Exercices 2023

I) ENS MP-MPI XENS
Exercice 1 [ 1] Soient S et T" des ensembles finis non vides et f une application de S dans 7. Onpose X = {(z,y) € S%, f(z) = f(y)}.

Montrer que | X| > max (ST ({%})2 + 8] - [;})

2
Démonstration. Pour le terme de gauche, il s’agit de montrer que Z ny > (Ezy:f ) , c’est Cauchy-Schwarz.
Pour le terme de droite, c’est un principe des tiroirs, puis compter pour 1 les éléments qui ne sont pas dans le tiroir. O
Exercice 2 [ 2] Soientn € N* et (z1,...,2,) € R™ Montrer qu’il existe m € Z et S un sous-ensemble non vide de 1, n tels que
1
Im = Yies il <
Démonstration. S sera un sous-ensemble d’entiers consécutifs : considérer les sommes partielles Sy, . .., Sy,. O

Exercice 3 [ 3] Pour tout n € N*, on note E(n) la valuation 5-adique de [];'_, k*. Donner un équivalent de E(n), quand n — +oc.

SUP

Exercice 4 [ 5] Soit n un entier premier > 1. Montrer que —1 est un carré modulo 7 si et seulement si n est somme de deux carrés
d’entiers.
-1
Démonstration. Si p est somme de deux carrés d’entiers, p = 1[4], et a est un carré si et seulement si a“z = 1[p].
Réciproquement, si n | m? + 1, dur, dur.!! O

Exercice 5 [ 6] 1. Soit p un nombre premier impair. Montrer que (Z / pZ) " contient (p —1)/2 carrés.

2. Montrer que tout élément de Z/pZ s’écrit comme la somme de deux carrés de Z/pZ.

3. Soit n un entier impair. Montrer que tout élément de (Z / nZ) " sécrit comme somme de deux carrés.

Indication : Commencer par le cas ou 7 est sans facteur carré.

Exercice 6 [ 7] Sin € N*, onpose H, = Y ;_, % Si p est un nombre premier et si 7 € Q" s’écrit § de maniére irréductible, on
définit la p-valuation v, (r) comme v, (a) — v, (D).

1. Montrer que si p > 3 est premier, alors v, (Hp_1) >

2. Montrer que si p > 5 est premier, alors v, (H,—_1) >

3. Montrer que si p > 5 est premier, alors vp(H(p 1)p) > 1.

4. Pour n € N*, calculer v ( H y.

Exercice 7 [9] 1. Calculer Y ¢(d) ou ¢ est I'indicatrice d’Euler.
d|n

2. Calculer Y~ 1u(d) ot pu est la fonction de Mébius définie par (1) = 1, u(p) = —1,  (p*) = 0 pour k > 2 si p est un nombre
d|n

premier et u(nm) = p(n)u(m)sin Am =1.0Onpose F: x € R H €10,1];¢ < x}’
3. Montrer que F(z) = 222+ O(zInz).
r—r 400

Démonstration. 1. 3, #(d) =n
2. X g #(d) =0, 0ulpourn=1.
3. Par inversion de Mobius, ona p(d) = > pu(4%)d'. O

Exercice 8 [ 10] Soient p, ¢ deux nombres premiers distincts. On note v,(n) la valuation p-adique d’un entier n. On pose, pour
m e N*,N(m)=(1-q) (1—¢?)...(1—q™). Trouver une constante ¢ > 0 telle que, pour tout m € N*, v,(N(m)) < cmIn(m).
Démonstration. Relier a 423 (LTE).

Onawvy(a™ — b") = vy(a — b) + vy(n) (pour p # 2).
Donc v, (N(m)) = 37", vp(1 — q) + vp(m!), plus formule de Legendre. O

Exercice 9 [ 11] Si X est un ensemble fini, on note X* = | |, . X*,c: (X*)*> = X* la concaténation et £: X* — N la longueur.
Soient A et B deux ensembles finis et p: A* — B* telle que, pour tous a,a’ € A, p (c(a,a’)) = c(p(a), ¢ (a')).

1. Onpose A = {a,b,c,d} et B = {0,1}. Etudier I'injectivité des applications définies sur les lettres de A puis étendues sur A*
par p: A — B* telles que p(a) = 0,¢(b) = 01, p(c) = 10,¢(d) = 10011, et 1p: A — B* telle que ¢(a) = 01,¢(b) =
10,%¢(c) = 11, 4(d) = 00.

2. Montrer que, si ¢ est injective, alors ) , |B|~ () < 1.

Démonstration. 1. La premieére est non injective : 0100110 peut étre lu de deux facons.
La seconde I’est.



2. On note Cy le nombre de choix possibles, de mots, dont la longueur totale N.
On doit avoir Cy < |B|". Mais Cy vérifie une relation de récurrence : Cy = > aca CN—t(a-

Donc les racines de cette récurrence doivent étre < |B|, ce qui implique qu’en | B| la valeur est négative, d’ou le résultat. ]
Exercice 10 [ 12] 1. Soit n € N*. Montrer que la transposition (1 2) et le cycle ( 1 2 -+ n ) engendrent le groupe symé-
trique S,,.

2. La transposition (1 3) et le cycle (123 4) engendrent-ils Sy ?

3. Soientn € N*et1 < a <b < ntelsquer = (ab) et o = ( 1 2 .-+ n ) engendrent S,,. Montrer que b — a et n sont
premiers entre eux.

4. Montrer la réciproque de la propriété précédente.

Démonstration. 1.
2. Non.
3. Sip|b—aAmn,alorso(a) —o(b) = a — b[p].
4. Facile de se ramener a un cycle (uu + 1) O

Exercice 11 [ 14] Soit G un groupe fini. Si X et Y sont des parties non vides de (7, on pose X 1 = {x’l,x € X} et XY =
{zy, (z,y) € X x Y}. Dans la suite, X désigne une partie non vide de G.
1. On suppose que | X X| < 2|X|. Montrer que X X ! = X1 X.
2. On suppose que ‘XX’1| < %\X| Montrer que X ~! X est un sous-groupe de G.
Démonstration. 1. Si X aun seul élément, ok. Sinon, alors pour tous a,b € X, les ensembles a X et bX ne sont pas disjoints, donc
il existe u, v tels que au = bv < a~*b = uv~t. D’ott le résultat.
2. X1 X contient I'élément neutre, et stable par inverse.
Si ce n’est pas un sous-groupe, c’est qu’il existe v~ va~'b qui ne s’écrit pas de cette forme.
"

Quitte a translater, on peut supposer que e € X. Alors X X ~! contient tous les éléments de X, et leurs inverses. Au moins la
moitié des éléments de X ont leurs inverses dans X ! O

Exercice 12 [ 15] Soient A un anneau et B C A finie non vide. On note E(B) = |{(a,b,c,d) € B* | ab = cd}|. Montrer que
B 4
E(B) > {5h-
1 0 0 1
2. Soit m > 2. Montrer que le morphisme 7: SLy(Z) — SL2(Z/mZ) est surjectif.

Exercice 13 [ 16] 1. Montrer que S = <0 _1> etT = <1 1) engendrent SLy(Z).

Exercice 14 [ 17] Soit p un nombre premier. On admet qu’il existe un anneau commutatif A dans lequel p?.14 = 04 et il existe un
élément inversible x tel que :
« tout élément de A s’écrive P(z)x =¥ pourun P € Z[X] etunk € N;
« pour deux polyndémes P, Q) dans Z[X] et deux entiers naturels k, I, I'égalité P(z)z~% = Q(x)x~¢ équivaut a ce que X*Q et
X*P aient méme réduit modulo p? (autrement dit, tous les coefficients de X*@Q — X*P sont des multiples de p?).

k

1. Soient P € Z[X] et k € N. Caractériser I'inversibilité de P(x)x~* dans A.

2. Montrer que le groupe multiplicatif A* ne posséde pas de partie génératrice finie.

Démonstration. O
) 4=1 siraf(n) )
Exercice 15 [ 18] Soit f € Z[X]. On pose S; = >- e ¢ pourtoutq € N*. Montrer que, sigA ¢’ = 1, alors Sy = 545y
0<a<gn=0
ang=1
Démonstration. Les a € [1, qq'] premiers avec g et ¢’ sont les bg + aq’, avec a premier avec g et b premier avec ¢'. O

Exercice 16 [ 19] On dit qu'un ensemble X C C est intégrable si: V(x,y) € X?, |z —y| € N. Montrer que, pour tout n € N, il existe
un ensemble intégrable X composé de n points tous sur un méme cercle.

s . 00 . . s ., 0; .0 .
Démonstration. On veut que les sin(~5-) soient rationnels, c’est-a-dire les sin % cos 5 — sin - cos %.
11 suffit donc de prendre les doubles d’une infinité de points rationnels sur le cercle. O

Exercice 17 [ 20] Soit z € C annulé par un polyndme unitaire a coefficients entiers. Soit ) € Z[X]. Montrer que Q(z) est annulé
par un polynéme unitaire a coefficients entiers.

Exercice 18 [ 21] Soit n = 2m + 1 > 1 un entier impair. Expliciter un polynéme P,, de degré 2m tel que Vx € R\ Z,sin(nz) =
(sinz)™ Py, (cotan x).

1. Donner une expression simplifiée de Y, cotan? (%)

2. Donner une expression simplifiée de } ;" %
—* sin -_—

3. En déduire que 3,5 & = =



Démonstration. Easy. O

Exercice 19 [ 22] Pourn € N, on pose P,, = Z:O Xk—,k sup

1. Montrer que P, est scindé a racines simples sur C.

2. Montrer que si n est impair, alors P,, posséde exactement une racine réelle, et qu’elle appartient & [—n, —1].
3. On suppose n pair. Le polynéme P,, a-t-il une racine réelle ?

4. Déterminer les variations et la convexité de 2 — P, (x).

Exercice 20 [ 23] Soit P € R[X] de degré n > 1.

1. On suppose P scindé sur R. Montrer que Vz € R,nP(z)P"(z) < (n — 1)P'(z)%

2. Donner un polynome ne vérifiant pas le résultat de la question précédente, puis un polynéme non scindé le vérifiant.
Démonstration. 1.

2. Ajouter a un précédent. O
Exercice 21 [ 24] Soitn € N*, P = X" + Z:;é aX* € C[X]. On factorise P sous la forme P = [, (X — z;). Pour k € N, on
note S, = 2?21 zzk Montrer que, sik > n, Sy +an—1Sk—1++ - +a9Sk—n = 0etque,sik < n, Sy +a,-1Sk—1++ap_k+151 =
—kan,k.

Exercice 22 [ 25] Une suite d’entiers (a,,),>1 est un pseudo-polynéme si pour tous n,m € N*, m —n | an, — ay,.

1. Soit P € Z[X]. Montrer que (P(n))n>1 est un pseudo-polyndme.

est un pseudo-polynome.

2. Montrer que (|nle]) o1

3. Trouver un polynéme P € Q[X]\ Z[X] tel que P(Z) C Z et que la suite (P(n)), ., ne soit pas un pseudo-polyndme.

n>1
Exercice 23 [ 26] Montrer que, pour tout n € N, il existe (ag, - . .,a,) € (R*’*)TH_1 tel que, pour tout (g, ...,&,) € {—1,1}"*1,le
polyndme P(X) = Y"}'_, exar X" est scindé sur R.
Démonstration. Easy, a relier. O

Exercice 24 [ 27] Deux polynomes P, ) € R[X] sont entrelacées si

« —P et () sont scindés a racines simples sur R,

« P et Q n’ont aucune racine réelle commune,

« entre deux racines consécutives de P (respectivement ()) il y a une unique racine de @ (respectivement P).
Soient P, @ € R[X]. Montrer que si, pour tout A, i € R*, AP + u() est scindé a racines simples sur R, alors P et ) sont entrelacés.
Démonstration. A relier. O

Exercice 25 [ 28] Soit P € C[X] de degré n > 0 tel que P(0) = 0 et P’'(0) = 1. On note D, le disque complexe ouvert de centre 0
et de rayon r. Montrer que Dy, C P (D).

Démonstration. X + X?Q(X) — z; = 0 avec |z;| < 1 admet toujours une racine, < 1.
Vient des relations coefficients-racines. O

Exercice 26 [ 31] « CNS sur n pour que Z/nZ soit un corps.
« On suppose cette condition satisfaite. Combien y a-t-il de polynémes de degré d € N fixé dans Z/nZ?
« Soit p premier. Montrer qu’il existe des polynomes irréductibles de degré 2 et 3 dans Z/pZ.

Exercice 27 [ 32] Soitn € N*, Kun corps, et V un sous-espace vectoriel de M, (K) dont tous les éléments sont de rang < 1. Montrer
que V est de dimension < n. Etudier le cas d’égalité.

Exercice 28 [ 33] Quelle est la dimension maximale d’un sous-espace vectoriel V' de M., (R) tel que pour tout (X,Y) € V2, on ait
Tr(XY) =0.

Exercice 29 [ 35] Soient A, B € M,,(R) de méme rang telles que A>B = A. Montrer que B>A = B.
Démonstration. O
Exercice 30 [ 38] Soientn > 1 et F une partie de P([1,n]).

1. On suppose que E est stable par différence symétrique. Que dire de C' = {m14} comme partie de I'espace vectoriel (Z/2Z) "7
2. On ne fait plus 'hypothése précédente, mais on suppose que A N B est de cardinal pair pour tous A, B € E. Montrer que
B < 2ln/2),
Exercice 31 [ 39] Soient (a1, ...,a,) € R™ telle que |a;| > 2, pour tout i € [1, n].

1. Soit A € M, (R) telle que Vi, a;; = a;, a;; = 1si|i —j| = 1 eta;; = 0 sinon. Montrer que A est inversible et que son
déterminant a le méme signe que [] ag.

2. Montrer que la conclusion tient encore sil’'on suppose |a;;| < 1si|i — j| =1 au lieu de a;; = 1.

Exercice 32 [ 40] On considére ¢ : (R4)2 — M4 (R) qui a (u,v) associe la matrice dont le coefficient en (3, j) vaut




1. Que peut-on dire si p(u,v) = ¢ (u/,v") #07?
2. Que dire de la réciproque ?
3. Montrer que A s’écrit comme @ (u, v) avec (u, v) libre si et seulement si A € A44(R), det(A) = 0et A # 0.

4. Décrire 'image et le noyau d’une telle matrice.

Démonstration. O
Exercice 33 [ 41] Soient a, b, m, p des entiers naturels tels que a? + b> — pm = —1. On pose A = ( a fib ¢ :jb > Montrer
qu’il existe B € GL(Q(3)) telle que A = B*B ou B* = BT. Méme question avec B dans GLy(Z[i]).

Démonstration. On a une matrice hermitienne, de déterminant 1. Donc diagonalisable ? O
Exercice 34 [ 42] Soientn € N*, ¢y, ..., ¢, des formes linéaires non nulles sur R%. Pour g € SL2(R), soit f, : (z1,...,2,) €

(RQ)n — 1 (g (71)) X -+ X ©n (g (z,)), application de (RQ)n dans R. Montrer ’équivalence entre les propositions suivantes :

+ il existe une suite (g ), >, d’éléments de SLo(R) telle que, pour tous vecteurs z1, ...,y de R?, fo (T1,...,20) k_>—+>O<> 0,

+ il existe une droite vectorielle L telle que |{i, L C Ker (¢;)}| > %.

k
0 k7!
Réciproquement,!! O

Démonstration. Siil existe une droite L, en prenant g = < ) selon L et n’importe quel supplémentaire, ¢a devrait étre bon.

Exercice 35 [ 43] Soit G 'ensemble des matrices de GL2(Z) de la forme

Z souad —bc=1leta=d=1-c=1mod 3.

b
d
, . 11 10
Montrer que G est le sous-groupe de GL2(Z) engendré par les matrices ( 0 1 ) et ( 3 1 )

Démonstration. Facile? Attention : faux pour 2. O

Exercice 36 [ 45] Soit A € M, (C)et Cy: X € M,(C) — AX — X A. Montrer que si la matrice A est diagonalisable, alors C'4
Pest aussi.

Exercice 37 [ 46] Soient A et B deux matrices de GL2(R). On suppose que ABA~1B~! commute avec A et B. Montrer que
BA =+AB.
Démonstration. < Ok.

Si ABA=1B~1 commute avec un Vect de dimension 2. Si AB = ABA, c’est bon. Sinon, alors le commutant de ABA-1B~1 est
Vect(I,,C), donc B = AA + ul,, puis faire de la réduction. O

Exercice 38 [ 47] Soit A € M, (C) et A1,..., A, les valeurs propres distinctes de A et 1, ..., q, leurs multiplicités. On note
P, = (X — )\k)ak et I, = Ker Pk(A)

1. Montrer que C" = ;_, F.

2. Montrer que Py est le polyndme caractéristique de I’endomorphisme induit par A sur Fj.

3. Montrer que A se décompose en D + N, avec D diagonalisable, NV nilpotente et ND = DN.

Exercice 39 Soient A € M,,(C) et m la multiplicité de 0 dans y 4. Montrer I’équivalence entre
« Ker A = Ker A%.
o il existe M € M,,(C) telle que M™ = A.
- pour tout k > 1, il existe M € M,,(C) telle que M* = A.

Exercice 40 [ 49] Soit M € G L, (Z) dont toutes les valeurs propres sont de module < 1. Montrer qu’il existe k > 1 tel que M* — I,
soit nilpotente.

