → R de classe C1, décroissante de limite nulle en +∞ et g : x 7→
∑+∞

n=0(−1)nf(nx). Quelle est la
limite de g en 0+ ?

Démonstration. C’est
∑
f(2nx) − f((2n + 1)x) =

∑∫ (2n+1)x

2nx
f ′(t) dt. Cela tend vers 1

2f(0), en découpant sur un segment, et en
utilisant l’uniforme continuité de f ′.

Exercice 113 [ENS 123] Pour tout polynome trigonometrique P : θ 7→
∑

k∈Z ck(P )e
ikθ (somme a support fini) et pour tout d ∈ R,

on pose ∥P∥2hd =
∑

k∈Z |ck(P )|2(1 + |k|)2d.
On admet que ∥ ∥hd est une norme sur l’espace vectoriel T des polynomes trigonometriques pour tout d ∈ R. Soit E l’espace des
fonctions continues par morceaux et 2π-periodiques de R dans C. On definit le produit de convolution de deux fonctions f, g ∈ E
par : f ⋆ g : φ 7→

∫ π

−π
f(θ)g(φ− θ)dθ. Enfin, on pose, pour f ∈ E, ∥f∥22 =

∫ π

−π
|f(θ)|2dθ.

• Montrrer qu’il existe d ∈ R et c = c(d) ∈ R+ tels que, pour tous f , g ∈ T ,

∥f ⋆ g∥2 ≤ c(d)∥f∥hd∥g∥2.

• Determiner tous les reels d verifiant la condition de la question precedente.
• Soit f de classe C∞ et 2π-periodique. On pose, pour k ∈ Z, ck(f) = 1

2π

∫ π

−π
f(θ)e−ikθdθ et, pour tout d ∈ R, ∥f∥2hd =∑

k∈Z |ck(f)|2(1 + |k|)2d. Determiner les d ∈ R tels que ∥f∥hd < +∞.
• Soient f , g de classe C∞ et 2π-periodiques et d ∈ R. Calculer ∥f ⋆ g∥hd .

Exercice 114 [ENS 124] Soient p ≥ 2 et q ≥ 2 deux entiers tels que p ∧ q = 1. Pour tout z ∈ C tel que |z| < 1, on pose
f(z) = 1−zpq

(1−zp)(1−zq) . Ecrire f(z) sous la forme
∑+∞

n=0 cnz
n et trouver le plus grand n ≥ 0 tel que cn = 0.

Exercice 115 [ 125] Soient R ∈ R+∗, f et g deux fonctions développables en série entière sur ] − R,R[ telles que ∀x ∈] −
R,R

[
,
∫ x

0
f(t)g(x− t) dt = 0 . Montrer que l’une au moins des deux fonctions f et g est identiquement nulle sur ]−R,R[.

Démonstration.

Exercice 116 [ENS 126] Soient f : z 7→
∑+∞

n=0 z
n et g : z 7→

∑+∞
n=0 z

2n .

• Determiner les rayons de convergence de f et g.
• Trouver les complexes z ∈ S(0, 1) tels que f(z) converge.
• Montrrer que f admet un prolongement f̄ sur C \ {1}, developpable en serie entiere en tout point de C \ {1}.
• Montrrer que |g(r)| → +∞ quand r → 1 avec r ∈ R. - Montrrer que, si z ∈ B(0, 1), alors g(z2) = g(z)− z.
• Soient n ∈ N et α ∈ U2n . Montrrer que |g(rα)| → +∞ quand r → 1 avec r ∈ R.

• Soit h : z 7→
∑+∞

n=0
z2n+1

2n+1 . Montrrer que h est continue sur B(0, 1).
• Montrrer que, pour tout z0 ∈ S(0, 1), ε > 0 et h̃, prolongement de h sur B(0, 1)∪B(z0, ε), la fonction h̃ n’est pas developpable

en serie entiere en z0.

Exercice 117 [ENS 127] Soitα = (α−i ≥ 1 une suite de Z nulle a partir d’un certain rang. Pourn ≥ 1, on poseun =
∏

i∈N∗((in)!)αi .

• Determiner, selon la valeur de α, le rayon de convergence R de la serie entiere
∑

n≥1 unz
n.

Dans la suite, on note f la somme de cette serie entiere.

• Expliciter f si α = (−δi,1)i≥1.
• Pour une somme g de serie entiere sur un intervalle ]−a, a[ non trivial, on pose ∆(g) : z 7→ zg′(z). Expliciter P (∆)(g) lorsque
g : z 7→ zk avec k ∈ N et P ∈ R[X].

• Soit v ∈ CN∗
une suite complexe, et P ∈ R[X] sans racine dans N∗ tels que, pour tout n ≥ 1, vn+1 = vn

P (n+1) . Montrrer que∑
n≥1 vnz

n a un rayon de convergence non nul et donner une methode simple pour trouver une equation differentielle lineaire
non triviale a coefficients polynomiaux dont sa somme est solution.

• Resoudre le meme probleme qu’en (d) lorsqu’il existe P et Q dans R[X] sans racine dans N∗ telles que vn+1 = Q(n+1)
P (n+1) vn pour

tout n ≥ 1, et en supposant cette fois-ci que deg(Q) ≤ deg(P ).
• Justifier que le cadre de la question - s’applique bien a la suite (u− n ≥ 1 lorsque R > 0.

Exercice 118 [ENS 128] Pour n ∈ N, on pose un = n! (30n)!
(15n)! (10n)! (6n)! .

• Montrrer que, pour n ∈ N, un est un entier.
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• Determiner le rayon de convergence de la serie entiere
∑
unx

n.
• Trouver une equation differentielle verifiee par la somme de la serie entiere precedente.

Exercice 119 [ 129] Existe-t-il une partie A de N telle que
∑

n∈A
xn

n! ∼
x→+∞

e
√
x ?

Démonstration. Cf un précédent

Exercice 120 [ENS 130] • Soit f : z 7→
∑+∞

n=0 anz
n la somme d’une serie entiere de rayon R > 0. Montrrer que, pour tout

0 < r < R et pour tout n ∈ N, anrn = 1
2π

∫ 2π

0
f(reiθ)e−inθdθ.

▷ Soit f une fonction developpable en serie entiere de rayon de convergence egal a 1. On suppose que f est prolongeable
par continuite sur le disque ferme Df (0, 1). Expliquer pourquoi la formule de Cauchy ci-dessus reste vraie pour r = 1. -
Soit f : x ∈]− 1, 1[ 7→ 1√

1−x
e−

1−x
1+x . Montrer que f est developpable en serie entiere au voisinage de 0.

▷ On admet que le rayon de convergence du developpement de f en 0 vaut 1. Montrer que les coefficients du developpement
en serie entiere en 0 de f sont bornes par M > 0. Experimer M en fonction de f .

Exercice 121 [ENS 131] Calculer
∫ +∞
0

sin x
x dx a l’aide de la transformation de Laplace.

Exercice 122 [ 132] Soit (a, b) ∈ R × R− tel que ∀x ∈ [0, 1], 1 + ax+ bx2 ≥ 0.

1. Si a ∈ R+, montrer que n
∫ 1

0

(
1 + ax+ bx2

)n
dx −→

n→+∞
+∞.

2. Si a ∈ R−∗, montrer que n
∫ 1

0

(
1 + ax+ bx2

)n
dx −→

n→+∞
− 1

a .

Démonstration.

Exercice 123 [ 133] Soit, pour x ∈ R+, f(x) =
∫ π

0
dt√

e2x cos2(t)+e−2x sin2(t)
. Montrer qu’il existe (a, b) ∈ (R+)

2 tel que ∀x ∈

R+, f(x) ≤ (ax+ b)e−x.

Démonstration.

Exercice 124 [ENS 134] Pour x reel, on pose J(x) =
∫ π

0
cos(x sin t) dt.

• Calculer J(0).
• Montrer que J est de classe C∞.

• En estimant
∫ π

2 +ε
π
2 −ε

cos(x sin t) dt pour un ε a choisir convenablement en fonction de x, etablir que J(x) = O(x−1/2) quand
x→ +∞.

Exercice 125 [ENS 135] Soient f et g deux fonctions de classe C∞ de R+ dans R. On pose f ⋆ g : x ∈ R+ 7→
∫ x

0
f(t) g(x − t) dt.

Montrer que f ⋆ g est derivable et donner une expression de sa derivee.

Exercice 126 [ENS 136] Soit f :]0, 1[→ R continue. Pour n ≥ 1 et s < t dans ]0, 1[, on pose

an(f, s, t) =
2

t−s

∫ t

s
f(u) cos

(
2nπ
t−s (u− s)

)
du.

• On suppose f strictement convexe. Montrer que a1(f, s, t) > 0 pour tous s < t dans ]0, 1[.
• On suppose f strictement convexe. Montrer que an(f, s, t) > 0 pour tous s < t dans ]0, 1[ et tout n ∈ N∗.
• Reciproquement, on suppose f de classe C2 et a1(f, s, t) > 0 pour tous s < t dans ]0, 1[. Montrer que f est strictement convexe.

Exercice 127 [ENS 137] Soit S l’ensemble des solutions de l’equation differentielle sur R :
∑n

k=0 y
(k) = 0.

A quelle condition sur n tout element de S possede-t-il une limite en +∞?

Exercice 128 [ 138] Soit I un (vrai) intervalle de R. Si r ∈ N∗ et f1, . . . , fr ∈ Cr−1(I,R), on poseWr (f1, . . . , fr) = det

((
f
(i−1)
j

)
1≤i,j≤r

)
.

Soient r ∈ N∗, f1, . . . , fr ∈ Cr−1(I,R).

1. Soit g ∈ Cr−1(I,R). Montrer que Wr (gf1, . . . , gfr) = grWr (f1, . . . , fr).
2. On suppose que, pour tout k ∈ 1, r,Wk (f1, . . . , fk) ne s’annule pas. Montrer que, pour tout (a1, . . . , ar) ∈ Rr non nul, la

fonction a1f1 + · · ·+ arfr s’annule au plus (r − 1) fois sur I .
3. On suppose queWr (f1, . . . , fr) est identiquement nul sur I et queWr−1 (f1, . . . , fr−1) ne s’annule pas. Montrer que (f1, . . . , fr)

est liée.

Démonstration.

Exercice 129 [ENS 139] On considere l’equation differentielle (Dλ) : y
′′
+ (λ − r)y = 0 avec λ ∈ R, r ∈ C∞(I,R), ou I un

intervalle contenant [0, 1]. On considere Eλ l’espaces des solutions y de (Dλ) telles que y(0) = 0, y(1) = 0.

• Quelles sont les dimensions possibles de Eλ ?
• Caracteriser le cas dim(Eλ) = 1. (On souhaite une condition portant sur yλ, solution du probleme de Cauchy (Dλ), yλ(0) = 0,
y′λ(0) = 1.)

• Montrer que, a r fixe, les Eλ sont orthogonaux pour le produit scalaire ⟨f, g⟩ =
∫ 1

0
fg.

• On note Nλ le nombre de zeros de yλ sur [0, 1]. Pourquoi est-il fini ?
• Calculer Nλ dans le cas r = 0, λ > 0.
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• Dans le cas general, etudier le comportement de Nλ.

Exercice 130 [ENS 140] Soient I un intervalle non trivial de R, et a, b deux fonctions continues de I dans R. On considere l’equation
differentielle (E) : x

′′
+ a(t)x′ + b(t)x = 0.

• Soit x une solution non nulle de (E). Montrer que les zeros de x sont isoles.
• On suppose a de classe C1. Montrer qu’il existe z de classe C2 de I dans R, et q : I → R continue telles que x 7→ [t 7→ x(t) ez(t)]

definisse une bijection de l’ensemble des solutions de (E) sur celui des solutions de y
′′
+ q(t) y = 0.

• Soient q1, q2 deux fonctions continues de I dans R telles que q1 ≤ q2. On considere l’equation differentielle (Ei) : y
′′
+qi(t) y = 0

pour i ∈ {1, 2}. Soient y1, y2 des solutions respectives de (E1) et (E2) sur I . Soient α < β deux zeros consecutifs de y1. Montrer
que y2 s’annule dans [α, β].

• Soient q : I → R continue, et m,M deux reels strictement positifs tels que m ≤ q ≤ M . Soient α < β deux zeros consecutifs
d’une solution non nulle de y

′′
+ q(t)y = 0. Montrer que π√

M
≤ β − α ≤ π√

m
.# 141

Soient A une application continue de R+ dans Mn(R), M l’unique application derivable de R+ dans Mn(R) telle que M(0) = In et

∀t ∈ R+, M ′(t) = A(t)M(t). Montrer que ∀t ∈ R+, det(M(t)) = exp
(∫ t

0
TrA

)
.

Exercice 131 [ENS 142] Soit p : R → R une fonction continue, non identiquement nulle, π-periodique et telle que
∫ π

0
p(t)dt ≥ 0

et
∫ π

0
|p(t)|dt ≤ π

4 . Montrer que l’equation u
′′
+ pu = 0 n’admet pas de solution u non nulle sur R telle qu’il existe λ ∈ R∗ tel que

∀t ∈ R, u(t+ π) = λu(t).