Exercice 41 [ 51] Soitn > 1. Pour o € S, on note P, = (5i+1»j)z‘j la matrice de permutation associée. On note A 'ensemble
des fonctions polynomiales f: M,,(C) — C telles que VA, P € M,,(C)GL,(C), f(PAP~!) = f(A).On note A l'’ensemble des
fonctions polynomiales f: D,,(C) — C telles que f(P,DP, ) = f(D). Expliciter un isomorphisme d’algébres de A sur .

Exercice 42 DECOMPOSITION DE JORDAN [ 52] Soient E un K-espace vectoriel non nul de dimension finie, f € £(E) nilpotent d’indice
m,z € E tel que f™1(z) # 0.

1. Montrer que la famille ( fr (x)) est libre. On note V' le sous-espace de E engendré par cette famille.

0<k<m—1

2. Soit ¢ € E* telle que ¢(f™~1(x)) # 0, W le sous-espace de E* engendré par (¢ o f*)g<i<m—1, W 'ensemble des y € E tels
que Vi) € W+, 4)(y) = 0. Montrer que W est un supplémentaire de V dans E stable par f.

3. Montrer qu’il existe une base de E dans laquelle la matrice de f soit diagonale par blocs, les blocs diagonaux étant de la forme
Ji avec k € N*, ot Ji, € My (K) est une matrice dont tous les coefficients sont nuls en dehors de ceux de la sur-diagonale qui
sont égaux a 1.

Démonstration. O



Exercice 43 [ 53] Soit £ un K-ev de dimensionn > 1. Un élément u € L(E) est dit cyclique s’il existe = € E tel que (u*(x))o<r<n_1
soit une base de F.

1. Quels sont les endomorphismes de E diagonalisables et cycliques ?
2. Montrer que si u est cyclique, le commutant de u est égale a K[u].
3. Montrer que si u € L(E), il existe 7 € N* et des sous-espaces F1, ..., E, de E stables par u tels que E = @;_, E; et que,

pour tout ¢, ug, soit cyclique.

Exercice 44 [ 54] Soient r € N*,dy,...,d, des entiers supérieurs ou égaux a 2 tels que d; |da|... | d,. Déterminer le plus petit
n € N* tel que GL,,(C) contienne un sous-groupe isomorphe 8 Z/d1Z x - -+ x Z/d,Z.

Démonstration. n = r convient. Réciproquement, si G contient un tel groupe, on peut codiagonaliser. O

Exercice 45 [ 55] Le groupe GL2(Q) contient-il un élément d’ordre 5?

Exercice 46 [ 56] On note H I'ensemble des matrices de M3 (R) de trace nulle.

1. Montrer que VM € H, e™ € SLy(R).

2. Montrer que VM € H, Tr eM > _9

3. At-onexp(H) = SL2(R)?

4. Montrer que toute matrice de S Ly (R) est produit d’une matrice de SO3(R) et d’'une matrice triangulaire supérieure a coefficients

diagonaux > 0.

5. En déduire que toute matrice de SLy(R) est produit de deux exponentielles de matrices de H.
Exercice 47 [ 57] Soient E un espace vectoriel réel de dimension finie, h; et ho deux éléments de L(E'). On suppose qu’il existe une
norme sur F pour laquelle h; et hs sont des isométries et que [hq, ha] = hy hghflhgl commute avec h; et ho. Montrer que 'espace
des vecteurs de F fixes par hy et ho admet un supplémentaire dans F stable par h; et ho.
Démonstration. On peut supposer que 'ensemble F' des points fixes est de dimension 1. Donc est le noyau d’une forme linéaire ¢.!!
Notons C le commutateur. On a Chy = hy hghl_l.

Si hy et ho commutent.
Sihy = ha. O
Exercice 48 [ 58] Soit A € M,,(C) et Ay, ..., A\, ses valeurs propres.

1. Montrer que >_ |\;]? < doii |aij|?.

2. Montrer que | det A| < n"™/2sup |a;].
Exercice 49 [ 59] Soient (E, ()) un espace euclidien, m € N*, uy, ..., Um,v1,..., U, des vecteurs de F tels que, pour tout (¢, ) €
1, m?, (Qui, vj) = d; ;. On note p le projecteur orthogonal de E sur Vect (u1, . .., Uy, ). Montrer que Vo € E, >"1" | (u;, z) (z,p (v;)) =
Ip()]*.

Démonstration. Easy, ona (x,p(v;)) = (p(x),v;) = (u;, x). O

Exercice 50 [ENS 60] On munit R[X] duproduit scalaire (P, Q) — (P, Q) = f0+°o P(t)Q(t)e~tdt.Onpose F' = Vect (X, X2,...,X")
et on note () la projection orthogonale de 1 sur F'
Onecrit @ =—Y,_apX"etP=1+>,_ ap(X +1)...(X + k).
« Determiner (Q — 1, X*) pour k € [1,n] et montrer que P(k) = 0 pour k € [1,n].
« Calculerinf(q, 4 )ern f0+°o(1 +a1z + -+ apa™)?e " da.
Exercice 51 [ 61] Soient (F, (),)unespaceeuclidien, m € N* u,uy, ..., uy, des vecteurs de E. Montrer que & € RTuy +- - - +RTuy,
si et seulement si pour tout z € E, {z € E;Vi € 1,m, (u;,x) <0} C {x € E;(u,z) <0}.
Démonstration. = : Easy.
<« : Si les vecteurs u; sont libres, on peut prendre un élément z orthogonal a tous sauf 1.
Sinon, si u,,, est combinaison linéaire des précédents, avec un coefficient < 0.!! O

Exercice 52 [ENS 62] Montrer que, si M € GL,,(R), M s’ecrit d’'une unique facon QR avec @ € O, (R) et R € M,,(R) triangulaire
superieure a termes diagonaux dans R™*.

Exercice 53 [ENS 63] [Rennes sur dossier] Soit M € M,,(R) une matrice antisymetrique et inversible.
+ Que peut-on dire de '’entier n?

« En considerant M2, montrer que M admet un plan stable puis qu’il existe une matrice orthogonale O € O, (R) telle que OT MO

soit une matrice diagonale par blocs de la forme diag(R,,, ..., Rq, ), avec R, = (2 —Oa)

« Qu’en est-il si M n’est plus supposee inversible ?

Exercice 54 [ENS 64] Soit n > 1. Determiner les matrices A dans M, (R) telles que A + A* = AT pour tout entier k > n.

Exercice 55 [ 65] Soient A € O, (R) et M une matrice de réflexion dans O,,+1(R). On pose A’ = M < (1) ?4 > Calculer x4/(1)

en fonction de la premiére colonne de M et de x 4.



Démonstration. x ar(1) = det(Ip4+1 — M <(1) 2))" O

Exercice 56 [ENS 66] Soit A € S, (R) ayant n valeurs propres distinctes. Soit v € R™. On suppose que A et A 4 vv” n’ont pas de
valeur propre commune. Sous reserve d’existence, on pose F'(z) = 1+ vT(A — x1I,,)"'v pour x reel.
« Montrer que les zeros de F' sont les valeurs propres de A + v’

« Onnote \; < --- < A, les valeurs propres de A. Montrer que chaque intervalle |A1, Aa[,..., [An—1, An[, ] An, +00][ contient

exactement une valeur propre de A + v’

Exercice 57 [ENS 67] Soient n € N impair, M € M,,(R) telle que, pour toute A € A, (R), A+ M soit nonversible. Montrer que
M € A, (R).

Exercice 58 [ 68] Soient A, B deux matrices de O, (R) qui n’ont pas -1 pour valeur propre et telles que AB n’ait pas 1 pour valeur
propre. Montrer que (A — I,) (BA — I,)”" (B — I,,) est antisymétrique.

Démonstration. Classique O

Exercice 59 [ENS 69] Soit n € N*. On pose J = <(I)n _Oln>

« Determiner les valeurs propres de .J et leur multiplicite.

« Soit A € S;7*(R). Montrer qu’il existe une matrice B € S+ (R) telle que B> = A.
+ Que peut-on dire de la matrice BJB?

« Lorsque A est diagonale, calculer les valeurs propres de J A.

« Montrer plus generalement que toute valeur propre d’une matrice antisymetrique reelle est imaginaire pure.

Exercice 60 [ 70] Soit A € S,(R). On note A\; < --- < A, les valeurs propres de A non nécessairement distinctes. Montrer que
k k k

Vk € [17”7 Dlimi A S iy @ii < iy Angai

Démonstration. 0

Exercice 61 [ 71] 1. Soient A € S;7T(R) et B € S,/ (R) Montrer que AB est diagonalisable a valeurs propres positives ou nulles.

2. Soient A, B € ST*(R). Onpose fa,5: X € STT(R) — Tr(AX) + Tr (BX~!). Montrer que f4, 5 admet un minimum 4,5
atteint en une unique matrice M 4 g. Expliciter 14 g et M4 p.

Démonstration. O
Exercice 62 [ENS 72] Soit A € S,,(R). On definit p(A) comme la dimension maximale d’un sous-espace V sur lequel Vo € V' \
{0}, (Az,z) > 0. On definit de meme ¢(A) avec la condition (Ax, x) < 0.

« Montrer que p(A) + ¢(4) =rg A.

« Montrer que, si A est inversible, alors p et ¢ sont constantes sur un voisinage de A dans S,,(R).

« Soit B € S, (R), on suppose que f : t — det(A + tB) n’a que des racines simples sur R. Montrer que f admet au moins
|p(B) — q(B)| racines dans R.

Exercice 63 [ENS 73] Onnote A; (M) < --- < A\, (M) le spectre ordonne d’une matrice S de S,,(R).

« Soient A et B dans S,,(R) telles que A + B € S;F(R).Sil < 4,7 < neti+j > n+ 1, que dire du signe de \;(4) +
)\J(B) ?[MISSINGPAGEFAIL 21]# 80

Soient a < b deux reels, et (O — i € I une famille d’ouverts de R telle que [a,b] C J;c;
qu’il existe une partie finie J C I verifiant [a, 2] C |, ; O;. Montrer que X = [a, b].

Exercice 64 [ 74] Pour M € S, (R), on note Ay (M) < --- < A, (M) le spectre ordonné de M.
1. On considére A, B € S, (R) telles que A + B € S;, ~(R). Montrer que, si i + j < n + 2 alors A\;(A) + A;(B) < 0.
2. Généraliser a Ay,..., Ay € Sp(R) telles que Ay +--- + Ag € S, ~(R). telle que B = PTAP.

Démonstration. O

O;. On note X l'ensemble des = € [a, b] tels

Exercice 65 [ 75] On note ||-|| la norme d’opérateur sur M,,(R) associée a la norme euclidienne. Soit S € S,,. On suppose que
E={MeM,R)|S=MTM—MMT} est non vide. On note (.5) = inf ys¢ || M||*. Montrer que ||S| < ¥(S) < 2]S]I.

Exercice 66 [ 76] 1. Soient A, B € S,/ . Montrer qu’il existe P € GL,(R) telle que B = PTAP.
2. Soit f une fonction de R** dans R. Proposer une définition naturelle de f(A) si A € S;7(R).

3. Pour A et B dans S;' " (R), on pose d(A, B) = Hln (\/FB\/F) H . Justifier la définition, et montrer que d est une distance
sur ;7T (R).
4. Soient P € GL,(R), 4, B € S (R). Montrer que d (PT AP, PTBP) = d(A, B).
Démonstration. O
Exercice 67 [ 77] Soit n € N*.
1. Montrer que (X,Y) + Tr XTY est un produit scalaire sur M., (R). On note |-|| la norme associée.



2. SiM € M, (R), soit L(M): X € M, (R) — MX. Montrer que L est un morphisme d’algébre injectif.

3. Soit ||| - ||| la norme sur M, (R) subordonnée a la norme euclidienne de R”, et ||| - ||| la norme sur £(M,,(R)) subordonnée a
[I-Il. $i M € M (R), montrer que [[[L(M)][| < [[[M]]|,.

4. Montrer que ||[MT|||, = |||M][|, pour tout M € M,,(R).

Exercice 68 [ 78] On note ||-|| la norme d’opérateur sur M,, (C) associée a la norme X — vV XTX.

1. Soient A, B dans S, (R). Montrer que ||¢’* — ¢ || < ||A — B

2. Démontrer le méme résultat sous ’hypothése que A et B sont deux matrices de M, (C) telles que A7 = A et BT = B.
Démonstration. O

Exercice 69 [ 79] Soit p > 1. On pose, pour z € R", ||z = (>}, |mi|p)1/p.

1. Montrer qu’il s’agit bien d’une norme.

2. Montrer 'inégalité de Holder.

3. Dans R?, dessiner la boule unité de la norme p pour plusieurs valeurs de p.
Exercice 70 [ 80] Soient a < b deux réels, et (O;);cs une famille d’ouverts de R telle que [a,b] C |J; O;. On note X I'ensemble des
x € [a, b] tels qu’il existe une partie finie J C I telle que [a, x] C UjeJ O;. Montrer que X = [a, b].
Exercice 71 [ENS 81] Soient K un compact convexe non vide d’'un espace norme E, f un endomorphism continu de F tel que
f(K) C K. Montrer que f admet un point fixe dans K.
Exercice 72 [ 82] Peut-on écrire ]0,1[ comme réunion dénombrable disjointe de segments d’intérieurs non vides ?

Démonstration. Non. Par’absurde, on fait de la dichotomie, entre des segments, dont la distance tend vers 0, alors la limite n’appartient
a aucun segment. O

Exercice 73 [ 83] Pour tout réel = dans [0,1], on note 0, z1z225 ... le développement décimal propre de x. On pose, pour tout
n € N* S, (z) = Z?Zl x;. Soit @ un réel tel que 0 < a < 9. On définit P, = {z € [0,1[; Sp.(z) < na} et P =) P,,. Montrer
que P est compact, non vide, d’intérieur vide et sans point isolé.

neN*

Démonstration. P est borné et fermé, car .S,, est continue inférieurement. Clairement non vide et d’intérieur vide. Six € P, en retirant
1 a un chiffre de x arbitrairement grand, on reste dans P. Possible sauf si = est décimal, auquel cas on peut ajouter 1. O

Exercice 74 [ENS 84] Soit A € M,,(K), ou K = R ou K = C. Montrer que la classe de similitude de A est fermee si et seulement si
A est diagonalisable sur C.

Exercice 75 [ENS 85] « On note D le disque unite du plan euclidien R%. Demontrer qu’il existe une suite (C'—i € N de parties
de D telle que :
> pour tout ¢ € N, Pensemble C; soit un carre de R2 dont les cotes sont paralleles aux axes;
> les C; soient d’interieurs deux a deux disjoints;
> D en Aire(Cy) = .
« Onnote C' = [—1,1]2. Demontrer qu’il existe une suite (D — i € N de parties de C telle que :
> pour tout i € N, 'ensemble D; soit un disque ferme de R?;
> les D; soient d’interieurs deux a deux disjoints;
> > en Aire(D;) = 4.
Exercice 76 [ENS 2023 86] Soit d > 1. On note P I’ensemble des polyndmes unitaires de degré d de R[X].
1. Onpose A = {(P,xz) € P xR; P(z) = 0} et P'(z) # 0}. Déterminer les composantes connexes par arcs de A dans R4[X] X R.
2. Onpose B ={P € P;Vz € R, P(z) # 0 ou P'(x) # 0}. Déterminer les composantes connexes par arcs de B dans R4[X].
Démonstration. 1. Par translation, on peut passer de (P, z) 4 (P,0). Alors P = X" 4+ Q + a X, avec o # 0. On peut ramener Q a
0, et & £1. Deux composantes connexes, selon le signe de &« = P’ (x).

2. B est'ensemble des polynémes unitaires a racines simples. Le nombre de racines simples est un invariant, et réciproquement,
ces morceaux sont clairement connexes par arcs. O

Exercice 77 [ 87] Soient (M}),~, une suite de matrices de M,,(C) semblables les unes aux autres, ||-|| une norme sur M,,(C).
On suppose que || My|| — +oo. Montrer qu’il existe une matrice N € M,,(C) nilpotente et une extractrice ¢: N — N telles que

M
e — N,
1Mo

s . . Mgy
Démonstration. On peut extraire I I convergent, vers IL.

(k)

. M

Si II a une valeur propre complexe X, comme ”M“’(’” T~ HH < ¢, on a une valeur propre complexe proche de A, donc M) a une
@(k)

valeur propre qui tend vers +o0. O

Exercice 78 [ 88] Soit A € M, (C) dont toutes les valeurs propres sont de module < 1. Montrer qu’il existe une norme \|\| sur C"
telle que, pour la norme d’opérateur associée, on ait || A|| < 1.



Démonstration. Trigonaliser, puis conjuguer par une matrice diagonale pour n’avoir que des petits coefficients hors de la diagonale.
O

Exercice 79 [ 89] Soient A € M,,(R), delignes L1, ..., L,, ete € R**.On suppose que, pour tout i € 1,n, || L;||, = 1 et la distance
euclidienne canonique de L; au sous-espace engendré par les L, pour j # 14, est supérieure ou égale a €. Montrer que A est inversible
et que SUp{HA‘la:H2 sz eRY o)y =1} < L.

Démonstration. A est inversible car aucune ligne n’est combinaison linéaire des autres.

Siz = E;, on considére les colonnes de A~*, notées C;. On (C;, L;) = 1 et C; orthogonal aux autres lignes, ce qui donne ||C; ||, < 1,
peut-étre.

Ensuite, utiliser une convexité ? O

Exercice 80 [ENS 90] On note B(R) I’espace vectoriel des fonctions bornees de R dans R, muni de la norme || || || 0. On fixe g € B(R)
non nulle a support compact, et on note W(g) I'espace vectoriel engendre par les fonctions z — g(z — n), n decrivant Z. Montrer

que P'ensemble des reels ¢ lets que {x = flx—1t),f€ W(g)} = W(g) est un sous-groupe discret de R.