Exercice 132 [ENS 143] Soit A0 ∈ Mn(R) telle que Sp(A0 +AT
0 ) ⊂ R−.

On admet l’existence d’une unique fonction A : R+ → Mn(R) telle que A(0) = A0 et ∀t ≥ 0, A′(t) = (A(t))
2−

(
A(t)T

)2
. Montrer

que la fonction A a une limite en +∞ et expliciter cette limite.

Exercice 133 [ENS 144] Soit A ∈ M3(R). Decrire le comportement asymptotique en +∞ des solutions de l’equation differentielle
X ′(t) = AX(t).

Exercice 134 [ENS 145] On considere l’equation differentielle (1) : X ′(t) = P (t)X(t) ou P est une application continue et perio-
dique de R dans Mn(C).

• Resoudre (1) si $∀ t∈R,\ P(t)=
( )

.$Onrevientaucasgeneral.SoitT ∈ R+∗ une periode de P . On note X1, . . . , Xn une base
de l’espace des solutions de (1) et, si t ∈ R, M(t) = (X1(t), . . . , Xn(t)). Montrer qu’il existe C ∈ GLn(C) telle que ∀t ∈
R, M(t+ T ) =M(t)C .

•• Avec les notations de la question precedente, montrer qu’il existe A ∈ GLn(C) tel que l’application t ∈ R 7→ M(t)e−tA soit
T -periodique.

Exercice 135 [ENS 146] • Soit f : (x, y) 7→
(
ln
(
x2 + y2

)
, arctan

(
y
x

))
. Donner le domaine de definition Ω de f . Etudier la

continuite et la differentiabilite de f .

▷ On identifie naturellement R2 a C. Montrer que, si (x, y) ∈ Ω, df(x,y) est C-lineaire.

Exercice 136 [ENS 147] Calculer supa,b,c>1

(
1− 1

a

)b
+
(
1− 1

2b

)c
+
(
1− 1

3c

)a
.

Exercice 137 [ENS 148] Trouver supa,b,c≥1

(
1− 1

a

)b (
1− 1

2b

)c (
1− 1

3c

)a
.

Exercice 138 [ENS 149] [Rennes sur dossier] Soient q ∈ R+, D = {(x, y) ∈ R2 ; x ≥ 0, y ≥ 0, x + y = 1}, Determiner
min(x,y)∈D(xq + yq).

Exercice 139 [ENS 150] Soient A ∈ S++
n (R) et b ∈ Rn.

Determiner les extrema de x ∈ Rn 7→ 1
2 ⟨Ax, x⟩ − ⟨b, x⟩.

Exercice 140 [ 151] Soient f une application différentiable convexe de Rn dans R, L ∈ R+∗.

1. Montrer que ∀(x, y) ∈ Rn × Rn, ⟨∇f(y)−∇f(x), y − x⟩ ≥ 0.
2. On suppose que l’application ∇f est L-lipschitzienne.

Montrer que ∀(x, y) ∈ Rn × Rn, ⟨∇f(y)−∇f(x), y − x⟩ ≥ 1
L∥∇f(x)−∇f(y)∥2.

Exercice 141 [ENS 152] Soit p > 1. Montrer qu’il existe Kp ∈ R tel que, pour tous x, y ∈ R tels que |x|p + |y|p = 2, on a
(x− y)2 ≤ Kp(4− (x+ y)2).

Exercice 142 [ENS 153] Soient f une application de classe C1 de Rn dans Rm, x ∈ Rn telle que dfx soit injective. Montrer qu’il
existe un voisinage de x dans Rn sur lequel f est injective.

Exercice 143 [ENS 154] On identifie R2 a C. Soit f une fonction de R2 dans R, de classe C2 et telle que ∆f = 0. Montrer que
f(0) = 1

2π

∫ π

−π
f(eit)dt.

Exercice 144 [ 155] On munit Rn de la nome euclidienne canonique et on noteB unité fermée de cet espace. Soient f une application
de Rn dans Rn de classe C1 et telle que, pour tout (u, v) ∈ B2, ∥−f(0) + v − dfu(v)∥ ≤ 1

2 . Montrer que f s’annule exactement une
fois sur B.

Démonstration.
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1) Géométrie

Exercice 145 [ENS 156] • Montrer que, pour tout n ∈ N, il existe un unique Tn ∈ Z[X] tel que
∀θ ∈ R, Tn(2 cos(θ)) = 2 cos(nθ).

• Si n ∈ N∗, quel est le terme de plus haut degre de Tn ? En deduire les r ∈ Q tels que cos(πr) ∈ Q.
• Determiner les triangles du plan euclidien dont les cotes ont des longueurs rationnelles et les angles sont des multiples rationnels

de π.

Exercice 146 [ 157] Soit G un groupe d’isométries affines de R2 tel que, pour tout point x, il existe g ∈ G tel que g(x) ̸= x. Montrer
que G contient une translation autre que l’identité de R2.

Démonstration. Faux pour G = O2.

Exercice 147 [ 158] Soit S le groupe (pour la composition) des applications de C dans C de la forme z 7→ az+ b avec a ∈ U et b ∈ C.
Soit G un sous-groupe de S vérifiant les conditions suivantes :

• si g ∈ G, g(0) est nul ou de module supérieur ou égal à 1 ;
• l’ensemble des b ∈ C tels que z 7→ z + b appartienne à G contient deux éléments R linéairement indépendants.

Montrer que l’ensemble {a ∈ U | ∃b ∈ C, z 7→ az + b ∈ G} est fini.

Démonstration. Sinon, il existe une suite (an) qui s’accumule. On peut supposer qu’elle s’accumule sur 1, puis on peut borner les (bn),
puis extraire une suite convergence, donc elle est constante à partir d’un certain rang. Donc on a une infinité de z 7→ anz, ce qui est
impossible.

Exercice 148 [ENS 159] Soit L la courbe du plan complexe d’equation |z|2 = cos(2 arg(z)).

• Trouver une equation cartesienne reelle definissant L.
• En deduire une parametrisation de L ∩ (R+)2 sous la forme {(x(r), y(r)), r ∈ [0, 1]}. - Montrrer que la longueur de la courbe
L entre le point (0, 0) et le point (x(r), y(r)) s’ecrit : A(r) =

∫ r

0
1√
1−t2

dt.

• Montrre que A definit une bijection de [−1, 1] dans un intervalle de la forme [−w,w] ou w > 0.
• On definit B = A−1. Montrer que B verifie une equation differentielle du second ordre.

Exercice 149 [ENS 160] Soit (e1, e2) une famille libre de vecteurs de R2. On pose L =1 +2 et on note Vol(L) = |det(e1, e2)|.
• Soit A un disque ferme de R2, d’aire strictement superieure a Vol(L). Montrer qu’il existe deux elements distincts x et y de A

tels que x− y ∈ L.
• Soit ε > 0. Montrer qu’il existe dans L \ {0} un element ℓ tel que ∥ℓ∥ ≤ 2+ε√

π

√
Vol(L).

• Soit p un nombre premier congru a 1 modulo 4.
• Montrrer qu’il existe ω ∈ Z tel que p divise 1 + ω2.
• Montrrer qu’il existe (a, b) ∈ Z2 tel que p = a2 + b2.

Exercice 150 [ENS 161] • On noteD le disque unite du plan euclidien R2. Demontrer qu’il existe une suite (C−i ∈ N de parties
de D telle que :

▷ pour tout i ∈ N, l’ensemble Ci soit un carre de R2 dont les cotes sont paralleles aux axes ;
▷ les Ci soient d’interieurs disjoints ;
▷
∑

i∈N Aire(Ci) = π.
▷ On note C = [−1, 1]2. Demontrer qu’il existe une suite (D − i ∈ N de parties de C telle que :
▷ pour tout i ∈ N, l’ensemble Di soit un disque ferme de R2 ;
▷ les Di soient d’interieurs disjoints ;
▷
∑

i∈N Aire(Di) = 4.

2) Probabilités

Exercice 151 [ENS 162] On note A l’ensemble des parties de A de N telles que limn→+∞
|A∩[[1,n]]|

n existe. Est-ce que A est une
tribu?

Exercice 152 [ENS 163] On pose, pour toute permutation σ ∈ Sn, d(σ) =
∑n

k=1 |σ(k) − k| et on note, pour p ∈ N, qn,p = |{σ ∈
Sn, d(σ) = p}|. Montrer que, si p ≥ 2n, alors qn,p est pair.

Exercice 153 [ENS 164] Un derangement est une permutation σ ∈ Sn sans point fixe. On note Dn le sous-ensemble de Sn forme
des derangements.

• Soit X une variable aleatoire suivant la loi uniforme sur Dn. Calculer la probabilite que X soit une permutation paire.

Indications.

• On donne la formule d’inversion de Pascal : si (an) et (bn) sont deux suites telles que∀n ∈ N, an =
∑n

k=0

(
n
k

)
bk , alors ∀n ∈ N,

bn =
∑n

k=0(−1)n−k
(
n
k

)
ak .

• On pourra calculer la difference du nombre d’elements pairs et impairs de Dn.

▷ Soit Y une variable aleatoire suivant la loi uniforme sur Sn. Calculer la probabilite de (Y ∈ Dn) sachant que Y est paire.
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Exercice 154 [ 165] Soient m ≥ 1 et r ≥ 1 deux entiers. On munit l’ensemble des morphismes de groupes de (Z/mZ)r dans Z/mZ
de la loi uniforme. Donner une expression simple de la probabilité de l’événement «le morphisme φ est surjectif».

Démonstration. Le faire pour m = p, puis lemme Chinois.

Exercice 155 [ENS 166] Deux joueurs A et B lancent une piecee truquee donnant pile avec une probabilite egale a 5/9. Les regles
de gain sont les suivantes : pile rapporte 5 euros et face 4 euros. Pour n ∈ N∗, chacun des joueurs effectue 9n lancers independants ;
on note An (resp. Bn) la variable aleatoire donnant le gain du joueur A (resp. B).*

• Trouver un equivalent, lorsque n tend vers +∞, de $P
(
An = Bn).$MontrerqueP (An ≥ Bn) ≥ 1

2 . Vers quoi tend P (An < Bn)?

Exercice 156 [ENS 167] On joue a pile ou face avec une piecee pipee : la probabilite de tomber sur pile est p < 1/2. On effectue
plusieurs lancers a la suite. Le score est le nombre de fois ou l’on est tombe sur pile. On gagne le jeu si, au bout de 2n lancers, le score
est superieur a n+ 1. Trouver n qui maximise la probabilite de gagner le jeu au bout de 2n lancers.*

Exercice 157 [ 168] Soit X une variable aléatoire à valeurs dans N telle que E(X) = 1, E
(
X2

)
= 2 et E

(
X3

)
= 5. Quelle est la

valeur minimale de P(X = 0)?

•• Démonstration. ! !
On a E(X)E(X3) ≥ E(X2)2. En fait, mieux, E(X)E(X2) ≥ (

On a (
∑
pix

2
i )(

∑
pi) ≥ (

∑
pixi)

2, donc 2
∑
pi ≥ 1, donc

∑
pi ≥ 1

2 : p0 ≤ 1
2 .

Exercice 158 [ENS 169] Soient n ∈ N un entier impair ≥ 3, (X −m ≥ 0 une suite de variables aleatoires a valeurs dans Z/nZ telle
que X0 = 0, et pour m ∈ N, P(Xm+1 = k + 1 |Xm = k) = P(Xm+1 = k − 1 |Xm = k) = 1

2 . Montrer que (X −m ≥ 1 converge
en loi vers la loi uniforme sur Z/nZ.*

Exercice 159 [ENS 170] Pour σ ∈ Sn on note I(σ) le nombre d’inversions de σ c’est-a-dire le nombre de couples (i, j) avec i < j
et σ(i) > σ(j).

• Montrer que Pn =
∑

σ∈Sn
XI(σ) =

∏n−1
k=1(1 +X + · · ·+Xk).

• On pose f(n) = |{σ ∈ Sn, (n+ 1) divise I(σ)}|. Exprimer f(n) a l’aide de Pn.

• Montrer qu’il existe une infinite de nombres premiers p tels que f(p−1) < (p−1)!
p et de meme une infinite de nombres premiers

p tels que f(p− 1) > (p−1)!
p .

Exercice 160 [ENS 171] Soient p un nombre premier, n ∈ N∗, P une variable aleatoire suivant la loi uniforme sur l’ensemble des
polynomes unitaires de degre n de Fp[X], N le nombre de racines de P dans Fp (sans tenir compte des multiplicites). Calculer E(N)
et V(N).

Exercice 161 [ 172] Dans tout l’exercice, les variables aléatoires considérées sont supposées réelles, discrètes et à loi de support fini.
Pour deux telles variables X et Y , on note X ≤c Y pour signifier que E(f(X)) ≤ E(f(Y )) pour toute fonction convexe f : R → R.

1. Soient X une variable aléatoire vérifiant les conditions de l’exercice et f : R → R convexe. Montrer que f(E(X)) ≤ E(f(X)).
2. Donner un exemple de couple (X,Y ) pour lequel X ≤c Y mais X ̸= Y .
3. Montrer que si X ≤c Y alors E(X) = E(Y ) et V(X) ≤ V(Y ).
4. Montrer que X ≤c Y si et seulement si E(X) = E(Y ) et

∀a ∈ R,
∫ +∞

a

P(X ≥ x) dx ≤
∫ +∞

a

P(Y ≥ x) dx.

Démonstration.

Exercice 162 [ 173] On fixe N ∈ N∗. On choisit de façon équiprobable u1 ∈ 1, N , puis u2 ∈ 1, u1 − 1, et ainsi de suite jusqu’à
arriver à uℓ = 1 avec nécessairement ℓ ≤ N . On note EN = {uj , 1 ≤ j ≤ ℓ}.

1. Calculer P (k ∈ EN ) pour 1 ≤ k ≤ N .
2. Calculer P (2 ∈ EN | 3 ̸∈ EN ).
3. Calculer E (|EN |) et V (|EN |).

Démonstration. 1. P (k ∈ Ek+1) = 1
k , puis P (k ∈ En) = 1

n−1 + 1
n−1

(
P (k ∈ EN−1) + · · · + P (k ∈ Ek+1)

)
. On trouve

P (k ∈ EN ) = 1
k .

2. On a P (2 ∈ EN | 3 ∈ EN ) = 1
2 .

3. Semble facile.

Exercice 163 [ENS 174] Dans tout l’enonce, on fixe un entier p ≥ 1.

• Developpper (x1 + · · ·+ xN )p pour toute liste (x1, . . . , xN ) de nombres reels.
• Soient X1, . . . , Xn des variables aleatoires i.i.d. suivant la loi uniforme sur {−1, 1}. Soit (a1, . . . , an) ∈ Rn. On pose X =∑n

i=1 aiXi. Montrer que E(X2p) ≤ (2p)p(E(X2))p.
• Montrer que E(X2p) ≤ pp(E(X2))p.

• Soit (a− k ≥ 1 une suite reelle telle que
∑+∞

k=1 a
2
k = 1. Soient x ∈ R et Yx =

∑n
k=1 ak cos(kx)Xi.

Montrer que ω 7→
∫ 2π

0
Yx(ω)

2p dx prend au moins une valeur inferieure ou egal a 2πpp.
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Exercice 164 [ENS 175] suivant la loi uniforme sur {1,−1}. Soient X1, . . . , Xn des variables aleatoires i.i.d. suivant la loi de
Rademacher, et a1, . . . , an des reels. On pose Y =

∑n
k=1 akXk .

• Montrer que E(|Y |)2 ≤ E(Y 2).
• Montrer que E(Y 2) =

∑n
k=1 a

2
k .

• Montrer que si
∑n

k=1 a
2
k = 1 alors E(Y 2) ≤ eE(|Y |)2.

• Montrer que E(Y 2) ≤ eE(|Y |)2 en toute generalite.

Exercice 165 [ENS 176] Une variable aleatoire discrete reelle X est dite decomposable s’il existe deux variables aleatoires discretes
reelles non presque surement constantes et independantes X1 et X2 telles que X ∼ X1 +X2. - Une variable aleatoire de Bernoulli
est-elle decomposable? Une variable aleatoire binomiale est-elle decomposable?

• Montrer que le polynome T 4 + 2T + 1 ne peut se factoriser comme produit de deux polynomes de degre 2 a coefficients dans
R+. En deduire une variable aleatoire reelle discrete decomposable X telle que X2 ne soit pas decomposable.

• Soient n ∈ N∗ et X une variable aleatoire suivant la loi uniforme que [[0, n− 1]]. Donner une condition necessaire et suffisante
sur n pour que X soit decomposable.

Exercice 166 [ENS 177] Soit p ∈ ]0, 1/2[. Soit (X − k ≥ 1 une suite de variables de Bernoulli i.i.d. de parametre p. On pose $
Sn=

∑
k=1

nX
k$ pour n ∈ N∗. Determiner la plus grande valeur prise par la suite (P(S2n > n))n≥1.

Exercice 167 [ENS 178] On fixe n ∈ N∗ et on pose $ X=[\ ![1,n]\ !]$. Soient A et B des variables aleatoires independantes unifor-
mement distribuees sur l’ensemble P(X) des parties de X .

• Determiner la loi, l’esperance et la variance de la variable aleatoire |A| (cardinal de A).
• Montrer que, pour tout ε > 0, P

(
|A| ≥

(
1
2 + ε

)
n
)

−→
n→+∞

0.

• Pour i ∈ [[1, n]], on note 1{i} la fonction indicatrice du singleton {i}. Determiner la loi de 1{i}(A).
• Calculer P(A ⊂ B). Commenter.

Exercice 168 [ENS 179] Soient n ∈ N∗ et p ∈ [0, 1]. On considere un echiquier n × n. On calorie chaque case en rouge (resp. en
bleu) avec probabilite p (resp. 1 − p). On note Q(p) la probabilite pour qu’il existe un chemin joignant le bord gauche au bord droit
constite uniquement de cases rouges (il est entendu que les deplacements ne se font pas en diagonale). Que dire de la fonction Q?

Exercice 169 [ENS 180] Soit (X−n ≥ 1 une suite de variables aleatoires independantes de loi de Rademacher. On pose $ Sn=X1+· · · +Xn$
pour n ≥ 1.

• Calculer l’esperance du nombre R de retour en zero de la suite (S − n ≥ 1.
• Soit I un intervalle de R distinct de R. Montrer que la probabilite qu’il existe n ≥ 1 tel que Sn /∈ I est egale a 1.
• Montrer que l’evenement (R = +∞) est presque sdr.

Exercice 170 [ENS 181] Soient (Ω,A,P) un espace probabilise et (m−k ∈ N une suite de reels positifs de somme 1. On considere un
arbre aleatoire sur cet espace tel que chaque noeud ait un nombre aleatoire X de successive avec, pour tout k ∈ N, P(X = k) = mk .
Ces variables aleatoires correspondant au nombre de succcesseurs sont mutuellement independantes. On noteX1 la variable aleatoire
comptant le nombre de succcesseurs de la racine. Caracteriser le fait que la longueur de l’arbre soit presque surement finie.

Exercice 171 [ENS 182] On construit iterativement et aleatoirement un arbre aleatoire sur l’ensemble de sommets [[1, n]] (graphe
oriente) selon le procede suivant : a l’etape k, on choisit aleatoirementun point dans 1, k (avec probabilite uniforme) et on rajoute une
arete orientee de ce point vers k + 1. Ces choix s’effectuent de maniere independante les uns des autres.

• On note Xn la variable aleatoire donnant le nombre d’aretes partant du point 1. Determiner l’esperance et la variance de Xn.
• On suppose n ≥ 2. On note Sn la variable aleatoire donnant le nombre de descendants (directs ou non) du sommet 2. Determiner

la loi de Sn.
• Calculer l’esperance du nombre de feuilles de l’arbre.

Exercice 172 [ 183] Soient E un ensemble fini, V : E → P(E) une fonction de E vers les parties de E et f : E → R une fonction.
Un point a ∈ E est un minimum local si f(a) ≤ f(b) pour tout b ∈ V (a). Soit M un entier tel que M ≥

√
|E|. Soient b1, . . . , bM des

variables aléatoires indépendantes et uniformément distribuées dans E. Soit k tel que f (bk) = min1≤i≤M f (bi). Soit (un)n≥0 une
suite de E telle que u0 = bk et, pour tout n ≥ 0 :

• si un est un minimum local, alors un+1 = un ;
• sinon un+1 ∈ V (un) et f (un+1) < f (un).

Montrer que uM est un minimum local avec probabilité au moins 1/2.

Démonstration. La donnée est celle d’un graphe. Étant donné l’algorithme, on peut retirer des arêtes, de sorte que les voisins de a
vérifient f(b) < f(a). Auquel cas il n’y a plus de cycles.
Alors on choisit

√
n sommets du graphe, puis le minimum. On veut montrer la plus longue chaîne décroissante à partir de celui-ci est

de longueur ≤
√
n avec probabilité 1

2 .
On peut attribuer à chaque sommet sa valeur par f , et on peut supposer que c’est injectif.
Puis on peut ajouter des arêtes, vers ceux qui sont < s. Puis on peut retirer les arêtes, sauf celle juste en dessous. On est ramené à un
graphe n→ n− 1 → . . .→ 1.
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Exercice 173 [ENS 184] Une variable aleatoire reelle X est infiniment divisible si X admet un moment d’ordre 2, et si, pour tout
n ≥ 2, il existe (Xi,n)i∈1,n i.i.d. et admettant des moment d’ordre 2 telles que X ∼

∑n
i=1Xi,n. Montrer que si X est bornee et

infiniment divisible, alors X est presque surement constante.

Exercice 174 [ENS 185] On se donne une suite (X − i ≥ 1 de variables aleatoires independantes. On suppose que pour tout i ≥ 1,
il existe ai ∈ ]0, 2] et pi ∈ [0, 1] tels que Xi soit a valeurs dans {0, ai,−ai} et P(Xi = ai) = P(Xi = −ai) = pi

2 .

• Quelle relation doivent verifier ai et pi pour que V(Xi) = 1? Dans toute la suite, on suppose cette relation verifiee et on pose
Sn =

∑n
i=1Xi.

• Calculer la variance de n−1/2Sn.
• Montrer que E(cos(n−1/2tSn)) =

∏n
i=1 E(cos(n−1/2tXi).

• En deduire que E(cos(n−1/2tSn)) −→
n→+∞

e−t2/2.

Exercice 175 [ENS 186] On fixe un entier n ≥ 1. On considere la relation d’ordre partielle ≼ sur Rn definie par x ≼ y ⇔ ∀i ∈
1, n, xi ≤ yi. Une fonction f : {0, 1}n → R est dite croissante lorsque f(x) ≤ f(y) quels que soient x, y dans {0, 1}n tels que x ≼ y.

• Donner un exemple de fonction croissante non constante de {0, 1}n dans R.
• Dans la suite, on se donne une liste (X1, . . . , Xn) de variables aleatoires i.i.d. suivant B(1/2). Soit f : {0, 1}n → R croissante.

On suppose n ≥ 2.

Montrer que E(f(X1, . . . , Xn)) =
1
2

(
E(f(X1, . . . , Xn−1, 0) + E(f(X1, . . . , Xn−1, 1))

)
. - Soit f : {0, 1}n → R et g : {0, 1}n → R

croissantes.
Montrer que E((fg)(X1, . . . , Xn)) ≥ E(f(X1, . . . , Xn))E(g(X1, . . . , Xn)).

Exercice 176 [ENS 187] Soit n ∈ N∗. On munit Sn de la distribution uniforme de probabilite. On note Ai = {σ ∈ Sn, σ(i) = i} et
N la variable aleatoire donnant le nombre de points fixes d’une permutation.

• Soit I ⊂ 1, n. Calculer P
(⋂

i∈I

Ai

)
.

• Exprimer N avec des indicatrices. Calculer E(N) et V(N).
• Soient k ∈ 1, n et F ⊂ 1, n. Calculer

∑
I⊂1,n, |I|=k

∏
i∈I

1F (i).

• Soit k ∈ 1, n. Calculer E(N(N − 1) · · · (N − k + 1)).
• Soient X ∼ P(1) et k ∈ N. Calculer E(X(X − 1) · · · (X − k + 1)).
• Calculer P(N = 0).

Exercice 177 [ENS 188] On considere une suite i.i.d. (X − n ≥ 1 de variables aleatoires suivant toutes la loi uniforme sur {1, 2}.
On definit (S − n ≥ 0 par S0 = 0 et ∀n ∈ N, Sn+1 = Sn +Xn+1.
a) i) Determiner l’esperance et la variance de Sn.

• Soit ε > 0. Montrer que P(|Sn − 3n/2| ≥ εn) tend vers 0 quand n tend vers +∞.
• Soit ε > 0. Montrer que P(|Sn − 3n/2| ≥ εn2/3) tend vers 0 quand n tend vers +∞.
• On considere la variable aleatoire Tn : ω 7→ min{k ∈ N, Sk(ω) ≥ n}. Determiner l’ensemble des valeurs prises par Tn.
• Soit k ≥ 2. Montrer que P(Tn = k) = 1

2P(Tn−1 = k − 1) + 1
2P(Tn−2 = k − 1).

• Calculer l’esperance de Tn.

Exercice 178 [ 189] Soient d ∈ N∗ et n ≥ 3. On pose G = (Z/nZ)d et S = {±ei, 1 ≤ i ≤ d}, où ei désigne l’élément de G dont
toutes les coordonnées sont nulles sauf la i-ème, égale à 1. Soient enfin f : G→ R une fonction quelconque etX une variable aléatoire
uniformément distribuée sur G.
Montrer que E(|f(X)−E(f(X))|) ≤ nd

2 maxs∈S E(|f(X)− f(X + s)|).