Exercice 81 [ 91] Soient (a,,) et (b,) deux suites réelles de limite 1 et (u,,) une suite réelle strictement positive telle que, pour tout

Up 41 In(u,)
Unp, n

Ny Upto = Gpt1Unt1 + Opt1Uy. On pose, pour n € N, v, = etw, = . Montrer que les suites (v,,) et (w,,) convergent.

Démo.ns.trati?n. Soit m. On peut écrire ug iy, = Gpug + Gri1ta—1 €t Ugynt1 = Gni1ta + Gratg—1, ou Gy, w570 Fns ce qui
devrait implique ce que 'on veut.

w,, s’obtient a partir de v,, par Cesaro. O

Exercice 82 [ENS 2023 92] 1. Sin > 2 est un entier, montrer que Y, _, [log,(n)| = X7 , | ¥/n].
2. Donner un équivalent lorsque n tend vers +o0o0 de >_;'_, |log, (n)], puis un développement asymptotique & deux termes.

Démonstration. 1. Le premier compte les puissances de k inférieures a n, dont k.
Le second compte les puissances j-émes inférieures a n.
2. En coupant la somme en k = \/n,onadu/nlnn+ (n — \/n)n, d’ol un équivalent a n.

En suite, on prend 'autre expression, on retire n. Le premier terme est v/n. Les termes non nuls correspondent & /n > 2 <
n > 27, donc les autres termes sont au plus en /n Inn, d’ott le DSA n + /n + 0400 (/). O

Exercice 83 [ENS 93] Soient a > 0 et (a —n € N une suite strictement decroissante a valeurs dans ]0, 1[. Soit (u —n € N une suite
definie par ug > 0 et Vn € N, w41 = u, (u + ay,). Montrer qu’il existe un unique up > 0 tel que la suite (u — n € N converge vers
un reel strictement positif.

Exercice 84 [ENS 94] Soit (u,,) une suite definie par : Vn € N*, u,, = sin(lnn). On note V 'ensemble des valeurs d’adherence de

. o o sox—y T+
« Montrer que, pour tous xr et y € R, sinx — sin y = 2sin =5~ COs 5~
« Montrer que 41 — U, — 0.
« Montrer que V est un intervalle inclus dans [—1, 1], puis que V' = [-1,1].
Exercice 85 [ENS 95] Si A est une partie de N*, on dit que A admet une densite si la suite (IAﬁnilnl) admet une limite. Cette
n>1

limite est alors notee d(A).
« Sim € N*, quelle est la densite de I’ensemble des multiples de m dans N* ?
« Soient A et B deux parties disjointes de N* admettant une densite. Montrer que A U B admet une densite que 1’on precisera.
« Donner un exemple de partie de N* n’admettant pas de densite.
Exercice 86 [ENS 96] On considere une suite a € {2,3}N" telle que a; = 2 et, pour tout 7 > 1, le nombre de 3 apparaissant dans
la suite a entre la n-ieme occurrence de 2 et la (n + 1)-ieme occurrence de 2 soit egal a a,,.
Etudier la convergence de la suite de terme general %‘{k €el,n, a, = 3}‘
Exercice 87 [ 97] On considére une suite a € {2,3}N" telle que a; = 2 et, pour tout n > 1, le nombre de 3 apparaissant dans la

suite a entre la n-iéme occurrence de 2 et la (n + 1)-iéme occurrence de 2 soit égal & a,,. Montrer qu’il existe un unique irrationnel «
tel que les indices n > 1 tels que a,, = 2 soient exactement les entiers de la forme |ma] + 1 pour un m € N.

Démonstration. O

Exercice 88 [ 98] Une suite réelle (z,,) est dite équirépartie modulo 1 si elle vérifie, pour tout entier k € Z* limy 4 % 25:1 e2ihmTn —
0.
1. Soit @ € R\ Q. Montrer que la suite (na) est équirépartie modulo 1.

2. Soit (z,,) € RN". On suppose que pour tout 2 € N*, la suite (2,1, — Tn),cn- st équirépartie; on veut montrer que (z,,) est
équirépartie modulo 1.

a) Soit (a,, ) une suite de complexes de module < 1. Montrer, pour tous N, H € N* : ‘% 25:1 an| < ’% Zth_Ol = 2;1 Apih |+
2H
-



2
H-1 antn
b) Montrer que Zh 0 N n= 1an+h’ <\/ Zn 1‘2 it

c¢) Conclure.

3. Soit P € R[X] non constant et de coefficient dominant irrationnel. Montrer que (P(n)),>1 est équirépartie modulo 1.
4. Soit (zy,),,>, une suite réelle équirépartie modulo 1, et f: R — Cune fonction continue 1-périodique. Montrer que - LS f (k) —

n—-+
bt

5. On reprend les hypotheses de la question 3. Montrer que la distance de P(Z) a Z est nulle.

Démonstration. 1.
2.
3.
4.
5. 77 O
0O a 0 - 0
ay 0 ag :
Exercice 89 [ENS 99] Soit f : [0, 1] — Rune fonction continue. Pour n € Navecn > 2, onnote A,, lamatrice | as 0 0
B Ap—1
0 0 ap_1 0

ou,pour toutk € I,n — 1, ar, = f (E)

n

Soit ¢ € N*. Determiner la limite de (tr (A%2)),>o2.

k
Exercice 90 [ 100] Montrer la convergence et calculer 22_31 (7; ) “ﬂ%g; J .

Démonstration. Ecrit quelque part. .. O
Exercice 91 [ 101] On note /2(R) I’ensemble des suites réelles de carré sommable indexées par N. On se donne une suite presque nulle
v € RN ainsi qu’une suite (uy), d’éléments de ¢2(R) (I'élément uy, est donc noté (Uk,i);cn)- On suppose que, pour tout entier p > 2,

. s . 2
la suite de terme général wy, = Z: o (ugn)" converge vers ZZ:E) (vn)?. Montrer que inf,ce(n) ZI:& (U, (n) — Un) o 0.
’ —+o00

Démonstration. Ecrit quelque part. ..
On peut supposer que les (v;,) sont décroissants, par réordonnement. O

Exercice 92 [ 102] Soit f la fonction de R dans R nulle sur R\ Q et telle que f (%) = % sip € Z et ¢ € N* sont premiers entre eux.

Quels sont les points de continuité de f?

Démonstration. Facile. O
Exercice 93 [ 103] Soient I un intervalle ouvert, f: I — R dérivable et [a,b] C I avec a < b. On suppose que f’(a) = f’(b). Montrer
qu’il existe ¢ € ]a,b| tel que la tangente au graphe de f en ¢ passe par le point (a, f(a)).

Démonstration. On peut supposer f'(a) = f'(b) = 0. A relier. O

Exercice 94 [ENS 104] Construire une fonction continue de R dans R qui ne soit derivable en aucun point.
Exercice 95 [ 105] Déterminer les applications f de R dans R telles que, pour tout entier n > 2, f™ (puissance) soit polynomiale.

Démonstration. f? et f2 polynomiales, donc f est une fraction rationnelle, f € Q(z) et f? € Q[X] impliquent f € Q[X]. O

Exercice 96 [ENS 106] Soit p > 1 un reel. Montrer qu’il existe une constante k, > 0 telle que, pour tout (z,y) € R? tel que
|27 + Jy[P = 2, on ait (z — y)* < kp (4 — (z +y)?).
Exercice 97 [ENS 107] Soit f: R — R. On note f*(s) = sup,cg (s — f(x)) et f*(x) = sup,cg (s — f*(s)).
Montrer que f*(z) = SUp, yffine < ¢ ().
Exercice 98 [ENS 108] Soient I un ensemble fini et (P — 7 € I une famille de polynomes reels stable par derivation. On definit une
fonction signe par sign(z) = ﬁ six # 0 etsign(0) = 0.
x

Pour ¢ € {—1,1,0}!, soient A. = {t € R; Vi € I, sign(P;(t)) = (i)} et
B.={teR; Vie I,sign(P;(t)) € {(4),0}}.

« Montrer que A. est soit vide, soit reduit a un point, soit un intervalle ouvert.

+ Si A. est non vide, montrer que B. est 'adherence de A.. Si A, est vide, montrer que B est soit vide suit un singleton.

Exercice 99 [ENS 109] Soit I un intervalle de Ret f : I — R de classe C".



« Soient z, . . ., x, des points de /. On note V' (zo, . . ., x,,) le determinant de Vandermonde associe a (zg, . . . , ). Montrer qu’il
existe 7 € I tel que

1 @ a3 - acg*l f (o)

1 ox 22 2t ) () (r

. . . . . = f |( ) V(IOaxlv '7x7l)
n!

1 oz, 22 - a1t f(x)

« On suppose que n = 2, que [ est un segment et que f est strictement convexe. Onnote I'y = {(z, f(z));z € I} C R? le graphe
de f. Montrer qu’il existe une constante C, dependant uniquement de I et f, telle que le nombre de points de I'y N % Z2 soit

majore par C' N2/3 pour tout entier N > 1.

Exercice 100 [ENS 110] Pour n € N, on pose w,, = foﬂ/z cos™ (z) d.
« Montrer que (w —n > 0 est decroissante.
« Etablir une relation de recurrence entre w,, o et w,.
« Sans utiliser la formule de Stirling, determiner un equivalent simple de w;,.
« Determiner le rayon de convergence de la serie entiere >  w,z".

Exercice 101 THEOREME DE RoucHE [ 111] Soit P € C[X] ne s’annulant pas sur U.

1. Montrer que le nombre de racines de P de module strictement inférieur a 1 comptées avec multiplicité n’est autre que % / jﬂ % d

2. Soit ) € C[X] ne s’annulant pas sur U et tel que Vz € U, |P(z) — Q(2)| < |Q(z)|- Montrer que P et () ont méme nombre de
racines de module strictement inférieurs a 1 comptées avec multiplicité.

Démonstration. O

Exercice 102 [ENS 112] Pour n € N, on note 4,, = fog cos®™(z)dx et B, = fog 22 cos?™(x) dw. On admet que, pour n € N*,
2nA, = (2n—1)A,_1.
- Montrer que ;' _; 77 = % — 2Bx pour tout n € N*.

« En deduire que 37 % = %2 puis que Y, & = %2 +0 ().

n

Exercice 103 [ 113] Soit f: Rt — R une fonction continue et presque périodique c’est-a-dire telle que, pour tout € > 0, il existe
T > 0tel que: Vo € RT,Vn € N,|f(z +nT) — f(z)| < e Soit f: RT — R continue et presque périodique.

1. Montrer que f est uniformément continue sur R™.

2. Montrer que t — % fot f posséde une limite quand t — 4-o0.

Démonstration. 1. Easy.
2. [
Exercice 104 [ENS 114] Soit f une fonction continue par morceaux et croissante de [0, 1] dans R. Montrer que fol f(z)ePdx Niwi
— 400
1
0 (3)-
Exercice 105 [ENS 115] Soient fi,..., fn,g1,---,9n des fonctions de C°([0,1],R). Soit A la matrice de terme general A; ; =
1
Jo fi(2)g;(x) dz.

Onpose B(x1,...,x,) = det (fl(acj)) etC(z,...,x,) =det (gi(xj)).Montrerque f[O,l]" B(z1,...,2y) C(x1,...,2y)d2y ... d2, =

n!det(A).

Exercice 106 [ENS 116 - LA FONCTION f « Soit f une fonction de classe C'!' de Rt dans R admettant une limite en +oc et telle
que f’ est uniformement continue. Est-ce que f’ a une limite en +00?

Exercice 107 [ENS 117] [Rennes sur dossier] Soient d, N € N tels que N > d. Soient (P — n € N une suite de polynomes a
coefficients reels de degre au plus d et 1, ..., z v des reels distincts. On suppose que pour tout j € {1, ..., N'},1a suite (P, (z;))nen est
bornee. Montrer que ’on peut extraire de (P —n € N une suite () — n € N qui converge uniformement sur [0, 1] vers un polynome

de degre au plus d.

Exercice 108 [ENS 118] Montrer que la suite de fonctions de terme general f,, : z — (sinz)™ cos(x) converge uniformement sur
[0 5],

Exercice 109 [ENS 119] On note I (resp. S) 'ensemble des fonctions f : [0,1] — [0, 1] telles que, pour tout a € R, ’ensemble
{z €10,1], f(z) < a} est ferme (resp. de meme avec I'inegalite dans l’autre sens).

« Montrer que S N I est I'ensemble C' des fonctions continues de [0, 1] dans [0, 1].

« Soit f : [0,1] — [0,1]. On pose f,, : x — inf({1} U {f(y) + n|lz — y|,y € [0,1]}) pour n € N. Montrer que f,, est continue
pour tout n, que la suite (f,,) est croissante et que f € T si et seulement si la suite (f,,) converge simplement vers f.

Exercice 110 [ 120] Soit A : N — R telle que A(n) = In(p)sin = p* avec p premier et k € N*, et A(n) = 0 sinon. On note P
I’ensemble des nombres premiers.

1. Montrer que, pour tout n € N*, 3~ A(d) = In(n).

2. Montrer que, pour tout s > 1, (Zne,\,* %) (Chens =) = X nen lnrff).

10



3. Montrer que, pour tout s > 1,37 p(p) I L +0(1).
S

4. Montrer que, pour tout s > 1 ZpG'P s = In ( . ) + O(1). Qu’en déduire ?

Démonstration. O

Exercice 111 [ENS 121] Soit ¢ > 2 entier. On se donne un caractere non trivial y sur le groupe des inversibles (Z/qZ)*, c’est-a-dire
un morphisme de groupes non constant y : ((Z/¢gZ)*, x) — (U, x). Pour m € Z, on pose alors xX(m) = 0 si ¢ n’est pas premier
avec m, et X(m) = x(m) sinon (ou 7 designe la classe de m modulo g).

x(m)

n>1 ms

+oo x(m)
n=1 ms

« Montrer que la serie ) est de classe

Cl sur R,

Exercice 112 [ 122] Soient f: RT — R de classe C*, décroissante de limite nulle en +oco et g: = — Z::z%(—l)"f(nx) Quelle est la
limite de g en 0T ?

converge si et seulement si s > 0. - Montrrer que la fonction s — )

Démonstration. Cest > f(2nz) — f((2n+ 1)z) = >_ f2 (2n+1)z '(t) dt. Cela tend vers 1 f(0), en découpant sur un segment, et en
utilisant 'uniforme continuité de f’. O

Exercice 113 [ENS 123] Pour tout polynome trigonometrique P : 6 — Y, - ¢ (P)e’*’ (somme a support fini) et pour tout d € R,
on pose || P|[7, = 3 pez lox(P)[ (1 + [k[)*.

On admet que || ||« est une norme sur l'espace vectoriel 7 des polynomes trigonometriques pour tout d € R. Soit E 'espace des
fonctions continues par morceaux et 27-periodiques de R dans C. On definit le produit de convolution de deux fonctions f,g € E

par: fxg: gpl—>ff7r f(0)g(e —0) —ffﬂ|f(9)\2d9.
« Montrrer qu’il existe d € R et ¢ = ¢(d) € R tels que, pour tous f, g € T,

1f * gll2 < e(d) | fllnellgll2-
« Determiner tous les reels d verifiant la condition de la question precedente.

- Soit f de classe C* et 2m-periodique. On pose, pour k € Z, c(f) = = ffﬂ f(@e
S pez len(f)12(1 + |k|)?%. Determiner les d € R tels que || f[|;,« < +oc.
« Soient f, g de classe C* et 2m-periodiques et d € R. Calculer || f x g||,a-

Exercice 114 [ENS 124] Soient p > 2 et ¢ > 2 deux entiers tels que p A ¢ = 1. Pour tout z € C tel que |z| < 1, on pose
flz) = % Ecrire f(z) sous la forme Z::a cp 2™ et trouver le plus grand n > 0 tel que ¢, = 0.

Exercice 115 [ 125] Soient R € R™* f et g deux fonctions développables en série entiére sur | — R, R telles que Vo €] —
R,R[, [ f(t)g(z —t)dt = 0. Montrer que I'une au moins des deux fonctions f et g est identiquement nulle sur | — R, R|.

Démonstration. ]

Exercice 116 [ENS 126] Soient f : 2z — 3.7 2 et g: 2+ 3720 22"
« Determiner les rayons de convergence de fetg.
« Trouver les complexes z € S(0, 1) tels que f(z) converge.
« Montrrer que f admet un prolongement f sur C \ {1}, developpable en serie entiere en tout point de C \ {1}.
« Montrrer que |g(r)| — +00 quand 7 — 1 avec r € R. - Montrrer que, si z € B(0, 1), alors g(22) = g(z) —

« Soient n € N et o € Ugn. Montrrer que |g(ra)| — +o0o quand r — 1 avecr € R.
oo 2" H1
n=0 2741 *

« Soith: z — Montrrer que h est continue sur B(0, 1).

« Montrrer que, pour tout zo € S(0,1), e > 0 et h, prolongement de & sur B(0, 1) U B(z0, €), la fonction & n’est pas developpable
en serie entiere en 2.

Exercice 117 [ENS 127] Soita = (a—i > 1 une suite de Z nulle a partir d’un certain rang. Pour n > 1, on pose u,, = [ [;on-((in)!)*".
« Determiner, selon la valeur de o, le rayon de convergence R de la serie entiere Zn>1 Up2™.
Dans la suite, on note f la somme de cette serie entiere. -
« Expliciter fsia = (—d;1)i>1-
« Pour une somme g de serie entiere sur un intervalle | — a, a[ non trivial, on pose A(g) : z — zg’(z). Expliciter P(A)(g) lorsque
g:z+ 2Faveck € Net P € R[X].