Démonstration. C’est simple : On peut passer d’un somme à un autre en au plus nd
2 pas.

II) X xens

Exercice 179 [X MP 275] On note p(n) le nombre de partitions de n pour n ∈ N∗. Monter que p(n) ≤ 2n−1.

Exercice 180 [X MP 276] Soient er > · · · > e2 > e1 ≥ 0 des entiers, n =
∑r

k=1 2
ek et X = {s ∈ N; 2s |n!}.

• Montrer que maxX = n− r.
• Montrer que le nombre d’entiers k tels que

(
n
k

)
est impair est 2r .

Exercice 181 [X MP 277] ⋆

• Montrer que l’equation a2 − 2b2 = 1 admet une infinite de solutions (a, b) ∈ N2.

Determiner l’ensemble des solutions.

• Que dire de l’ensemble des solutions de a2 − 2b2 = −1?# 278

Si G est un groupe, les elements d’ordre fini forment-il un sous-groupe?

Exercice 182 [X MP 279] • Trouver deux groupes G1 et G2 non isomorphes de cardinal 2023 = 7.172.
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▷ Soit p premier. Montrer qu’un groupe de cardinal p2 est isomorphe a Z/p2Z ou â (Z/pZ)2.
▷ Soient G,H deux groupes finis et ψ : G→ H un morphisme surjectif.

Montrer que |G| = |H| × |Kerψ|.
• On suppose que G est un groupe de cardinal 2023, que H = Z/7Z et que φ : G→ H est un morphisme surjectif. Montrer que
G est isomorphe a Z/7Z ×Kerφ.

• Montrer que tout groupe de cardinal 2023 est isomorphe a G1 ou G2.

Exercice 183 [X MP 280] Soit G un groupe fini de neutre 1. Soit φ un automorphisme de G sans point fixe c’est-a-dire tel que :
∀x ∈ G, φ(x) = x⇒ x = 1. On note n l’ordre de φ ; c’est le plus petit entier n ∈ N∗ tel que φn = id.

• Montrer que ∀x ∈ G, xφ(x)φ2(x) · · · φn−1(x) = 1.
• Si n = 2, que peut-on dire du groupe G? Donner un exemple.
• Si n = 3, montrer que, pour tout x ∈ G, x et φ(x) commutent.

Exercice 184 [X MP 281] Soient G un groupe et T l’ensemble des elements de G d’ordre fini.

• En general, T est-il un sous-groupe de G?
• Soit S une partie finie de G stable par conjugaison munie d’une relation d’ordre totale ≤. Montrer que, pour tous s1,. . ., sr ∈ S,

il existe s′1,. . ., s′r ∈ S tels que s′1 ≤ s′2 · · · ≤ s′r et s1s2 · · · sr = s′1s
′
2 · · · s′r .

• Avec la question precedente, montrer que, si T est fini, alors T est un sous-groupe de G.

Exercice 185 [X MP 282] • Soit s : R∗ → R∗, t 7→ t−1. Determiner le groupe engendre par s.

▷ On definit les applications s1 : (t, u) ∈ R∗ × R∗ 7→ (t−1, tu) ∈ R∗ × R∗ et

Montrer que le sous-groupe qu’elles engendrent est isomorphe a S3.

• Retrouver le resultat de la question precedente en considerant le quotient A de (R∗)3 par la relation de colinearite, la bijection
f : A → (R∗)2 qui associe a la classe de (x1, x2, x3) le couple (x1/x2, x2/x3), et enfin les permutations de A induites par
(x1, x2, x3) 7→ (x2, x1, x3) et (x1, x2, x3) 7→ (x1, x3, x2).

• Soitn ≥ 3. Determiner le groupe engendre par les bijections (s−1 ≤ i ≤ n de (R∗)n definies par si(t1, ..., tn) = (t1, ..., ti−2, ti−1×
ti, t

−1
i , ti×ti+1, ti+2, ..., tn) si 1 < i < n, s1(t1, ..., tn) = (t−1

1 , t1×t2, t3, ..., tn) et sn(t1, ..., tn) = (t1, ..., tn−2, tn−1×tn, t−1
n ).

Ind. Considerer f : (R∗)n+1 → (R∗)n definie par f(t1, ..., tn+1) =

(
t2
t1
, ...,

tn+1

tn

)
et chercher des bijections simples s′i de (R∗)n+1

telles que si ◦ f = f ◦ s′i.
Exercice 186 [X MP 283] Soit G un groupe fini d’ordre n. On note, pour tout diviseur positif d de n, nd(G) le nombre d’elements
de G d’ordre d.

• Montrer que n =
∑

d|n nd(G).

• Calculer les nd(G) lorsque G est cyclique.
• Montrer que, si pour tout diviseur positif d de n, |{x ∈ G, xd = 1}| ≤ d, alors G est cyclique. - Soient K un corps et G un

sous-groupe fini de K∗. Montrer que G est cyclique.

Exercice 187 [X MP 284] On pose Q[i] = {a+ ib ; a, b ∈ Q}.

• Montrver que Q[i] est un sous-corps de C.
• Determiner les elements de Q[i] \ {0} qui sont d’ordre fini.

Exercice 188 [X MP 285] • Soient K un corps, (a, b) ∈ K2, P = X2− aX − b. On considere la K-algebre A admettant une base
sur K de la forme (1, x) avec x2 = ax+ b. A quelle condition cette algebre est-elle un corps?

▷ On suppose que K = Fp ou p est un nombre premier. Combien de Fp-algebres non isomorphes peut-on obtenir ainsi ?

Exercice 189 [X MP 286] Soit p un nombre premier. On suppose que, pour toute Fp-algèbre A, il existe un endomorphisme uA de
A de sorte que, pour tout couple (A,B) de Fp-algèbres et tout morphisme τ de Fp-algèbres de A dans B, on ait τ ◦uA = uB ◦ τ . Que
dire des uA ?

Démonstration. Pour tout isomorphisme τ : A→, uA commute avec τ .

Exercice 190 [X MP 287] Soit, pour n ∈ N∗, Pn = 1 +X + · · ·+Xn−1.
Montrer que

∑n
k=1

(
n
k

)
Pk = 2n−1Pn

(
X+1
2

)
.

Exercice 191 [X MP 288] • Montrrer que pour tout n ∈ N, il existe un unique polynome Sn ∈ Q[X] tel que ∀N ∈ N, Sn(N) =∑N−1
k=0 k

n. Dans la suite, on note bn le coefficient de Sn devant X .

▷ Donner une relation de recurrence exprimant bn en fonction de b0, . . . , bn−1.
▷ Pour n ≥ 1, donner une relation entre S

′′

n et S′
n−1.

▷ En deduire une expression explicite des coefficients de Sn en fonction de b0, . . . , bn.

Exercice 192 [X MP 289] Soit n ∈ N∗. Soit q ∈ C tel que 0 < |q| < 1.
On pose F : z ∈ C∗ 7→

∏n
k=1(1 + q2k−1z)(1 + q2k−1z−1).

• Montrver qu’il existe une unique list (c0, . . . , cn) ∈ Cn+1 telle que
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∀z ∈ C∗, F (z) =
∑n

k=0 ck(z
k + z−k).

• Donner une relation de recurrence entre ck et ck+1, et en deduire une expression de ck a l’aide d’un produit. Ind. Exprimer
F (q2z) en fonction de F (z).

Exercice 193 [X MP 290] Soit p un nombre premier. Trouver tous les entiers n ∈ N tels que (X + Y )n soit congru a Xn + Y n

modulo p.

Exercice 194 [X MP 291] Soit f ∈ C[X] tel que f(0) ̸= 0. Soit (k, n) ∈ (N∗)2. Montrver qu’il existe P ∈ C[X] tel que Xn divise
P k − f .# 292 Soit p un nombre premier. Pour deux polynomes P,Q dans Z[X,Y ], on note P ≡ Q [p] pour signifier que P −Q a tous
ses coefficients (devant les XkY l) divisibles par p. On adopte une definition similaire pour les polynomes a une indeterminee.

• Exhiber un polynome P ∈ Z[T ] tel que P (XY ) ≡ P (X)P (Y ) [p], P ̸≡ T [p] et P ̸≡ 0 [p].
• Exhiber un polynome P ∈ Z[T ] tel que P (XY ) ≡ P (X)P (Y ) [p], P (X + Y ) ≡ P (X) + P (Y ) [p], P ̸≡ T [p] et P ̸≡ 0 [p].
• Determiner tous les polynomes P ∈ Z[T ] tels que P (XY ) ≡ P (X)P (Y ) [p] et P (X + Y ) ≡ P (X) + P (Y ) [p].

Exercice 195 [X MP 293] Soient α1, . . . , αr des complexes deux a deux distincts. Soient n1, . . . , nr dans N∗ et H1, . . . ,Hr dans
C[X]. Montrer qu’il existe un H ∈ C[X] tel que (X − αi)

ni divise H −Hi pour tout i ∈ [[1, n]].

Exercice 196 [X MP 294] • Soient N1, . . . , Nr des entiers premiers entre eux deux a deux, et f1, . . . , fr des entiers. Montrer
qu’il existe un entier F tel que F ≡ fi [Ni] pour tout i ∈ [[1, r]].

▷ Soient N1, . . . , Nr des elements de C[X] premiers entre eux deux a deux, et f1, . . . , fr des elements de C[X]. Montrer
qu’il existe F ∈ C[X] tel que Ni divise F − fi pour tout i ∈ [[1, r]].

▷ Soient f, g deux elements de C[X] premiers entre eux, et n ∈ N∗. Montrer qu’il existe h ∈ C[X] tel que g divise hn − f .

Exercice 197 [X MP 295] Soit n ∈ N. Le polynome Xn+1 − nXn + 1 est-il irreductible dans Z[X]?

Exercice 198 [X MP 296] Soit P ∈ Z[X] un polynome unitaire dont les racines complexes ont un module inferieur ou egal a 1.
Montrer que les racines de P sont des racines de l’unite.

Exercice 199 [X MP 297] Soit P ∈ Z[X] possedant n racines distinctes x1, . . . , xn. On ecrit P 2 + 1 = Q1 . . . Qr ou les Qi sont
dans Z[X]. On pose R =

∑r
i=1Qi

2 − r.

• Montrer que les xk sont racines au moins doubles de R.
• En deduire qu’il existe i ∈ {1, . . . , r} tel que deg(Qi) ≥ 2

⌊
n+1
2

⌋
.

Exercice 200 [X MP 298] On se propose de donner une preuve du theoreme de d’Alembert-Gauss.

• Montrer qu’il suffit de montrer le theoreme pour les polynomes a coefficients reels. Dans la suite, on ecrira le degre d’un
polynome non constant de R[X] sous la forme 2nq, ou n ∈ N et q ∈ N est impair. La preuve se fait par recurrence sur n.

• Montrer le theoreme dans le cas ou n = 0.

Dans la suite, on suppose le resultat vrai jusqu’au rang n, ou n ≥ 1 est fixe.

• Soit P ∈ R[X] de degre 2nq, ou n ≥ 1. On admet l’existence d’une extension K de C sur laquelle P est scinde, et on note
x1, . . . , xd ses racines dans K, distinctes ou non. Ayant fixe c ∈ R, on pose yij(c) = xi + xj + cxixj pour 1 ≤ i ≤ j ≤ d.

• Montrer que le polynome Qc =
∏

i≤j(X − yij(c)) est a coefficients reels. - Montrrer que l’un des yij(c) est element de C.
• Montrer finalement que l’un des xi est element de C.

Exercice 201 [X MP 299] Soient F ∈ C(X) et q ∈ C∗.

• On suppose que q n’est pas une racine de l’unite. Montrer qu’il existe au plus deux fractions rationnelles G ∈ C(X) telles que
F = 1 +G(qX)G(q−1X)F (q−2X), et que s’il y en a deux alors elles sont opposees l’une de l’autre.

• Montrer que le resultat precedent peut tomber en defaut si l’on ne suppose plus que q n’est pas une racine de l’unite.

Exercice 202 [X MP 300] SoitG un groupe, M l’ensemble des morphismes de groupes deG dans C∗. Montrer que M est une partie
libre du C-espace vectoriel CG.

Exercice 203 [XMP 301] On noteC l’ensemble des matrices deGL2(R) dont les coefficients sont non nuls. PourM = (mi,j)1≤i,j≤2 ∈
C , on pose J(M) =

( 1

mi,j

)
1≤i,j≤2

. Soit φ : C → C qui a M associe J(M−1). Montrer que φ est bien definie et trouver a quelle

condition sur M ∈ C la suite (φn(M))n≥1 est stationnaire, ou bien periodique a partir d’un certain rang.

Exercice 204 [X MP 302] Soit R ∈ Mn(Z) non nulle et M = In + 3R. Montrer que, pour tout k ∈ N∗, Mk ̸= In.

Exercice 205 [ 303] Soient E un R-espace vectoriel de dimension finie, p, u ∈ L(E). On suppose que p est un projecteur et que
pu+ up = u. Montrer que tr(u) = 0.

Démonstration. On a u(Ker p) ⊂ Im p et u(Im p) ⊂ Ker p.

Exercice 206 [X MP 304] Pour (A,B) ∈ Mn(R)2, on pose φA,B :M ∈ Mn(R) 7→ AMB.
Soit T = {φA,B , (A,B) ∈ Mn(R)2}.

• L’ensemble T est-il un R-espace vectoriel ?
• Montrer que l’espace vectoriel engendre par T est L (Mn(R)).

Exercice 207 [X MP 305] Pour une matrice de projecteur P ∈ Mn(K), on pose RP = det(In + (X − 1)P ).
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• Calculer RP en fonction de P .
• Soient P,Q des matrices de projecteur dans Mn(K) telles que PQ = QP = 0. Montrer que RPRQ = RP+Q.
• Soit φ un automorphisme de la K-algebre Mn(K).
• Montrer que φ(Ei,i) est un projecteur de rang 1, pour tout i ∈ 1, n.
• Que dire du rang de φ(Ei,j), pour i, j dans 1, n?
• Montrer que Kn =

⊕n
i=1 Imφ(Ei,1).

Exercice 208 [X MP 306] Soient E un C-espace vectoriel de dimension finie n ≥ 1 et V un sous-espace vectoriel de L(E). On
suppose qu’il existe une application q : V → C telle que u2 = q(u) id pour tout u ∈ V .

• Monter que, pour tous u, v ∈ V , il existe B(u, v) ∈ C tel que uv + vu = 2B(u, v) idE .
• Montrer que B est une forme bilineaire. - Soient d ≥ 1 et u1, . . . , ud ∈ V tels que B(ui, uj) = −δij pour tous i, j ∈ 1, n.

Montrer que (u1, . . . , ud) est libre.
• Soient d ≥ 2 et u1, . . . , ud ∈ V tels que B(ui, uj) = −δij pour tous i, j ∈ 1, n. Montrer que les ui sont de trace nulle, et que
dimE est paire.

Exercice 209 [XMP 307] Soit n ∈ N avec n ≥ 2. Soit φ ∈ L (Mn(C)). On suppose que φ(In) est inversible et que ∀A,B ∈ Mn(C),
φ(AB) = φ(A)φ(B). Montrer qu’il existe P ∈ GLn(C) tel que : ∀A ∈ Mn(C), φ(A) = PAP−1.

Exercice 210 [X MP 308] • Caracteriser les endomorphismesφ de C(X) verifiant (∗) : ∀F1, F2 ∈ C(X),φ(F1F2) = φ(F1)φ(F2).

▷ Determiner les automorphismes de C(X) verifiant (∗).
Exercice 211 [X MP 309] Soit M = (mi,j)1≤i,j≤n ∈ Mn(R) telle que : ∀i, j, mi,j ≥ 0 et

∑n
j=1mi,j = 1.

• Montrer que 1 est valeur propre de M et que tout valeur propre de M est de module ≤ 1.
• On note µ = min1≤i≤nmi,i. Montrer que le spectre de M est inclus dans le disque de centre µ et de rayon 1− µ.
• On suppose que µ > 0 et que 1 est valeur propre de multiplicite 1 dans χM . Montrer que (Mp)p≥1 converge vers une matrice

de rang 1 dont toutes les lignes sont egales.
• On se donne trois reels strictement positifs p, q, r tels que p + q + r = 1. On considere la matrice B ∈ Mn(R) definie par
bi,i = r, bi,i+1 = q si i > 2, b1,2 = p + q, bi+1,i = p si i < n − 1, bn,n−1 = p + q, et tous les autres coefficients sont nuls.
Montrer que 1 est valeur propre simple de B, et expliciter la limite de (Bk)k≥0.

Exercice 212 [X MP 310] Soient E un K-espace vectoriel de dimension finie, f ∈ L(E) cyclique, F un sous-espace de E stable par
f . Montrer que l’induit par f sur F est cyclique.

Exercice 213 [X MP 311] Soient E un C-espace vectoriel de dimension finie, a, b ∈ L(E). On suppose qu’il existe f ∈ L(C, E) et
v ∈ L(E,C) telles que ab− ba = fv.

• Que peut-on dire de det(ab− ba)?
• Montrer que a et b sont cotrigonalisables.
• A quelle condition sur u ∈ L(E) existe-t-il w ∈ L(E) tel que uw − wv soit de rang 1?

Exercice 214 [XMP 312] SoientE un C-espace vectoriel de dimension finie et f ∈ L(E) tel que, pour tout vecteur x ∈ E, l’ensemble
{fn(x), n ∈ N} est fini.

• Montrer que, si f ∈ GL(E), il existe k ∈ N∗ tel que fk = id.
• On revient au cas general. Montrer l’existence de k ∈ N∗ et p ∈ N tels que fp+k = fp.

Exercice 215 [X MP 313] Pour σ ∈ Sn, on note Pσ ∈ Mn(C) la matrice de permutation associee a σ. Montrer que, si σ et σ′ sont
dans Sn, σ et σ′ sont conjuguees dans Sn si et seulement si Pσ et Pσ′ sont semblables.

Exercice 216 [ 314] Soient p et q deux projecteurs orthogonaux dans un espace euclidien E.

1. Montrer que p ◦ q ◦ p est diagonalisable.
2. Montrer que E = Im p+Ker q + (Im q ∩Ker p).
3. Montrer que p ◦ q est diagonalisable.
4. Montrer que le spectre de p ◦ q est inclus dans [0, 1].

Démonstration.

Exercice 217 [X MP 315] Soit n ∈ N∗. On pose Ln = Dn((X2 − 1)n), ou D designe l’operateur de derivation des polynomes.

• Determiner le degre de Ln. Montrer que
∫ 1

−1
Ln(t)P (t) dt = 0 pour tout P ∈ Rn−1[X]. - Montrer que Ln est scinde a racines

reelles simples x1 < · · · < xn avec x1 > −1 et xn < 1. - Montrer qu’il existe des reels a1, . . . , an tels que

∀P ∈ R2n−1[X],
∫ 1

−1
P (t) dt =

∑n
k=1 akP (xk).

Exercice 218 [ 316] Soit α ∈ R+∗. On note S2 =
{
x ∈ R3, ∥x∥ = 1

}
où ∥·∥ désigne la norme euclidienne canonique. Montrer

l’équivalence entre les propositions suivantes.

• α = 2.
• ∀n ≥ 1,∀ (a1, . . . , an, b1, . . . , bn, c1, . . . , cn) ∈

(
S2

)3n
,∃p ∈ S2 tel que
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n∑
i=1

∥p− ai∥α =

n∑
i=1

∥p− bi∥α =

n∑
i=1

∥p− ci∥α

Démonstration.

Exercice 219 [X MP 317] Existe-t-il A ∈ SO2(Q) telle qu’il n’existe pas B ∈ SO2(Q) verifiant B2 = A?

Exercice 220 [X MP 318] Soient E un espace vectoriel euclidien, f ∈ S(E), Φ :
E → R
v 7→ ∥f(v)∥2 − ⟨f(v), v⟩2 . Donner une

condition necessaire et suffisante pour que Φ admette un extremum.

Exercice 221 [X MP 319] On considere dans M2n(R) les matrices J =

(
0 −In
In 0

)
et I =

(
In 0
0 In

)
.

• Soit K ∈ M2n(R) tel que K2 = −I . Montrer que KTJ ∈ S2n(R) si et seulement si J = KTJK .
• On note C l’ensemble des K ∈ M2n(R) telles que K2 = −I et KTJ ∈ S++

n (R). Soit K ∈ C. Montrer que K + J est inversible
et que (K + J)−1(K − J) est symetrique.

• Soit K ∈ C. On pose S = (K + J)−1(K − J). Montrer que SJ + JS = 0.

Exercice 222 [X MP 320] Montrer que ∀(A,B) ∈ S+
n (R)2, det(A+B) ≥ max(det(A),det(B)).

Exercice 223 [X MP 321] Soient A,B ∈ Sn(R).
• Montrer que tr

(
eAeB

)
> 0.

• Montrer que tr
(
eA+B

)
≤ tr

(
eAeB

)
.

Exercice 224 [ 322] Soit t1, . . . , tn des réels.
1. Montrer que la matrice A = (titj)1≤i,j≤n est dans S+

n (R).

2. On suppose 0 ≤ t1 ≤ · · · ≤ tn. Montrer que la matrice B = (min (ti, tj))1≤i,j≤n est dans S+
n (R).

3. On suppose 0 ≤ t1 ≤ · · · ≤ tn ≤ 1. Montrer que M = B −A ∈ S+
n (R).

Démonstration. 1. XTAX = (
∑
tixi)

2

2.
∫ (∑

xi1ti

)2
3. Il s’agit de montrer que

∫ 1

0

(∑
xi1ti

)2 ≥ (
∑
tixi)

2, c’est-à-dire
∫
h2 ≥

( ∫
h
)2

, car l’intégrale est sur [0, 1].

Exercice 225 [X MP 323] On munit Rn de son produit scalaire standard et on note ∥A∥ = supX∈Bf (0,1)
∥AX∥ pour A ∈ Mn(R).

• Montrver que ∥||||| definit une norme sur Mn(R).
• Montrver que ∥||A||| = sup(X,Y )∈Bf (0,1)2

| ⟨AX,Y ⟩ |.

• On prend A =
( 1

i+ j + 1

)
0≤i,j≤n

dans Mn+1(R). Pour X = (x0 · · ·xn)T et Y = (y0 · · · yn)T dans Rn+1, donner une

interpretation de ⟨AX,Y ⟩ a l’aide d’une integrale faisant intervenir P : t ∈ [0, 2π] 7→
∑n

k=0 xke
ikt et Q : t ∈ [0, 2π] 7→∑n

k=0 yke
ikt.

• En deduire que ∥||A|| ≤ 2π.
• Montrver que l’on a meme ∥|A||| ≤ π.

1) Analyse

Exercice 226 [X MP 324] Trouver f : R2 → R continue sur R2 \ {(0, 0)}, discontinue en (0, 0), dont la restriction a toute droite
passant par (0, 0) est continue.

Exercice 227 [ 325] Soit K ⊂ R2 un convexe fermé non vide.
1. On suppose K borné. Montrer que K s’écrit comme intersection de carrés fermés.
2. On suppose K non borné et K ̸= R2. Donner des exemples de tels convexes. Montrer que si K contient deux droites, celles-ci

sont parallèles.
3. On suppose toujours K non borné. Montrer que K contient une demi-droite.

Démonstration. 1. Si x ̸∈ K , on peut trouver une droite séparant x de K , donc un carré contenant K et non x.
2. Si K contient deux droites non parallèles, K = R2. La partie au dessus du graphe de x 7→ ex.
3. Fixer y ∈ K , et une suite (xn) ∈ K qui tend vers ∞, et prendre une valeur d’adhérence des segments [y, xn].

Exercice 228 [X MP 326] Determiner les endomorphismes continus du groupe C∗.

Exercice 229 [X MP 327] Soit d ∈ N∗. On munit Rd de la structure euclidienne canonique. On definit une norme sur Md(R) en
posant, pour M ∈ Md(R), ∥M∥ = sup

{
∥Mx∥ ; x ∈ Rd, ∥x∥ = 1

}
.

• Soient A,B ∈ Md(R). Montrver que ∥AB∥ ≤ ∥A∥ × ∥B∥.
• Soit (u− n ≥ 0 une suite reelle. On suppose que la serie de terme general |un − 1| converge.

Montrer que la suite de terme general
∏n

k=0 uk converge.
Soit (M − n ≥ 0 une suite de matrices de Md(R). On suppose que la serie de terme general ∥Mn − Id∥ converge. On pose, pour
n ∈ N, Bn =M0 ×M1 × · · · ×Mn.
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• Montrver que la suite (B − n ≥ 0 converge.
• Soit σ une permutation de N. Que peut-on dire de la suite de terme general Mσ(0) × · · · ×Mσ(n) ?

• Soit E =
{∏+∞

k=0Mσ(k), σ ∈ S(N)
}

. Existe-t-il une suite de matrices pour laquelle E n’est pas ferme?

• Soit k ∈ N∗. Existe-il (M − n ≥ 0 ∈ (Md(R))N telle que E possede exactement k composantes connexes?

Exercice 230 [X MP 328] On definit la longueur d’un intervalle borne I de bornes a et b par ℓ(I) = |b − a|. - Soient N ∈ N∗,
I1, . . . , IN des intervalles bornes de R tels que [0, 1] ⊂

⋃N
i=1 Ii. Que peut-on dire de

∑N
i=1 ℓ(Ii)?

• Soit δ : [0, 1] → R+∗. Montrer qu’il existe p ∈ N∗, 0 ≤ x1 < x2 < · · · < xp = 1, t1, . . . , tp ∈ R tels que, pour tout k ∈ 1, p,
xq−1 ≤ tq ≤ xq et xq − xq−1 ≤ δ(tq).