« Soit v € CN” une suite complexe, et P € R[X] sans racine dans N* tels que, pour tout n > 1, vp,41 = Montrrer que

Un
P(n+1)"
> n>1Unz" aunrayon de convergence non nul et donner une methode simple pour trouver une equation differentielle lineaire
non triviale a coefficients polynomiaux dont sa somme est solution.

Q(n+1)

« Resoudre le meme probleme qu’en (d) lorsqu’il existe P et @ dans R[X] sans racine dans N* telles que v,, 1 = Pt D)

vy, pour
tout n > 1, et en supposant cette fois-ci que deg(Q) < deg(P).
« Justifier que le cadre de la question - s’applique bien a la suite (u — n > 1 lorsque R > 0.

n! (30n)!

Exercice 118 [ENS 128] Pourn € N, on pose U, = m

« Montrrer que, pour n € N, u,, est un entier.
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+ Determiner le rayon de convergence de la serie entiere »  u,z".

« Trouver une equation differentielle verifiee par la somme de la serie entiere precedente.

Exercice 119 [ 129] Existe-t-il une partie A de N telle que ), . , ’;L—T ~  eVE?

T—+00
Démonstration. Cf un précédent O
Exercice 120 [ENS 130] « Soit f: z :ioo a,2"™ la somme d’une serie entiere de rayon R > 0. Montrrer que, pour tout
0 <r < Retpourtoutn € N, a,r" = 5= 0% f(rei?)e=m9qp.

> Soit f une fonction developpable en serie entiere de rayon de convergence egal a 1. On suppose que f est prolongeable
par continuite sur le disque ferme D(0, 1). Expliquer pourquoi la formule de Cauchy ci-dessus reste vraie pour r = 1. -

1—x
Soit f iz €] —1,1[— \/11776_17@. Montrer que f est developpable en serie entiere au voisinage de 0.
> On admet que le rayon de convergence du developpement de f en 0 vaut 1. Montrer que les coefficients du developpement
en serie entiere en 0 de f sont bornes par M > 0. Experimer M en fonction de f.

Exercice 121 [ENS 131] Calculer |, 0+Oo % dx alaide de la transformation de Laplace.
Exercice 122 [ 132] Soit (a,b) € R x R™ tel que Vx € [0,1],1 + ax + bx? > 0.

1. Sia € RT, montrer que n fol (1 +ax + bx2)n der — +oo.
n—-+oo

2. Sia € R™*, montrer que nfol (1 +ax + bx2)n de — —%.

n—-+oo
Démonstration. O

) — f” dt
0 \/e“ cos?(t)+e—2e sin2(t)

Exercice 123 [ 133] Soit, pour z € R™, f(z Montrer qu’il existe (a,b) € (R*‘)2 tel que Vz €
RT, f(z) < (ax + b)e 2.
Démonstration. O

Exercice 124 [ENS 134] Pour x reel, on pose J(z) = [, cos(zsint) dt.
« Calculer J(0).
« Montrer que J est de classe C*.

« En estimant | Ej; cos(xsint) dt pour un ¢ a choisir convenablement en fonction de z, etablir que J(z) = O(z~'/?) quand
2
T — +00.

Exercice 125 [ENS 135] Soient f et g deux fonctions de classe C*° de R dans R. Onpose f xg : © € Ry — fox f@) gz —t)dt.
Montrer que f x g est derivable et donner une expression de sa derivee.

Exercice 126 [ENS 136] Soit f :]0,1[— R continue. Pour n > 1 et s < t dans ]0, 1], on pose
an(f,s,t) = %f: f(u) cos (%T;(u - s)) du.

« On suppose f strictement convexe. Montrer que a;(f, s,t) > 0 pour tous s < ¢ dans ]0, 1].

« On suppose [ strictement convexe. Montrer que a,(f, s,t) > 0 pour tous s < ¢ dans ]0, 1] et tout n € N*.
« Reciproquement, on suppose f de classe C2 et a1 (f, s,t) > 0 pour tous s < ¢ dans |0, 1[. Montrer que f est strictement convexe.

Exercice 127 [ENS 137] Soit S 'ensemble des solutions de I’equation differentielle sur R : ZZ:O y*) = 0.
A quelle condition sur n tout element de S possede-t-il une limite en +00?

Exercice 128 [ 138] Soit / un (vrai) intervallede R.Sir € N*et f1,..., f. € C""*(I,R),onpose W,. (f1, ..., f») = det <(f(i1)>1<v g )
<ij<r

J
Soient 7 € N*, f1,..., f, € C""Y(I,R).
1. Soit g € C"~1(I,R). Montrer que W, (gf1,...,9fr) = ¢ We (f1,-.., fr).

2. On suppose que, pour tout k € 1,7, Wy, (f1,..., fi) ne s’annule pas. Montrer que, pour tout (aj,...,a,) € R” non nul, la
fonction a; f1 + - - - + a, f, s’annule au plus (r — 1) fois sur I.

3. Onsuppose que W, (f1, ..., fr) estidentiquement nul sur I etque W,_; (f1, ..., fr—1) nes’annule pas. Montrer que (f1, ..., fr)
est liée.

Démonstration. O

Exercice 129 [ENS 139] On considere 'equation differentielle (Dy) : 3" + (A — r)y = O avec A € R, € C>°(I,R), ou I un
intervalle contenant [0, 1]. On considere E) Iespaces des solutions y de (D)) telles que y(0) = 0, y(1) = 0.

« Quelles sont les dimensions possibles de F ?

« Caracteriser le cas dim(E)) = 1. (On souhaite une condition portant sur y,, solution du probleme de Cauchy (D)), y»(0) = 0,

ya(0) = 1)

« Montrer que, a r fixe, les E sont orthogonaux pour le produit scalaire (f, g) = fol fog.

+ On note N, le nombre de zeros de y) sur [0, 1]. Pourquoi est-il fini?

« Calculer Ny dansle casr =0, A > 0.
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« Dans le cas general, etudier le comportement de V.
Exercice 130 [ENS 140] Soient I un intervalle non trivial de R, et a, b deux fonctions continues de I dans R. On considere ’equation
differentielle (E) : x + a(t) 2’ + b(t) z = 0.

« Soit z une solution non nulle de (E). Montrer que les zeros de x sont isoles.

« On suppose a de classe C'. Montrer qu’il existe z de classe C2 de I dans R, et ¢ : I — R continue telles que = + [t +— z(t) *(*)]
definisse une bijection de 'ensemble des solutions de (E) sur celui des solutions de y + ¢(t) y = 0.

« Soient ¢y, g2 deux fonctions continues de I dans R telles que ¢; < go. On considere I'equation differentielle (E;) : y” +¢;(t)y=0
pouri € {1,2}. Soient y, y2 des solutions respectives de (E1 ) et (E2) sur I. Soient o < [ deux zeros consecutifs de y;. Montrer
que yo s’annule dans [a, O]

« Soient g : I — R continue, et m, M deux reels strictement positifs tels que m < g < M. Soient a < 3 deux zeros consecutifs
d’une solution non nulle de y  + ¢(¢)y = 0. Montrer que 7= = < B8 — \/ﬂm.# 141

Soient A une application continue de Rt dans M,,(R), M I'unique apphcatlon derivable de R™ dans M., (R) telle que M (0) = I,, et
vVt € RY, M'(t) = A(t)M(t). Montrer que V¢ € RT, det(M(t)) = exp (fg Tr A).

Exercice 131 [ENS 142] Soit p : R — R une fonction continue, non identiquement nulle, 7-periodique et telle que fo t)dt >0
et fo |p(t)|dt < Z. Montrer que I'equation u’ + pu = 0 n’admet pas de solution u non nulle sur R telle qu’il existe A € R* tel que
Vit €R, u(t+7r) Au(t).

Exercice 132 [ENS 143] Soit 4y € M,,(R) telle que Sp(A4y + Al) C R™.

On admet I'existence d’une unique fonction 4 : Rt — M,,(R) telle que A(0) = Ag et V¢ > 0, A'(t) = (A(t))* — (A(t)T)Q. Montrer
que la fonction A a une limite en 400 et expliciter cette limite.

Exercxce 133 [ENS 144] Soit A € M3(R). Decrire le comportement asymptotique en +oco des solutions de 'equation differentielle
X'(t) = AX(2).
Exercice 134 [ENS 145] On considere I'equation differentielle (1) : X'(¢) = P(t)X (t) ou P est une application continue et perio-
dique de R dans M,,(C).
« Resoudre (1) si $V teR,\ P(t)=( ) .$Onrevientaucasgeneral.SoitT € RT* une periode de P. On note X1, ..., X, une base
de Tespace des solutions de (1) et, sit € R, M(t) = (X1(t),...,X,(t)). Montrer qu’il existe C' € GL,(C) telle que V¢ €
R, M(t+T) = M(t)C.
« Avec les notations de la question precedente, montrer qu’il existe A € GL,,(C) tel que I'application t € R — M (t)e~
T'-periodique.

Exercice 135 [ENS 146] « Soit f : (z,y) — (ln (w2 +y ) arctan( )) Donner le domaine de definition 2 de f. Etudier la
continuite et la differentiabilite de f.

tA goit

> On identifie naturellement R? a C. Montrer que, si (z,y) € , df(,,,) est C-lineaire,
Exercice 136 [ENS 147] Calculer sup,, ;, .~ (1- %) +(1- —) +(1- f—)a.

Exercice 137 [ENS 148] Trouver sup, j .>1 (1- l)b (1- —) (1- 4 )

Exercice 138 [ENS 149] [Rennes sur dossier] Soient ¢ € RT, D = {(z,y) € R*;2 > 0,y > 0, x + y = 1}, Determiner
ming, ,)ep(r? +y9).
Exercice 139 [ENS 150] Soient A € S;'"(R) et b € R™.
Determiner les extrema de z € R — 3 (Az, z) — (b, z).
Exercice 140 [ 151] Soient f une application différentiable convexe de R dans R, L € R™*.
1. Montrer que ¥(x,y) € R" x R",(Vf(y) — Vf(x),y —z) > 0.
2. On suppose que application V f est L-lipschitzienne.
Montrer que ¥(z,y) € R* x R",(Vf(y) = Vf(z),y —2) > 2|V f(z) = Vf(y)|*
Exercice 141 [ENS 152] Soit p > 1. Montrer qu’il existe K, € R tel que, pour tous x, y € R tels que |z]? + |y’ = 2, on a
(& —y) < Kp(d = (x+y)).
Exercice 142 [ENS 153] Soient f une application de classe C' de R™ dans R™, x € R" telle que df, soit injective. Montrer qu’il
existe un voisinage de x dans R" sur lequel f est injective.

Exercice 143 [ENS 154] On identifie R? a C. Soit f une fonction de R? dans R, de classe C? et telle que Af = 0. Montrer que
s ,
0) = o [T f(e™)dt.
Exercice 144 [ 155] On munit R™ de la nome euclidienne canonique et on note B unité fermée de cet espace. Soient f une application

de R™ dans R™ de classe C* et telle que, pour tout (u,v) € B2, ||—f(0) + v — df,(v)|| < 5. Montrer que f s’annule exactement une
fois sur B.

Démonstration. O
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1) Géométrie
Exercice 145 [ENS 156] « Montrer que, pour tout n € N, il existe un unique 7;, € Z[X] tel que
V0 € R, T,,(2 cos(f)) = 2 cos(nb).
« Sin € N*, quel est le terme de plus haut degre de 7T;, 7 En deduire les r € Q tels que cos(mr) € Q.
« Determiner les triangles du plan euclidien dont les cotes ont des longueurs rationnelles et les angles sont des multiples rationnels

de 7.

Exercice 146 [ 157] Soit G un groupe d’isométries affines de R? tel que, pour tout point z, il existe g € G tel que g(x) # . Montrer
que G contient une translation autre que I'identité de R?.

Démonstration. Faux pour G = Oa. O

Exercice 147 [ 158] Soit S le groupe (pour la composition) des applications de C dans C de la forme z +— az+baveca € Uetb € C.
Soit G un sous-groupe de S vérifiant les conditions suivantes :

« sig € G, g(0) est nul ou de module supérieur ou égal a 1;

« Tensemble des b € C tels que z — z + b appartienne a G contient deux éléments R linéairement indépendants.

Montrer que 'ensemble {a € U |3b € C, z — az + b € G} est fini.

émonstration. Sinon, il existe une suite (a,,) qui s’accumule. On peut supposer qu’elle s’accumule sur 1, puis on peut borner les (b,,),
D trat S 1 t te (a le. O t 11 1 1 tb les (b

puis extraire une suite convergence, donc elle est constante & partir d’'un certain rang. Donc on a une infinité de z — a2, ce qui est
impossible. O

Exercice 148 [ENS 159] Soit L la courbe du plan complexe d’equation |z|?> = cos(2 arg(z)).

« Trouver une equation cartesienne reelle definissant L.
« En deduire une parametrisation de L N (R*)? sous la forme {(x(r), y(r)), r € [0, 1]}. - Montrrer que la longueur de la courbe
L entre le point (0, 0) et le point (z(r), y(r)) s’ecrit : A(r) = [, ﬁdt.

« Montrre que A definit une bijection de [—1, 1] dans un intervalle de la forme [—w, w] ou w > 0.

« On definit B = A~!. Montrer que B verifie une equation differentielle du second ordre.

Exercice 149 [ENS 160] Soit (e1, e2) une famille libre de vecteurs de R?. On pose L =1 +5 et on note Vol(L) = |det(ey, e2)|.
« Soit A un disque ferme de R?, d’aire strictement superieure a Vol(L). Montrer qu’il existe deux elements distincts = et i de A
telsque x —y € L.
« Soit £ > 0. Montrer qu’il existe dans L \ {0} un element ¢ tel que ||| < 2% V/Vol(L).
« Soit p un nombre premier congru a 1 modulo 4.
- Montrrer qu’il existe w € Z tel que p divise 1 + w?.
- Montrrer qu’il existe (a, b) € Z? tel que p = a® + b*.
Exercice 150 [ENS 161] « Onnote D le disque unite du plan euclidien R?. Demontrer qu’il existe une suite (C'—i € N de parties
de D telle que :
> pour tout ¢ € N, ensemble C; soit un carre de R2 dont les cotes sont paralleles aux axes;
les C; soient d’interieurs disjoints;
> ien Aire(C;) = .
On note C' = [—1, 1]2. Demontrer qu’il existe une suite (D — i € N de parties de C telle que :
pour tout ¢ € N, 'ensemble D; soit un disque ferme de R2;
les D; soient d’interieurs disjoints;
> ien Aire(D;) = 4.
2) Probabilités

v v VvV Vv VvV V

Exercice 151 [ENS 162] On note A 'ensemble des parties de A de N telles que lim,, 4 oo M

tribu?

existe. Est-ce que A est une

Exercice 152 [ENS 163] On pose, pour toute permutation o € S,,, d(0) = >, _, |o(k) — k| et on note, pour p € N, ¢,,, = |[{0 €
Sy, d(o) = p}|. Montrer que, si p > 2n, alors gy, ;, est pair.

Exercice 153 [ENS 164] Un derangement est une permutation o € S,, sans point fixe. On note D,, le sous-ensemble de S,, forme
des derangements.

« Soit X une variable aleatoire suivant la loi uniforme sur D,,. Calculer la probabilite que X soit une permutation paire.

Indications.

+ On donne la formule d’inversion de Pascal : si (a,,) et (b, ) sont deux suites telles queVn € N, a, = 3 _;_ (})by, alors Vn € N,
bn = Xgmo(=D)"F (R ar.
« On pourra calculer la difference du nombre d’elements pairs et impairs de D,,.

> Soit Y une variable aleatoire suivant la loi uniforme sur S,,. Calculer la probabilite de (Y € D,,) sachant que Y est paire.

14



Exercice 154 [ 165] Soient m > 1 etr > 1 deux entiers. On munit 'ensemble des morphismes de groupes de (Z/mZ)" dans Z/mZ
de la loi uniforme. Donner une expression simple de la probabilité de I’événement «le morphisme ¢ est surjectif».

Démonstration. Le faire pour m = p, puis lemme Chinois. O

Exercice 155 [ENS 166] Deux joueurs A et B lancent une piecee truquee donnant pile avec une probabilite egale a 5/9. Les regles
de gain sont les suivantes : pile rapporte 5 euros et face 4 euros. Pour n € N*, chacun des joueurs effectue 9n lancers independants;
on note A,, (resp. By,) la variable aleatoire donnant le gain du joueur A (resp. B)*

Trouver un equivalent, lorsque n tend vers +oo, de $P (An = By) $MontrerqueP (A, > B,) > L. Vers quoitend P (A, < B,,)?

Exercice 156 [ENS 167] On joue a pile ou face avec une piecee pipee : la probabilite de tomber sur pile est p < 1/2. On effectue
plusieurs lancers a la suite. Le score est le nombre de fois ou l'on est tombe sur pile. On gagne le jeu si, au bout de 2n lancers, le score
est superieur a n + 1. Trouver n qui maximise la probabilite de gagner le jeu au bout de 2n lancers.*

Exercice 157 [ 168] Soit X une variable aléatoire & valeurs dans N telle que E(X) = 1, E (XQ) =2etE (X‘S) = 5. Quelle est la
valeur minimale de P(X = 0)?