• Soit (I − n ≥ 1 une suite d’intervalles bornes de R telle que [0, 1] ⊂
⋃+∞

n=1 In. Que peut-on dire de
∑+∞

n=1 ℓ(In)?

Exercice 231 [X MP 329] Dans R2, on note D le disque unite ferme pour la norme infinie, C la sphere unite pour la norme infinie.
On cherche a montrer qu’il n’existe pas de fonction continue r : D → C telle que la restriction de r a C soit l’identite.

• On considere une fonction f : R2 → R, antisymmetric (i.e. f(x, y) = −f(y, x)), et A = (ai,j)i,j≤n une matrice reelle telle que :
∀i, j ∈ 1, n− 1,

f(ai,j , ai+1,j) + f(ai+1,j , ai+1,j+1) + f(ai+1,j+1, ai,j+1) + f(ai,j+1, ai,j) = 0.
Montrer que :∑n−1

i=0 f(ai,1, ai+1,1) +
∑n−1

j=0 f(an,j , an,j+1) +
∑n−1

i=0 f(ai+1,n, ai,n) +
∑n−1

j=0 f(a1,j+1, a1,j) = 0

• Soit M ∈ Mn+2(R) une matrice de la forme


1 1 · · · · · · 1
1 3
... M ′ ...
1 3
1 2 · · · · · · 2

 ou M ′ ∈ Mn(R)

est a coefficients dans {1, 2, 3}. Montrer qu’au moins un des petits carres de M comporte trois valeurs differentes.

• Montrer qu’on dispose d’un η > 0 tel que, pour tous x, y ∈ D verifiant ∥x− y∥∞ ≤ η, on a ∥r(x)− r(y)∥ ≤ 1
10 .

• Soit alors n ∈ N tel que 2
n−1 ≤ η. Pour tous i, j ∈ 1, n, on pose

vi,j =
(
1− 2 i−1

n−1 , 1− 2 j−1
n−1

)
.

Montrer que, pour tous i, j ∈ 1, n− 1, vi,j , vi+1,j , vi+1,j+1, vi,j+1 sont contenus dans une boule de rayon 1/10.

• En utilisant une fonction bien choisie de C dans {1, 2, 3}, aboutir a une contradiction et conclure.
• Utiliser ce resultat pour montrer que toute fonction continue de D dans D admet un point fixe.

Exercice 232 [ 330] On dit qu’une famille (Dt)t∈R+ de disques fermés de R2 vérifie (P) si

• pour tous s, t ∈ R+ distincts, Ds et Dt ont des centres distincts,
• pour tous s, t ∈ R+ tels que s < t,Ds ⊂ Dt.

1. Existe-t-il une telle famille ?
2. Soit A : R+ → R2 une fonction C1 et injective. Existe-t-il une famille (Dt)t∈R+ vérifiant (P) telle que, pour tout t ∈ R+, A(t)

soit le centre de Dt ?
3. Le résultat subsiste-t-il si A est seulement supposée continue?

Démonstration. 1. Cercles de centre (x, 0), de rayon x.
2. Prendre Dt de rayon la longueur de la courbe de A(0) à A(t).
3. Prendre une fonction non réglée.

Exercice 233 [X MP 331] Dans tout l’enonce, K designe R ou C. On se donne une K-algebre A de dimension finie, et on identifie K
a une sous-algebre de A via λ 7→ λ.1A. On suppose donnee sur A une norme multiplicative ∥ ∥, autrement dit une norme verifiant
∀(a, b) ∈ A2, ∥ab∥ = ∥a∥ ∥b∥. Jusqu’a la question - incluse, on suppose K = C.

• Soit x ∈ A. Montrer qu’il existe un z0 ∈ C tel que ∀z ∈ C, ∥z0 − x∥ ≤ ∥z − x∥.

• On suppose ∥a∥ = 2 pour a = z0 − x. Montrer que ∥a− e
2ikx
n ∥ ≥ 2 pour tout (n, k) ∈ N∗ × N.

• En deduire que ∥a− 1∥ = 2.
• En deduire que A = C.
• Retrouver le resultat de la question precedente en utilisant des polynomes annulateurs.

Dans la suite, on suppose que K = R.

• Est-ce que A est necessairement egale a R?
• On admet qu’il existe une R-algebre H ayant une base de la forme (1, i, j, k) ou i, j, k anticommutent deux a deux et i2 = j2 =
k2 = −1. On considere la symetrie x 7→ x par rapport a R parallelement a VectR(i, j, k), et on considere la normeN : q 7→

√
qq.

Montrer que N est bien definie, est effectivement une norme, et qu’elle est multiplicative.
• Montrer que A est isomorphe, en tant que R-algebre, a R, C ou H.
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Exercice 234 [ 332] Soient a, b, c des entiers naturels non nuls. Montrer qu’il existe un n ∈ N∗ tel que
√
n4 + an2 + bn+ c /∈ N.

Démonstration. Dérivée discrète.

Exercice 235 [X MP 333] Pour n ≥ 2, on note ℓn = min
{
k ∈ 1, n,

∏k
i=1

(
1− i

n

)
≤ 1

2

}
.

• Montrer que ℓn = o(n).
• Donner un equivalent de ℓn.

Exercice 236 [ 334] Soient (an) et (bn), deux suites réelles positives telles que la série de terme général bn converge, que la série de
terme général nan diverge et que

∑+∞
n=0 an = 1.

1. Montrer qu’il existe une unique suite (un) telle que, ∀n ∈ N, un = bn +
∑n

k=0 ukan−k .
2. Montrer que (un) est bornée.
3. Montrer que, si (un) converge, alors sa limite est 0.

Démonstration. Cf une année précédente.

Exercice 237 [X MP 335] On considere la suite reelle definie par x0 = 2 et xn+1 = xn +
x2
n

n2 pour tout n ≥ 1. Montrer qu’il
existe un reel C > 1 tel que xn ∼ C2nn2 quand n → +∞.# 336 Soit (a − n ≥ 0 la suite reelle definie par a0 = 1, a1 = 2 et
∀n ∈ N∗, an+1 = 2an + an−1

n2 . Donner un equivalent de an.

Exercice 238 [X MP 337] Soit (a − n ≥ 0 definie par a0 = π/2 et ∀n ∈ N, an+1 = sin(an). Nature de la serie de terme general
$an$2?

Exercice 239 [X MP 338] Soit
∑
un une serie convergente de reels positifs. Existe-t-il une suite (v−n ≥ 0 de reels positifs tendant

vers +∞ telle que la serie
∑
unvn converge?

Exercice 240 [X MP 339] Soit (xn) une suite reelle. On suppose que (xnyn) est sommable pour toute suite reelle (yn) de carre
sommable. Montrer que (xn) est de carre sommable.

Exercice 241 [X MP 340] Soit σ une permutation de N∗. Determiner la nature de la serie
∑ σ(n)

n2 .

Exercice 242 [X MP 341] Etudier la convergence de la serie de terme general sin(lnn)
n .

Exercice 243 [X MP 342] On pose un = −2
√
n+

∑n
k=1

1√
k

pour tout n ≥ 1.

• Montrer que u converge vers une limite ℓ.

• Montrer que ℓ = −(
√
2 + 1)

∑+∞
n=1

(−1)n+1

√
n

.

• Montrer que un = ℓ+ 1
2n1/2 +O

(
1

n3/2

)
.

• Montrer que ℓ = −
∑+∞

n=1
1√

n (
√
n+

√
n−1)2

.

• Etudier les variations de u.
• Determiner un developpement asymptotique semblable a celui de la question - pour la suite de terme general vn =

∑n
k=1

1
k −

lnn.
• Soit α ∈ ]0, 1[. Donner un developpement asymptotique a trois termes pour wn =

∑n
k=1

1
kα .

Exercice 244 [ 343] Soit f ∈ C0 (R+,R+), strictement croissante et bijective. Montrer que les séries
∑

1
f(n) et

∑ f−1(n)
n2 sont de

même nature.

Démonstration. La série
∑

1
f(n) a la même nature que

∫
1
f . On peut raccorder f de manière C1, puis on pose u = f(t) :∫ +∞

0

1

f(t)
dt =

∫ +∞

0

1

uf ′(f−1(u))
du,

puis IPP.

Exercice 245 [X MP 344] • Soit m ∈ N∗. Montrer que
+∞∑
n=1

√
m

(m+n)
√
n
≤ π.

Ind. : Dans R2, considérer les points xn = (
√
m,

√
n) et l’intersection rn du cercle C(0,

√
m) avec le segment [0, xn].

• Soient (an)n≥1 et (bn)n≥1 deux suites de carre sommable et a termes positifs. On noteA =
∑+∞

n=1 a
2
n etB =

∑+∞
n=1 b

2
n. Montrer

que
∑

(m,n)∈(N∗)2
ambn
m+n ≤ π

√
AB.

Exercice 246 [X MP 345] • Trouver les fonctions f : R → R monotones telles que ∀(x, y) ∈ R2, f(xy) = f(x) f(y).

• Trouver les fonctions f : R → R monotones telles que ∀x ̸= y ∈ R, f
(

x+y
x−y

)
= f(x)+f(y)

f(x)−f(y) .

Exercice 247 [ 346] Que dire d’une fonction f : R → R continue, 1-périodique et
√
2-périodique?

Démonstration. Easy.

Exercice 248 [X MP 347] Trouver les fonctions f : R → R de classe C1 telles que |f ′|+ |f + 1| ≤ 1.
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Exercice 249 [X MP 348] Pour x ≥ 1, on note Θ(x) =
∑

p∈P, p≤x ln(p). Montrer que Θ(x) =
x→+∞

O(x).

Exercice 250 [XMP 349] SoitF un ferme de R. Montrer qu’il existe une fonction f de classeC∞ de R dans R telle queF = f−1({0}).
Exercice 251 [X MP 350] Soit (x−n ≥ 0 une suite de points de [0, 1]2. Donner une condition necessaire et suffisante pour que, pour
toute permutation σ de N, il existe une fonction continue f : [0, 1] → [0, 1]2 et une suite strictement croissante (t−n ≥ 0 d’elements
de [0, 1] telle que f(tn) = xσ(n) pour tout n ≥ 0.

Exercice 252 [X MP 351] Calculer
∫ 1

0
ln(1+t)
1+t2 dt.

Exercice 253 [X MP 352] Pour n ∈ N∗, on note Ln la derivee n-ieme de (X2 − 1)n.

• Soit n ∈ N∗. Montrer que : ∀P ∈ Rn−1[X],
∫ 1

−1
PLn = 0.

• Montrer que Ln possede n racines distinctes x1 < x2 < · · · < xn dans ]− 1, 1[.

• Montrer qu’il existe α1, . . . , αn ∈ R tels que : ∀P ∈ R2n−1[X],
∫ 1

−1
P =

∑n
i=1 αiP (xi).

Exercice 254 [X MP 353] Pour n ∈ N, on pose $ In=
∑

k=0
n(-1)k {n}{k}3$.

• On suppose n impair. Montrer que In = 0.
• On suppose n multiple de 4. Montrer que In > 0.
• Montrer, pour tout n ∈ N, l’egalite

$ I2n=(-1)n{43n-1}{π2}
∫

0
2π
∫

0
2π sin2n(x)\,sin2n(y)\,sin2n(x+y)\,dx\,dy$.

Exercice 255 [X MP 354] • Soient n ∈ N∗ et f : [0, 2π] → R continue. Montrer queHn : (a0, . . . , an, b1, . . . , bn) ∈ R2n+1 7→∫ 2π

0
(a0 +

∑n
k=1(ak cos(kt) + bk sin(kt))− f(t))

2
dt admet un minimum, atteint en un unique point, et donner une expression

simple de ce point en fonction de f .

▷ Determiner la limite de minHn quand n tend vers +∞.

Exercice 256 [X MP 355] Justifier l’existence et calculer
∫ 1

0
dt

2+⌊ 1
t ⌋

.

Exercice 257 [ 356] Soit f : x ∈ R 7→ e
x2

2

∫ +∞
x

e−
t2

2 dt.

1. Montrer que f(x) < 1
x pour tout x > 0.

2. Montrer que f(x) >
√
x2+4−x

2 pour tout x > 0.
3. Donner un développement limité à quatre termes de f(x) quand x→ +∞.

Démonstration.

Exercice 258 [ 357] Soient u, v ∈ R. Pour r ∈ R+ \ {|u|, |v|}, calculer Ir(u, v) =
∫ 2π

0
dθ

(u−reiθ)(v−reiθ)
.

Démonstration.

Exercice 259 [X MP 358] Soit f : R → R+ integrable, de classe C1, telle que
∫ +∞
−∞ f(t) dt = 1. On suppose que f ′ s’annule en un

unique M ∈ R.

• Donner le tableau de variations de f . Montrer qu’il existe un unique m ∈ R tel que
∫m

−∞ f(t)dt = 1
2 .

• Montrer que, pour tout ℓ ∈]0, f(M)[ il existe un unique couple (x1, x2) ∈ R2 tel que x1 < M < x2 et f(x1) = f(x2) = ℓ.
• Supposons que, pour tout ℓ ∈]0, f(M)[, f ′(x1) + f ′(x2) > 0. Montrer que m > M .

Exercice 260 [X MP 359] • Soient a et b deux suites reelles telles que b − a converge vers 0. Soit (f − m ∈ N une suite de
fonctions de R dans R. On suppose que, pour tout m ≥ 0, il existe un entier Nm tel que ∀n ≥ Nm, am ≤ fn ≤ bm. Montrer
que (fm) converge uniformement vers une fonction constante.

▷ On note H l’ensemble des fonctions continues f : R → R strictement croissantes et telles que f(x+ 1) = f(x) + 1 pour
tout x ∈ R. Montrer que H forme un groupe pour la composition des fonctions.

▷ Soit f ∈ H . Montrer que sup{f(x)− x, x ∈ R} < 1 + inf{f(x)− x, x ∈ R}.

Exercice 261 [X MP 360] On note F l’ensemble des fonctions de [0, 1] dans [0, 1], C l’ensemble des fonctions continues de F . On
note aussi I = {f ∈ F ; ∀a ∈ [0, 1], {x ∈ [0, 1], f(x) ≤ a} est ferme} et S = {f ∈ F ; ∀a ∈ [0, 1], {x ∈ [0, 1], f(x) ≥ a} est
ferme}.
Pour f ∈ F et n ∈ N, soit Ln(f) : x ∈ [0, 1] 7→ infy∈[0,1] (f(y) + n|x− y|) ∈ [0, 1].

• Montrer que C = I ∩ S. - Montrrer que, si f ∈ F , Ln(f) est une suite croissante d’applications continues.
• Soit f ∈ F . Montrrer que f ∈ I si et seulement s’il existe une suite (f − n ≥ 0 de fonctions de C telle que pour tout x ∈ [0, 1],
f(x) = supn∈N fn(x).

Exercice 262 [X MP 361] Soient a ∈ R+∗ et f : R+ → R+∗ de classe C1 telle que
f ′(x)

f(x)
∼ a

x
quand x→ +∞.

• Rappeler le theoreme d’integration des relations de comparaison.
• Donner un equivalent de ln f(x) quand x→ +∞.
• Determiner le domaine de definition de la fonction u : x 7→

∑+∞
n=0 f(n)e

−nx.
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• Determiner les limites de u aux bornes de son intervalle de definition.

• Montrer qu’il existe une constante C > 0 telle que f(x) ∼ C

x
f

(
1

x

)
quand x→ +∞.

Exercice 263 [X MP 362] Soit (a− n ∈ N une suite reelle telle que a0 > 0, a1 > 0 et

∀n ∈ N, an+2 =
n+ 4

n+ 1
an+1 +

3n+ 7

n+ 2
an.

• Montrer que le rayon de convergence de la serie entiere
∑
anx

n est strictement positif.
• Determiner la valeur de ce rayon de convergence.

Exercice 264 [X MP 363] Pour x reel, on pose f(x) =
∑+∞

n=1

xn

1− xn
sous reserve de convergence.

• Determiner le domaine de definition de f .
• Etudier la continuite puis la derivabilite de f .
• Donner un equivalent simple de f en 1−.
• Montrre que f est developpable en serie entiere, et preciser le developpement associe.

Exercice 265 [X MP 364] • Soient U un voisinage de 0 dans C, et f : U → C somme d’une serie entiere. Soit k ∈ N∗ tel que
f(z) = O(zk) quand z tend vers 0. Montrrer que, pour r voisin de 0+, il existe au moins 2k nombres complexes z de module r
tels que f(z) soit un nombre reel.

▷ Soient A et B deux polynomes a coefficients reels dont toute combinaison lineaire a coefficients reels est scindee ou nulle.
Soient x < y deux racines de A. Montrre que [x, y] contient au moins une racine de B.

Exercice 266 [X MP 365] Soit
∑
anz

n une serie entiere de rayon de convergence egal a 1 et de somme f .

On suppose qu’il existe C > 0 tel que ∀r ∈ [0, 1[,
∫ 2π

0
|f ′(reiθ)|dθ ≤ C .

Montrre que
∫ 1

0
|f(t)|dt < +∞.

Exercice 267 [ 366] Soit P = a1X + · · ·+ adX
d ∈ Z[X] avec a1 impair.

1. Montrer l’existence d’une suite réelle (bk)k≥0 telle que : ∀x ∈ R, exp(P (x)) =
∑+∞

k=0 bkx
k .

2. Montrer que les bk sont tous non nuls.

Démonstration. 1.
2. Quand on dérive successivement eP , on trouve une quantité qui vaut toujours 1 modulo 2.

Exercice 268 [X MP 367] Pour x et q dans ]0, 1[, on pose (x, q)n =
∏n−1

k=0(1− qkx).

• Montrrer que la suite de terme general (x, q)n converge vers un reel (x, q)∞ > 0.

• Determiner le rayon de convergence de la serie entiere
∑

n≥0
(x,q)n
(q,q)n

zn. On notera fx,q sa somme sur le disque ouvert de conver-
gence, et D son disque ouvert de convergence.

• Etablir l’identife fx,q(z)− fx,q(qz) = (1− x)zfx,q,q(z) pour tout z ∈ D.
• Etablir l’identife fx,q(z) = 1−xz

1−z fx,q(qz) pour tout z ∈ D.

• Demontrer que fx,q(z) =
(zx,q)∞
(z,q)∞

pour tout z ∈ D.

• Soit α ∈ R+∗. Determiner, pour tout z ∈ D, la limite de fqα,q(z) quand q tend vers 1−.

Exercice 269 [X MP 368] • Pour x ≥ 0 on pose f(x) = card
{
(n,m) ∈ (N∗)2, n2 +m2 ≤ x

}
. Trouver un equivalent de f(x)

lorsque x→ +∞.

▷ On pose g(t) =
∑+∞

n=0 t
n2

. Trouver un equivalent de g en 1− en utilisant g2.

Exercice 270 [X MP 369] Soit p un nombre premier. Pour tout F ∈ Fp[X], on pose |F | = pdegF .

• Soit s ∈ C tel que Re s > 1. Montrre que la famille
(
|F |−s

)
, indexee par les polynomes F ∈ Fp[X] unitaires, est sommable et

calculer sa somme, qu’on notera z(s).
• On note A l’ensemble des polynomes unitaires de F ∈ Fp[X] sans facteur carre, c’est-a-dire tels que : ∀D ∈ Fp[X], D2|F ⇒
degD = 0. Montrre que

∑
F∈A |F |−s = z(s)

z(2s) .

• En deduire, pour tout d ∈ N, la proportion de polynomes sans facteur carre parmi les polynomes unitaires de degre d de Fp[X].

Exercice 271 [X MP 370] Soit f continue sur [0, 1] et g : x 7→
∫ 1

0
f(t)
1+xtdt pour x ≥ 0. On suppose f(0) ̸= 0.

• Donner un equivalent de g lorsque x→ +∞.
• On suppose f de classe C1. Majorer l’ecart avec l’equivalent trouve.
• Que peut-on dire de plus si f est de classe C2 ?

Exercice 272 [X MP 371] • Determiner le domaine de definition de f : x 7→ 2√
π

∫ π/2

0
(cos t)2x dt.

▷ Montrre, pour tout reel x > 0, l’egalite f(x) = 2√
π

∫ +∞
0

u exp
(
−u2

(
x+ 1

2

))
√

1−e−u2
du.
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Exercice 273 [X MP 372] • Calculer
∫ +∞
0

e−t sin(xt) dt pour tout reel x. - On pose F : x 7→
∫ +∞
0

sin(xt)
t (1+t2) dt. Montrer que F

est de classe C2 sur R+∗ et que ∀x > 0, F
′′
(x) = F (x)−

∫ +∞
0

sin t
t dt

▷ Donner une expression simplifiee de F .

Exercice 274 [X MP 373] Soit f ∈ C0(R+∗,R) de carre integrable. On pose Sf : x ∈ R+∗ 7→
∫ +∞
0

f(y)
x+y dy.

• Justifier la bonne definition de Sf .
• Montrer que Sf est de carre integrable.

Exercice 275 [X MP 374] Soient α, β > 0. Pour x > 0, on pose I(x) =
∫ +∞
0

tβ−1e−t−xtα dt.

• Determiner la limite et un equivalent de I en +∞.
• Donner un developpement asymptotique de I a tout ordre.
• Donner une condition necessaire et suffisante pour que ce developpement soit la somme partielle d’une serie convergente pour

tout x > 0.

Exercice 276 [X MP 375] • Soient K un segment et f : K → K une fonction continue croissante. Montrer que f admet un
point fixe.

▷ On considere l’equation differentielle non lineaire (E) : x′ = cos(x) + cos(t). On admet que pour tout a ∈ R il existe
une unique solution φa de (E) sur R verifiant φ(0) = a, et que, pour tous a, b reels distincts, les fonctions φa et φb ne
coincident en aucun point. Montrer que (E) possede une solution 2π-periodique.

Exercice 277 [X MP 376] Soient f et g deux fonctions de classe C1 de R+ dans R+∗. Soit a ∈ [0, 1].

• Justifier qu’il existe une unique fonction xa : R+ → R de classe C1 telle que ∀t ∈ R+, x′(t) = f(t) − (f(t) + g(t))x(t) et
x(0) = a.

• On suppose que f et g ont une limite finie strictement positive en +∞. Montrer que xa tend vers 0 en +∞.
• Montrer que f et g peuvent etre choisies de telle sorte que xa n’ait pas de limite en +∞.
• On suppose que l’une des fonctions f et g n’est pas integrable sur R+. Montrer que x1 − x0 tend vers 0 en +∞.

Exercice 278 [X MP 377] Soient v : R → R une fonction continue a support compact et ω ∈ R+∗. On considere l’equation
differentielle $y”+ω2y=v(t),$ dont on note SE l’ensemble des solutions.

• Montrer que, pour tout (a, b) ∈ R2, il existe une unique solution f+a,b (resp. f−a,b) de (E) telle que f+a,b(t) = a cos(ωt)+ b sin(ωt)

pour tout t dans un voisinage de +∞, (resp. f−a,b(t) = a cos(ωt) + b sin(ωt) pour tout t dans un voisinage de −∞.

• Montrer que SE = {f+a,b, (a, b) ∈ R2} = {f−a,b, (a, b) ∈ R2}.

• On pose c(ω) =
∫ +∞
−∞ v(t) cos(ωt) dt et s(ω) =

∫ +∞
−∞ v(t) sin(ωt) dt, et on definit l’application Sω : R2 → R2 par : f−a,b =

f+Sω(a,b) pour tout (a, b) ∈ R2. Expliciter l’application Sω en fonction de c(ω) et s(ω).

• On suppose que Sω = idR2 pour tout ω > 0. Montrer que v est identiquement nulle.

Exercice 279 [X MP 378] Soient q1, q2 deux fonctions continues de R+ dans R telles que q1 ≤ q2. On considere l’equation differen-
tielle (Ei) : y

′′
+ qi(t) y = 0 pour i ∈ {1, 2}.

• Soient y1, y2 des solutions respectives de (E1) et (E2) sur I . Soient α < β deux zeros de y1. Montrer que y2 s’annule dans
[α, β].

• Soient q : R+ → R continue, m,M deux reels strictement positifs tels que m ≤ q ≤ M . Soient α < β deux zeros consecutifs
d’une solution non nulle x de y

′′
+ q(t) y = 0.

• Montrer que les zeros de x fortner une suite strictement croissante (t− n ∈ N.
• Montrer que π√

M
≤ tn+1 − tn ≤ π√

m
pour tout n ∈ N.

Exercice 280 [X MP 379] • Soit p un projecteur d’un espace vectoriel E de dimension finie, et u ∈ L(E) tel que pu+ up = u.
Montrer que tr(u) = 0.

▷ Soit E un espace euclidien de dimension n ≥ 1. Soit r ∈ 0, n. On note G l’ensemble des projecteurs orthogonaux de E de
rang r. Soit p ∈ G. Determiner l’espace vectoriel tangent a G en p.

Exercice 281 [X MP 380] On munit R2 de sa structure euclidienne canonique. On considere le carre de coins {0, 1} × {0, 1}. On
choisit trois points A, B et C sur ce carre.

• Montrer qu’il existe une disposition des points A, B et C maximisant l’aire du triangle ABC .
• Caracteriser une telle disposition.

2) Geometrie

Exercice 282 [X MP 381] Pour n ≥ 2, on note Pn le perimetre d’un polygone regulier a 2n cotes inscrit dans le cercle unite.