. Démonstration. !!
Ona E(X)E(X?) > E(X?)2 En fait, mieux, E(X)E(X?) > (
Ona (> piz?)(Xpi) > (O pix;)?, donc 2> p; > 1,donc > p; > % 1pg < % O
Exercice 158 [ENS 169] Soient n € N un entier impair > 3, (X —m > 0 une suite de variables aleatoires a valeurs dans Z/nZ telle
que Xo = 0, etpourm € N,P(X,41 =k + 1| X, = k) = P(X;ns1 = k— 1| X,;, = k) = £. Montrer que (X —m > 1 converge
en loi vers la loi uniforme sur Z/nZ*
Exercice 159 [ENS 170] Pour o € S,, on note I(o) le nombre d’inversions de o c’est-a-dire le nombre de couples (7, j) avec i < j
eto(i) > o(j).

« Montrer que P, =3 X1 = Z;ll(l + X 4+ XF).

« Onpose f(n) = [{o € Sy, (n+ 1) divise I(0)}|. Exprimer f(n) a l’aide de P,.

(p=1)!

« Montrer qu’il existe une infinite de nombres premiers p tels que f(p—1) < et de meme une infinite de nombres premiers

ptelsque f(p—1) > @.

Exercice 160 [ENS 171] Soient p un nombre premier, n € N*, P une variable aleatoire suivant la loi uniforme sur I’ensemble des
polynomes unitaires de degre n de F,[X], N le nombre de racines de P dans F,, (sans tenir compte des multiplicites). Calculer E(N)
et V(NV).
Exercice 161 [ 172] Dans tout exercice, les variables aléatoires considérées sont supposées réelles, discrétes et a loi de support fini.
Pour deux telles variables X et Y, on note X <. Y pour signifier que E(f(X)) < E(f(Y)) pour toute fonction convexe f: R — R.
1. Soient X une variable aléatoire vérifiant les conditions de 'exercice et f: R — R convexe. Montrer que f(E(X)) < E(f(X)).
2. Donner un exemple de couple (X,Y") pour lequel X <. Y mais X # Y.
3. Montrer que si X <. Y alors E(X) =E(Y) et V(X) < V(Y).
4. Montrer que X <. Y siet seulement si E(X) = E(Y) et

—+o0 —+o0
Va € R,/ P(sz)da:gf P > x)dz.

Démonstration. O

Exercice 162 [ 173] On fixe N € N*. On choisit de facon équiprobable u; € 1, N, puis us € 1,u; — 1, et ainsi de suite jusqu’a
arriver a uy = 1 avec nécessairement / < N. On note By = {uj, 1<j5<14}.

1. Calculer P (k € En)pour1 <k < N.

2. Calculer P (2 € Ex | 3 ¢ EN).

3. Calculer E (|En|) et V (|En]).

Démonstration. 1. P(k € Ey4q1) = 3, puis P(k € E,) = -~ + L (P(k € Ex_1) 4+ --- + P(k € Ej41)). On trouve

n—1 n—1
P(k e Ey) = %
2.0naP(2€ Ey|3€ Ey) = 3.
3. Semble facile. O

Exercice 163 [ENS 174] Dans tout ’enonce, on fixe un entier p > 1.

« Developpper (1 + - - - + )P pour toute liste (z1, ..., zy) de nombres reels.

« Soient X1,..., X, des variables aleatoires ii.d. suivant la loi uniforme sur {—1,1}. Soit (a1, ...,a,) € R". On pose X =
> a; X;. Montrer que E(X??) < (2p)P(E(X?))P.
« Montrer que E(X?P) < p?(E(X?))P.

« Soit (a — k > 1 une suite reelle telle que 3, °5 a? = 1. Soient # € Ret Y = _1_, ay, cos(kx) X;.

2 . e
Montrer que w — fo " Y, (w)?P dx prend au moins une valeur inferieure ou egal a 27pP.
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Exercice 164 [ENS 175] suivant la loi uniforme sur {1, —1}. Soient X}, ..., X,, des variables aleatoires i.i.d. suivant la loi de
Rademacher, et aq, ..., a,, des reels. On pose Y = ZZ:1 apXy.

« Montrer que E(]Y|)? < E(Y?).
« Montrer que E(Y?) = >"}_, a}.
« Montrer que si >, _, ai = 1 alors E(Y?) < e E(|Y])2.
« Montrer que E(Y?) < ¢ E(|Y])? en toute generalite.
Exercice 165 [ENS 176] Une variable aleatoire discrete reelle X est dite decomposable s’il existe deux variables aleatoires discretes

reelles non presque surement constantes et independantes X7 et X telles que X ~ X7 + Xs. - Une variable aleatoire de Bernoulli
est-elle decomposable ? Une variable aleatoire binomiale est-elle decomposable ?

« Montrer que le polynome 7% + 2T + 1 ne peut se factoriser comme produit de deux polynomes de degre 2 a coefficients dans
R*. En deduire une variable aleatoire reelle discrete decomposable X telle que X2 ne soit pas decomposable.

« Soient n € N* et X une variable aleatoire suivant la loi uniforme que [0, n — 1]. Donner une condition necessaire et suffisante
sur n pour que X soit decomposable.

Exercice 166 [ENS 177] Soit p € |0,1/2[. Soit (X — k > 1 une suite de variables de Bernoulli ii.d. de parametre p. On pose $
Sn=> k-1"*k$ pour n € N*. Determiner la plus grande valeur prise par la suite (P(S2, > n))n>1.

Exercice 167 [ENS 178] On fixe n € N* et on pose $ X=[\ ![1,n]\!]$. Soient A et B des variables aleatoires independantes unifor-
mement distribuees sur I'ensemble P(X) des parties de X.

« Determiner la loi, I’esperance et la variance de la variable aleatoire |A| (cardinal de A).

- Montrer que, pour toute > 0, P (JA| > (3 +&)n) — 0.

n—-+oo
« Pour i € [1,n], on note 1y, la fonction indicatrice du singleton {7}. Determiner la loi de 1;,(A).

« Calculer P(A C B). Commenter.
Exercice 168 [ENS 179] Soient n € N* et p € [0, 1]. On considere un echiquier n X n. On calorie chaque case en rouge (resp. en

bleu) avec probabilite p (resp. 1 — p). On note Q(p) la probabilite pour qu’il existe un chemin joignant le bord gauche au bord droit
constite uniquement de cases rouges (il est entendu que les deplacements ne se font pas en diagonale). Que dire de la fonction @ ?

Exercice 169 [ENS 180] Soit (X —n > 1 une suite de variables aleatoires independantes de loi de Rademacher. On pose $ S, =X; +- - - +X,,$
pourn > 1.

« Calculer I’esperance du nombre R de retour en zero de la suite (S —n > 1.

« Soit I un intervalle de R distinct de R. Montrer que la probabilite qu’il existe n > 1 tel que S,, ¢ I est egale a 1.

« Montrer que 'evenement (R = +00) est presque sdr.
Exercice 170 [ENS 181] Soient (£2, .4, P) un espace probabilise et (m—k € N une suite de reels positifs de somme 1. On considere un
arbre aleatoire sur cet espace tel que chaque noeud ait un nombre aleatoire X de successive avec, pour tout k € N, P(X = k) = my,.

Ces variables aleatoires correspondant au nombre de succcesseurs sont mutuellement independantes. On note X la variable aleatoire
comptant le nombre de succcesseurs de la racine. Caracteriser le fait que la longueur de ’arbre soit presque surement finie.

Exercice 171 [ENS 182] On construit iterativement et aleatoirement un arbre aleatoire sur I’ensemble de sommets [1, n] (graphe
oriente) selon le procede suivant : a letape k, on choisit aleatoirementun point dans 1, k (avec probabilite uniforme) et on rajoute une
arete orientee de ce point vers k + 1. Ces choix s’effectuent de maniere independante les uns des autres.

« On note X, la variable aleatoire donnant le nombre d’aretes partant du point 1. Determiner ’esperance et la variance de X,.

« On supposen > 2. On note S, la variable aleatoire donnant le nombre de descendants (directs ou non) du sommet 2. Determiner
la loi de .S,,.

« Calculer 'esperance du nombre de feuilles de Parbre.
Exercice 172 [ 183] Soient E un ensemble fini, V' : E — P(FE) une fonction de E vers les parties de F et f: E — R une fonction.
Un point a € E est un minimum local si f(a) < f(b) pour tout b € V' (a). Soit M un entier tel que M > \/|E|. Soient b1, ..., bys des
variables aléatoires indépendantes et uniformément distribuées dans E. Soit k tel que f (by) = minj<;<ps f (b;). Soit (uy,),,~, une
suite de E telle que ug = by, et, pour tout n > 0: B

« siu, est un minimum local, alors u,4+1 = Uy ;

o sinon up11 € V (uy) et f (unt1) < f (un).
Montrer que ) est un minimum local avec probabilité au moins 1/2.
Démonstration. La donnée est celle d’'un graphe. Etant donné I’algorithme, on peut retirer des arétes, de sorte que les voisins de a
vérifient f(b) < f(a). Auquel cas il n’y a plus de cycles.

Alors on choisit /n sommets du graphe, puis le minimum. On veut montrer la plus longue chaine décroissante a partir de celui-ci est
de longueur < +/n avec probabilité %

On peut attribuer a chaque sommet sa valeur par f, et on peut supposer que c’est injectif.

Puis on peut ajouter des arétes, vers ceux qui sont < s. Puis on peut retirer les arétes, sauf celle juste en dessous. On est ramené a un
graphen - n—1— ... = 1. O
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Exercice 173 [ENS 184] Une variable aleatoire reelle X est infiniment divisible si X admet un moment d’ordre 2, et si, pour tout
n > 2, il existe (X; )1, 1.i.d. et admettant des moment d’ordre 2 telles que X ~ 2?21 Xi n. Montrer que si X est bornee et
infiniment divisible, alors X est presque surement constante.

Exercice 174 [ENS 185] On se donne une suite (X — ¢ > 1 de variables aleatoires independantes. On suppose que pour tout ¢ > 1,

il existe a; € ]0,2] et p; € [0, 1] tels que X; soit a valeurs dans {0,a;, —a;} et P(X; = a;) = P(X; = —a;) = &

« Quelle relation doivent verifier a; et p; pour que V(X;) = 1? Dans toute la suite, on suppose cette relation verifiee et on pose
Sp=>1" X

« Calculer la variance de n=1/25,,.

« Montrer que E(cos(n1/2tS,,)) = [[/_, E(cos(n~'/2tX;).

« En deduire que E(cos(n~'/%tS,,)) e et’/2,

Exercice 175 [ENS 186] On fixe un entier n > 1. On considere la relation d’ordre partielle < sur R™ definie par z 5 y < Vi €
1,n, z; < y;. Une fonction f: {0,1}" — R est dite croissante lorsque f(z) < f(y) quels que soient x, y dans {0, 1}" tels que z < y.

« Donner un exemple de fonction croissante non constante de {0, 1}" dans R.
« Dans la suite, on se donne une liste (X7, ..., X,,) de variables aleatoires i.i.d. suivant B(1/2). Soit f: {0,1}" — R croissante.
On suppose n > 2.
Montrer que E(f(X1,...,X,)) = %(E(f(Xl,...,Xn_l,O) FE(f(X1,. .., Xn_1, 1))). ~Soit f: {0,1}" > Retg: {0,1}" — R
croissantes.
Montrer que E((f¢)(X1,..., X)) > E(f(X1,..., X)) E(9(X1, ..., X,)).

Exercice 176 [ENS 187] Soitn € N*. On munit S,, de la distribution uniforme de probabilite. On note 4; = {o € Sy, o(i) =i} et
N la variable aleatoire donnant le nombre de points fixes d’une permutation.

« Soit I C 1, n. Calculer P (ﬂ Ai>.
icl
- Exprimer N avec des indicatrices. Calculer E(NV) et V(IV).

« Soient k € 1,n et F C 1,n. Calculer > [T 1r(0).
ICLm, |I|=ki€l

« Soit k € 1,n. Calculer E(N(N —1)--- (N — k + 1)).

o Soient X ~P(1) etk € N. Calculer E(X(X —1)--- (X — k +1)).

« Calculer P(N = 0).
Exercice 177 [ENS 188] On considere une suite i.i.d. (X — n > 1 de variables aleatoires suivant toutes la loi uniforme sur {1, 2}.
On definit (S —n > 0par So =0etVn € N, S,4+1 =5, + Xpnt1-
a) i) Determiner P’esperance et la variance de .S,,.

« Soit e > 0. Montrer que P(|S,, — 3n/2| > en) tend vers 0 quand n tend vers +o0.

« Soit £ > 0. Montrer que P(|S,, — 3n/2| > en?/3) tend vers 0 quand n tend vers -+oo.

« On considere la variable aleatoire T}, : w — min{k € N, S;(w) > n}. Determiner I'ensemble des valeurs prises par T;,.

- Soit k > 2. Montrer que P(T,, = k) = sP(T,_1 =k — 1) + 3P (T2 =k — 1).

« Calculer I'esperance de T;,.
Exercice 178 [ 189] Soient d € N* et n > 3. On pose G = (Z/nZ)% et S = {+e;,1 < i < d}, ol e; désigne I'élément de G dont
toutes les coordonnées sont nulles saufla i-éme, égale a 1. Soient enfin f: G — R une fonction quelconque et X une variable aléatoire
uniformément distribuée sur G.

Montrer que E(|f(X) — E(f(X))]) < %! max,es E(|f(X) = f(X + 5)]).

Démonstration. C’est simple : On peut passer d’'un somme a un autre en au plus %d pas. O

I X XENS

Exercice 179 [X MP 275] On note p(n) le nombre de partitions de n pour n € N*. Monter que p(n) < 2"~ 1.
Exercice 180 [X MP 276] Soiente, > --- > ey > e > O desentiers,n =, _; 2° et X = {s € N; 2% |n!}.
« Montrer que max X =n —r.
« Montrer que le nombre d’entiers k tels que (Z) est impair est 2".
Exercice 181 [X MP 277] *
« Montrer que 'equation a? — 2b? = 1 admet une infinite de solutions (a, b) € N2.
Determiner ’ensemble des solutions.
« Que dire de ensemble des solutions de a? — 2b% = —1?# 278
Si G est un groupe, les elements d’ordre fini forment-il un sous-groupe ?

Exercice 182 [X MP 279] « Trouver deux groupes Gy et G'» non isomorphes de cardinal 2023 = 7.172.
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> Soit p premier. Montrer qu'un groupe de cardinal p? est isomorphe a Z/p?Z ou a (Z/pZ)?.
> Soient GG, H deux groupes finis et ¢ : G — H un morphisme surjectif.
Montrer que |G| = |H| x | Ker|.
« On suppose que G est un groupe de cardinal 2023, que H = Z/7Z et que ¢ : G — H est un morphisme surjectif. Montrer que
G est isomorphe a Z/7Z x Ker .
« Montrer que tout groupe de cardinal 2023 est isomorphe a G ou G.
Exercice 183 [X MP 280] Soit GG un groupe fini de neutre 1. Soit ¢ un automorphisme de GG sans point fixe c’est-a-dire tel que :
Vo € G, p(x) = x = x = 1. On note n l'ordre de ¢; c’est le plus petit entier n € N* tel que ™ = id.
« Montrer que Vx € G, z p(z) p?(z) --- " 1(z) = 1.
« Sin = 2, que peut-on dire du groupe G ? Donner un exemple.
« Sin = 3, montrer que, pour tout x € G, x et ¢(x) commutent.

Exercice 184 [X MP 281] Soient GG un groupe et T I’ensemble des elements de G d’ordre fini.

« En general, T est-il un sous-groupe de G?

+ Soit S une partie finie de G stable par conjugaison munie d’une relation d’ordre totale <. Montrer que, pour tous $1,..., S, € 5,
il existe 8},..., s, € Stelsque s < s+ - < sl etsysg---8, =8)sh- -5l

« Avec la question precedente, montrer que, si 7" est fini, alors 7" est un sous-groupe de G.
Exercice 185 [X MP 282] . Soit s : R* — R*, ¢ ~— t~!. Determiner le groupe engendre par s.
> On definit les applications s : (t,u) € R* x R* — (t7!,tu) € R* x R* et
Montrer que le sous-groupe qu’elles engendrent est isomorphe a Ss.
« Retrouver le resultat de la question precedente en considerant le quotient A de (R*)? par la relation de colinearite, la bijection
f A — (R*)? qui associe a la classe de (1,22, 23) le couple (z1/x2,x2/73), et enfin les permutations de A induites par
(z1,22,23) — (x2,21,x3) et (x1,x9,x3) — (X1, X3, T2).
« Soitn > 3.Determiner le groupe engendre par les bijections (s—1 < 4 < nde (R*)™ definies par s;(t1, ..., tn) = (t1, ..., ti—2,ti—1 X
ity i Xt 1y tigay ey tn) S11 <4 <Ny 81(E1y ey tn) = (Bt XEay gy vy ) €8 Sn(E1y ey tn) = (F1y ooy b2, tne1 Xt ).
a2 tnp

0 e

Ind. Considerer f : (R*)"1 — (R*)" definie par f(t1,...,tn41) = ( ) et chercher des bijections simples s/ de (R*)"*1
telles que s; o f = f o sl.

Exercice 186 [X MP 283] Soit G un groupe fini d’ordre n. On note, pour tout diviseur positif d de n, n4(G) le nombre d’elements
de G d’ordre d.

+ Montrer que n =3, na(G).
« Calculer les nq(G) lorsque G est cyclique.

« Montrer que, si pour tout diviseur positif d de n, [{z € G, ¢ = 1}| < d, alors G est cyclique. - Soient K un corps et G un
sous-groupe fini de K*. Montrer que G est cyclique.

Exercice 187 [X MP 284] On pose Q[i] = {a +ib; a,b € Q}.
« Montrver que Q[i] est un sous-corps de C.
« Determiner les elements de Q[i] \ {0} qui sont d’ordre fini.

Exercice 188 [X MP 285] « Soient K un corps, (a,b) € K2, P = X2 —aX — b. On considere la K-algebre A admettant une base
sur K de la forme (1, z) avec 22 = ax + b. A quelle condition cette algebre est-elle un corps?

> On suppose que K = F,, ou p est un nombre premier. Combien de F,-algebres non isomorphes peut-on obtenir ainsi?

Exercice 189 [X MP 286] Soit p un nombre premier. On suppose que, pour toute F,-algébre A, il existe un endomorphisme u 4 de
A de sorte que, pour tout couple (A, B) de F,-algebres et tout morphisme 7 de F,,-algébres de A dans B, on ait Touy = up o 7. Que
dire des w4 ?

Démonstration. Pour tout isomorphisme 7: A —, u4 commute avec 7. O

Exercice 190 [X MP 287] Soit,pourn € N*, P, =14+ X +---+ xXn-1

Montrer que ZZ=1 (Z) P.=2""1p, (%)

Exercice 191 [X MP 288] « Montrrer que pour tout n € N, il existe un unique polynome S,, € Q[X]telque VN € N, S,,(N) =
,1;:01 k™. Dans la suite, on note b,, le coefficient de S,, devant X.

> Donner une relation de recurrence exprimant b,, en fonction de b, ..., b,_1.
. "
> Pour n > 1, donner une relation entre S,, et S},_;.

> En deduire une expression explicite des coefficients de S,, en fonction de by, . . ., b,.

Exercice 192 [X MP 289] Soitn € N*. Soit ¢ € C tel que 0 < |g| < 1.
Onpose F: 2 € C* — [} (1 +¢*712) (1 + g2k 1271,

« Montrver qu’il existe une unique list (cg, . .., c,) € C**! telle que
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VzeC*, F(z) =Y r_geu(zF+27F).
« Donner une relation de recurrence entre cj, et cx11, et en deduire une expression de c; a I’aide d’un produit. Ind. Exprimer
F(q?z) en fonction de F(z).

Exercice 193 [X MP 290] Soit p un nombre premier. Trouver tous les entiers n € N tels que (X + Y)™ soit congrua X" + Y™
modulo p.

Exercice 194 [X MP 291] Soit f € C[X] tel que f(0) # 0. Soit (k,n) € (N*)2. Montrver qu’il existe P € C[X] tel que X" divise
Pk — f.# 292 Soit p un nombre premier. Pour deux polynomes P, Q dans Z[X, Y], on note P = Q [p] pour signifier que P — @ a tous
ses coefficients (devant les X*Y!) divisibles par p. On adopte une definition similaire pour les polynomes a une indeterminee.

« Exhiber un polynome P € Z[T] tel que P(XY) = P(X)P(Y) [p], PZ T [p] et P Z 0 [p].
« Exhiber un polynome P € Z[T] tel que P(XY) = P(X)P(Y) [p], P(X+Y)=P(X)+ P(Y) [p], PZ T [p] et P Z 0 [p].
« Determiner tous les polynomes P € Z[T] tels que P(XY) = P(X)P(Y) [p]et P(X +Y) = P(X)+ P(Y) [p].
Exercice 195 [X MP 293] Soient a4, ..., «, des complexes deux a deux distincts. Soient nq,...,n, dans N* et Hy,..., H, dans
C[X]. Montrer qu’il existe un H € C[X] tel que (X — a;)™ divise H — H; pour tout ¢ € [1,n].
Exercice 196 [X MP 294] « Soient Ni,..., N, des entiers premiers entre eux deux a deux, et f1,..., f, des entiers. Montrer
qu’il existe un entier F tel que F' = f; [V;] pour tout i € [1,7].
> Soient Ny, ..., N, des elements de C[X] premiers entre eux deux a deux, et f1,..., f, des elements de C[X]. Montrer
qu’il existe F' € C[X] tel que N; divise F' — f; pour tout i € [1,7].
> Soient f, g deux elements de C[X] premiers entre eux, et n € N*. Montrer qu’il existe h € C[X] tel que g divise h™ — f.
Exercice 197 [X MP 295] Soit n € N. Le polynome X" — nX™ + 1 est-il irreductible dans Z[X]?

Exercice 198 [X MP 296] Soit P € Z[X] un polynome unitaire dont les racines complexes ont un module inferieur ou egal a 1.
Montrer que les racines de P sont des racines de I'unite.

Exercice 199 [X MP 297] Soit P € Z[X] possedant n racines distinctes z1, ..., 7,. On ecrit P2 + 1 = Q1 ...Q, ou les Q; sont
dans Z[X]. Onpose R = S"1_, Q;* — .

« Montrer que les x;, sont racines au moins doubles de R.

- En deduire qu'il existe i € {1,...,7} tel que deg(Q;) > 2 | 2 |.
Exercice 200 [X MP 298] On se propose de donner une preuve du theoreme de d’Alembert-Gauss.

« Montrer qu’il suffit de montrer le theoreme pour les polynomes a coefficients reels. Dans la suite, on ecrira le degre d’un
polynome non constant de R[X] sous la forme 2"g, oun € N et ¢ € N est impair. La preuve se fait par recurrence sur n.

« Montrer le theoreme dans le cas oun = 0.

Dans la suite, on suppose le resultat vrai jusqu’au rang n, ou n > 1 est fixe.

« Soit P € R[X] de degre 2"q, ou n > 1. On admet I’existence d’une extension K de C sur laquelle P est scinde, et on note
Z1,...,xq ses racines dans K, distinctes ou non. Ayant fixe ¢ € R, on pose yij(c) =x; +x; +cxyrypour 1 <4 < j<d.

+ Montrer que le polynome Q. = [[,;(X — yi;(c)) est a coefficients reels. - Montrrer que I'un des y;;(c) est element de C.

« Montrer finalement que 'un des z; est element de C.

Exercice 201 [X MP 299] Soient F' € C(X) et g € C*.
« On suppose que g n’est pas une racine de I'unite. Montrer qu’il existe au plus deux fractions rationnelles G € C(X) telles que
F=1+G(qX)G(g'X)F(qg7%X), et que s’il y en a deux alors elles sont opposees I'une de I'autre.
« Montrer que le resultat precedent peut tomber en defaut si I’on ne suppose plus que g n’est pas une racine de l'unite.

Exercice 202 [X MP 300] Soit G un groupe, M I’ensemble des morphismes de groupes de G dans C*. Montrer que M est une partie
libre du C-espace vectoriel C%.

Exercice 203 [X MP 301] Onnote CI'ensemble des matrices de GL2(R) dont les coefficients sont non nuls. Pour M = (m; ;)1<i j<2 €

1
C, on pose J(M) = <m4 4>1<‘j<2
1,7 S0]>

condition sur M € C'la suite (¢™(M)),,, est stationnaire, ou bien periodique a partir d’un certain rang.

.Soit ¢ : C' — C qui a M associe J(M ~!). Montrer que ¢ est bien definie et trouver a quelle

Exercice 204 [X MP 302] Soit R € M,,(Z) non nulle et M = I,, + 3R. Montrer que, pour tout k € N*, MF £ 1,.

Exercice 205 [ 303] Soient E un R-espace vectoriel de dimension finie, p,u € L(E). On suppose que p est un projecteur et que
pu + up = u. Montrer que tr(u) = 0.

Démonstration. On a u(Kerp) C Imp et u(Imp) C Ker p. O
Exercice 206 [X MP 304] Pour (4, B) € M,,(R)? onpose ps 5 : M € M,(R) — AMB.
Soit T' = {@A,B, (A, B) € Mn(R)2}

« L’ensemble T est-il un R-espace vectoriel ?

« Montrer que I’espace vectoriel engendre par T est £ (M,,(R)).

Exercice 207 [X MP 305] Pour une matrice de projecteur P € M,,(K), on pose Rp = det(l,, + (X — 1)P).
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« Calculer Rp en fonction de P.

« Soient P, () des matrices de projecteur dans M, (K) telles que PQ) = QP = 0. Montrer que RpRg = Rp,¢.

« Soit ¢ un automorphisme de la K-algebre M, (K).

« Montrer que ¢(E; ;) est un projecteur de rang 1, pour tout i € 1, n.

+ Que dire du rang de p(E; ;), pour ¢, j dans 1,n?

« Montrer que K" = @ Im ¢(E; 1).
Exercice 208 [X MP 306] Soient E un C-espace vectoriel de dimension finie n > 1 et V un sous-espace vectoriel de L(E). On
suppose qu’il existe une application g : V — C telle que u? = ¢(u) id pour tout u € V.

« Monter que, pour tous u,v € V, il existe B(u,v) € C tel que uv + vu = 2B(u,v) idg.

« Montrer que B est une forme bilineaire. - Soient d > 1 et uq,...,uq € V tels que B(u;,u;) = —d;; pour tous 4,j € 1,n.
Montrer que (u1, ..., uq) est libre.
« Soientd > 2 etuq,...,uq € V tels que B(u;,u;) = —;; pour tous ¢, j € 1,n. Montrer que les u; sont de trace nulle, et que

dim F est paire.

Exercice 209 [X MP 307] Soitn € Navecn > 2. Soit ¢ € L (M,,(C)). On suppose que ¢(I,,) est inversible et que VA, B € M,,(C),
©(AB) = ¢(A) ¢(B). Montrer qu’il existe P € GL,,(C) tel que : VA € M,,(C), p(A) = PAP~L.
Exercice 210 [X MP 308] « Caracteriser les endomorphismes ¢ de C(X) verifiant (%) : VFy, Fy € C(X), p(F1F2) = ¢o(F1) p(F2).
> Determiner les automorphismes de C(X) verifiant ().
Exercice 211 [X MP 309] Soit M = (m; j)1<ij<n € Mn(R) telle que : Vi, j, m; ; > 0 et Z?zl m;; = 1.
« Montrer que 1 est valeur propre de M et que tout valeur propre de M est de module < 1.
+ On note ¢t = min;<;<, M;,;. Montrer que le spectre de M est inclus dans le disque de centre y et de rayon 1 — pu.

« On suppose que > 0 et que 1 est valeur propre de multiplicite 1 dans x ;. Montrer que (M?),>1 converge vers une matrice
de rang 1 dont toutes les lignes sont egales.

« On se donne trois reels strictement positifs p, g, r tels que p + ¢ + » = 1. On considere la matrice B € M,,(R) definie par
biig =7, b1 =qsii>2,b12=p+qbiy1;, =psii <n—1,b,n_1 = p+ g, et tous les autres coefficients sont nuls.
Montrer que 1 est valeur propre simple de B, et expliciter la limite de (B*)j>o.

Exercice 212 [X MP 310] Soient F un K-espace vectoriel de dimension finie, f € L(F) cyclique, F' un sous-espace de E stable par
f- Montrer que 'induit par f sur F' est cyclique.

Exercice 213 [X MP 311] Soient E un C-espace vectoriel de dimension finie, a,b € L(E). On suppose qu’'il existe f € L(C, E) et
v € L(E,C) telles que ab — ba = fu.

« Que peut-on dire de det(ab — ba)?

« Montrer que a et b sont cotrigonalisables.

« A quelle condition sur u € L(F) existe-t-il w € L(F) tel que uw — wv soit de rang 1?

Exercice 214 [X MP 312] Soient E un C-espace vectoriel de dimension finie et f € L(F) tel que, pour tout vecteur x € F,'ensemble
{f™(x), n € N} est fini.

« Montrer que, si f € GL(E), il existe k € N* tel que fF=id.
« On revient au cas general. Montrer I'existence de k € N* et p € N tels que fPt% = fP.

Exercice 215 [X MP 313] Pour o € S,,, on note P, € M,,(C) la matrice de permutation associee a o. Montrer que, si o et o’ sont
dans S,,, o et o’ sont conjuguees dans S,, si et seulement si P, et P,/ sont semblables.

Exercice 216 [ 314] Soient p et g deux projecteurs orthogonaux dans un espace euclidien F.
1. Montrer que p o g o p est diagonalisable.
2. Montrer que F = Imp + Ker ¢ + (Im g N Ker p).
3. Montrer que p o q est diagonalisable.

4. Montrer que le spectre de p o ¢ est inclus dans [0, 1].

Démonstration. ]

Exercice 217 [X MP 315] Soit n € N*. On pose L,, = D"((X? — 1)), ou D designe I'operateur de derivation des polynomes.

D'Vl
« Determiner le degre de L,,. Montrer que fil L, (t) P(t)dt = 0 pour tout P € R,,_1[X]. - Montrer que L,, est scinde a racines
reelles simples x; < --- < x, avec 1 > —1 et x,, < 1. - Montrer qu’il existe des reels a1, ..., a, tels que

VP € Rop_1[X], [, P(t)dt = X, apPlay).
Exercice 218 [ 316] Soit & € R™. On note S* = {x € R3,||z| = 1} ou ||-|| désigne la norme euclidienne canonique. Montrer
I’équivalence entre les propositions suivantes.

c =2,

e Vn>1,V(al,...,an,b1,...,bn,c1,...,¢n) € (52)3n,3p € S? tel que
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n n n
Sllp—aill* =Y "lp=bill* =D llp—cill®
i=1 i=1 i=1
Démonstration. O

Exercice 219 [X MP 317] Existe-t-il A € SO5(Q) telle qu’il n’existe pas B € SO2(Q) verifiant B? = A?

EF — R

Exercice 220 [X MP 318] Soient E un espace vectoriel euclidien, f € S(E), ® :
[ ] P FESER® )2 = (), 0)

5 . Donner une

condition necessaire et suffisante pour que ® admette un extremum.

Exercice 221 [X MP 319] On considere dans My, (R) les matrices J = (IO _OI"> et = (I(,; IO )
n n
« Soit K € My, (R) tel que K2 = —I. Montrer que K”.J € S5,,(R) si et seulement si J = KT JK.

« On note C I'ensemble des K € My, (R) telles que K2 = —T et KT'J € S;7*(R). Soit K € C. Montrer que K + J est inversible
et que (K + J) (K — J) est symetrique.
« Soit K € C.Onpose S = (K + J)~1(K — J). Montrer que S.J + JS = 0.
Exercice 222 [X MP 320] Montrer que V(A, B) € S,/ (R)?, det(A + B) > max(det(4), det(B)).
Exercice 223 [X MP 321] Soient A, B € S,,(R).
« Montrer que tr (eAeB) > 0.
» Montrer que tr (eAJrB) <tr (eAeB).
Exercice 224 [ 322] Soit ty,...,t, des réels.

1. Montrer que la matrice A = (t;t;) est dans S;F (R).

1<i,j<n

2. On suppose 0 < t; < --- < . Montrer que la matrice B = (min (#;,;)), ; ;<,, est dans SH(R).
3. Onsuppose 0 < ¢y <--- <t, < 1. Montrerque M = B — A € §;(R).
Démonstration. 1. XTAX = (3 tix;)?
2. [ (Exilti)Q
3. 1l s’agit de montrer que fol (> xilti)Q > (3 tiw;)?% cest-a-dire [ h? > (fh)2, car 'intégrale est sur [0, 1]. O

Exercice 225 [X MP 323] On munit R" de son produit scalaire standard et on note || A[| = supx¢ g, (0,1) [AX|| pour A € M, (R).
« Montrver que [||| definit une norme sur M., (R).
* Montrver que [[|A]| = sup(x,y)e B, (0,1)2 [ (AX, V) .
1)
i+ j+1/0<ij<n _
interpretation de (AX,Y) a I'aide d’une integrale faisant intervenir P : t € [0,27] — >, _ e et Q : t € [0,27] —
ZZ:O ykezkt.
« En deduire que |||A] < 27.

 Montrver que I'on a meme || A|| < 7.

« On prend A = ( dans M,,.1(R). Pour X = (zg---2,)T et Y = (yo---yn)? dans R"*1, donner une

1) Analyse
Exercice 226 [X MP 324] Trouver f: R? — R continue sur R? \ {(0,0)}, discontinue en (0,0), dont la restriction a toute droite

passant par (0, 0) est continue.
Exercice 227 [ 325] Soit K C R? un convexe fermé non vide.
1. On suppose K borné. Montrer que K s’écrit comme intersection de carrés fermés.

2. On suppose K non borné et K # R?. Donner des exemples de tels convexes. Montrer que si K contient deux droites, celles-ci
sont paralléles.

3. On suppose toujours K non borné. Montrer que K contient une demi-droite.
Démonstration. 1. Siz ¢ K, on peut trouver une droite séparant = de K, donc un carré contenant K et non .
2. Si K contient deux droites non paralléles, K = R?. La partie au dessus du graphe de  + e”.

3. Fixer y € K, et une suite (z,,) € K qui tend vers oo, et prendre une valeur d’adhérence des segments [y, z,,]. O

Exercice 228 [X MP 326] Determiner les endomorphismes continus du groupe C*.

Exercice 229 [X MP 327] Soit d € N*. On munit R? de la structure euclidienne canonique. On definit une norme sur M,(R) en
posant, pour M € My(R), [[M| = sup {||Mz| ; z € R, |z| =1}.

« Soient A, B € My4(R). Montrver que ||AB|| < ||A]| x ||B]-
« Soit (w — n > 0 une suite reelle. On suppose que la serie de terme general |u,, — 1| converge.

Montrer que la suite de terme general [];'_ uj, converge.