• Calculer Pn et etudier la convergence de la suite (P − n ≥ 2.
• Etablir une relation de recurrence entre Pn et Pn+1.
• Estimer l’erreur 2π − Pn.
• Proposer une methode d’approximation de π par exces.
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Exercice 283 [X MP 382] On se donne un triangle direct ABC du plan complexe. On note respectivement a, b, c les mesures
principales des angles orientes (

−−→
AB,

−→
AC), (

−−→
BC,

−−→
BA) et (

−→
CA,

−−→
CB). On note P l’unique point tel que b

3 soit une mesure de (
−−→
BC,

−−→
BP )

et c
3 soit une mesure de (

−−→
CP,

−−→
CB) ; Q l’unique point tel que a

3 soit une mesure de (
−→
AQ,

−→
AC) et c

3 soit une mesure de (
−→
CA,

−−→
CQ) ; R

l’unique point tel que a
3 soit une mesure de (

−−→
AB,

−→
AR) et b

3 soit une mesure de (
−−→
BR,

−−→
BA). L’objectif est de montrer que le triangle

PQR est equilateral.

• On note f, g, h les rotations de centres respectifs A,B,C et d’angles de mesures respectives 2a
3 , 2b

3 et 2c
3 . Montrer que P est

l’unique point fixe de g ◦ h.
• Montrer que (f3 ◦ g3 ◦ h3)(z) = z pour tout nombre complexe z.
• On note f : z 7→ a1z + b1, g : z 7→ a2z + b2 et h : z 7→ a3z + b3. Experimer P,Q,R en fonction des ai et des bi.
• Conclure.

Exercice 284 [X MP 383] Determiner le nombre moyen de 2-cycles, de 3-cycles, de p-cycles, d’une permutation de [[1, n]].

Exercice 285 [X MP 384] • Montrer que ∀x ∈ R+∗, e−x

(1−e−x)2 <
1
x2 .

▷ Soit n ∈ N∗. On appelle partition de n toute liste decroissante (λ − 1 ≤ k ≤ n d’entiers naturels non nuls de somme n.
On note P (n) le nombre de telles listes.

Montrer que P (n) ≤ 2n−1.

• On fixe n ≥ 1 et on considere une variable aleatoireX suivant la loi uniforme sur l’ensemble des partitions de n. On fixe k ∈ N∗

et j ∈ N. On pose Nk = |{i ∈ [[1, n]] : Xi = k}|.
Exprimer P(Nk ≥ j) comme un quotient P (a)

P (b) pour des entiers a et b a preciser.

• Calculer
∑n

i=1 iNi.

Exercice 286 [X MP 385] On considere la suite (an) definie par a1 = 0, a2 = 1 et an = an−1 + an−2 pour n ≥ 3.

• Calculer
∑+∞

n=2
an

2n .
• On lance une piece non truquee. Determiner la loi de la variable aleatoireX qui donne l’instant de premiere apparition du motif

Face-Face.
• Calculer E(X) et V(X).
• Donner un equivalent de P(X = n).

Exercice 287 [X MP 386] Soit n ∈ N∗. On munit Sn de la loi uniforme, et on note N la variable aleatoire associant a tout σ ∈ Sn le
nombre de ses orbites.

• Calculer P(N = 1) et P(N = n).
• Donner une formule simple pour la fonction generatrice de N .
• Donner un equivalent de E(N) quand n tend vers +∞.
• Donner un equivalent de V(N) quand n tend vers +∞.

Exercice 288 [X MP 387] Soient n ≥ 2, X1, . . . , Xn des variables aleatoires i.i.d. suivant la loi uniforme sur [[1, n]]. Soit (e1, . . . , en)
la base canonique de Cn et f(X1,...,Xn) la variable aleatoire a valeurs dans L(Cn) telle que, pour tout i, f(X1,...,Xn)(ei) = eXi .

• Determiner E
(
rg

(
f(X1,...,Xn)

))
.

• Pour z ∈ C, soit µz la multiplicite de z comme valeur propre de f(X1,...,Xn). Calculer E(µz).

Exercice 289 [X MP 388] Soient b, n ∈ N∗. On considere (B − 1 ≤ i ≤ n des variables aleatoires independantes suivant la loi
uniforme sur [[0, b− 1]]. On note S l’ensemble des descentes de la suite B c’est-a-dire S = {i ∈ [[1, n]], Bi > Bi+1}.

• Pour i ∈ [[1, n− 1]], calculer P(Bi > Bi+1).
• Soit j ∈ [[1, n− j − 1]]. Calculer P(B1 > B2 > · · · > Bj+1). - Pour I ⊂ 1, n, on pose α(I) (resp. β(I)) le nombre de suites a n

elements a valeurs dans 0, b− 1 qui verifient S ⊂ I (resp. S = I). Exprimer α en fonction de β, puis β en fonction de α.

Exercice 290 [X MP 389] Si n ∈ N∗, σ ∈ S2n et k ∈ {1, . . . , 2n}, on note s(σ, k) le segment de C qui joint les points e
ikπ
n et e

iσ(k)π
n .

On note b(σ) le nombre de segments qui ne croisent aucun autre segment (ou on dit que deux segments se croisent s’ils ont un point
d’intersection qui n’est pas une extremite).
Pour n ∈ N∗, soit σn une variable aleatoire suivant la loi uniforme sur S2n. Determiner E(b(σn)) et en donner un equivalent.

Exercice 291 [ 390] Soient p ∈ [0, 1/2], (Xn)n≥1 i.i.d. telle que P (Xn = −1) = P (Xn = 1) = p et P (Xn = 0) = 1 − 2p. On
cherche p tel que : ∀n ∈ N∗,∀a1, . . . , an, b ∈ Z,P (

∑n
i=1 aiXi = 0) ≥ P (

∑n
i=1 aiXi = b).

1. Montrer que p ≤ 1
3 , puis que p < 1

3 et enfin que p ≤ 1
4 .

2. Si X une variable aléatoire à valeurs dans Z, on pose ΦX : θ 7→ E
(
eiXθ

)
. Exprimer P(X = k) en fonction de ΦX .

3. En déduire que p ≤ 1
4 est une condition suffisante.

Démonstration. 1. On regarde les probabilités, jusqu’à n = 3.
2. ΦX(θ) =

∑
P (X = k)eikt et formule de Cauchy.

3.
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Exercice 292 [X MP 391] Soient n et d des entiers tels que 1 ≤ d < n, et X1, . . . , Xn des variables aleatoires independantes
uniformement distribuees sur 0, d. On note Sn la classe de X1 + · · ·+Xn dans Z/nZ.

• La variable aleatoire Sn est-elle uniformement distribuee sur Z/nZ?
• Calculer la loi de Sn.

Exercice 293 [X MP 392] Soient d ∈ N∗, (X − n ≥ 1 une suite i.i.d. de variables aleatoires suivant la loi uniforme sur 1, d. Pour
n ∈ N∗, on pose Sn = X1 + · · ·+Xn.

• Soient Y une variable aleatoire a valeurs dans Z, r ∈ 0, d− 1, ω = e2iπ/n.

Montrer que $P(Y≡ r[d]) = 1
n

∑
k=0

n-1 1{ω
kr}E(ω kY.$

Soit r ∈ 0, d− 1. Donner une expression de P(Sn ≡ r [d]).
Determiner la limite de la suite de terme general P(Sn ≡ 0 [d]).

Exercice 294 [X MP 393] Soit n ≥ 1.

• On se donne deux variables aleatoires independantesXn et Yn suivant chacune la loi uniforme sur 1, n2. Soit r ∈ Q. Determiner
la probabilite un(r) pour que Xn et Yn soient deux points distincts et le coefficient directeur de la droite (XnYn) soit egal a r.
Donner un equivalent de un(r) lorsque n→ +∞.

• On se donne quatre variables aleatoires independantes Xn, Yn, An, Bn suivant chacune la loi uniforme sur 1, n2. On note pn la

probabilite pour que Xn ̸= Yn, An ̸= Bn et les droites (XnYn) et (AnBn) soient paralleles. Montrer que pn = O
(

lnn
n2

)
quand

n→ +∞.

Exercice 295 [X MP 394] Soit a ∈ [1, 2]. On pose fa : x 7→ |1 + x|a − |2x|a − ax.*a)* : Montrer : ∀x ∈ R, fa(x) ≤ 1.

• Soit X une variable aleatoire reelle centree et admettant un moment d’ordre 2. Montrer : ∀c ∈ R, E (|c+X|a) ≤ 2aE(|X|a) +
|c|a.

• Soit (X − n ≥ 1 une suite i.i.d. de variables aleatoires centrees admettant un moment d’ordre 2. Montrer que, pour n ∈ N∗,
E
(
|
∑n

i=1Xi|
a) ≤ 2a

∑n
i=1 E(|Xi|a).

Exercice 296 [X MP 395] Une urne contient a boules jaunes et b boules rouges. On effectue une succession de tirages d’une boule
dans l’urne avec remise. A chaque tirage, on ajoute une boule de la couleur de celle titee dans l’urne. Soit Xn la variable aleatoire du
nombre de boules jaunes dans l’urne apres n tirages. Soit Tn l’evenement «tirer une boule jaune au nieme tirage».

• Calculer PT2(T1).
• Determiner la loi de Xn.
• Calculer P(Tn).
• Pour n1, ..., np,m1, ...,mq tous distincts, calculer P(Tn1 ∩ ... ∩ Tnp ∩ Tm1 ∩ ... ∩ Tmq ).

Exercice 297 [ 396] Soient n ≥ 1 et A,B,C des variables aléatoires indépendantes uniformément distribuées sur {0, 1}n.

1. Pour n ≥ 2, calculer la probabilité pn que ABC soit un triangle équilatéral.
2. Déterminer un équivalent de pn.

Démonstration. Relier à un précédent.

1. On prend A = 0⃗. Alors on veut B,C avec autant de termes 1, et autant de différences entre les deux.
On considère les ensembles B ⊂ [[1, n]], C[[1, n]], et B ⊕ C .
Les parties U = B \ C , V = C \ B et W = B ∩ C vérifient u + w = v + w = u + v, donc ils sont de même cardinaux, et
disjoints.

Exercice 298 [X MP 397] On munit l’ensemble Sn des permutations de [1, n] de la probabilite uniforme. SoitXn la variable aleatoire
donnant le nombre de points fixes d’une permutation aleatoire σ ∈ Sn.

• Calculer P(Xn = 0).
• Determiner la loi de Xn.
• Etudier la convergence en loi de la suite (X − n ∈ N∗.
• Calculer les esperance et variance de la variable aleatoire Xn.

Exercice 299 [X MP 398] SoitM =


a −b −c −d
b a d −c
c −d a b
d c −b a

 une matrice aleatoire ou (a+1) ∼ P(α), (b+1) ∼ P(β), (c+1) ∼ P(γ)

et (d+ 1) ∼ P(δ).

• Calculer la probabilite que la matrice M soit inversible.
• Calculer la probabilite que la matrice M soit inversible et diagonalisable dans R.

Exercice 300 [X MP 399] Soient X et Y deux variables aleatoires a valeurs dans N verifiant P(X ≥ Y ) = 1, et, pour tout n ∈ N et

tout i ∈ [[0, n]], P(X = n) > 0 et P(Y = i|X = n) =
1

n+ 1
.

• Montrer que, si (i, j) ∈ N2, PP (X = i, Y = j) = P(X = i,X − Y = j), puis que X − Y ∼ Y .
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• Montrer que P(Y = 0) > 0.
• On suppose que X − Y et Y sont independantes. Determiner la loi de Y , puis celle de X .

Exercice 301 [X MP 400] Soit n ≥ 3 un entier. Si k ∈ Z, on note k la reduction de k modulo n. Soient X1, . . . , Xn des variables
aleatoires independantes a valeurs dans Z/nZ telles que, pour tout k ∈ 1, n, Xk suit la loi uniforme sur {1, 2, 3}. Soit F l’application
aleatoire de Z/nZ dans lui-meme telle que, pour tout k ∈ 1, n, F (k) = k +Xk . Calculer la probabilite que F soit bijective.

Exercice 302 [X MP 401] On cherche a collectionner N jouets. A chaque achat, chaque jouet a une probabilite uniforme d’etre
obtenu. Pour i ∈ 1, N , on note Ti le temps d’attente pour obtenir i jouets differents.

• Calculer l’esperance de TN .
• Calculer la variance de TN .
• Montrer que ∀ε > 0, P

(∣∣ TN

N lnN − 1
∣∣ ≥ ε

)
−→ 0 quand N → +∞.

Exercice 303 [X MP 402] Soit (X − n ∈ N∗ une suite i.i.d. de variables aleatoires reelles centrees.
On suppose que E(X4

1 ) < +∞.

• Montrer que E
(
(X1 + · · ·+Xn)

4
)
= O(n2).

• Pour ε > 0, quelle est la nature de la serie de terme general P
(
X1+...+Xn

n > ε
)

?

Exercice 304 [X MP 403] Soient x ∈ R+∗, (X−k ≥ 1 une suite i.i.d. de variables aleatoires suivant la loi P(x). Pour n ∈ N∗, soient
Sn =

∑n
k=1Xk, Tn = Sn−n√

n
.

• Montrer que
∫ +∞
0

P(Tn ≥ x)dx =
√
n
(
n
e

)n 1
n! .

• On admet que, pour tout x ∈ R, P(Tn ≥ x) −→
n→+∞

1√
2π

∫ +∞
x

e−t2/2dt. Retrouver la formule de Stirling.
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