Soit (M — n > 0 une suite de matrices de M4(R). On suppose que la serie de terme general | M,, — I|| converge. On pose, pour

neN,B,=Myx M, x---xM,.
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« Montrver que la suite (B —n > 0 converge.
+ Soit o une permutation de N. Que peut-on dire de la suite de terme general M,y X -+ X My(y)?

+ Soit £ = {H?:OB M, iy, 0 € S(N)}. Existe-t-il une suite de matrices pour laquelle E n’est pas ferme ?
« Soit k € N*. Existe-il (M —n > 0 € (My4(R))N telle que E possede exactement k composantes connexes ?
Exercice 230 [X MP 328] On definit la longueur d’un intervalle borne I de bornes a et b par £(I) = |b — al. - Soient N € N*,
I, ..., I des intervalles bornes de R tels que [0, 1] C Uf\il I;. Que peut-on dire de Zf\il oI;)?
« Soit 4 : [0,1] — R™*. Montrer qu’il existe p € N*,0 < 7y < 29 < --- < x, = 1, t1,...,t, € R tels que, pour tout k € 1, p,
g1 <ty <zgetxy —zg_1 < I(ty).
« Soit (I —n > 1 une suite d’intervalles bornes de R telle que [0, 1] C U:ﬁ I,,. Que peut-on dire de 32> 4(1,,)?

n=1
Exercice 231 [X MP 329] Dans R?, on note D le disque unite ferme pour la norme infinie, C la sphere unite pour la norme infinie.
On cherche a montrer qu’il n’existe pas de fonction continue r : D — C telle que la restriction de r a C' soit I'identite.

« On considere une fonction f: R* — R, antisymmetric (i.e. f(x,y) = —f(y,z)), et A = (a; ;)i j<n une matrice reelle telle que :
Vi,jel,n—1,

flaig,aivij) + flaivij, @iva 1) + f@iv1j41, @ig1) + f(aij+1,ai5) = 0.
Montrer que :

Yty fain,air1n) + 0 Fan s an 1) + Yimg F(@igim @in) + 300 flarji1,a15) =0

1 1 o -0 1
1 3

« Soit M' € M, 2(R) une matrice de la forme | : M D | ou M € M,(R)
1 3
)

est a coefficients dans {1, 2, 3}. Montrer qu’au moins un des petits carres de M comporte trois valeurs differentes.
- Montrer qu'on dispose d’un 7 > 0 tel que, pour tous z, y € D verifiant ||z — y||oc <7, 0na [[r(z) — r(y)|| < 5.
« Soit alors n € N tel que % < n.Pour tous i, j € 1,n, on pose

i—1 i—1
vig = (1-2501 - 25)).
Montrer que, pour tous 4, j € 1,1 — 1, v; j, Vi1, Vi+1,j+1, Vi,j+1 sont contenus dans une boule de rayon 1/10.

« En utilisant une fonction bien choisie de C dans {1, 2, 3}, aboutir a une contradiction et conclure.
« Utiliser ce resultat pour montrer que toute fonction continue de D dans D admet un point fixe.

Exercice 232 [ 330] On dit qu'une famille (D;), g+ de disques fermés de R? vérifie (P) si

« pour tous s,t € R distincts, D, et D; ont des centres distincts,
. pour tous s,t € RT tels que s < t, D, C D;.

1. Existe-t-il une telle famille ?

2. Soit A: RT — R? une fonction C" et injective. Existe-t-il une famille (D;), g+ vérifiant (P) telle que, pour tout t € R, A(t)
soit le centre de D; ?

3. Le résultat subsiste-t-il si A est seulement supposée continue ?

Démonstration. 1. Cercles de centre (z,0), de rayon .
2. Prendre D, de rayon la longueur de la courbe de A(0) a A(%).

3. Prendre une fonction non réglée. O

Exercice 233 [X MP 331] Dans tout I'enonce, K designe R ou C. On se donne une K-algebre A de dimension finie, et on identifie K
a une sous-algebre de A via A — A.14. On suppose donnee sur A une norme multiplicative ||
V(a,b) € A%, |lab|| = ||a| ||b]- Jusqu’a la question - incluse, on suppose K = C.

, autrement dit une norme verifiant

« Soit z € A. Montrer qu’il existe un zg € C tel que Vz € C, ||zp — z|| < ||z — z]|.
« On suppose ||a| = 2 pour @ = z — x. Montrer que [|Ja — %" || > 2 pour tout (n, k) € N* x N.
+ En deduire que || — 1| = 2.
« En deduire que A = C.
« Retrouver le resultat de la question precedente en utilisant des polynomes annulateurs.
Dans la suite, on suppose que K = R.
« Est-ce que A est necessairement egale a R?

« On admet qu’il existe une R-algebre H ayant une base de la forme (1,4, j, k) ou i, j, k anticommutent deux a deux et i> = j2 =
k? = —1.0On considere la symetrie 2 + 7 par rapport a R parallelement a Vectg (i, j, k), et on considere la norme N : g — 1/qq.
Montrer que N est bien definie, est effectivement une norme, et qu’elle est multiplicative.

+ Montrer que A est isomorphe, en tant que R-algebre, a R, C ou H.
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Exercice 234 [ 332] Soient a, b, ¢ des entiers naturels non nuls. Montrer qu’il existe un n € N* tel que vn* + an? +bn +c ¢ N.
Démonstration. Dérivée discrete. O
Exercice 235 [X MP 333] Pour n > 2, on note £, = min {k’ € 1,n, 1_[Z 1 (1 — 7) < %}

« Montrer que ¢, = o(n).

« Donner un equivalent de /,,.

Exercice 236 [ 334] Soient (a,) et (b,), deux suites réelles positives telles que la série de terme général b,, converge, que la série de
terme général na,, diverge et que 30 a,, = 1.

1. Montrer qu’il existe une unique suite (u,) telle que, Vn € N, u, = by, + > uk@n_p.

2. Montrer que (u,,) est bornée.

3. Montrer que, si (u,,) converge, alors sa limite est 0.
Démonstration. Cf une année précédente. O
2
Exercice 237 [X MP 335] On considere la suite reelle definie par xp = 2 et 2,41 = 25, + Z—g pour tout n > 1. Montrer qu’il

existe un reel C' > 1 tel que x,, ~ C?"n? quand n — +o0.# 336 Soit (a — n > 0 la suite reelle definie par ag = 1,a; = 2 et
vn € N*,apt1 = 2ay, + a;;gl . Donner un equivalent de a,.

Exercice 238 [X MP 337] Soit (¢ —n > 0 definie par ag = 7/2 et Vn € N, a,,11 = sin(a,). Nature de la serie de terme general
$an$2?

Exercice 239 [X MP 338] Soit ) | u,, une serie convergente de reels positifs. Existe-t-il une suite (v —n > 0 de reels positifs tendant
vers +oo telle que la serie Y u,v, converge?

Exercice 240 [X MP 339] Soit (z,) une suite reelle. On suppose que (z,y,) est sommable pour toute suite reelle (y,,) de carre
sommable. Montrer que (x,,) est de carre sommable.

Exercice 241 [X MP 340] Soit ¢ une permutation de N*.

Exercice 242 [X MP 341] Etudier la convergence de la serie de terme general qm(lTnn)

Exercice 243 [X MP 342] Onpose u, = —2yn+ > ,_; ﬁ pour tout n > 1.
« Montrer que u converge vers une limite /.

« Montrer que £ = —(v/2 + 1) Z:oi =1 Hl.

« Montrer que u, = ¢+ 2—1/2 + O(W)

—+o0 I
n=1 f(f—i-\/n 1)2°
« Etudier les variations de u.

« Montrer que ¢ = —

+ Determiner un developpement asymptotique semblable a celui de la question - pour la suite de terme general v, = >/, + —
Inn.

+ Soit o €]0, 1[. Donner un developpement asymptotique a trois termes pour wy, = > ,_; 7.

Exercice 244 [ 343] Soit f € C°(RT,R™), strictement croissante et bijective. Montrer que les séries > f( ety f ™ sont de
méme nature.

Démonstration. La série ) ﬁ a la méme nature que [ % On peut raccorder f de maniére C', puis on pose u = f(t) :

+001 +oo 1
/0 oY= / W 1))

puis IPP. O

Exercice 245 [X MP 344] « Soit m € N*. Montrer que ::Zj (WT‘/?” <.
Ind. : Dans R?, considérer les points =, = (\/m, /1) et I'intersection r,, du cercle C'(0, /m) avec le segment [0, z,,].
« Soient (a,)n>1 €t (bn)n>1 deux suites de carre sommable et a termes positifs. On note A = E:wl aetB = ::001 b2.
quezmn (N*)2 WTL”Jr:L < m/AB.

Exercice 246 [X MP 345] « Trouver les fonctions f: R — R monotones telles que V(z,y) € R?, f(zy) = f(x) f(y).

m+y) f(@)+f(y)
F@)—fw)"

Exercice 247 [ 346] Que dire d’une fonction f: R — R continue, 1-périodique et v/2-périodique ?

Montrer

« Trouver les fonctions f: R — R monotones telles que Vz # y € R, f (

Démonstration. Easy. O

Exercice 248 [X MP 347] Trouver les fonctions f: R — R de classe C! telles que |f/| + |f + 1| < 1.

23



Exercice 249 [X MP 348] Pour z > 1, on note ©(x) = 3 In(p). Montrer que O(z) = O(x).

PEP, p<z T—+to0

Exercice 250 [X MP 349] Soit F' un ferme de R. Montrer qu’il existe une fonction f de classe C°° de R dans R telle que F' = f~1({0}).

Exercice 251 [X MP 350] Soit (x —n > 0 une suite de points de [0, 1]%. Donner une condition necessaire et suffisante pour que, pour
toute permutation o de N, il existe une fonction continue f : [0,1] — [0, 1]? et une suite strictement croissante (¢ —n > 0 d’elements
de [0, 1] telle que f(t,) = 24y, pour tout n > 0.

Exercice 252 [X MP 351] Calculer fol lnl(i:;t) dt.

Exercice 253 [X MP 352] Pour n € N*, on note L,, la derivee n-ieme de (X2 — 1),
« Soit n € N*. Montrer que : VP € R,,_1[X], f_ll PL, =0.
+ Montrer que L,, possede n racines distinctes 1 < 23 < --- < x,, dans | — 1,1].
« Montrer qu’il existe g, . . ., &, € Rtels que : VP € Roy,—1[X], f_ll P =" a;P(z).

Exercice 254 [X MP 353] Pour n € N, on pose $ I,=> 1" (-1)* {n}{k}*$.
« On suppose n impair. Montrer que I,, = 0.
+ On suppose n multiple de 4. Montrer que I,, > 0.
« Montrer, pour tout n € N, Pegalite

$ Ln=(-1)4*™ {2} [ 42" [0*™ sin®(x)\,sin®(y)\,sin? (x+y)\,dx\,dy$.
Exercice 255 [X MP 354] « Soient n € N* et f : [0,27] — R continue. Montrer queH,, : (ag,- .., an,b1,...,b,) € R¥"H 1

fo% (ao + > p_, (ak cos(kt) + by sin(kt)) — f(t))2 dt admet un minimum, atteint en un unique point, et donner une expression

simple de ce point en fonction de f.

> Determiner la limite de min H,, quand n tend vers +o0.

Exercice 256 [X MP 355] Justifier I'existence et calculer fol Qfﬁ.
t

+2

22
Exercice 257 [ 356] Soit f: x € R~ e'T f;oo e = dt.

1. Montrer que f(x) < - pour tout z > 0.

2. Montrer que f(z) > 7W pour tout x > 0.

3. Donner un développement limité & quatre termes de f(z) quand x — +o0.

Démonstration. ]

Exercice 258 [ 357] Soient u, v € R. Pour r € R™ \ {[u|, [v|}, calculer I,.(u, v) = [" do

0 (u—rei?)(v—rei?)"

Démonstration. O

Exercice 259 [X MP 358] Soit f: R — R* integrable, de classe C', telle que fj:oo f(t)dt = 1. On suppose que f’ s’annule en un
unique M € R.

« Donner le tableau de variations de f. Montrer qu’il existe un unique m € R tel que |’ :’;O ftdt = %

« Montrer que, pour tout £ €]0, f(M)] il existe un unique couple (z1,z2) € R%tel que 1 < M < ma et f(x1) = f(x2) = L.
- Supposons que, pour tout £ €]0, f(M)][, f'(z1) + f'(z2) > 0. Montrer que m > M.
Exercice 260 [X MP 359] - Soient a et b deux suites reelles telles que b — a converge vers 0. Soit (f — m € N une suite de

fonctions de R dans R. On suppose que, pour tout m > 0, il existe un entier IV,,, tel que Vn > N, a, < fr, < by,. Montrer
que (f) converge uniformement vers une fonction constante.

> On note H ’ensemble des fonctions continues f: R — R strictement croissantes et telles que f(z + 1) = f(x) + 1 pour
tout z € R. Montrer que H forme un groupe pour la composition des fonctions.
> Soit f € H. Montrer que sup{f(z) — z, z € R} <1+ inf{f(z) — z, = € R}.
Exercice 261 [X MP 360] On note F' I'ensemble des fonctions de [0, 1] dans [0, 1], C' ’ensemble des fonctions continues de F. On
note aussi I = {f € F'; Va € [0,1], {z € [0,1], f(z) < a} estferme} et S ={f € F; Va € [0,1], {z € [0,1], f(x) > a} est
ferme}.
Pour f € Fetn € N, soit L, (f) : € [0,1] = inf 0,17 (f(y) + nlz —y|) € [0,1].
« Montrer que C = I N S. - Montrrer que, si f € F, L, (f) est une suite croissante d’applications continues.
« Soit f € F. Montrrer que f € T si et seulement s’il existe une suite (f —n > 0 de fonctions de C' telle que pour tout x € [0, 1],

f(@) = sup,en fn(2).
!/
Exercice 262 [X MP 361] Soient a € R™* et f: R* — R™* de classe C" telle que (@)

()

a
~ — quand x — +o0.
x

« Rappeler le theoreme d’integration des relations de comparaison.
« Donner un equivalent de In f(z) quand z — +o0.

+ Determiner le domaine de definition de la fonction v : z — Z:i% (n)e ",
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« Determiner les limites de u aux bornes de son intervalle de definition.

1
« Montrer qu’il existe une constante C' > 0 telle que f(x) ~ gf (> quand  — +00.
x° \z

Exercice 263 [X MP 362] Soit (¢ — n € N une suite reelle telle que ag > 0, a; > 0 et

n+4 3n+7

m&n+1 7” D) Q.

+ Montrer que le rayon de convergence de la serie entiere Y a,, 2" est strictement positif.

Vn €N, api2 =

« Determiner la valeur de ce rayon de convergence.

xn
Exercice 264 [X MP 363] Pour z reel, on pose f(z) = Zg [ gn SOUS Teserve de convergence.
-z

« Determiner le domaine de definition de f.
« Etudier la continuite puis la derivabilite de f.
+ Donner un equivalent simple de fen1~.
« Montrre que f est developpable en serie entiere, et preciser le developpement associe.
Exercice 265 [X MP 364] « Soient U un voisinage de 0 dans C, et f : U — C somme d’une serie entiere. Soit £k € N* tel que

f(2) = O(z*) quand = tend vers 0. Montrrer que, pour 7 voisin de 0, il existe au moins 2k nombres complexes z de module r
tels que f(z) soit un nombre reel.

> Soient A et B deux polynomes a coefficients reels dont toute combinaison lineaire a coefficients reels est scindee ou nulle.
Soient 2 < y deux racines de A. Montrre que [z, y] contient au moins une racine de B.

Exercice 266 [X MP 365] Soit > a, 2" une serie entiere de rayon de convergence egal a 1 et de somme f.
On suppose qu’il existe C' > 0 tel que Vr € [0, 1], OZW |f'(re?)]do < C.

Montrre que fol |f(t)]dt < 4o0.

Exercice 267 [ 366] Soit P = a1 X + --- + aqX?¢ € Z[X] avec a; impair.

1. Montrer l'existence d’une suite réelle (by) ., telle que : Vz € R, exp(P(z)) = 3320 by
2. Montrer que les by sont tous non nuls.
Démonstration. 1.
2. Quand on dérive successivement e, on trouve une quantité qui vaut toujours 1 modulo 2. O

Exercice 268 [X MP 367] Pour x et g dans |0, 1], on pose (z, q), = Z;é(l —¢*x).
« Montrrer que la suite de terme general (z, q),, converge vers un reel (z,q)oc > 0.

« Determiner le rayon de convergence de la serie entiere ), -, g’g" 2".Onnotera f, , sa somme sur le disque ouvert de conver-
20 (a,9)n

gence, et D son disque ouvert de convergence.
« Etablir l'identife f, 4(2) — f1.,4(q2) = (1 — )2 f4,4,4(%) pour tout z € D.

« Etablir I'identife f, 4(2) = L= f, 4(¢2) pour tout z € D.

(z‘zvq)oo
(2,9) 00

« Soit &« € R™*. Determiner, pour tout z € D, la limite de fyo 4(2) quand ¢ tend vers 1.

« Demontrer que f; 4(2) = pour tout z € D.

Exercice 269 [X MP 368] - Pour z > 0 on pose f(z) = card {(n,m) € (N*)?,n? + m? < z}. Trouver un equivalent de f(z)
lorsque © — +o0.

> On pose g(t) = 320

Exercice 270 [X MP 369] Soit p un nombre premier. Pour tout ' € F,[X], on pose |F| = pie& .

" Trouver un equivalent de g en 1~ en utilisant g2.

« Soit 5 € C tel que Re s > 1. Montrre que la famille (|F|~*), indexee par les polynomes F' € F,[X] unitaires, est sommable et
calculer sa somme, qu’on notera z(s).
- On note A 'ensemble des polynomes unitaires de ' € F,[X] sans facteur carre, c’est-a-dire tels que : VD € F,[X], D|F =

deg D = 0. Montrre que Y o 4 |F|™° = ;((253))‘

« En deduire, pour tout d € N, la proportion de polynomes sans facteur carre parmi les polynomes unitaires de degre d de F,,[X].

Exercice 271 [X MP 370] Soit f continue sur [0,1] etg:  — fol 1’1% dt pour z > 0. On suppose f(0) # 0.
« Donner un equivalent de g lorsque x — +o0.
« On suppose f de classe C'. Majorer I’ecart avec I'equivalent trouve.

« Que peut-on dire de plus si f est de classe C??

Exercice 272 [X MP 371] « Determiner le domaine de definition de f :  — % foﬁ/Q (cost)?® dt.

oo Uex 7u2 w+l
> Montrre, pour tout reel z > 0, l'egalite f(z) = % f0+ Mdu.
™ l—e—u
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+oo sin(at)

(1+t2) dt. Montrer que F'

Exercice 273 [X MP 372] » Calculer fOJrOO e~ sm(a:t) dt pour tout reel x. - On pose F' : z — [
est de classe C2 sur R™* et que Vz > 0, F ( f+°° sint jz

> Donner une expression simplifiee de F'.

Exercice 274 [X MP 373] Soit f € C°(R™,R) de carre integrable. On pose Sy : € R™* — +O° ﬁ-; dy.
» Justifier la bonne definition de S;.

+ Montrer que Sy est de carre integrable.

Exercice 275 [X MP 374] Soient «, 8 > 0. Pour & > 0, on pose I(x) = f+°° tB—le—t==t" gt
+ Determiner la limite et un equivalent de I en +oc.
« Donner un developpement asymptotique de I a tout ordre.
« Donner une condition necessaire et suffisante pour que ce developpement soit la somme partielle d’une serie convergente pour
tout x > 0.
Exercice 276 [X MP 375] « Soient K un segment et f : K — K une fonction continue croissante. Montrer que f admet un

point fixe.

> On considere I'equation differentielle non lineaire (F) : &' = cos(z) + cos(t). On admet que pour tout a € R il existe
une unique solution ¢, de (E) sur R verifiant ¢©(0) = a, et que, pour tous a, b reels distincts, les fonctions ¢, et ¢}, ne
coincident en aucun point. Montrer que (E) possede une solution 27-periodique.
Exercice 277 [X MP 376] Soient f et g deux fonctions de classe C* de R* dans R**. Soit a € [0, 1].
« Justifier qu’il existe une unique fonction x, : RT™ — R de classe C! telle que Vt € RT, 2/(t) = f(t) — (f(t) + g(t)) z(t) et
z(0) = a.
« On suppose que f et g ont une limite finie strictement positive en +00. Montrer que z, tend vers 0 en +00.
« Montrer que f et g peuvent etre choisies de telle sorte que z, n’ait pas de limite en +o0.
+ On suppose que I'une des fonctions f et g n’est pas integrable sur R™. Montrer que 2; — x tend vers 0 en +oo.
Exercice 278 [X MP 377] Soient v : R — R une fonction continue a support compact et w € R™*. On considere ’equation
differentielle $y +w? =v(t),$ dont on note Sz 'ensemble des solutions.
- Montrer que, pour tout (a,b) € R?, il existe une unique solution f,", (resp. f,,) de (E) telle que f.", (t) = a cos(wt) + bsin(wt)
pour tout ¢ dans un voisinage de +oo, (resp. f, ,(t) = acos(wt) + bsin(wt) pour tout ¢ dans un voisinage de —oco
« Montrer que Sg = {f:b, (a,b) € R*} = {f . (a,b) € R?}.
« On pose c(w) = fj—z v(t) cos(wt) dt et s(w) = fjof v(t) sin(wt) dt, et on definit application S, : R* — R® par: f,, =
f; (a,) POUT tout (a,b) € R?. Expliciter I'application S, en fonction de c(w) et s(w).
« On suppose que S, = idgz pour tout w > 0. Montrer que v est identiquement nulle.
Exercice 279 [X MP 378] Soient ¢, g2 deux fonctions continues de R dans R telles que ¢; < ¢2. On considere I'equation differen-
tielle (E;) 1y + ¢:(t)y = 0 pouri € {1,2}.
« Soient y1,y2 des solutions respectives de (F1) et (E2) sur I. Soient @ < 3 deux zeros de y;. Montrer que y, s’annule dans
o, .
« Soient q : Rt — R continue, m, M deux reels strictement positifs tels que m < ¢ < M. Soient o < 3 deux zeros consecutifs
d’une solution non nulle x dey + ¢(t) y = 0.

« Montrer que les zeros de x fortner une suite strictement croissante (t — n € N.
» Montrer que \ﬁ <tpy1 —tn < T pour tout n € N.
Exercice 280 [X MP 379] « Soit p un projecteur d’un espace vectoriel E' de dimension finie, et u € L(E) tel que pu + up = wu.
Montrer que tr(u) = 0.
> Soit F un espace euclidien de dimension n > 1. Soit € 0, n. On note G I'ensemble des projecteurs orthogonaux de £ de
rang 7. Soit p € (. Determiner I’espace vectoriel tangent a G en p.
Exercice 281 [X MP 380] On munit R? de sa structure euclidienne canonique. On considere le carre de coins {0,1} x {0,1}. On
choisit trois points A, B et C' sur ce carre.
« Montrer qu’il existe une disposition des points A, B et C maximisant I’aire du triangle ABC.
« Caracteriser une telle disposition.
2) Geometrie
Exercice 282 [X MP 381] Pour n > 2, on note P, le perimetre d’un polygone regulier a 2" cotes inscrit dans le cercle unite.

- Calculer P, et etudier la convergence de la suite (P —n > 2.
« Etablir une relation de recurrence entre P, et P, 1.

« Estimer 'erreur 27w — P,.

« Proposer une methode d’approximation de 7 par exces.
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Exercice 283 [X MP 382] On se donne un triangle direct ABC du plan complexe. On note respectivement a, b, ¢ les mesures

principales des angles orientes (A5, AC'), (BC, BA) et (CA,CB). Onnote P I'unique point tel que 3 soit une mesure de (BC', BP)

et £ soit une mesure de (C’ﬁ7 C’g); @ l'unique point tel que § soit une mesure de (@, @) et £ soit une mesure de (Cﬁl, C’(j) ;R
BB . BA

'unique point tel que £ soit une mesure de (ﬁ , ﬁ) et g soit une mesure de (BR, BA). L’objectif est de montrer que le triangle

PQR est equilateral.
« On note f, g, h les rotations de centres respectifs A, B, C' et d’angles de mesures respectives %’1, % et % Montrer que P est
I'unique point fixe de g o h.
« Montrer que (f3 o g3 o h3)(z) = z pour tout nombre complexe z.
« Onnote f: 2+ a1z2+b1,g: 2+ asz+byeth:z+— agz + bs. Experimer P, @), R en fonction des a; et des b;.

« Conclure.

Exercice 284 [X MP 383] Determiner le nombre moyen de 2-cycles, de 3-cycles, de p-cycles, d’'une permutation de [1, n].

x

Exercice 285 [X MP 384] « Montrer que Vo € RT*, (1_8;7_T)2 < &
> Soit n € N*. On appelle partition de n toute liste decroissante (A — 1 < k < n d’entiers naturels non nuls de somme n.
On note P(n) le nombre de telles listes.
Montrer que P(n) < 2771,
+ Onfixen > 1 et on considere une variable aleatoire X suivant la loi uniforme sur 'ensemble des partitions de n. On fixe k € N*
etj € N.Onpose N, = |[{i € [1,n] : X; =k}

Exprimer P (N}, > j) comme un quotient % pour des entiers a et b a preciser.

- Calculer .7 | iN;.
Exercice 286 [X MP 385] On considere la suite (a,,) definie par a; = 0, a3 = 1l et a,, = a,—1 + Gp—2 pourn > 3.
+o00o
« Calculer ) '~ 2.
+ On lance une piece non truquee. Determiner la loi de la variable aleatoire X qui donne I'instant de premiere apparition du motif
Face-Face.

. Calculer E(X) et V(X).

« Donner un equivalent de P(X = n).
Exercice 287 [X MP 386] Soit n € N*. On munit S,, de la loi uniforme, et on note IV la variable aleatoire associant a tout 0 € S, le
nombre de ses orbites.

« Calculer P(N = 1) et P(N =n).

« Donner une formule simple pour la fonction generatrice de V.

« Donner un equivalent de E(N) quand n tend vers +oo.

« Donner un equivalent de V(N) quand n tend vers +oc.

Exercice 288 [X MP 387] Soientn > 2, X1,..., X, des variables aleatoires i.i.d. suivant la loi uniforme sur [1, n]. Soit (e1, . .., €y)
la base canonique de C" et f(x, .. x,) la variable aleatoire a valeurs dans £(C") telle que, pour tout 4, f(x, .. x,)(e:) = ex,.

« Determiner E (rg (f(Xl,...,Xn)))~
» Pour z € C, soit j, la multiplicite de z comme valeur propre de f(x, ... x, ). Calculer E(f.).

Exercice 289 [X MP 388] Soient b,n € N*. On considere (B — 1 < i < n des variables aleatoires independantes suivant la loi
uniforme sur [0, b — 1]. On note S 'ensemble des descentes de la suite B c’est-a-dire S = {i € [1,n], B; > Bi+1}-

« Pouri € [1,n — 1], calculer P(B; > B;11).
« Soitj € [1,n—j —1]. Calculer P(By > By > -+ > Bj.1).-Pour I C 1,n, on pose a(I) (resp. 5(I)) le nombre de suites a n
elements a valeurs dans 0, b — 1 qui verifient S C I (resp. S = I). Exprimer « en fonction de (3, puis 3 en fonction de a.

ik io(k)m

Exercice 290 [X MP 389] Sin € N*, 0 € S, etk € {1,...,2n}, on note s(o, k) le segment de C qui joint les points e = ete™ =
On note b(o) le nombre de segments qui ne croisent aucun autre segment (ou on dit que deux segments se croisent s’ils ont un point
d’intersection qui n’est pas une extremite).

Pour n € N*, soit 0,, une variable aleatoire suivant la loi uniforme sur Ss,,. Determiner E(b(c,,)) et en donner un equivalent.
Exercice 291 [ 390] Soient p € [0,1/2],(X,),», iid. telle que P(X,, = -1) = P(X,=1) =petP(X,, =0) = 1—2p.On
cherche p tel que : Vn € N*,Vay,...,an, b € Z,P (30, X; =0) > P (X", ;. X; = b).

1. Montrer que p < %, puis que p < % et enfin que p < i.

2. Si X une variable aléatoire a valeurs dans Z, on pose ®x: § — E (eiX(’). Exprimer P(X = k) en fonction de @ x.

3. En déduire que p < i est une condition suffisante.

Démonstration. 1. On regarde les probabilités, jusqu’a n = 3.
2. ®x(0) = > P(X = k)e'** et formule de Cauchy.
3. O
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Exercice 292 [X MP 391] Soient n et d des entiers tels que 1 < d < n, et Xy,...,X,, des variables aleatoires independantes
uniformement distribuees sur 0, d. On note S, la classe de X; + - - - + X, dans Z/nZ.

« La variable aleatoire S,, est-elle uniformement distribuee sur Z/nZ?

« Calculer la loi de S,,.
Exercice 293 [X MP 392] Soient d € N*, (X — n > 1 une suite i.i.d. de variables aleatoires suivant la loi uniforme sur 1, d. Pour
n € N*,onpose S,, = X1 + -+ X,,.

« Soient Y une variable aleatoire a valeurs dans Z,r € 0,d — 1, w = e2in/n
Montrer que $P(Y=r[d]) = L ™" lgkr}E(w kg

Soit r € 0,d — 1. Donner une expression de P(S,, = r [d]).
Determiner la limite de la suite de terme general P(S,, = 0[d]).

Exercice 294 [X MP 393] Soitn > 1.

+ On se donne deux variables aleatoires independantes X, et Y,, suivant chacune la loi uniforme sur 1, n?. Soitr € Q. Determiner
la probabilite u,, (r) pour que X,, et Y, soient deux points distincts et le coefficient directeur de la droite (X,,Y},) soit egal a r.
Donner un equivalent de w,, () lorsque n — +o0.

« On se donne quatre variables aleatoires independantes X,,, Y;,, A,,, B,, suivant chacune la loi uniforme sur 1, n2. On note p,, la
probabilite pour que X,, # Y,,, A,, # B, etles droites (X,,Y},) et (A4,,B,,) soient paralleles. Montrer que p,, = O (%) quand
n — +00.
Exercice 295 [X MP 394] Soita € [1,2]. Onpose f, : & — |1 + x|* — |22|* — ax*a)* : Montrer : Vz € R, f,(x) < 1.
c+ X)) < 2°E(|X|*) +

« Soit X une variable aleatoire reelle centree et admettant un moment d’ordre 2. Montrer : Ve € R, E (
]
« Soit (X — n > 1 une suite i.i.d. de variables aleatoires centrees admettant un moment d’ordre 2. Montrer que, pour n € N*,
E (|20 Xil%) <2037 B(IXG|Y).
Exercice 296 [X MP 395] Une urne contient a boules jaunes et b boules rouges. On effectue une succession de tirages d’une boule

dans 'urne avec remise. A chaque tirage, on ajoute une boule de la couleur de celle titee dans 'urne. Soit X, la variable aleatoire du
nombre de boules jaunes dans 'urne apres n tirages. Soit 7;, I’evenement «tirer une boule jaune au n'*™ tirage».

« Calculer P, (T1).

o Determiner la loi de X,.

« Calculer P(T},).

« Pour ny, ..., np, My, ..., mq tous distincts, calculer P(T;,, N...NT,, NT,, N...NT,,,).

Exercice 297 [ 396] Soientn > 1et A, B, C des variables aléatoires indépendantes uniformément distribuées sur {0, 1}".

1. Pour n > 2, calculer la probabilité p,, que ABC soit un triangle équilatéral.
2. Déterminer un équivalent de p,.
Démonstration. Relier a un précédent.
1. Onprend A = 0. Alors on veut B , C avec autant de termes 1, et autant de différences entre les deux.
On consideére les ensembles B C [1,n], C[1,n], et B & C.
Les partiesU = B\ C,V = C\ Bet W = BN vérifient u + w = v + w = u + v, donc ils sont de méme cardinaux, et
disjoints. O

Exercice 298 [X MP 397] On munit I'ensemble S,, des permutations de [1, n] de la probabilite uniforme. Soit X, la variable aleatoire
donnant le nombre de points fixes d’'une permutation aleatoire o € S,,.

« Calculer P(X,, = 0).

« Determiner la loi de X,,.

« Etudier la convergence en loi de la suite (X —n € N*.

« Calculer les esperance et variance de la variable aleatoire X,.

a —b —c —d
Exercice 299 [X MP 398] Soit M = ZC) _ad Z ;)C une matrice aleatoire ou (a+1) ~ P(a), (b+1) ~ P(B), (c+1) ~ P(7)
d ¢ —b

et (d+ 1) ~ P(9).
« Calculer la probabilite que la matrice M soit inversible.
« Calculer la probabilite que la matrice M soit inversible et diagonalisable dans R.
Exercice 300 [X MP 399] Soient X et Y deux variables fleatoires a valeurs dans N verifiant P(X > Y') = 1, et, pour toutn € N et
touti € [0,n], P(X =n)>0etP(Y =i/ X =n) = TR
« Montrer que, si (i,7) € N2, PP(X =i,V = j) =P(X =i, X —Y =j),puisque X - Y ~ Y.
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+ Montrer que P(Y = 0) > 0.
« On suppose que X — Y et Y sont independantes. Determiner la loi de Y, puis celle de X.

Exercice 301 [X MP 400] Soit n > 3 un entier. Si k € Z, on note k la reduction de k£ modulo n. Soienj {( 15000 X,, des variables

aleatoires independantes a valeurs dans Z/nZ telles que, pour tout k € 1,7, X suit la loi uniforme sur {1,2, 3}. Soit I 'application
aleatoire de Z/nZ dans lui-meme telle que, pour tout k € 1,n, F(k) = k + Xj. Calculer la probabilite que F soit bijective.

Exercice 302 [X MP 401] On cherche a collectionner N jouets. A chaque achat, chaque jouet a une probabilite uniforme d’etre
obtenu. Pour ¢ € 1, N, on note T; le temps d’attente pour obtenir 7 jouets differents.

« Calculer I'esperance de Ty .

« Calculer la variance de T'y.

« Montrer que Ve > 0, P ( b

NIn N

71| 25) — 0 quand N — +o0.

Exercice 303 [X MP 402] Soit (X — n € N* une suite i.i.d. de variables aleatoires reelles centrees.

On suppose que E(X{) < +o0.

+ Montrer que E ((X1 +-- 4 Xn)4) = 0(n?).

« Pour € > 0, quelle est la nature de la serie de terme general P (% > s) ?

Exercice 304 [X MP 403] Soientx € R1*, (X —k > 1 une suite i.i.d. de variables aleatoires suivant la loi P(z). Pour n € N*, soient
Sy, = Ezzl X, T, = S"\'/_ﬁn.
+ Montrer que f0+°° P(T, > z)dz = /n (2)"

« On admet que, pour tout z € R, P(T}, > x) j) \/% f;w e~t*/2dt. Retrouver la formule de Stirling.
n—-+0o0

1
R
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